source: src/Analysis/analysis_correlation.cpp@ e215c1

Action_Thermostats Add_AtomRandomPerturbation Add_FitFragmentPartialChargesAction Add_RotateAroundBondAction Add_SelectAtomByNameAction Added_ParseSaveFragmentResults AddingActions_SaveParseParticleParameters Adding_Graph_to_ChangeBondActions Adding_MD_integration_tests Adding_ParticleName_to_Atom Adding_StructOpt_integration_tests AtomFragments Automaking_mpqc_open AutomationFragmentation_failures Candidate_v1.5.4 Candidate_v1.6.0 Candidate_v1.6.1 ChangeBugEmailaddress ChangingTestPorts ChemicalSpaceEvaluator CombiningParticlePotentialParsing Combining_Subpackages Debian_Package_split Debian_package_split_molecuildergui_only Disabling_MemDebug Docu_Python_wait EmpiricalPotential_contain_HomologyGraph EmpiricalPotential_contain_HomologyGraph_documentation Enable_parallel_make_install Enhance_userguide Enhanced_StructuralOptimization Enhanced_StructuralOptimization_continued Example_ManyWaysToTranslateAtom Exclude_Hydrogens_annealWithBondGraph FitPartialCharges_GlobalError Fix_BoundInBox_CenterInBox_MoleculeActions Fix_ChargeSampling_PBC Fix_ChronosMutex Fix_FitPartialCharges Fix_FitPotential_needs_atomicnumbers Fix_ForceAnnealing Fix_IndependentFragmentGrids Fix_ParseParticles Fix_ParseParticles_split_forward_backward_Actions Fix_PopActions Fix_QtFragmentList_sorted_selection Fix_Restrictedkeyset_FragmentMolecule Fix_StatusMsg Fix_StepWorldTime_single_argument Fix_Verbose_Codepatterns Fix_fitting_potentials Fixes ForceAnnealing_goodresults ForceAnnealing_oldresults ForceAnnealing_tocheck ForceAnnealing_with_BondGraph ForceAnnealing_with_BondGraph_continued ForceAnnealing_with_BondGraph_continued_betteresults ForceAnnealing_with_BondGraph_contraction-expansion FragmentAction_writes_AtomFragments FragmentMolecule_checks_bonddegrees GeometryObjects Gui_Fixes Gui_displays_atomic_force_velocity ImplicitCharges IndependentFragmentGrids IndependentFragmentGrids_IndividualZeroInstances IndependentFragmentGrids_IntegrationTest IndependentFragmentGrids_Sole_NN_Calculation JobMarket_RobustOnKillsSegFaults JobMarket_StableWorkerPool JobMarket_unresolvable_hostname_fix MoreRobust_FragmentAutomation ODR_violation_mpqc_open PartialCharges_OrthogonalSummation PdbParser_setsAtomName PythonUI_with_named_parameters QtGui_reactivate_TimeChanged_changes Recreated_GuiChecks Rewrite_FitPartialCharges RotateToPrincipalAxisSystem_UndoRedo SaturateAtoms_findBestMatching SaturateAtoms_singleDegree StoppableMakroAction Subpackage_CodePatterns Subpackage_JobMarket Subpackage_LinearAlgebra Subpackage_levmar Subpackage_mpqc_open Subpackage_vmg Switchable_LogView ThirdParty_MPQC_rebuilt_buildsystem TrajectoryDependenant_MaxOrder TremoloParser_IncreasedPrecision TremoloParser_MultipleTimesteps TremoloParser_setsAtomName Ubuntu_1604_changes stable
Last change on this file since e215c1 was 6bd7e0, checked in by Frederik Heber <heber@…>, 13 years ago

Renamed old LinkedCell class to LinkedCell_deprecated.

  • this is preparatory for a smooth transition to the new implementation.
  • note that class LinkedCell and namespace LinkedCell bite each other so far.
  • Property mode set to 100644
File size: 32.7 KB
Line 
1/*
2 * Project: MoleCuilder
3 * Description: creates and alters molecular systems
4 * Copyright (C) 2010-2011 University of Bonn. All rights reserved.
5 * Please see the LICENSE file or "Copyright notice" in builder.cpp for details.
6 */
7
8/*
9 * analysis.cpp
10 *
11 * Created on: Oct 13, 2009
12 * Author: heber
13 */
14
15// include config.h
16#ifdef HAVE_CONFIG_H
17#include <config.h>
18#endif
19
20#include "CodePatterns/MemDebug.hpp"
21
22#include <iostream>
23#include <iomanip>
24#include <limits>
25
26#include "Atom/atom.hpp"
27#include "Bond/bond.hpp"
28#include "Tesselation/BoundaryTriangleSet.hpp"
29#include "Box.hpp"
30#include "Element/element.hpp"
31#include "CodePatterns/Info.hpp"
32#include "CodePatterns/Log.hpp"
33#include "CodePatterns/Verbose.hpp"
34#include "Descriptors/AtomOfMoleculeSelectionDescriptor.hpp"
35#include "Descriptors/MoleculeFormulaDescriptor.hpp"
36#include "Descriptors/MoleculeOfAtomSelectionDescriptor.hpp"
37#include "Formula.hpp"
38#include "LinearAlgebra/Vector.hpp"
39#include "LinearAlgebra/RealSpaceMatrix.hpp"
40#include "molecule.hpp"
41#include "Tesselation/tesselation.hpp"
42#include "Tesselation/tesselationhelpers.hpp"
43#include "Tesselation/triangleintersectionlist.hpp"
44#include "World.hpp"
45#include "WorldTime.hpp"
46
47#include "analysis_correlation.hpp"
48
49/** Calculates the dipole vector of a given atomSet.
50 *
51 * Note that we use the following procedure as rule of thumb:
52 * -# go through every bond of the atom
53 * -# calculate the difference of electronegativities \f$\Delta\mathrm{EN}\f$
54 * -# if \f$\Delta\mathrm{EN} > 0.5\f$, we align the bond vector in direction of the more negative element
55 * -# sum up all vectors
56 * -# finally, divide by the number of summed vectors
57 *
58 * @param atomsbegin begin iterator of atomSet
59 * @param atomsend end iterator of atomset
60 * @return dipole vector
61 */
62Vector getDipole(molecule::const_iterator atomsbegin, molecule::const_iterator atomsend)
63{
64 Vector DipoleVector;
65 size_t SumOfVectors = 0;
66 // go through all atoms
67 for (molecule::const_iterator atomiter = atomsbegin;
68 atomiter != atomsend;
69 ++atomiter) {
70 // go through all bonds
71 const BondList& ListOfBonds = (*atomiter)->getListOfBonds();
72 ASSERT(ListOfBonds.begin() != ListOfBonds.end(),
73 "getDipole() - no bonds in molecule!");
74 for (BondList::const_iterator bonditer = ListOfBonds.begin();
75 bonditer != ListOfBonds.end();
76 ++bonditer) {
77 const atom * Otheratom = (*bonditer)->GetOtherAtom(*atomiter);
78 if (Otheratom->getId() > (*atomiter)->getId()) {
79 const double DeltaEN = (*atomiter)->getType()->getElectronegativity()
80 -Otheratom->getType()->getElectronegativity();
81 Vector BondDipoleVector = (*atomiter)->getPosition() - Otheratom->getPosition();
82 // DeltaEN is always positive, gives correct orientation of vector
83 BondDipoleVector.Normalize();
84 BondDipoleVector *= DeltaEN;
85 LOG(3,"INFO: Dipole vector from bond " << **bonditer << " is " << BondDipoleVector);
86 DipoleVector += BondDipoleVector;
87 SumOfVectors++;
88 }
89 }
90 }
91 LOG(3,"INFO: Sum over all bond dipole vectors is "
92 << DipoleVector << " with " << SumOfVectors << " in total.");
93 if (SumOfVectors != 0)
94 DipoleVector *= 1./(double)SumOfVectors;
95 LOG(1, "Resulting dipole vector is " << DipoleVector);
96
97 return DipoleVector;
98};
99
100/** Calculate minimum and maximum amount of trajectory steps by going through given atomic trajectories.
101 * \param vector of atoms whose trajectories to check for [min,max]
102 * \return range with [min, max]
103 */
104range<size_t> getMaximumTrajectoryBounds(const std::vector<atom *> &atoms)
105{
106 // get highest trajectory size
107 LOG(0,"STATUS: Retrieving maximum amount of time steps ...");
108 if (atoms.size() == 0)
109 return range<size_t>(0,0);
110 size_t max_timesteps = std::numeric_limits<size_t>::min();
111 size_t min_timesteps = std::numeric_limits<size_t>::max();
112 BOOST_FOREACH(atom *_atom, atoms) {
113 if (_atom->getTrajectorySize() > max_timesteps)
114 max_timesteps = _atom->getTrajectorySize();
115 if (_atom->getTrajectorySize() < min_timesteps)
116 min_timesteps = _atom->getTrajectorySize();
117 }
118 LOG(1,"INFO: Minimum number of time steps found is " << min_timesteps);
119 LOG(1,"INFO: Maximum number of time steps found is " << max_timesteps);
120
121 return range<size_t>(min_timesteps, max_timesteps);
122}
123
124/** Calculates the angular dipole zero orientation from current time step.
125 * \param molecules vector of molecules to calculate dipoles of
126 * \return map with orientation vector for each atomic id given in \a atoms.
127 */
128std::map<atomId_t, Vector> CalculateZeroAngularDipole(const std::vector<molecule *> &molecules)
129{
130 // get zero orientation for each molecule.
131 LOG(0,"STATUS: Calculating dipoles for current time step ...");
132 std::map<atomId_t, Vector> ZeroVector;
133 BOOST_FOREACH(molecule *_mol, molecules) {
134 const Vector Dipole = getDipole(_mol->begin(), _mol->end());
135 for(molecule::const_iterator iter = _mol->begin(); iter != _mol->end(); ++iter)
136 ZeroVector[(*iter)->getId()] = Dipole;
137 LOG(2,"INFO: Zero alignment for molecule " << _mol->getId() << " is " << Dipole);
138 }
139 LOG(1,"INFO: We calculated zero orientation for a total of " << molecules.size() << " molecule(s).");
140
141 return ZeroVector;
142}
143
144/** Calculates the dipole angular correlation for given molecule type.
145 * Calculate the change of the dipole orientation angle over time.
146 * Note given element order is unimportant (i.e. g(Si, O) === g(O, Si))
147 * Angles are given in degrees.
148 * \param &atoms list of atoms of the molecules taking part (Note: molecules may
149 * change over time as bond structure is recalculated, hence we need the atoms)
150 * \param timestep time step to calculate angular correlation for (relative to
151 * \a ZeroVector)
152 * \param ZeroVector map with Zero orientation vector for each atom in \a atoms.
153 * \param DontResetTime don't reset time to old value (triggers re-creation of bond system)
154 * \return Map of doubles with values the pair of the two atoms.
155 */
156DipoleAngularCorrelationMap *DipoleAngularCorrelation(
157 const Formula &DipoleFormula,
158 const size_t timestep,
159 const std::map<atomId_t, Vector> &ZeroVector,
160 const enum ResetWorldTime DoTimeReset
161 )
162{
163 Info FunctionInfo(__func__);
164 DipoleAngularCorrelationMap *outmap = new DipoleAngularCorrelationMap;
165
166 unsigned int oldtime = 0;
167 if (DoTimeReset == DoResetTime) {
168 // store original time step
169 oldtime = WorldTime::getTime();
170 }
171
172 // set time step
173 LOG(0,"STATUS: Stepping onto to time step " << timestep << ".");
174 World::getInstance().setTime(timestep);
175
176 // get all molecules for this time step
177 World::getInstance().clearMoleculeSelection();
178 World::getInstance().selectAllMolecules(MoleculeByFormula(DipoleFormula));
179 std::vector<molecule *> molecules = World::getInstance().getSelectedMolecules();
180 LOG(1,"INFO: There are " << molecules.size() << " molecules for time step " << timestep << ".");
181
182 // calculate dipoles for each
183 LOG(0,"STATUS: Calculating dipoles for time step " << timestep << " ...");
184 size_t i=0;
185 size_t Counter_rejections = 0;
186 BOOST_FOREACH(molecule *_mol, molecules) {
187 const Vector Dipole = getDipole(_mol->begin(), _mol->end());
188 LOG(3,"INFO: Dipole vector at time step " << timestep << " for for molecule "
189 << _mol->getId() << " is " << Dipole);
190 // check that all atoms are valid (zeroVector known)
191 molecule::const_iterator iter = _mol->begin();
192 for(; iter != _mol->end(); ++iter) {
193 if (!ZeroVector.count((*iter)->getId()))
194 break;
195 }
196 if (iter != _mol->end()) {
197 ELOG(2, "Skipping molecule " << _mol->getName() << " as not all atoms have a valid zeroVector.");
198 ++Counter_rejections;
199 continue;
200 } else
201 iter = _mol->begin();
202 std::map<atomId_t, Vector>::const_iterator zeroValue = ZeroVector.find((*iter)->getId()); //due to iter is const
203 double angle = 0.;
204 LOG(2, "INFO: ZeroVector of first atom " << **iter << " is "
205 << zeroValue->second << ".");
206 LOG(4, "INFO: Squared norm of difference vector is "
207 << (zeroValue->second - Dipole).NormSquared() << ".");
208 if ((zeroValue->second - Dipole).NormSquared() > MYEPSILON)
209 angle = Dipole.Angle(zeroValue->second) * (180./M_PI);
210 else
211 LOG(2, "INFO: Both vectors (almost) coincide, numerically unstable, angle set to zero.");
212 LOG(1,"INFO: Resulting relative angle for molecule " << _mol->getName()
213 << " is " << angle << ".");
214 outmap->insert ( std::make_pair (angle, *iter ) );
215 ++i;
216 }
217 ASSERT(Counter_rejections <= molecules.size(),
218 "DipoleAngularCorrelation() - more rejections ("+toString(Counter_rejections)
219 +") than there are molecules ("+toString(molecules.size())+").");
220 LOG(1,"INFO: " << Counter_rejections << " molecules have been rejected in time step " << timestep << ".");
221
222 LOG(0,"STATUS: Done with calculating dipoles.");
223
224 if (DoTimeReset == DoResetTime) {
225 // re-set to original time step again
226 World::getInstance().setTime(oldtime);
227 }
228
229 // and return results
230 return outmap;
231};
232
233/** Calculates the dipole correlation for given molecule type.
234 * I.e. we calculate how the angle between any two given dipoles in the
235 * systems behaves. Sort of pair correlation but distance is replaced by
236 * the orientation distance, i.e. an angle.
237 * Note given element order is unimportant (i.e. g(Si, O) === g(O, Si))
238 * Angles are given in degrees.
239 * \param *molecules vector of molecules
240 * \return Map of doubles with values the pair of the two atoms.
241 */
242DipoleCorrelationMap *DipoleCorrelation(std::vector<molecule *> &molecules)
243{
244 Info FunctionInfo(__func__);
245 DipoleCorrelationMap *outmap = new DipoleCorrelationMap;
246// double distance = 0.;
247// Box &domain = World::getInstance().getDomain();
248//
249 if (molecules.empty()) {
250 ELOG(1, "No molecule given.");
251 return outmap;
252 }
253
254 for (std::vector<molecule *>::const_iterator MolWalker = molecules.begin();
255 MolWalker != molecules.end(); ++MolWalker) {
256 LOG(2, "INFO: Current molecule is " << (*MolWalker)->getId() << ".");
257 const Vector Dipole = getDipole((*MolWalker)->begin(), (*MolWalker)->end());
258 std::vector<molecule *>::const_iterator MolOtherWalker = MolWalker;
259 for (++MolOtherWalker;
260 MolOtherWalker != molecules.end();
261 ++MolOtherWalker) {
262 LOG(2, "INFO: Current other molecule is " << (*MolOtherWalker)->getId() << ".");
263 const Vector OtherDipole = getDipole((*MolOtherWalker)->begin(), (*MolOtherWalker)->end());
264 const double angle = Dipole.Angle(OtherDipole) * (180./M_PI);
265 LOG(1, "Angle is " << angle << ".");
266 outmap->insert ( make_pair (angle, make_pair ((*MolWalker), (*MolOtherWalker)) ) );
267 }
268 }
269 return outmap;
270};
271
272
273/** Calculates the pair correlation between given elements.
274 * Note given element order is unimportant (i.e. g(Si, O) === g(O, Si))
275 * \param *molecules vector of molecules
276 * \param &elements vector of elements to correlate
277 * \return Map of doubles with values the pair of the two atoms.
278 */
279PairCorrelationMap *PairCorrelation(std::vector<molecule *> &molecules, const std::vector<const element *> &elements)
280{
281 Info FunctionInfo(__func__);
282 PairCorrelationMap *outmap = new PairCorrelationMap;
283 double distance = 0.;
284 Box &domain = World::getInstance().getDomain();
285
286 if (molecules.empty()) {
287 ELOG(1, "No molecule given.");
288 return outmap;
289 }
290 for (std::vector<molecule *>::const_iterator MolWalker = molecules.begin(); MolWalker != molecules.end(); MolWalker++)
291 (*MolWalker)->doCountAtoms();
292
293 // create all possible pairs of elements
294 set <pair<const element *,const element *> > PairsOfElements;
295 if (elements.size() >= 2) {
296 for (vector<const element *>::const_iterator type1 = elements.begin(); type1 != elements.end(); ++type1)
297 for (vector<const element *>::const_iterator type2 = elements.begin(); type2 != elements.end(); ++type2)
298 if (type1 != type2) {
299 PairsOfElements.insert( make_pair(*type1,*type2) );
300 LOG(1, "Creating element pair " << *(*type1) << " and " << *(*type2) << ".");
301 }
302 } else if (elements.size() == 1) { // one to all are valid
303 const element *elemental = *elements.begin();
304 PairsOfElements.insert( pair<const element *,const element*>(elemental,0) );
305 PairsOfElements.insert( pair<const element *,const element*>(0,elemental) );
306 } else { // all elements valid
307 PairsOfElements.insert( pair<element *, element*>((element *)NULL, (element *)NULL) );
308 }
309
310 outmap = new PairCorrelationMap;
311 for (std::vector<molecule *>::const_iterator MolWalker = molecules.begin(); MolWalker != molecules.end(); MolWalker++){
312 LOG(2, "Current molecule is " << (*MolWalker)->getName() << ".");
313 for (molecule::const_iterator iter = (*MolWalker)->begin(); iter != (*MolWalker)->end(); ++iter) {
314 LOG(3, "Current atom is " << **iter << ".");
315 for (std::vector<molecule *>::const_iterator MolOtherWalker = MolWalker; MolOtherWalker != molecules.end(); MolOtherWalker++){
316 LOG(2, "Current other molecule is " << (*MolOtherWalker)->getName() << ".");
317 for (molecule::const_iterator runner = (*MolOtherWalker)->begin(); runner != (*MolOtherWalker)->end(); ++runner) {
318 LOG(3, "Current otheratom is " << **runner << ".");
319 if ((*iter)->getId() < (*runner)->getId()){
320 for (set <pair<const element *, const element *> >::iterator PairRunner = PairsOfElements.begin(); PairRunner != PairsOfElements.end(); ++PairRunner)
321 if ((PairRunner->first == (**iter).getType()) && (PairRunner->second == (**runner).getType())) {
322 distance = domain.periodicDistance((*iter)->getPosition(),(*runner)->getPosition());
323 //LOG(1, "Inserting " << *(*iter) << " and " << *(*runner));
324 outmap->insert (
325 std::pair<double, std::pair <const atom *, const atom*> > (
326 distance,
327 std::pair<const atom *, const atom*> ((*iter), (*runner))
328 )
329 );
330 }
331 }
332 }
333 }
334 }
335 }
336 return outmap;
337};
338
339/** Calculates the pair correlation between given elements.
340 * Note given element order is unimportant (i.e. g(Si, O) === g(O, Si))
341 * \param *molecules list of molecules structure
342 * \param &elements vector of elements to correlate
343 * \param ranges[NDIM] interval boundaries for the periodic images to scan also
344 * \return Map of doubles with values the pair of the two atoms.
345 */
346PairCorrelationMap *PeriodicPairCorrelation(std::vector<molecule *> &molecules, const std::vector<const element *> &elements, const int ranges[NDIM] )
347{
348 Info FunctionInfo(__func__);
349 PairCorrelationMap *outmap = new PairCorrelationMap;
350 double distance = 0.;
351 int n[NDIM];
352 Vector checkX;
353 Vector periodicX;
354 int Othern[NDIM];
355 Vector checkOtherX;
356 Vector periodicOtherX;
357
358 if (molecules.empty()) {
359 ELOG(1, "No molecule given.");
360 return outmap;
361 }
362 for (std::vector<molecule *>::const_iterator MolWalker = molecules.begin(); MolWalker != molecules.end(); MolWalker++)
363 (*MolWalker)->doCountAtoms();
364
365 // create all possible pairs of elements
366 set <pair<const element *,const element *> > PairsOfElements;
367 if (elements.size() >= 2) {
368 for (vector<const element *>::const_iterator type1 = elements.begin(); type1 != elements.end(); ++type1)
369 for (vector<const element *>::const_iterator type2 = elements.begin(); type2 != elements.end(); ++type2)
370 if (type1 != type2) {
371 PairsOfElements.insert( make_pair(*type1,*type2) );
372 LOG(1, "Creating element pair " << *(*type1) << " and " << *(*type2) << ".");
373 }
374 } else if (elements.size() == 1) { // one to all are valid
375 const element *elemental = *elements.begin();
376 PairsOfElements.insert( pair<const element *,const element*>(elemental,0) );
377 PairsOfElements.insert( pair<const element *,const element*>(0,elemental) );
378 } else { // all elements valid
379 PairsOfElements.insert( pair<element *, element*>((element *)NULL, (element *)NULL) );
380 }
381
382 outmap = new PairCorrelationMap;
383 for (std::vector<molecule *>::const_iterator MolWalker = molecules.begin(); MolWalker != molecules.end(); MolWalker++){
384 RealSpaceMatrix FullMatrix = World::getInstance().getDomain().getM();
385 RealSpaceMatrix FullInverseMatrix = World::getInstance().getDomain().getMinv();
386 LOG(2, "Current molecule is " << *MolWalker << ".");
387 for (molecule::const_iterator iter = (*MolWalker)->begin(); iter != (*MolWalker)->end(); ++iter) {
388 LOG(3, "Current atom is " << **iter << ".");
389 periodicX = FullInverseMatrix * ((*iter)->getPosition()); // x now in [0,1)^3
390 // go through every range in xyz and get distance
391 for (n[0]=-ranges[0]; n[0] <= ranges[0]; n[0]++)
392 for (n[1]=-ranges[1]; n[1] <= ranges[1]; n[1]++)
393 for (n[2]=-ranges[2]; n[2] <= ranges[2]; n[2]++) {
394 checkX = FullMatrix * (Vector(n[0], n[1], n[2]) + periodicX);
395 for (std::vector<molecule *>::const_iterator MolOtherWalker = MolWalker; MolOtherWalker != molecules.end(); MolOtherWalker++){
396 LOG(2, "Current other molecule is " << *MolOtherWalker << ".");
397 for (molecule::const_iterator runner = (*MolOtherWalker)->begin(); runner != (*MolOtherWalker)->end(); ++runner) {
398 LOG(3, "Current otheratom is " << **runner << ".");
399 if ((*iter)->getId() < (*runner)->getId()){
400 for (set <pair<const element *,const element *> >::iterator PairRunner = PairsOfElements.begin(); PairRunner != PairsOfElements.end(); ++PairRunner)
401 if ((PairRunner->first == (**iter).getType()) && (PairRunner->second == (**runner).getType())) {
402 periodicOtherX = FullInverseMatrix * ((*runner)->getPosition()); // x now in [0,1)^3
403 // go through every range in xyz and get distance
404 for (Othern[0]=-ranges[0]; Othern[0] <= ranges[0]; Othern[0]++)
405 for (Othern[1]=-ranges[1]; Othern[1] <= ranges[1]; Othern[1]++)
406 for (Othern[2]=-ranges[2]; Othern[2] <= ranges[2]; Othern[2]++) {
407 checkOtherX = FullMatrix * (Vector(Othern[0], Othern[1], Othern[2]) + periodicOtherX);
408 distance = checkX.distance(checkOtherX);
409 //LOG(1, "Inserting " << *(*iter) << " and " << *(*runner));
410 outmap->insert (
411 std::pair<double, std::pair <const atom *, const atom*> > (
412 distance,
413 std::pair<const atom *, const atom*> (
414 (*iter),
415 (*runner))
416 )
417 );
418 }
419 }
420 }
421 }
422 }
423 }
424 }
425 }
426
427 return outmap;
428};
429
430/** Calculates the distance (pair) correlation between a given element and a point.
431 * \param *molecules list of molecules structure
432 * \param &elements vector of elements to correlate with point
433 * \param *point vector to the correlation point
434 * \return Map of dobules with values as pairs of atom and the vector
435 */
436CorrelationToPointMap *CorrelationToPoint(std::vector<molecule *> &molecules, const std::vector<const element *> &elements, const Vector *point )
437{
438 Info FunctionInfo(__func__);
439 CorrelationToPointMap *outmap = new CorrelationToPointMap;
440 double distance = 0.;
441 Box &domain = World::getInstance().getDomain();
442
443 if (molecules.empty()) {
444 LOG(1, "No molecule given.");
445 return outmap;
446 }
447 for (std::vector<molecule *>::const_iterator MolWalker = molecules.begin(); MolWalker != molecules.end(); MolWalker++)
448 (*MolWalker)->doCountAtoms();
449 outmap = new CorrelationToPointMap;
450 for (std::vector<molecule *>::const_iterator MolWalker = molecules.begin(); MolWalker != molecules.end(); MolWalker++) {
451 LOG(2, "Current molecule is " << *MolWalker << ".");
452 for (molecule::const_iterator iter = (*MolWalker)->begin(); iter != (*MolWalker)->end(); ++iter) {
453 LOG(3, "Current atom is " << **iter << ".");
454 for (vector<const element *>::const_iterator type = elements.begin(); type != elements.end(); ++type)
455 if ((*type == NULL) || ((*iter)->getType() == *type)) {
456 distance = domain.periodicDistance((*iter)->getPosition(),*point);
457 LOG(4, "Current distance is " << distance << ".");
458 outmap->insert (
459 std::pair<double, std::pair<const atom *, const Vector*> >(
460 distance,
461 std::pair<const atom *, const Vector*> (
462 (*iter),
463 point)
464 )
465 );
466 }
467 }
468 }
469
470 return outmap;
471};
472
473/** Calculates the distance (pair) correlation between a given element, all its periodic images and a point.
474 * \param *molecules list of molecules structure
475 * \param &elements vector of elements to correlate to point
476 * \param *point vector to the correlation point
477 * \param ranges[NDIM] interval boundaries for the periodic images to scan also
478 * \return Map of dobules with values as pairs of atom and the vector
479 */
480CorrelationToPointMap *PeriodicCorrelationToPoint(std::vector<molecule *> &molecules, const std::vector<const element *> &elements, const Vector *point, const int ranges[NDIM] )
481{
482 Info FunctionInfo(__func__);
483 CorrelationToPointMap *outmap = new CorrelationToPointMap;
484 double distance = 0.;
485 int n[NDIM];
486 Vector periodicX;
487 Vector checkX;
488
489 if (molecules.empty()) {
490 LOG(1, "No molecule given.");
491 return outmap;
492 }
493 for (std::vector<molecule *>::const_iterator MolWalker = molecules.begin(); MolWalker != molecules.end(); MolWalker++)
494 (*MolWalker)->doCountAtoms();
495 outmap = new CorrelationToPointMap;
496 for (std::vector<molecule *>::const_iterator MolWalker = molecules.begin(); MolWalker != molecules.end(); MolWalker++) {
497 RealSpaceMatrix FullMatrix = World::getInstance().getDomain().getM();
498 RealSpaceMatrix FullInverseMatrix = World::getInstance().getDomain().getMinv();
499 LOG(2, "Current molecule is " << *MolWalker << ".");
500 for (molecule::const_iterator iter = (*MolWalker)->begin(); iter != (*MolWalker)->end(); ++iter) {
501 LOG(3, "Current atom is " << **iter << ".");
502 for (vector<const element *>::const_iterator type = elements.begin(); type != elements.end(); ++type)
503 if ((*type == NULL) || ((*iter)->getType() == *type)) {
504 periodicX = FullInverseMatrix * ((*iter)->getPosition()); // x now in [0,1)^3
505 // go through every range in xyz and get distance
506 for (n[0]=-ranges[0]; n[0] <= ranges[0]; n[0]++)
507 for (n[1]=-ranges[1]; n[1] <= ranges[1]; n[1]++)
508 for (n[2]=-ranges[2]; n[2] <= ranges[2]; n[2]++) {
509 checkX = FullMatrix * (Vector(n[0], n[1], n[2]) + periodicX);
510 distance = checkX.distance(*point);
511 LOG(4, "Current distance is " << distance << ".");
512 outmap->insert (
513 std::pair<double,
514 std::pair<const atom *, const Vector*> >(
515 distance,
516 std::pair<const atom *, const Vector*> (
517 *iter,
518 point)
519 )
520 );
521 }
522 }
523 }
524 }
525
526 return outmap;
527};
528
529/** Calculates the distance (pair) correlation between a given element and a surface.
530 * \param *molecules list of molecules structure
531 * \param &elements vector of elements to correlate to surface
532 * \param *Surface pointer to Tesselation class surface
533 * \param *LC LinkedCell_deprecated structure to quickly find neighbouring atoms
534 * \return Map of doubles with values as pairs of atom and the BoundaryTriangleSet that's closest
535 */
536CorrelationToSurfaceMap *CorrelationToSurface(std::vector<molecule *> &molecules, const std::vector<const element *> &elements, const Tesselation * const Surface, const LinkedCell_deprecated *LC )
537{
538 Info FunctionInfo(__func__);
539 CorrelationToSurfaceMap *outmap = new CorrelationToSurfaceMap;
540 double distance = 0;
541 class BoundaryTriangleSet *triangle = NULL;
542 Vector centroid;
543
544 if ((Surface == NULL) || (LC == NULL) || (molecules.empty())) {
545 ELOG(1, "No Tesselation, no LinkedCell or no molecule given.");
546 return outmap;
547 }
548 for (std::vector<molecule *>::const_iterator MolWalker = molecules.begin(); MolWalker != molecules.end(); MolWalker++)
549 (*MolWalker)->doCountAtoms();
550 outmap = new CorrelationToSurfaceMap;
551 for (std::vector<molecule *>::const_iterator MolWalker = molecules.begin(); MolWalker != molecules.end(); MolWalker++) {
552 LOG(2, "Current molecule is " << (*MolWalker)->name << ".");
553 if ((*MolWalker)->empty())
554 LOG(2, "\t is empty.");
555 for (molecule::const_iterator iter = (*MolWalker)->begin(); iter != (*MolWalker)->end(); ++iter) {
556 LOG(3, "\tCurrent atom is " << *(*iter) << ".");
557 for (vector<const element *>::const_iterator type = elements.begin(); type != elements.end(); ++type)
558 if ((*type == NULL) || ((*iter)->getType() == *type)) {
559 TriangleIntersectionList Intersections((*iter)->getPosition(),Surface,LC);
560 distance = Intersections.GetSmallestDistance();
561 triangle = Intersections.GetClosestTriangle();
562 outmap->insert (
563 std::pair<double,
564 std::pair<const atom *, BoundaryTriangleSet*> >(
565 distance,
566 std::pair<const atom *, BoundaryTriangleSet*> (
567 (*iter),
568 triangle)
569 )
570 );
571 }
572 }
573 }
574
575 return outmap;
576};
577
578/** Calculates the distance (pair) correlation between a given element, all its periodic images and and a surface.
579 * Note that we also put all periodic images found in the cells given by [ -ranges[i], ranges[i] ] and i=0,...,NDIM-1.
580 * I.e. We multiply the atom::node with the inverse of the domain matrix, i.e. transform it to \f$[0,0^3\f$, then add per
581 * axis an integer from [ -ranges[i], ranges[i] ] onto it and multiply with the domain matrix to bring it back into
582 * the real space. Then, we Tesselation::FindClosestTriangleToPoint() and DistanceToTrianglePlane().
583 * \param *molecules list of molecules structure
584 * \param &elements vector of elements to correlate to surface
585 * \param *Surface pointer to Tesselation class surface
586 * \param *LC LinkedCell_deprecated structure to quickly find neighbouring atoms
587 * \param ranges[NDIM] interval boundaries for the periodic images to scan also
588 * \return Map of doubles with values as pairs of atom and the BoundaryTriangleSet that's closest
589 */
590CorrelationToSurfaceMap *PeriodicCorrelationToSurface(std::vector<molecule *> &molecules, const std::vector<const element *> &elements, const Tesselation * const Surface, const LinkedCell_deprecated *LC, const int ranges[NDIM] )
591{
592 Info FunctionInfo(__func__);
593 CorrelationToSurfaceMap *outmap = new CorrelationToSurfaceMap;
594 double distance = 0;
595 class BoundaryTriangleSet *triangle = NULL;
596 Vector centroid;
597 int n[NDIM];
598 Vector periodicX;
599 Vector checkX;
600
601 if ((Surface == NULL) || (LC == NULL) || (molecules.empty())) {
602 LOG(1, "No Tesselation, no LinkedCell or no molecule given.");
603 return outmap;
604 }
605 for (std::vector<molecule *>::const_iterator MolWalker = molecules.begin(); MolWalker != molecules.end(); MolWalker++)
606 (*MolWalker)->doCountAtoms();
607 outmap = new CorrelationToSurfaceMap;
608 double ShortestDistance = 0.;
609 BoundaryTriangleSet *ShortestTriangle = NULL;
610 for (std::vector<molecule *>::const_iterator MolWalker = molecules.begin(); MolWalker != molecules.end(); MolWalker++) {
611 RealSpaceMatrix FullMatrix = World::getInstance().getDomain().getM();
612 RealSpaceMatrix FullInverseMatrix = World::getInstance().getDomain().getMinv();
613 LOG(2, "Current molecule is " << *MolWalker << ".");
614 for (molecule::const_iterator iter = (*MolWalker)->begin(); iter != (*MolWalker)->end(); ++iter) {
615 LOG(3, "Current atom is " << **iter << ".");
616 for (vector<const element *>::const_iterator type = elements.begin(); type != elements.end(); ++type)
617 if ((*type == NULL) || ((*iter)->getType() == *type)) {
618 periodicX = FullInverseMatrix * ((*iter)->getPosition()); // x now in [0,1)^3
619 // go through every range in xyz and get distance
620 ShortestDistance = -1.;
621 for (n[0]=-ranges[0]; n[0] <= ranges[0]; n[0]++)
622 for (n[1]=-ranges[1]; n[1] <= ranges[1]; n[1]++)
623 for (n[2]=-ranges[2]; n[2] <= ranges[2]; n[2]++) {
624 checkX = FullMatrix * (Vector(n[0], n[1], n[2]) + periodicX);
625 TriangleIntersectionList Intersections(checkX,Surface,LC);
626 distance = Intersections.GetSmallestDistance();
627 triangle = Intersections.GetClosestTriangle();
628 if ((ShortestDistance == -1.) || (distance < ShortestDistance)) {
629 ShortestDistance = distance;
630 ShortestTriangle = triangle;
631 }
632 }
633 // insert
634 outmap->insert (
635 std::pair<double,
636 std::pair<const atom *, BoundaryTriangleSet*> >(
637 ShortestDistance,
638 std::pair<const atom *, BoundaryTriangleSet*> (
639 *iter,
640 ShortestTriangle)
641 )
642 );
643 //LOG(1, "INFO: Inserting " << Walker << " with distance " << ShortestDistance << " to " << *ShortestTriangle << ".");
644 }
645 }
646 }
647
648 return outmap;
649};
650
651/** Returns the index of the bin for a given value.
652 * \param value value whose bin to look for
653 * \param BinWidth width of bin
654 * \param BinStart first bin
655 */
656int GetBin ( const double value, const double BinWidth, const double BinStart )
657{
658 //Info FunctionInfo(__func__);
659 int bin =(int) (floor((value - BinStart)/BinWidth));
660 return (bin);
661};
662
663
664/** Adds header part that is unique to BinPairMap.
665 *
666 * @param file stream to print to
667 */
668void OutputCorrelation_Header( ofstream * const file )
669{
670 *file << "\tCount";
671};
672
673/** Prints values stored in BinPairMap iterator.
674 *
675 * @param file stream to print to
676 * @param runner iterator pointing at values to print
677 */
678void OutputCorrelation_Value( ofstream * const file, BinPairMap::const_iterator &runner )
679{
680 *file << runner->second;
681};
682
683
684/** Adds header part that is unique to DipoleAngularCorrelationMap.
685 *
686 * @param file stream to print to
687 */
688void OutputDipoleAngularCorrelation_Header( ofstream * const file )
689{
690 *file << "\tFirstAtomOfMolecule";
691};
692
693/** Prints values stored in DipoleCorrelationMap iterator.
694 *
695 * @param file stream to print to
696 * @param runner iterator pointing at values to print
697 */
698void OutputDipoleAngularCorrelation_Value( ofstream * const file, DipoleAngularCorrelationMap::const_iterator &runner )
699{
700 *file << *(runner->second);
701};
702
703
704/** Adds header part that is unique to DipoleAngularCorrelationMap.
705 *
706 * @param file stream to print to
707 */
708void OutputDipoleCorrelation_Header( ofstream * const file )
709{
710 *file << "\tMolecule";
711};
712
713/** Prints values stored in DipoleCorrelationMap iterator.
714 *
715 * @param file stream to print to
716 * @param runner iterator pointing at values to print
717 */
718void OutputDipoleCorrelation_Value( ofstream * const file, DipoleCorrelationMap::const_iterator &runner )
719{
720 *file << runner->second.first->getId() << "\t" << runner->second.second->getId();
721};
722
723
724/** Adds header part that is unique to PairCorrelationMap.
725 *
726 * @param file stream to print to
727 */
728void OutputPairCorrelation_Header( ofstream * const file )
729{
730 *file << "\tAtom1\tAtom2";
731};
732
733/** Prints values stored in PairCorrelationMap iterator.
734 *
735 * @param file stream to print to
736 * @param runner iterator pointing at values to print
737 */
738void OutputPairCorrelation_Value( ofstream * const file, PairCorrelationMap::const_iterator &runner )
739{
740 *file << *(runner->second.first) << "\t" << *(runner->second.second);
741};
742
743
744/** Adds header part that is unique to CorrelationToPointMap.
745 *
746 * @param file stream to print to
747 */
748void OutputCorrelationToPoint_Header( ofstream * const file )
749{
750 *file << "\tAtom::x[i]-point.x[i]";
751};
752
753/** Prints values stored in CorrelationToPointMap iterator.
754 *
755 * @param file stream to print to
756 * @param runner iterator pointing at values to print
757 */
758void OutputCorrelationToPoint_Value( ofstream * const file, CorrelationToPointMap::const_iterator &runner )
759{
760 for (int i=0;i<NDIM;i++)
761 *file << "\t" << setprecision(8) << (runner->second.first->at(i) - runner->second.second->at(i));
762};
763
764
765/** Adds header part that is unique to CorrelationToSurfaceMap.
766 *
767 * @param file stream to print to
768 */
769void OutputCorrelationToSurface_Header( ofstream * const file )
770{
771 *file << "\tTriangle";
772};
773
774/** Prints values stored in CorrelationToSurfaceMap iterator.
775 *
776 * @param file stream to print to
777 * @param runner iterator pointing at values to print
778 */
779void OutputCorrelationToSurface_Value( ofstream * const file, CorrelationToSurfaceMap::const_iterator &runner )
780{
781 *file << *(runner->second.first) << "\t" << *(runner->second.second);
782};
Note: See TracBrowser for help on using the repository browser.