1 | /*
|
---|
2 | * Project: MoleCuilder
|
---|
3 | * Description: creates and alters molecular systems
|
---|
4 | * Copyright (C) 2010-2012 University of Bonn. All rights reserved.
|
---|
5 | * Please see the LICENSE file or "Copyright notice" in builder.cpp for details.
|
---|
6 | */
|
---|
7 |
|
---|
8 | /*
|
---|
9 | * analysis.cpp
|
---|
10 | *
|
---|
11 | * Created on: Oct 13, 2009
|
---|
12 | * Author: heber
|
---|
13 | */
|
---|
14 |
|
---|
15 | // include config.h
|
---|
16 | #ifdef HAVE_CONFIG_H
|
---|
17 | #include <config.h>
|
---|
18 | #endif
|
---|
19 |
|
---|
20 | #include "CodePatterns/MemDebug.hpp"
|
---|
21 |
|
---|
22 | #include <iostream>
|
---|
23 | #include <iomanip>
|
---|
24 | #include <limits>
|
---|
25 |
|
---|
26 | #include "Atom/atom.hpp"
|
---|
27 | #include "Bond/bond.hpp"
|
---|
28 | #include "Tesselation/BoundaryTriangleSet.hpp"
|
---|
29 | #include "Box.hpp"
|
---|
30 | #include "Element/element.hpp"
|
---|
31 | #include "CodePatterns/Info.hpp"
|
---|
32 | #include "CodePatterns/Log.hpp"
|
---|
33 | #include "CodePatterns/Verbose.hpp"
|
---|
34 | #include "Descriptors/AtomOfMoleculeSelectionDescriptor.hpp"
|
---|
35 | #include "Descriptors/MoleculeFormulaDescriptor.hpp"
|
---|
36 | #include "Descriptors/MoleculeOfAtomSelectionDescriptor.hpp"
|
---|
37 | #include "Formula.hpp"
|
---|
38 | #include "LinearAlgebra/Vector.hpp"
|
---|
39 | #include "LinearAlgebra/RealSpaceMatrix.hpp"
|
---|
40 | #include "molecule.hpp"
|
---|
41 | #include "Tesselation/tesselation.hpp"
|
---|
42 | #include "Tesselation/tesselationhelpers.hpp"
|
---|
43 | #include "Tesselation/triangleintersectionlist.hpp"
|
---|
44 | #include "World.hpp"
|
---|
45 | #include "WorldTime.hpp"
|
---|
46 |
|
---|
47 | #include "analysis_correlation.hpp"
|
---|
48 |
|
---|
49 | /** Calculates the dipole vector of a given atomSet.
|
---|
50 | *
|
---|
51 | * Note that we use the following procedure as rule of thumb:
|
---|
52 | * -# go through every bond of the atom
|
---|
53 | * -# calculate the difference of electronegativities \f$\Delta\mathrm{EN}\f$
|
---|
54 | * -# if \f$\Delta\mathrm{EN} > 0.5\f$, we align the bond vector in direction of the more negative element
|
---|
55 | * -# sum up all vectors
|
---|
56 | * -# finally, divide by the number of summed vectors
|
---|
57 | *
|
---|
58 | * @param atomsbegin begin iterator of atomSet
|
---|
59 | * @param atomsend end iterator of atomset
|
---|
60 | * @return dipole vector
|
---|
61 | */
|
---|
62 | Vector getDipole(molecule::const_iterator atomsbegin, molecule::const_iterator atomsend)
|
---|
63 | {
|
---|
64 | Vector DipoleVector;
|
---|
65 | size_t SumOfVectors = 0;
|
---|
66 | // go through all atoms
|
---|
67 | for (molecule::const_iterator atomiter = atomsbegin;
|
---|
68 | atomiter != atomsend;
|
---|
69 | ++atomiter) {
|
---|
70 | // go through all bonds
|
---|
71 | const BondList& ListOfBonds = (*atomiter)->getListOfBonds();
|
---|
72 | ASSERT(ListOfBonds.begin() != ListOfBonds.end(),
|
---|
73 | "getDipole() - no bonds in molecule!");
|
---|
74 | for (BondList::const_iterator bonditer = ListOfBonds.begin();
|
---|
75 | bonditer != ListOfBonds.end();
|
---|
76 | ++bonditer) {
|
---|
77 | const atom * Otheratom = (*bonditer)->GetOtherAtom(*atomiter);
|
---|
78 | if (Otheratom->getId() > (*atomiter)->getId()) {
|
---|
79 | const double DeltaEN = (*atomiter)->getType()->getElectronegativity()
|
---|
80 | -Otheratom->getType()->getElectronegativity();
|
---|
81 | Vector BondDipoleVector = (*atomiter)->getPosition() - Otheratom->getPosition();
|
---|
82 | // DeltaEN is always positive, gives correct orientation of vector
|
---|
83 | BondDipoleVector.Normalize();
|
---|
84 | BondDipoleVector *= DeltaEN;
|
---|
85 | LOG(3,"INFO: Dipole vector from bond " << **bonditer << " is " << BondDipoleVector);
|
---|
86 | DipoleVector += BondDipoleVector;
|
---|
87 | SumOfVectors++;
|
---|
88 | }
|
---|
89 | }
|
---|
90 | }
|
---|
91 | LOG(3,"INFO: Sum over all bond dipole vectors is "
|
---|
92 | << DipoleVector << " with " << SumOfVectors << " in total.");
|
---|
93 | if (SumOfVectors != 0)
|
---|
94 | DipoleVector *= 1./(double)SumOfVectors;
|
---|
95 | LOG(1, "Resulting dipole vector is " << DipoleVector);
|
---|
96 |
|
---|
97 | return DipoleVector;
|
---|
98 | };
|
---|
99 |
|
---|
100 | /** Calculate minimum and maximum amount of trajectory steps by going through given atomic trajectories.
|
---|
101 | * \param vector of atoms whose trajectories to check for [min,max]
|
---|
102 | * \return range with [min, max]
|
---|
103 | */
|
---|
104 | range<size_t> getMaximumTrajectoryBounds(const std::vector<atom *> &atoms)
|
---|
105 | {
|
---|
106 | // get highest trajectory size
|
---|
107 | LOG(0,"STATUS: Retrieving maximum amount of time steps ...");
|
---|
108 | if (atoms.size() == 0)
|
---|
109 | return range<size_t>(0,0);
|
---|
110 | size_t max_timesteps = std::numeric_limits<size_t>::min();
|
---|
111 | size_t min_timesteps = std::numeric_limits<size_t>::max();
|
---|
112 | BOOST_FOREACH(atom *_atom, atoms) {
|
---|
113 | if (_atom->getTrajectorySize() > max_timesteps)
|
---|
114 | max_timesteps = _atom->getTrajectorySize();
|
---|
115 | if (_atom->getTrajectorySize() < min_timesteps)
|
---|
116 | min_timesteps = _atom->getTrajectorySize();
|
---|
117 | }
|
---|
118 | LOG(1,"INFO: Minimum number of time steps found is " << min_timesteps);
|
---|
119 | LOG(1,"INFO: Maximum number of time steps found is " << max_timesteps);
|
---|
120 |
|
---|
121 | return range<size_t>(min_timesteps, max_timesteps);
|
---|
122 | }
|
---|
123 |
|
---|
124 | /** Calculates the angular dipole zero orientation from current time step.
|
---|
125 | * \param molecules vector of molecules to calculate dipoles of
|
---|
126 | * \return map with orientation vector for each atomic id given in \a atoms.
|
---|
127 | */
|
---|
128 | std::map<atomId_t, Vector> CalculateZeroAngularDipole(const std::vector<molecule *> &molecules)
|
---|
129 | {
|
---|
130 | // get zero orientation for each molecule.
|
---|
131 | LOG(0,"STATUS: Calculating dipoles for current time step ...");
|
---|
132 | std::map<atomId_t, Vector> ZeroVector;
|
---|
133 | BOOST_FOREACH(molecule *_mol, molecules) {
|
---|
134 | const Vector Dipole = getDipole(_mol->begin(), _mol->end());
|
---|
135 | for(molecule::const_iterator iter = _mol->begin(); iter != _mol->end(); ++iter)
|
---|
136 | ZeroVector[(*iter)->getId()] = Dipole;
|
---|
137 | LOG(2,"INFO: Zero alignment for molecule " << _mol->getId() << " is " << Dipole);
|
---|
138 | }
|
---|
139 | LOG(1,"INFO: We calculated zero orientation for a total of " << molecules.size() << " molecule(s).");
|
---|
140 |
|
---|
141 | return ZeroVector;
|
---|
142 | }
|
---|
143 |
|
---|
144 | /** Calculates the dipole angular correlation for given molecule type.
|
---|
145 | * Calculate the change of the dipole orientation angle over time.
|
---|
146 | * Note given element order is unimportant (i.e. g(Si, O) === g(O, Si))
|
---|
147 | * Angles are given in degrees.
|
---|
148 | * \param &atoms list of atoms of the molecules taking part (Note: molecules may
|
---|
149 | * change over time as bond structure is recalculated, hence we need the atoms)
|
---|
150 | * \param timestep time step to calculate angular correlation for (relative to
|
---|
151 | * \a ZeroVector)
|
---|
152 | * \param ZeroVector map with Zero orientation vector for each atom in \a atoms.
|
---|
153 | * \param DontResetTime don't reset time to old value (triggers re-creation of bond system)
|
---|
154 | * \return Map of doubles with values the pair of the two atoms.
|
---|
155 | */
|
---|
156 | DipoleAngularCorrelationMap *DipoleAngularCorrelation(
|
---|
157 | const Formula &DipoleFormula,
|
---|
158 | const size_t timestep,
|
---|
159 | const std::map<atomId_t, Vector> &ZeroVector,
|
---|
160 | const enum ResetWorldTime DoTimeReset
|
---|
161 | )
|
---|
162 | {
|
---|
163 | Info FunctionInfo(__func__);
|
---|
164 | DipoleAngularCorrelationMap *outmap = new DipoleAngularCorrelationMap;
|
---|
165 |
|
---|
166 | unsigned int oldtime = 0;
|
---|
167 | if (DoTimeReset == DoResetTime) {
|
---|
168 | // store original time step
|
---|
169 | oldtime = WorldTime::getTime();
|
---|
170 | }
|
---|
171 |
|
---|
172 | // set time step
|
---|
173 | LOG(0,"STATUS: Stepping onto to time step " << timestep << ".");
|
---|
174 | World::getInstance().setTime(timestep);
|
---|
175 |
|
---|
176 | // get all molecules for this time step
|
---|
177 | World::getInstance().clearMoleculeSelection();
|
---|
178 | World::getInstance().selectAllMolecules(MoleculeByFormula(DipoleFormula));
|
---|
179 | std::vector<molecule *> molecules = World::getInstance().getSelectedMolecules();
|
---|
180 | LOG(1,"INFO: There are " << molecules.size() << " molecules for time step " << timestep << ".");
|
---|
181 |
|
---|
182 | // calculate dipoles for each
|
---|
183 | LOG(0,"STATUS: Calculating dipoles for time step " << timestep << " ...");
|
---|
184 | size_t i=0;
|
---|
185 | size_t Counter_rejections = 0;
|
---|
186 | BOOST_FOREACH(molecule *_mol, molecules) {
|
---|
187 | const Vector Dipole = getDipole(_mol->begin(), _mol->end());
|
---|
188 | LOG(3,"INFO: Dipole vector at time step " << timestep << " for for molecule "
|
---|
189 | << _mol->getId() << " is " << Dipole);
|
---|
190 | // check that all atoms are valid (zeroVector known)
|
---|
191 | molecule::const_iterator iter = _mol->begin();
|
---|
192 | for(; iter != _mol->end(); ++iter) {
|
---|
193 | if (!ZeroVector.count((*iter)->getId()))
|
---|
194 | break;
|
---|
195 | }
|
---|
196 | if (iter != _mol->end()) {
|
---|
197 | ELOG(2, "Skipping molecule " << _mol->getName() << " as not all atoms have a valid zeroVector.");
|
---|
198 | ++Counter_rejections;
|
---|
199 | continue;
|
---|
200 | } else
|
---|
201 | iter = _mol->begin();
|
---|
202 | std::map<atomId_t, Vector>::const_iterator zeroValue = ZeroVector.find((*iter)->getId()); //due to iter is const
|
---|
203 | double angle = 0.;
|
---|
204 | LOG(2, "INFO: ZeroVector of first atom " << **iter << " is "
|
---|
205 | << zeroValue->second << ".");
|
---|
206 | LOG(4, "INFO: Squared norm of difference vector is "
|
---|
207 | << (zeroValue->second - Dipole).NormSquared() << ".");
|
---|
208 | if ((zeroValue->second - Dipole).NormSquared() > MYEPSILON)
|
---|
209 | angle = Dipole.Angle(zeroValue->second) * (180./M_PI);
|
---|
210 | else
|
---|
211 | LOG(2, "INFO: Both vectors (almost) coincide, numerically unstable, angle set to zero.");
|
---|
212 | LOG(1,"INFO: Resulting relative angle for molecule " << _mol->getName()
|
---|
213 | << " is " << angle << ".");
|
---|
214 | outmap->insert ( std::make_pair (angle, *iter ) );
|
---|
215 | ++i;
|
---|
216 | }
|
---|
217 | ASSERT(Counter_rejections <= molecules.size(),
|
---|
218 | "DipoleAngularCorrelation() - more rejections ("+toString(Counter_rejections)
|
---|
219 | +") than there are molecules ("+toString(molecules.size())+").");
|
---|
220 | LOG(1,"INFO: " << Counter_rejections << " molecules have been rejected in time step " << timestep << ".");
|
---|
221 |
|
---|
222 | LOG(0,"STATUS: Done with calculating dipoles.");
|
---|
223 |
|
---|
224 | if (DoTimeReset == DoResetTime) {
|
---|
225 | // re-set to original time step again
|
---|
226 | World::getInstance().setTime(oldtime);
|
---|
227 | }
|
---|
228 |
|
---|
229 | // and return results
|
---|
230 | return outmap;
|
---|
231 | };
|
---|
232 |
|
---|
233 | /** Calculates the dipole correlation for given molecule type.
|
---|
234 | * I.e. we calculate how the angle between any two given dipoles in the
|
---|
235 | * systems behaves. Sort of pair correlation but distance is replaced by
|
---|
236 | * the orientation distance, i.e. an angle.
|
---|
237 | * Note given element order is unimportant (i.e. g(Si, O) === g(O, Si))
|
---|
238 | * Angles are given in degrees.
|
---|
239 | * \param *molecules vector of molecules
|
---|
240 | * \return Map of doubles with values the pair of the two atoms.
|
---|
241 | */
|
---|
242 | DipoleCorrelationMap *DipoleCorrelation(std::vector<molecule *> &molecules)
|
---|
243 | {
|
---|
244 | Info FunctionInfo(__func__);
|
---|
245 | DipoleCorrelationMap *outmap = new DipoleCorrelationMap;
|
---|
246 | // double distance = 0.;
|
---|
247 | // Box &domain = World::getInstance().getDomain();
|
---|
248 | //
|
---|
249 | if (molecules.empty()) {
|
---|
250 | ELOG(1, "No molecule given.");
|
---|
251 | return outmap;
|
---|
252 | }
|
---|
253 |
|
---|
254 | for (std::vector<molecule *>::const_iterator MolWalker = molecules.begin();
|
---|
255 | MolWalker != molecules.end(); ++MolWalker) {
|
---|
256 | LOG(2, "INFO: Current molecule is " << (*MolWalker)->getId() << ".");
|
---|
257 | const Vector Dipole = getDipole((*MolWalker)->begin(), (*MolWalker)->end());
|
---|
258 | std::vector<molecule *>::const_iterator MolOtherWalker = MolWalker;
|
---|
259 | for (++MolOtherWalker;
|
---|
260 | MolOtherWalker != molecules.end();
|
---|
261 | ++MolOtherWalker) {
|
---|
262 | LOG(2, "INFO: Current other molecule is " << (*MolOtherWalker)->getId() << ".");
|
---|
263 | const Vector OtherDipole = getDipole((*MolOtherWalker)->begin(), (*MolOtherWalker)->end());
|
---|
264 | const double angle = Dipole.Angle(OtherDipole) * (180./M_PI);
|
---|
265 | LOG(1, "Angle is " << angle << ".");
|
---|
266 | outmap->insert ( make_pair (angle, make_pair ((*MolWalker), (*MolOtherWalker)) ) );
|
---|
267 | }
|
---|
268 | }
|
---|
269 | return outmap;
|
---|
270 | };
|
---|
271 |
|
---|
272 |
|
---|
273 | /** Calculates the pair correlation between given elements.
|
---|
274 | * Note given element order is unimportant (i.e. g(Si, O) === g(O, Si))
|
---|
275 | * \param *molecules vector of molecules
|
---|
276 | * \param &elements vector of elements to correlate
|
---|
277 | * \return Map of doubles with values the pair of the two atoms.
|
---|
278 | */
|
---|
279 | PairCorrelationMap *PairCorrelation(std::vector<molecule *> &molecules, const std::vector<const element *> &elements)
|
---|
280 | {
|
---|
281 | Info FunctionInfo(__func__);
|
---|
282 | PairCorrelationMap *outmap = new PairCorrelationMap;
|
---|
283 | double distance = 0.;
|
---|
284 | Box &domain = World::getInstance().getDomain();
|
---|
285 |
|
---|
286 | if (molecules.empty()) {
|
---|
287 | ELOG(1, "No molecule given.");
|
---|
288 | return outmap;
|
---|
289 | }
|
---|
290 | for (std::vector<molecule *>::const_iterator MolWalker = molecules.begin(); MolWalker != molecules.end(); MolWalker++)
|
---|
291 | (*MolWalker)->doCountAtoms();
|
---|
292 |
|
---|
293 | // create all possible pairs of elements
|
---|
294 | set <pair<const element *,const element *> > PairsOfElements;
|
---|
295 | if (elements.size() >= 2) {
|
---|
296 | for (vector<const element *>::const_iterator type1 = elements.begin(); type1 != elements.end(); ++type1)
|
---|
297 | for (vector<const element *>::const_iterator type2 = elements.begin(); type2 != elements.end(); ++type2)
|
---|
298 | if (type1 != type2) {
|
---|
299 | PairsOfElements.insert( make_pair(*type1,*type2) );
|
---|
300 | LOG(1, "Creating element pair " << *(*type1) << " and " << *(*type2) << ".");
|
---|
301 | }
|
---|
302 | } else if (elements.size() == 1) { // one to all are valid
|
---|
303 | const element *elemental = *elements.begin();
|
---|
304 | PairsOfElements.insert( pair<const element *,const element*>(elemental,0) );
|
---|
305 | PairsOfElements.insert( pair<const element *,const element*>(0,elemental) );
|
---|
306 | } else { // all elements valid
|
---|
307 | PairsOfElements.insert( pair<element *, element*>((element *)NULL, (element *)NULL) );
|
---|
308 | }
|
---|
309 |
|
---|
310 | outmap = new PairCorrelationMap;
|
---|
311 | for (std::vector<molecule *>::const_iterator MolWalker = molecules.begin(); MolWalker != molecules.end(); MolWalker++){
|
---|
312 | LOG(2, "Current molecule is " << (*MolWalker)->getName() << ".");
|
---|
313 | for (molecule::const_iterator iter = (*MolWalker)->begin(); iter != (*MolWalker)->end(); ++iter) {
|
---|
314 | LOG(3, "Current atom is " << **iter << ".");
|
---|
315 | for (std::vector<molecule *>::const_iterator MolOtherWalker = MolWalker; MolOtherWalker != molecules.end(); MolOtherWalker++){
|
---|
316 | LOG(2, "Current other molecule is " << (*MolOtherWalker)->getName() << ".");
|
---|
317 | for (molecule::const_iterator runner = (*MolOtherWalker)->begin(); runner != (*MolOtherWalker)->end(); ++runner) {
|
---|
318 | LOG(3, "Current otheratom is " << **runner << ".");
|
---|
319 | if ((*iter)->getId() < (*runner)->getId()){
|
---|
320 | for (set <pair<const element *, const element *> >::iterator PairRunner = PairsOfElements.begin(); PairRunner != PairsOfElements.end(); ++PairRunner)
|
---|
321 | if ((PairRunner->first == (**iter).getType()) && (PairRunner->second == (**runner).getType())) {
|
---|
322 | distance = domain.periodicDistance((*iter)->getPosition(),(*runner)->getPosition());
|
---|
323 | //LOG(1, "Inserting " << *(*iter) << " and " << *(*runner));
|
---|
324 | outmap->insert (
|
---|
325 | std::pair<double, std::pair <const atom *, const atom*> > (
|
---|
326 | distance,
|
---|
327 | std::pair<const atom *, const atom*> ((*iter), (*runner))
|
---|
328 | )
|
---|
329 | );
|
---|
330 | }
|
---|
331 | }
|
---|
332 | }
|
---|
333 | }
|
---|
334 | }
|
---|
335 | }
|
---|
336 | return outmap;
|
---|
337 | };
|
---|
338 |
|
---|
339 | /** Calculates the pair correlation between given elements.
|
---|
340 | * Note given element order is unimportant (i.e. g(Si, O) === g(O, Si))
|
---|
341 | * \param *molecules list of molecules structure
|
---|
342 | * \param &elements vector of elements to correlate
|
---|
343 | * \param ranges[NDIM] interval boundaries for the periodic images to scan also
|
---|
344 | * \return Map of doubles with values the pair of the two atoms.
|
---|
345 | */
|
---|
346 | PairCorrelationMap *PeriodicPairCorrelation(std::vector<molecule *> &molecules, const std::vector<const element *> &elements, const int ranges[NDIM] )
|
---|
347 | {
|
---|
348 | Info FunctionInfo(__func__);
|
---|
349 | PairCorrelationMap *outmap = new PairCorrelationMap;
|
---|
350 | double distance = 0.;
|
---|
351 | int n[NDIM];
|
---|
352 | Vector checkX;
|
---|
353 | Vector periodicX;
|
---|
354 | int Othern[NDIM];
|
---|
355 | Vector checkOtherX;
|
---|
356 | Vector periodicOtherX;
|
---|
357 |
|
---|
358 | if (molecules.empty()) {
|
---|
359 | ELOG(1, "No molecule given.");
|
---|
360 | return outmap;
|
---|
361 | }
|
---|
362 | for (std::vector<molecule *>::const_iterator MolWalker = molecules.begin(); MolWalker != molecules.end(); MolWalker++)
|
---|
363 | (*MolWalker)->doCountAtoms();
|
---|
364 |
|
---|
365 | // create all possible pairs of elements
|
---|
366 | set <pair<const element *,const element *> > PairsOfElements;
|
---|
367 | if (elements.size() >= 2) {
|
---|
368 | for (vector<const element *>::const_iterator type1 = elements.begin(); type1 != elements.end(); ++type1)
|
---|
369 | for (vector<const element *>::const_iterator type2 = elements.begin(); type2 != elements.end(); ++type2)
|
---|
370 | if (type1 != type2) {
|
---|
371 | PairsOfElements.insert( make_pair(*type1,*type2) );
|
---|
372 | LOG(1, "Creating element pair " << *(*type1) << " and " << *(*type2) << ".");
|
---|
373 | }
|
---|
374 | } else if (elements.size() == 1) { // one to all are valid
|
---|
375 | const element *elemental = *elements.begin();
|
---|
376 | PairsOfElements.insert( pair<const element *,const element*>(elemental,0) );
|
---|
377 | PairsOfElements.insert( pair<const element *,const element*>(0,elemental) );
|
---|
378 | } else { // all elements valid
|
---|
379 | PairsOfElements.insert( pair<element *, element*>((element *)NULL, (element *)NULL) );
|
---|
380 | }
|
---|
381 |
|
---|
382 | outmap = new PairCorrelationMap;
|
---|
383 | for (std::vector<molecule *>::const_iterator MolWalker = molecules.begin(); MolWalker != molecules.end(); MolWalker++){
|
---|
384 | RealSpaceMatrix FullMatrix = World::getInstance().getDomain().getM();
|
---|
385 | RealSpaceMatrix FullInverseMatrix = World::getInstance().getDomain().getMinv();
|
---|
386 | LOG(2, "Current molecule is " << *MolWalker << ".");
|
---|
387 | for (molecule::const_iterator iter = (*MolWalker)->begin(); iter != (*MolWalker)->end(); ++iter) {
|
---|
388 | LOG(3, "Current atom is " << **iter << ".");
|
---|
389 | periodicX = FullInverseMatrix * ((*iter)->getPosition()); // x now in [0,1)^3
|
---|
390 | // go through every range in xyz and get distance
|
---|
391 | for (n[0]=-ranges[0]; n[0] <= ranges[0]; n[0]++)
|
---|
392 | for (n[1]=-ranges[1]; n[1] <= ranges[1]; n[1]++)
|
---|
393 | for (n[2]=-ranges[2]; n[2] <= ranges[2]; n[2]++) {
|
---|
394 | checkX = FullMatrix * (Vector(n[0], n[1], n[2]) + periodicX);
|
---|
395 | for (std::vector<molecule *>::const_iterator MolOtherWalker = MolWalker; MolOtherWalker != molecules.end(); MolOtherWalker++){
|
---|
396 | LOG(2, "Current other molecule is " << *MolOtherWalker << ".");
|
---|
397 | for (molecule::const_iterator runner = (*MolOtherWalker)->begin(); runner != (*MolOtherWalker)->end(); ++runner) {
|
---|
398 | LOG(3, "Current otheratom is " << **runner << ".");
|
---|
399 | if ((*iter)->getId() < (*runner)->getId()){
|
---|
400 | for (set <pair<const element *,const element *> >::iterator PairRunner = PairsOfElements.begin(); PairRunner != PairsOfElements.end(); ++PairRunner)
|
---|
401 | if ((PairRunner->first == (**iter).getType()) && (PairRunner->second == (**runner).getType())) {
|
---|
402 | periodicOtherX = FullInverseMatrix * ((*runner)->getPosition()); // x now in [0,1)^3
|
---|
403 | // go through every range in xyz and get distance
|
---|
404 | for (Othern[0]=-ranges[0]; Othern[0] <= ranges[0]; Othern[0]++)
|
---|
405 | for (Othern[1]=-ranges[1]; Othern[1] <= ranges[1]; Othern[1]++)
|
---|
406 | for (Othern[2]=-ranges[2]; Othern[2] <= ranges[2]; Othern[2]++) {
|
---|
407 | checkOtherX = FullMatrix * (Vector(Othern[0], Othern[1], Othern[2]) + periodicOtherX);
|
---|
408 | distance = checkX.distance(checkOtherX);
|
---|
409 | //LOG(1, "Inserting " << *(*iter) << " and " << *(*runner));
|
---|
410 | outmap->insert (
|
---|
411 | std::pair<double, std::pair <const atom *, const atom*> > (
|
---|
412 | distance,
|
---|
413 | std::pair<const atom *, const atom*> (
|
---|
414 | (*iter),
|
---|
415 | (*runner))
|
---|
416 | )
|
---|
417 | );
|
---|
418 | }
|
---|
419 | }
|
---|
420 | }
|
---|
421 | }
|
---|
422 | }
|
---|
423 | }
|
---|
424 | }
|
---|
425 | }
|
---|
426 |
|
---|
427 | return outmap;
|
---|
428 | };
|
---|
429 |
|
---|
430 | /** Calculates the distance (pair) correlation between a given element and a point.
|
---|
431 | * \param *molecules list of molecules structure
|
---|
432 | * \param &elements vector of elements to correlate with point
|
---|
433 | * \param *point vector to the correlation point
|
---|
434 | * \return Map of dobules with values as pairs of atom and the vector
|
---|
435 | */
|
---|
436 | CorrelationToPointMap *CorrelationToPoint(std::vector<molecule *> &molecules, const std::vector<const element *> &elements, const Vector *point )
|
---|
437 | {
|
---|
438 | Info FunctionInfo(__func__);
|
---|
439 | CorrelationToPointMap *outmap = new CorrelationToPointMap;
|
---|
440 | double distance = 0.;
|
---|
441 | Box &domain = World::getInstance().getDomain();
|
---|
442 |
|
---|
443 | if (molecules.empty()) {
|
---|
444 | LOG(1, "No molecule given.");
|
---|
445 | return outmap;
|
---|
446 | }
|
---|
447 | for (std::vector<molecule *>::const_iterator MolWalker = molecules.begin(); MolWalker != molecules.end(); MolWalker++)
|
---|
448 | (*MolWalker)->doCountAtoms();
|
---|
449 | outmap = new CorrelationToPointMap;
|
---|
450 | for (std::vector<molecule *>::const_iterator MolWalker = molecules.begin(); MolWalker != molecules.end(); MolWalker++) {
|
---|
451 | LOG(2, "Current molecule is " << *MolWalker << ".");
|
---|
452 | for (molecule::const_iterator iter = (*MolWalker)->begin(); iter != (*MolWalker)->end(); ++iter) {
|
---|
453 | LOG(3, "Current atom is " << **iter << ".");
|
---|
454 | for (vector<const element *>::const_iterator type = elements.begin(); type != elements.end(); ++type)
|
---|
455 | if ((*type == NULL) || ((*iter)->getType() == *type)) {
|
---|
456 | distance = domain.periodicDistance((*iter)->getPosition(),*point);
|
---|
457 | LOG(4, "Current distance is " << distance << ".");
|
---|
458 | outmap->insert (
|
---|
459 | std::pair<double, std::pair<const atom *, const Vector*> >(
|
---|
460 | distance,
|
---|
461 | std::pair<const atom *, const Vector*> (
|
---|
462 | (*iter),
|
---|
463 | point)
|
---|
464 | )
|
---|
465 | );
|
---|
466 | }
|
---|
467 | }
|
---|
468 | }
|
---|
469 |
|
---|
470 | return outmap;
|
---|
471 | };
|
---|
472 |
|
---|
473 | /** Calculates the distance (pair) correlation between a given element, all its periodic images and a point.
|
---|
474 | * \param *molecules list of molecules structure
|
---|
475 | * \param &elements vector of elements to correlate to point
|
---|
476 | * \param *point vector to the correlation point
|
---|
477 | * \param ranges[NDIM] interval boundaries for the periodic images to scan also
|
---|
478 | * \return Map of dobules with values as pairs of atom and the vector
|
---|
479 | */
|
---|
480 | CorrelationToPointMap *PeriodicCorrelationToPoint(std::vector<molecule *> &molecules, const std::vector<const element *> &elements, const Vector *point, const int ranges[NDIM] )
|
---|
481 | {
|
---|
482 | Info FunctionInfo(__func__);
|
---|
483 | CorrelationToPointMap *outmap = new CorrelationToPointMap;
|
---|
484 | double distance = 0.;
|
---|
485 | int n[NDIM];
|
---|
486 | Vector periodicX;
|
---|
487 | Vector checkX;
|
---|
488 |
|
---|
489 | if (molecules.empty()) {
|
---|
490 | LOG(1, "No molecule given.");
|
---|
491 | return outmap;
|
---|
492 | }
|
---|
493 | for (std::vector<molecule *>::const_iterator MolWalker = molecules.begin(); MolWalker != molecules.end(); MolWalker++)
|
---|
494 | (*MolWalker)->doCountAtoms();
|
---|
495 | outmap = new CorrelationToPointMap;
|
---|
496 | for (std::vector<molecule *>::const_iterator MolWalker = molecules.begin(); MolWalker != molecules.end(); MolWalker++) {
|
---|
497 | RealSpaceMatrix FullMatrix = World::getInstance().getDomain().getM();
|
---|
498 | RealSpaceMatrix FullInverseMatrix = World::getInstance().getDomain().getMinv();
|
---|
499 | LOG(2, "Current molecule is " << *MolWalker << ".");
|
---|
500 | for (molecule::const_iterator iter = (*MolWalker)->begin(); iter != (*MolWalker)->end(); ++iter) {
|
---|
501 | LOG(3, "Current atom is " << **iter << ".");
|
---|
502 | for (vector<const element *>::const_iterator type = elements.begin(); type != elements.end(); ++type)
|
---|
503 | if ((*type == NULL) || ((*iter)->getType() == *type)) {
|
---|
504 | periodicX = FullInverseMatrix * ((*iter)->getPosition()); // x now in [0,1)^3
|
---|
505 | // go through every range in xyz and get distance
|
---|
506 | for (n[0]=-ranges[0]; n[0] <= ranges[0]; n[0]++)
|
---|
507 | for (n[1]=-ranges[1]; n[1] <= ranges[1]; n[1]++)
|
---|
508 | for (n[2]=-ranges[2]; n[2] <= ranges[2]; n[2]++) {
|
---|
509 | checkX = FullMatrix * (Vector(n[0], n[1], n[2]) + periodicX);
|
---|
510 | distance = checkX.distance(*point);
|
---|
511 | LOG(4, "Current distance is " << distance << ".");
|
---|
512 | outmap->insert (
|
---|
513 | std::pair<double,
|
---|
514 | std::pair<const atom *, const Vector*> >(
|
---|
515 | distance,
|
---|
516 | std::pair<const atom *, const Vector*> (
|
---|
517 | *iter,
|
---|
518 | point)
|
---|
519 | )
|
---|
520 | );
|
---|
521 | }
|
---|
522 | }
|
---|
523 | }
|
---|
524 | }
|
---|
525 |
|
---|
526 | return outmap;
|
---|
527 | };
|
---|
528 |
|
---|
529 | /** Calculates the distance (pair) correlation between a given element and a surface.
|
---|
530 | * \param *molecules list of molecules structure
|
---|
531 | * \param &elements vector of elements to correlate to surface
|
---|
532 | * \param *Surface pointer to Tesselation class surface
|
---|
533 | * \param *LC LinkedCell_deprecated structure to quickly find neighbouring atoms
|
---|
534 | * \return Map of doubles with values as pairs of atom and the BoundaryTriangleSet that's closest
|
---|
535 | */
|
---|
536 | CorrelationToSurfaceMap *CorrelationToSurface(std::vector<molecule *> &molecules, const std::vector<const element *> &elements, const Tesselation * const Surface, const LinkedCell_deprecated *LC )
|
---|
537 | {
|
---|
538 | Info FunctionInfo(__func__);
|
---|
539 | CorrelationToSurfaceMap *outmap = new CorrelationToSurfaceMap;
|
---|
540 | double distance = 0;
|
---|
541 | class BoundaryTriangleSet *triangle = NULL;
|
---|
542 | Vector centroid;
|
---|
543 |
|
---|
544 | if ((Surface == NULL) || (LC == NULL) || (molecules.empty())) {
|
---|
545 | ELOG(1, "No Tesselation, no LinkedCell or no molecule given.");
|
---|
546 | return outmap;
|
---|
547 | }
|
---|
548 | for (std::vector<molecule *>::const_iterator MolWalker = molecules.begin(); MolWalker != molecules.end(); MolWalker++)
|
---|
549 | (*MolWalker)->doCountAtoms();
|
---|
550 | outmap = new CorrelationToSurfaceMap;
|
---|
551 | for (std::vector<molecule *>::const_iterator MolWalker = molecules.begin(); MolWalker != molecules.end(); MolWalker++) {
|
---|
552 | LOG(2, "Current molecule is " << (*MolWalker)->name << ".");
|
---|
553 | if ((*MolWalker)->empty())
|
---|
554 | LOG(2, "\t is empty.");
|
---|
555 | for (molecule::const_iterator iter = (*MolWalker)->begin(); iter != (*MolWalker)->end(); ++iter) {
|
---|
556 | LOG(3, "\tCurrent atom is " << *(*iter) << ".");
|
---|
557 | for (vector<const element *>::const_iterator type = elements.begin(); type != elements.end(); ++type)
|
---|
558 | if ((*type == NULL) || ((*iter)->getType() == *type)) {
|
---|
559 | TriangleIntersectionList Intersections((*iter)->getPosition(),Surface,LC);
|
---|
560 | distance = Intersections.GetSmallestDistance();
|
---|
561 | triangle = Intersections.GetClosestTriangle();
|
---|
562 | outmap->insert (
|
---|
563 | std::pair<double,
|
---|
564 | std::pair<const atom *, BoundaryTriangleSet*> >(
|
---|
565 | distance,
|
---|
566 | std::pair<const atom *, BoundaryTriangleSet*> (
|
---|
567 | (*iter),
|
---|
568 | triangle)
|
---|
569 | )
|
---|
570 | );
|
---|
571 | }
|
---|
572 | }
|
---|
573 | }
|
---|
574 |
|
---|
575 | return outmap;
|
---|
576 | };
|
---|
577 |
|
---|
578 | /** Calculates the distance (pair) correlation between a given element, all its periodic images and and a surface.
|
---|
579 | * Note that we also put all periodic images found in the cells given by [ -ranges[i], ranges[i] ] and i=0,...,NDIM-1.
|
---|
580 | * I.e. We multiply the atom::node with the inverse of the domain matrix, i.e. transform it to \f$[0,0^3\f$, then add per
|
---|
581 | * axis an integer from [ -ranges[i], ranges[i] ] onto it and multiply with the domain matrix to bring it back into
|
---|
582 | * the real space. Then, we Tesselation::FindClosestTriangleToPoint() and DistanceToTrianglePlane().
|
---|
583 | * \param *molecules list of molecules structure
|
---|
584 | * \param &elements vector of elements to correlate to surface
|
---|
585 | * \param *Surface pointer to Tesselation class surface
|
---|
586 | * \param *LC LinkedCell_deprecated structure to quickly find neighbouring atoms
|
---|
587 | * \param ranges[NDIM] interval boundaries for the periodic images to scan also
|
---|
588 | * \return Map of doubles with values as pairs of atom and the BoundaryTriangleSet that's closest
|
---|
589 | */
|
---|
590 | CorrelationToSurfaceMap *PeriodicCorrelationToSurface(std::vector<molecule *> &molecules, const std::vector<const element *> &elements, const Tesselation * const Surface, const LinkedCell_deprecated *LC, const int ranges[NDIM] )
|
---|
591 | {
|
---|
592 | Info FunctionInfo(__func__);
|
---|
593 | CorrelationToSurfaceMap *outmap = new CorrelationToSurfaceMap;
|
---|
594 | double distance = 0;
|
---|
595 | class BoundaryTriangleSet *triangle = NULL;
|
---|
596 | Vector centroid;
|
---|
597 | int n[NDIM];
|
---|
598 | Vector periodicX;
|
---|
599 | Vector checkX;
|
---|
600 |
|
---|
601 | if ((Surface == NULL) || (LC == NULL) || (molecules.empty())) {
|
---|
602 | LOG(1, "No Tesselation, no LinkedCell or no molecule given.");
|
---|
603 | return outmap;
|
---|
604 | }
|
---|
605 | for (std::vector<molecule *>::const_iterator MolWalker = molecules.begin(); MolWalker != molecules.end(); MolWalker++)
|
---|
606 | (*MolWalker)->doCountAtoms();
|
---|
607 | outmap = new CorrelationToSurfaceMap;
|
---|
608 | double ShortestDistance = 0.;
|
---|
609 | BoundaryTriangleSet *ShortestTriangle = NULL;
|
---|
610 | for (std::vector<molecule *>::const_iterator MolWalker = molecules.begin(); MolWalker != molecules.end(); MolWalker++) {
|
---|
611 | RealSpaceMatrix FullMatrix = World::getInstance().getDomain().getM();
|
---|
612 | RealSpaceMatrix FullInverseMatrix = World::getInstance().getDomain().getMinv();
|
---|
613 | LOG(2, "Current molecule is " << *MolWalker << ".");
|
---|
614 | for (molecule::const_iterator iter = (*MolWalker)->begin(); iter != (*MolWalker)->end(); ++iter) {
|
---|
615 | LOG(3, "Current atom is " << **iter << ".");
|
---|
616 | for (vector<const element *>::const_iterator type = elements.begin(); type != elements.end(); ++type)
|
---|
617 | if ((*type == NULL) || ((*iter)->getType() == *type)) {
|
---|
618 | periodicX = FullInverseMatrix * ((*iter)->getPosition()); // x now in [0,1)^3
|
---|
619 | // go through every range in xyz and get distance
|
---|
620 | ShortestDistance = -1.;
|
---|
621 | for (n[0]=-ranges[0]; n[0] <= ranges[0]; n[0]++)
|
---|
622 | for (n[1]=-ranges[1]; n[1] <= ranges[1]; n[1]++)
|
---|
623 | for (n[2]=-ranges[2]; n[2] <= ranges[2]; n[2]++) {
|
---|
624 | checkX = FullMatrix * (Vector(n[0], n[1], n[2]) + periodicX);
|
---|
625 | TriangleIntersectionList Intersections(checkX,Surface,LC);
|
---|
626 | distance = Intersections.GetSmallestDistance();
|
---|
627 | triangle = Intersections.GetClosestTriangle();
|
---|
628 | if ((ShortestDistance == -1.) || (distance < ShortestDistance)) {
|
---|
629 | ShortestDistance = distance;
|
---|
630 | ShortestTriangle = triangle;
|
---|
631 | }
|
---|
632 | }
|
---|
633 | // insert
|
---|
634 | outmap->insert (
|
---|
635 | std::pair<double,
|
---|
636 | std::pair<const atom *, BoundaryTriangleSet*> >(
|
---|
637 | ShortestDistance,
|
---|
638 | std::pair<const atom *, BoundaryTriangleSet*> (
|
---|
639 | *iter,
|
---|
640 | ShortestTriangle)
|
---|
641 | )
|
---|
642 | );
|
---|
643 | //LOG(1, "INFO: Inserting " << Walker << " with distance " << ShortestDistance << " to " << *ShortestTriangle << ".");
|
---|
644 | }
|
---|
645 | }
|
---|
646 | }
|
---|
647 |
|
---|
648 | return outmap;
|
---|
649 | };
|
---|
650 |
|
---|
651 | /** Returns the index of the bin for a given value.
|
---|
652 | * \param value value whose bin to look for
|
---|
653 | * \param BinWidth width of bin
|
---|
654 | * \param BinStart first bin
|
---|
655 | */
|
---|
656 | int GetBin ( const double value, const double BinWidth, const double BinStart )
|
---|
657 | {
|
---|
658 | //Info FunctionInfo(__func__);
|
---|
659 | int bin =(int) (floor((value - BinStart)/BinWidth));
|
---|
660 | return (bin);
|
---|
661 | };
|
---|
662 |
|
---|
663 |
|
---|
664 | /** Adds header part that is unique to BinPairMap.
|
---|
665 | *
|
---|
666 | * @param file stream to print to
|
---|
667 | */
|
---|
668 | void OutputCorrelation_Header( ofstream * const file )
|
---|
669 | {
|
---|
670 | *file << "\tCount";
|
---|
671 | };
|
---|
672 |
|
---|
673 | /** Prints values stored in BinPairMap iterator.
|
---|
674 | *
|
---|
675 | * @param file stream to print to
|
---|
676 | * @param runner iterator pointing at values to print
|
---|
677 | */
|
---|
678 | void OutputCorrelation_Value( ofstream * const file, BinPairMap::const_iterator &runner )
|
---|
679 | {
|
---|
680 | *file << runner->second;
|
---|
681 | };
|
---|
682 |
|
---|
683 |
|
---|
684 | /** Adds header part that is unique to DipoleAngularCorrelationMap.
|
---|
685 | *
|
---|
686 | * @param file stream to print to
|
---|
687 | */
|
---|
688 | void OutputDipoleAngularCorrelation_Header( ofstream * const file )
|
---|
689 | {
|
---|
690 | *file << "\tFirstAtomOfMolecule";
|
---|
691 | };
|
---|
692 |
|
---|
693 | /** Prints values stored in DipoleCorrelationMap iterator.
|
---|
694 | *
|
---|
695 | * @param file stream to print to
|
---|
696 | * @param runner iterator pointing at values to print
|
---|
697 | */
|
---|
698 | void OutputDipoleAngularCorrelation_Value( ofstream * const file, DipoleAngularCorrelationMap::const_iterator &runner )
|
---|
699 | {
|
---|
700 | *file << *(runner->second);
|
---|
701 | };
|
---|
702 |
|
---|
703 |
|
---|
704 | /** Adds header part that is unique to DipoleAngularCorrelationMap.
|
---|
705 | *
|
---|
706 | * @param file stream to print to
|
---|
707 | */
|
---|
708 | void OutputDipoleCorrelation_Header( ofstream * const file )
|
---|
709 | {
|
---|
710 | *file << "\tMolecule";
|
---|
711 | };
|
---|
712 |
|
---|
713 | /** Prints values stored in DipoleCorrelationMap iterator.
|
---|
714 | *
|
---|
715 | * @param file stream to print to
|
---|
716 | * @param runner iterator pointing at values to print
|
---|
717 | */
|
---|
718 | void OutputDipoleCorrelation_Value( ofstream * const file, DipoleCorrelationMap::const_iterator &runner )
|
---|
719 | {
|
---|
720 | *file << runner->second.first->getId() << "\t" << runner->second.second->getId();
|
---|
721 | };
|
---|
722 |
|
---|
723 |
|
---|
724 | /** Adds header part that is unique to PairCorrelationMap.
|
---|
725 | *
|
---|
726 | * @param file stream to print to
|
---|
727 | */
|
---|
728 | void OutputPairCorrelation_Header( ofstream * const file )
|
---|
729 | {
|
---|
730 | *file << "\tAtom1\tAtom2";
|
---|
731 | };
|
---|
732 |
|
---|
733 | /** Prints values stored in PairCorrelationMap iterator.
|
---|
734 | *
|
---|
735 | * @param file stream to print to
|
---|
736 | * @param runner iterator pointing at values to print
|
---|
737 | */
|
---|
738 | void OutputPairCorrelation_Value( ofstream * const file, PairCorrelationMap::const_iterator &runner )
|
---|
739 | {
|
---|
740 | *file << *(runner->second.first) << "\t" << *(runner->second.second);
|
---|
741 | };
|
---|
742 |
|
---|
743 |
|
---|
744 | /** Adds header part that is unique to CorrelationToPointMap.
|
---|
745 | *
|
---|
746 | * @param file stream to print to
|
---|
747 | */
|
---|
748 | void OutputCorrelationToPoint_Header( ofstream * const file )
|
---|
749 | {
|
---|
750 | *file << "\tAtom::x[i]-point.x[i]";
|
---|
751 | };
|
---|
752 |
|
---|
753 | /** Prints values stored in CorrelationToPointMap iterator.
|
---|
754 | *
|
---|
755 | * @param file stream to print to
|
---|
756 | * @param runner iterator pointing at values to print
|
---|
757 | */
|
---|
758 | void OutputCorrelationToPoint_Value( ofstream * const file, CorrelationToPointMap::const_iterator &runner )
|
---|
759 | {
|
---|
760 | for (int i=0;i<NDIM;i++)
|
---|
761 | *file << "\t" << setprecision(8) << (runner->second.first->at(i) - runner->second.second->at(i));
|
---|
762 | };
|
---|
763 |
|
---|
764 |
|
---|
765 | /** Adds header part that is unique to CorrelationToSurfaceMap.
|
---|
766 | *
|
---|
767 | * @param file stream to print to
|
---|
768 | */
|
---|
769 | void OutputCorrelationToSurface_Header( ofstream * const file )
|
---|
770 | {
|
---|
771 | *file << "\tTriangle";
|
---|
772 | };
|
---|
773 |
|
---|
774 | /** Prints values stored in CorrelationToSurfaceMap iterator.
|
---|
775 | *
|
---|
776 | * @param file stream to print to
|
---|
777 | * @param runner iterator pointing at values to print
|
---|
778 | */
|
---|
779 | void OutputCorrelationToSurface_Value( ofstream * const file, CorrelationToSurfaceMap::const_iterator &runner )
|
---|
780 | {
|
---|
781 | *file << *(runner->second.first) << "\t" << *(runner->second.second);
|
---|
782 | };
|
---|