source: src/Analysis/analysis_correlation.cpp@ 57a770

Action_Thermostats Add_AtomRandomPerturbation Add_FitFragmentPartialChargesAction Add_RotateAroundBondAction Add_SelectAtomByNameAction Added_ParseSaveFragmentResults AddingActions_SaveParseParticleParameters Adding_Graph_to_ChangeBondActions Adding_MD_integration_tests Adding_ParticleName_to_Atom Adding_StructOpt_integration_tests AtomFragments Automaking_mpqc_open AutomationFragmentation_failures Candidate_v1.5.4 Candidate_v1.6.0 Candidate_v1.6.1 ChangeBugEmailaddress ChangingTestPorts ChemicalSpaceEvaluator CombiningParticlePotentialParsing Combining_Subpackages Debian_Package_split Debian_package_split_molecuildergui_only Disabling_MemDebug Docu_Python_wait EmpiricalPotential_contain_HomologyGraph EmpiricalPotential_contain_HomologyGraph_documentation Enable_parallel_make_install Enhance_userguide Enhanced_StructuralOptimization Enhanced_StructuralOptimization_continued Example_ManyWaysToTranslateAtom Exclude_Hydrogens_annealWithBondGraph FitPartialCharges_GlobalError Fix_BoundInBox_CenterInBox_MoleculeActions Fix_ChargeSampling_PBC Fix_ChronosMutex Fix_FitPartialCharges Fix_FitPotential_needs_atomicnumbers Fix_ForceAnnealing Fix_IndependentFragmentGrids Fix_ParseParticles Fix_ParseParticles_split_forward_backward_Actions Fix_PopActions Fix_QtFragmentList_sorted_selection Fix_Restrictedkeyset_FragmentMolecule Fix_StatusMsg Fix_StepWorldTime_single_argument Fix_Verbose_Codepatterns Fix_fitting_potentials Fixes ForceAnnealing_goodresults ForceAnnealing_oldresults ForceAnnealing_tocheck ForceAnnealing_with_BondGraph ForceAnnealing_with_BondGraph_continued ForceAnnealing_with_BondGraph_continued_betteresults ForceAnnealing_with_BondGraph_contraction-expansion FragmentAction_writes_AtomFragments FragmentMolecule_checks_bonddegrees GeometryObjects Gui_Fixes Gui_displays_atomic_force_velocity ImplicitCharges IndependentFragmentGrids IndependentFragmentGrids_IndividualZeroInstances IndependentFragmentGrids_IntegrationTest IndependentFragmentGrids_Sole_NN_Calculation JobMarket_RobustOnKillsSegFaults JobMarket_StableWorkerPool JobMarket_unresolvable_hostname_fix MoreRobust_FragmentAutomation ODR_violation_mpqc_open PartialCharges_OrthogonalSummation PdbParser_setsAtomName PythonUI_with_named_parameters QtGui_reactivate_TimeChanged_changes Recreated_GuiChecks Rewrite_FitPartialCharges RotateToPrincipalAxisSystem_UndoRedo SaturateAtoms_findBestMatching SaturateAtoms_singleDegree StoppableMakroAction Subpackage_CodePatterns Subpackage_JobMarket Subpackage_LinearAlgebra Subpackage_levmar Subpackage_mpqc_open Subpackage_vmg Switchable_LogView ThirdParty_MPQC_rebuilt_buildsystem TrajectoryDependenant_MaxOrder TremoloParser_IncreasedPrecision TremoloParser_MultipleTimesteps TremoloParser_setsAtomName Ubuntu_1604_changes stable
Last change on this file since 57a770 was 0aa122, checked in by Frederik Heber <heber@…>, 13 years ago

Updated all source files's copyright note to current year 2012.

  • Property mode set to 100644
File size: 32.7 KB
RevLine 
[bcf653]1/*
2 * Project: MoleCuilder
3 * Description: creates and alters molecular systems
[0aa122]4 * Copyright (C) 2010-2012 University of Bonn. All rights reserved.
[bcf653]5 * Please see the LICENSE file or "Copyright notice" in builder.cpp for details.
6 */
7
[c4d4df]8/*
9 * analysis.cpp
10 *
11 * Created on: Oct 13, 2009
12 * Author: heber
13 */
14
[bf3817]15// include config.h
16#ifdef HAVE_CONFIG_H
17#include <config.h>
18#endif
19
[ad011c]20#include "CodePatterns/MemDebug.hpp"
[112b09]21
[c4d4df]22#include <iostream>
[36166d]23#include <iomanip>
[505d05]24#include <limits>
[c4d4df]25
[6f0841]26#include "Atom/atom.hpp"
[129204]27#include "Bond/bond.hpp"
[d127c8]28#include "Tesselation/BoundaryTriangleSet.hpp"
[be945c]29#include "Box.hpp"
[3bdb6d]30#include "Element/element.hpp"
[ad011c]31#include "CodePatterns/Info.hpp"
32#include "CodePatterns/Log.hpp"
[208237b]33#include "CodePatterns/Verbose.hpp"
[e65878]34#include "Descriptors/AtomOfMoleculeSelectionDescriptor.hpp"
35#include "Descriptors/MoleculeFormulaDescriptor.hpp"
[4b8630]36#include "Descriptors/MoleculeOfAtomSelectionDescriptor.hpp"
[ea430a]37#include "Formula.hpp"
[208237b]38#include "LinearAlgebra/Vector.hpp"
39#include "LinearAlgebra/RealSpaceMatrix.hpp"
[c4d4df]40#include "molecule.hpp"
[d127c8]41#include "Tesselation/tesselation.hpp"
42#include "Tesselation/tesselationhelpers.hpp"
43#include "Tesselation/triangleintersectionlist.hpp"
[be945c]44#include "World.hpp"
[208237b]45#include "WorldTime.hpp"
[c4d4df]46
[be945c]47#include "analysis_correlation.hpp"
48
49/** Calculates the dipole vector of a given atomSet.
50 *
51 * Note that we use the following procedure as rule of thumb:
52 * -# go through every bond of the atom
[d1912f]53 * -# calculate the difference of electronegativities \f$\Delta\mathrm{EN}\f$
54 * -# if \f$\Delta\mathrm{EN} > 0.5\f$, we align the bond vector in direction of the more negative element
[be945c]55 * -# sum up all vectors
56 * -# finally, divide by the number of summed vectors
57 *
58 * @param atomsbegin begin iterator of atomSet
59 * @param atomsend end iterator of atomset
60 * @return dipole vector
61 */
62Vector getDipole(molecule::const_iterator atomsbegin, molecule::const_iterator atomsend)
63{
64 Vector DipoleVector;
65 size_t SumOfVectors = 0;
66 // go through all atoms
67 for (molecule::const_iterator atomiter = atomsbegin;
68 atomiter != atomsend;
69 ++atomiter) {
70 // go through all bonds
[9d83b6]71 const BondList& ListOfBonds = (*atomiter)->getListOfBonds();
[4fc828]72 ASSERT(ListOfBonds.begin() != ListOfBonds.end(),
73 "getDipole() - no bonds in molecule!");
[9d83b6]74 for (BondList::const_iterator bonditer = ListOfBonds.begin();
75 bonditer != ListOfBonds.end();
[be945c]76 ++bonditer) {
77 const atom * Otheratom = (*bonditer)->GetOtherAtom(*atomiter);
78 if (Otheratom->getId() > (*atomiter)->getId()) {
79 const double DeltaEN = (*atomiter)->getType()->getElectronegativity()
80 -Otheratom->getType()->getElectronegativity();
81 Vector BondDipoleVector = (*atomiter)->getPosition() - Otheratom->getPosition();
82 // DeltaEN is always positive, gives correct orientation of vector
83 BondDipoleVector.Normalize();
84 BondDipoleVector *= DeltaEN;
[4fc828]85 LOG(3,"INFO: Dipole vector from bond " << **bonditer << " is " << BondDipoleVector);
[be945c]86 DipoleVector += BondDipoleVector;
87 SumOfVectors++;
88 }
89 }
90 }
[4fc828]91 LOG(3,"INFO: Sum over all bond dipole vectors is "
92 << DipoleVector << " with " << SumOfVectors << " in total.");
93 if (SumOfVectors != 0)
94 DipoleVector *= 1./(double)SumOfVectors;
[47d041]95 LOG(1, "Resulting dipole vector is " << DipoleVector);
[be945c]96
97 return DipoleVector;
98};
99
[1cc661]100/** Calculate minimum and maximum amount of trajectory steps by going through given atomic trajectories.
101 * \param vector of atoms whose trajectories to check for [min,max]
102 * \return range with [min, max]
103 */
[e65878]104range<size_t> getMaximumTrajectoryBounds(const std::vector<atom *> &atoms)
[1cc661]105{
106 // get highest trajectory size
107 LOG(0,"STATUS: Retrieving maximum amount of time steps ...");
[505d05]108 if (atoms.size() == 0)
109 return range<size_t>(0,0);
110 size_t max_timesteps = std::numeric_limits<size_t>::min();
111 size_t min_timesteps = std::numeric_limits<size_t>::max();
[1cc661]112 BOOST_FOREACH(atom *_atom, atoms) {
113 if (_atom->getTrajectorySize() > max_timesteps)
114 max_timesteps = _atom->getTrajectorySize();
[505d05]115 if (_atom->getTrajectorySize() < min_timesteps)
[1cc661]116 min_timesteps = _atom->getTrajectorySize();
117 }
118 LOG(1,"INFO: Minimum number of time steps found is " << min_timesteps);
119 LOG(1,"INFO: Maximum number of time steps found is " << max_timesteps);
120
121 return range<size_t>(min_timesteps, max_timesteps);
122}
123
[0a7fad]124/** Calculates the angular dipole zero orientation from current time step.
[e65878]125 * \param molecules vector of molecules to calculate dipoles of
[0a7fad]126 * \return map with orientation vector for each atomic id given in \a atoms.
127 */
[e65878]128std::map<atomId_t, Vector> CalculateZeroAngularDipole(const std::vector<molecule *> &molecules)
[0a7fad]129{
130 // get zero orientation for each molecule.
[e65878]131 LOG(0,"STATUS: Calculating dipoles for current time step ...");
[0a7fad]132 std::map<atomId_t, Vector> ZeroVector;
133 BOOST_FOREACH(molecule *_mol, molecules) {
134 const Vector Dipole = getDipole(_mol->begin(), _mol->end());
135 for(molecule::const_iterator iter = _mol->begin(); iter != _mol->end(); ++iter)
136 ZeroVector[(*iter)->getId()] = Dipole;
137 LOG(2,"INFO: Zero alignment for molecule " << _mol->getId() << " is " << Dipole);
138 }
139 LOG(1,"INFO: We calculated zero orientation for a total of " << molecules.size() << " molecule(s).");
140
141 return ZeroVector;
142}
[1cc661]143
[ea430a]144/** Calculates the dipole angular correlation for given molecule type.
[208237b]145 * Calculate the change of the dipole orientation angle over time.
[ea430a]146 * Note given element order is unimportant (i.e. g(Si, O) === g(O, Si))
[be945c]147 * Angles are given in degrees.
[4b8630]148 * \param &atoms list of atoms of the molecules taking part (Note: molecules may
149 * change over time as bond structure is recalculated, hence we need the atoms)
[cda81d]150 * \param timestep time step to calculate angular correlation for (relative to
151 * \a ZeroVector)
[325687]152 * \param ZeroVector map with Zero orientation vector for each atom in \a atoms.
[99b87a]153 * \param DontResetTime don't reset time to old value (triggers re-creation of bond system)
[ea430a]154 * \return Map of doubles with values the pair of the two atoms.
155 */
[325687]156DipoleAngularCorrelationMap *DipoleAngularCorrelation(
[e65878]157 const Formula &DipoleFormula,
[cda81d]158 const size_t timestep,
[e65878]159 const std::map<atomId_t, Vector> &ZeroVector,
[99b87a]160 const enum ResetWorldTime DoTimeReset
[325687]161 )
[ea430a]162{
163 Info FunctionInfo(__func__);
[caa30b]164 DipoleAngularCorrelationMap *outmap = new DipoleAngularCorrelationMap;
[be945c]165
[99b87a]166 unsigned int oldtime = 0;
167 if (DoTimeReset == DoResetTime) {
168 // store original time step
169 oldtime = WorldTime::getTime();
170 }
[0a7fad]171
[cda81d]172 // set time step
[505d05]173 LOG(0,"STATUS: Stepping onto to time step " << timestep << ".");
[cda81d]174 World::getInstance().setTime(timestep);
175
176 // get all molecules for this time step
[e65878]177 World::getInstance().clearMoleculeSelection();
178 World::getInstance().selectAllMolecules(MoleculeByFormula(DipoleFormula));
179 std::vector<molecule *> molecules = World::getInstance().getSelectedMolecules();
[870b4b]180 LOG(1,"INFO: There are " << molecules.size() << " molecules for time step " << timestep << ".");
[208237b]181
[cda81d]182 // calculate dipoles for each
[870b4b]183 LOG(0,"STATUS: Calculating dipoles for time step " << timestep << " ...");
[cda81d]184 size_t i=0;
[870b4b]185 size_t Counter_rejections = 0;
[cda81d]186 BOOST_FOREACH(molecule *_mol, molecules) {
187 const Vector Dipole = getDipole(_mol->begin(), _mol->end());
[e65878]188 LOG(3,"INFO: Dipole vector at time step " << timestep << " for for molecule "
[cda81d]189 << _mol->getId() << " is " << Dipole);
[e65878]190 // check that all atoms are valid (zeroVector known)
[cda81d]191 molecule::const_iterator iter = _mol->begin();
[e65878]192 for(; iter != _mol->end(); ++iter) {
193 if (!ZeroVector.count((*iter)->getId()))
194 break;
195 }
196 if (iter != _mol->end()) {
197 ELOG(2, "Skipping molecule " << _mol->getName() << " as not all atoms have a valid zeroVector.");
[870b4b]198 ++Counter_rejections;
[e65878]199 continue;
200 } else
201 iter = _mol->begin();
202 std::map<atomId_t, Vector>::const_iterator zeroValue = ZeroVector.find((*iter)->getId()); //due to iter is const
[cda81d]203 double angle = 0.;
204 LOG(2, "INFO: ZeroVector of first atom " << **iter << " is "
[e65878]205 << zeroValue->second << ".");
[cda81d]206 LOG(4, "INFO: Squared norm of difference vector is "
[e65878]207 << (zeroValue->second - Dipole).NormSquared() << ".");
208 if ((zeroValue->second - Dipole).NormSquared() > MYEPSILON)
209 angle = Dipole.Angle(zeroValue->second) * (180./M_PI);
[cda81d]210 else
211 LOG(2, "INFO: Both vectors (almost) coincide, numerically unstable, angle set to zero.");
212 LOG(1,"INFO: Resulting relative angle for molecule " << _mol->getName()
213 << " is " << angle << ".");
[59fff1]214 outmap->insert ( std::make_pair (angle, *iter ) );
[cda81d]215 ++i;
[208237b]216 }
[870b4b]217 ASSERT(Counter_rejections <= molecules.size(),
218 "DipoleAngularCorrelation() - more rejections ("+toString(Counter_rejections)
219 +") than there are molecules ("+toString(molecules.size())+").");
220 LOG(1,"INFO: " << Counter_rejections << " molecules have been rejected in time step " << timestep << ".");
221
222 LOG(0,"STATUS: Done with calculating dipoles.");
[208237b]223
[99b87a]224 if (DoTimeReset == DoResetTime) {
225 // re-set to original time step again
226 World::getInstance().setTime(oldtime);
227 }
[208237b]228
229 // and return results
230 return outmap;
231};
232
233/** Calculates the dipole correlation for given molecule type.
234 * I.e. we calculate how the angle between any two given dipoles in the
235 * systems behaves. Sort of pair correlation but distance is replaced by
236 * the orientation distance, i.e. an angle.
237 * Note given element order is unimportant (i.e. g(Si, O) === g(O, Si))
238 * Angles are given in degrees.
239 * \param *molecules vector of molecules
240 * \return Map of doubles with values the pair of the two atoms.
241 */
242DipoleCorrelationMap *DipoleCorrelation(std::vector<molecule *> &molecules)
243{
244 Info FunctionInfo(__func__);
245 DipoleCorrelationMap *outmap = new DipoleCorrelationMap;
246// double distance = 0.;
247// Box &domain = World::getInstance().getDomain();
248//
249 if (molecules.empty()) {
[47d041]250 ELOG(1, "No molecule given.");
[208237b]251 return outmap;
252 }
253
[be945c]254 for (std::vector<molecule *>::const_iterator MolWalker = molecules.begin();
[92e5cb]255 MolWalker != molecules.end(); ++MolWalker) {
[47d041]256 LOG(2, "INFO: Current molecule is " << (*MolWalker)->getId() << ".");
[be945c]257 const Vector Dipole = getDipole((*MolWalker)->begin(), (*MolWalker)->end());
[92e5cb]258 std::vector<molecule *>::const_iterator MolOtherWalker = MolWalker;
259 for (++MolOtherWalker;
[be945c]260 MolOtherWalker != molecules.end();
[92e5cb]261 ++MolOtherWalker) {
[47d041]262 LOG(2, "INFO: Current other molecule is " << (*MolOtherWalker)->getId() << ".");
[be945c]263 const Vector OtherDipole = getDipole((*MolOtherWalker)->begin(), (*MolOtherWalker)->end());
264 const double angle = Dipole.Angle(OtherDipole) * (180./M_PI);
[47d041]265 LOG(1, "Angle is " << angle << ".");
[be945c]266 outmap->insert ( make_pair (angle, make_pair ((*MolWalker), (*MolOtherWalker)) ) );
267 }
268 }
[ea430a]269 return outmap;
270};
271
[c4d4df]272
273/** Calculates the pair correlation between given elements.
274 * Note given element order is unimportant (i.e. g(Si, O) === g(O, Si))
[e65de8]275 * \param *molecules vector of molecules
[c78d44]276 * \param &elements vector of elements to correlate
[c4d4df]277 * \return Map of doubles with values the pair of the two atoms.
278 */
[e5c0a1]279PairCorrelationMap *PairCorrelation(std::vector<molecule *> &molecules, const std::vector<const element *> &elements)
[c4d4df]280{
[3930eb]281 Info FunctionInfo(__func__);
[caa30b]282 PairCorrelationMap *outmap = new PairCorrelationMap;
[c4d4df]283 double distance = 0.;
[014475]284 Box &domain = World::getInstance().getDomain();
[c4d4df]285
[e65de8]286 if (molecules.empty()) {
[47d041]287 ELOG(1, "No molecule given.");
[c4d4df]288 return outmap;
289 }
[e65de8]290 for (std::vector<molecule *>::const_iterator MolWalker = molecules.begin(); MolWalker != molecules.end(); MolWalker++)
[009607e]291 (*MolWalker)->doCountAtoms();
[c78d44]292
293 // create all possible pairs of elements
[e5c0a1]294 set <pair<const element *,const element *> > PairsOfElements;
[c78d44]295 if (elements.size() >= 2) {
[e5c0a1]296 for (vector<const element *>::const_iterator type1 = elements.begin(); type1 != elements.end(); ++type1)
297 for (vector<const element *>::const_iterator type2 = elements.begin(); type2 != elements.end(); ++type2)
[c78d44]298 if (type1 != type2) {
[e5c0a1]299 PairsOfElements.insert( make_pair(*type1,*type2) );
[47d041]300 LOG(1, "Creating element pair " << *(*type1) << " and " << *(*type2) << ".");
[c78d44]301 }
302 } else if (elements.size() == 1) { // one to all are valid
[e5c0a1]303 const element *elemental = *elements.begin();
304 PairsOfElements.insert( pair<const element *,const element*>(elemental,0) );
305 PairsOfElements.insert( pair<const element *,const element*>(0,elemental) );
[c78d44]306 } else { // all elements valid
307 PairsOfElements.insert( pair<element *, element*>((element *)NULL, (element *)NULL) );
308 }
309
[c4d4df]310 outmap = new PairCorrelationMap;
[e65de8]311 for (std::vector<molecule *>::const_iterator MolWalker = molecules.begin(); MolWalker != molecules.end(); MolWalker++){
[47d041]312 LOG(2, "Current molecule is " << (*MolWalker)->getName() << ".");
[e65de8]313 for (molecule::const_iterator iter = (*MolWalker)->begin(); iter != (*MolWalker)->end(); ++iter) {
[47d041]314 LOG(3, "Current atom is " << **iter << ".");
[e65de8]315 for (std::vector<molecule *>::const_iterator MolOtherWalker = MolWalker; MolOtherWalker != molecules.end(); MolOtherWalker++){
[47d041]316 LOG(2, "Current other molecule is " << (*MolOtherWalker)->getName() << ".");
[e65de8]317 for (molecule::const_iterator runner = (*MolOtherWalker)->begin(); runner != (*MolOtherWalker)->end(); ++runner) {
[47d041]318 LOG(3, "Current otheratom is " << **runner << ".");
[e65de8]319 if ((*iter)->getId() < (*runner)->getId()){
[b5c53d]320 for (set <pair<const element *, const element *> >::iterator PairRunner = PairsOfElements.begin(); PairRunner != PairsOfElements.end(); ++PairRunner)
[d74077]321 if ((PairRunner->first == (**iter).getType()) && (PairRunner->second == (**runner).getType())) {
322 distance = domain.periodicDistance((*iter)->getPosition(),(*runner)->getPosition());
[47d041]323 //LOG(1, "Inserting " << *(*iter) << " and " << *(*runner));
[59fff1]324 outmap->insert (
325 std::pair<double, std::pair <const atom *, const atom*> > (
326 distance,
327 std::pair<const atom *, const atom*> ((*iter), (*runner))
328 )
329 );
[a5551b]330 }
[c4d4df]331 }
[a5551b]332 }
[c4d4df]333 }
334 }
[24725c]335 }
[c4d4df]336 return outmap;
337};
338
[7ea9e6]339/** Calculates the pair correlation between given elements.
340 * Note given element order is unimportant (i.e. g(Si, O) === g(O, Si))
341 * \param *molecules list of molecules structure
[c78d44]342 * \param &elements vector of elements to correlate
[7ea9e6]343 * \param ranges[NDIM] interval boundaries for the periodic images to scan also
344 * \return Map of doubles with values the pair of the two atoms.
345 */
[e5c0a1]346PairCorrelationMap *PeriodicPairCorrelation(std::vector<molecule *> &molecules, const std::vector<const element *> &elements, const int ranges[NDIM] )
[7ea9e6]347{
[3930eb]348 Info FunctionInfo(__func__);
[caa30b]349 PairCorrelationMap *outmap = new PairCorrelationMap;
[7ea9e6]350 double distance = 0.;
351 int n[NDIM];
352 Vector checkX;
353 Vector periodicX;
354 int Othern[NDIM];
355 Vector checkOtherX;
356 Vector periodicOtherX;
357
[e65de8]358 if (molecules.empty()) {
[47d041]359 ELOG(1, "No molecule given.");
[7ea9e6]360 return outmap;
361 }
[e65de8]362 for (std::vector<molecule *>::const_iterator MolWalker = molecules.begin(); MolWalker != molecules.end(); MolWalker++)
[009607e]363 (*MolWalker)->doCountAtoms();
[c78d44]364
365 // create all possible pairs of elements
[e5c0a1]366 set <pair<const element *,const element *> > PairsOfElements;
[c78d44]367 if (elements.size() >= 2) {
[e5c0a1]368 for (vector<const element *>::const_iterator type1 = elements.begin(); type1 != elements.end(); ++type1)
369 for (vector<const element *>::const_iterator type2 = elements.begin(); type2 != elements.end(); ++type2)
[c78d44]370 if (type1 != type2) {
[e5c0a1]371 PairsOfElements.insert( make_pair(*type1,*type2) );
[47d041]372 LOG(1, "Creating element pair " << *(*type1) << " and " << *(*type2) << ".");
[c78d44]373 }
374 } else if (elements.size() == 1) { // one to all are valid
[e5c0a1]375 const element *elemental = *elements.begin();
376 PairsOfElements.insert( pair<const element *,const element*>(elemental,0) );
377 PairsOfElements.insert( pair<const element *,const element*>(0,elemental) );
[c78d44]378 } else { // all elements valid
379 PairsOfElements.insert( pair<element *, element*>((element *)NULL, (element *)NULL) );
380 }
381
[7ea9e6]382 outmap = new PairCorrelationMap;
[e65de8]383 for (std::vector<molecule *>::const_iterator MolWalker = molecules.begin(); MolWalker != molecules.end(); MolWalker++){
[cca9ef]384 RealSpaceMatrix FullMatrix = World::getInstance().getDomain().getM();
385 RealSpaceMatrix FullInverseMatrix = World::getInstance().getDomain().getMinv();
[47d041]386 LOG(2, "Current molecule is " << *MolWalker << ".");
[e65de8]387 for (molecule::const_iterator iter = (*MolWalker)->begin(); iter != (*MolWalker)->end(); ++iter) {
[47d041]388 LOG(3, "Current atom is " << **iter << ".");
[d74077]389 periodicX = FullInverseMatrix * ((*iter)->getPosition()); // x now in [0,1)^3
[e65de8]390 // go through every range in xyz and get distance
391 for (n[0]=-ranges[0]; n[0] <= ranges[0]; n[0]++)
392 for (n[1]=-ranges[1]; n[1] <= ranges[1]; n[1]++)
393 for (n[2]=-ranges[2]; n[2] <= ranges[2]; n[2]++) {
394 checkX = FullMatrix * (Vector(n[0], n[1], n[2]) + periodicX);
395 for (std::vector<molecule *>::const_iterator MolOtherWalker = MolWalker; MolOtherWalker != molecules.end(); MolOtherWalker++){
[47d041]396 LOG(2, "Current other molecule is " << *MolOtherWalker << ".");
[e65de8]397 for (molecule::const_iterator runner = (*MolOtherWalker)->begin(); runner != (*MolOtherWalker)->end(); ++runner) {
[47d041]398 LOG(3, "Current otheratom is " << **runner << ".");
[e65de8]399 if ((*iter)->getId() < (*runner)->getId()){
[e5c0a1]400 for (set <pair<const element *,const element *> >::iterator PairRunner = PairsOfElements.begin(); PairRunner != PairsOfElements.end(); ++PairRunner)
[d74077]401 if ((PairRunner->first == (**iter).getType()) && (PairRunner->second == (**runner).getType())) {
402 periodicOtherX = FullInverseMatrix * ((*runner)->getPosition()); // x now in [0,1)^3
[e65de8]403 // go through every range in xyz and get distance
404 for (Othern[0]=-ranges[0]; Othern[0] <= ranges[0]; Othern[0]++)
405 for (Othern[1]=-ranges[1]; Othern[1] <= ranges[1]; Othern[1]++)
406 for (Othern[2]=-ranges[2]; Othern[2] <= ranges[2]; Othern[2]++) {
407 checkOtherX = FullMatrix * (Vector(Othern[0], Othern[1], Othern[2]) + periodicOtherX);
408 distance = checkX.distance(checkOtherX);
[47d041]409 //LOG(1, "Inserting " << *(*iter) << " and " << *(*runner));
[59fff1]410 outmap->insert (
411 std::pair<double, std::pair <const atom *, const atom*> > (
412 distance,
413 std::pair<const atom *, const atom*> (
414 (*iter),
415 (*runner))
416 )
417 );
[e65de8]418 }
419 }
[c78d44]420 }
[7ea9e6]421 }
[c78d44]422 }
[7ea9e6]423 }
424 }
[c78d44]425 }
[7ea9e6]426
427 return outmap;
428};
429
[c4d4df]430/** Calculates the distance (pair) correlation between a given element and a point.
[a5551b]431 * \param *molecules list of molecules structure
[c78d44]432 * \param &elements vector of elements to correlate with point
[c4d4df]433 * \param *point vector to the correlation point
434 * \return Map of dobules with values as pairs of atom and the vector
435 */
[e5c0a1]436CorrelationToPointMap *CorrelationToPoint(std::vector<molecule *> &molecules, const std::vector<const element *> &elements, const Vector *point )
[c4d4df]437{
[3930eb]438 Info FunctionInfo(__func__);
[caa30b]439 CorrelationToPointMap *outmap = new CorrelationToPointMap;
[c4d4df]440 double distance = 0.;
[014475]441 Box &domain = World::getInstance().getDomain();
[c4d4df]442
[e65de8]443 if (molecules.empty()) {
[47d041]444 LOG(1, "No molecule given.");
[c4d4df]445 return outmap;
446 }
[e65de8]447 for (std::vector<molecule *>::const_iterator MolWalker = molecules.begin(); MolWalker != molecules.end(); MolWalker++)
[009607e]448 (*MolWalker)->doCountAtoms();
[c4d4df]449 outmap = new CorrelationToPointMap;
[e65de8]450 for (std::vector<molecule *>::const_iterator MolWalker = molecules.begin(); MolWalker != molecules.end(); MolWalker++) {
[47d041]451 LOG(2, "Current molecule is " << *MolWalker << ".");
[e65de8]452 for (molecule::const_iterator iter = (*MolWalker)->begin(); iter != (*MolWalker)->end(); ++iter) {
[47d041]453 LOG(3, "Current atom is " << **iter << ".");
[e5c0a1]454 for (vector<const element *>::const_iterator type = elements.begin(); type != elements.end(); ++type)
[d74077]455 if ((*type == NULL) || ((*iter)->getType() == *type)) {
456 distance = domain.periodicDistance((*iter)->getPosition(),*point);
[47d041]457 LOG(4, "Current distance is " << distance << ".");
[59fff1]458 outmap->insert (
459 std::pair<double, std::pair<const atom *, const Vector*> >(
460 distance,
461 std::pair<const atom *, const Vector*> (
462 (*iter),
463 point)
464 )
465 );
[e65de8]466 }
[c4d4df]467 }
[e65de8]468 }
[c4d4df]469
470 return outmap;
471};
472
[7ea9e6]473/** Calculates the distance (pair) correlation between a given element, all its periodic images and a point.
474 * \param *molecules list of molecules structure
[c78d44]475 * \param &elements vector of elements to correlate to point
[7ea9e6]476 * \param *point vector to the correlation point
477 * \param ranges[NDIM] interval boundaries for the periodic images to scan also
478 * \return Map of dobules with values as pairs of atom and the vector
479 */
[e5c0a1]480CorrelationToPointMap *PeriodicCorrelationToPoint(std::vector<molecule *> &molecules, const std::vector<const element *> &elements, const Vector *point, const int ranges[NDIM] )
[7ea9e6]481{
[3930eb]482 Info FunctionInfo(__func__);
[caa30b]483 CorrelationToPointMap *outmap = new CorrelationToPointMap;
[7ea9e6]484 double distance = 0.;
485 int n[NDIM];
486 Vector periodicX;
487 Vector checkX;
488
[e65de8]489 if (molecules.empty()) {
[47d041]490 LOG(1, "No molecule given.");
[7ea9e6]491 return outmap;
492 }
[e65de8]493 for (std::vector<molecule *>::const_iterator MolWalker = molecules.begin(); MolWalker != molecules.end(); MolWalker++)
[009607e]494 (*MolWalker)->doCountAtoms();
[7ea9e6]495 outmap = new CorrelationToPointMap;
[e65de8]496 for (std::vector<molecule *>::const_iterator MolWalker = molecules.begin(); MolWalker != molecules.end(); MolWalker++) {
[cca9ef]497 RealSpaceMatrix FullMatrix = World::getInstance().getDomain().getM();
498 RealSpaceMatrix FullInverseMatrix = World::getInstance().getDomain().getMinv();
[47d041]499 LOG(2, "Current molecule is " << *MolWalker << ".");
[e65de8]500 for (molecule::const_iterator iter = (*MolWalker)->begin(); iter != (*MolWalker)->end(); ++iter) {
[47d041]501 LOG(3, "Current atom is " << **iter << ".");
[e5c0a1]502 for (vector<const element *>::const_iterator type = elements.begin(); type != elements.end(); ++type)
[d74077]503 if ((*type == NULL) || ((*iter)->getType() == *type)) {
504 periodicX = FullInverseMatrix * ((*iter)->getPosition()); // x now in [0,1)^3
[e65de8]505 // go through every range in xyz and get distance
506 for (n[0]=-ranges[0]; n[0] <= ranges[0]; n[0]++)
507 for (n[1]=-ranges[1]; n[1] <= ranges[1]; n[1]++)
508 for (n[2]=-ranges[2]; n[2] <= ranges[2]; n[2]++) {
509 checkX = FullMatrix * (Vector(n[0], n[1], n[2]) + periodicX);
510 distance = checkX.distance(*point);
[47d041]511 LOG(4, "Current distance is " << distance << ".");
[59fff1]512 outmap->insert (
513 std::pair<double,
514 std::pair<const atom *, const Vector*> >(
515 distance,
516 std::pair<const atom *, const Vector*> (
517 *iter,
518 point)
519 )
520 );
[e65de8]521 }
522 }
[7ea9e6]523 }
[e65de8]524 }
[7ea9e6]525
526 return outmap;
527};
528
[c4d4df]529/** Calculates the distance (pair) correlation between a given element and a surface.
[a5551b]530 * \param *molecules list of molecules structure
[c78d44]531 * \param &elements vector of elements to correlate to surface
[c4d4df]532 * \param *Surface pointer to Tesselation class surface
[6bd7e0]533 * \param *LC LinkedCell_deprecated structure to quickly find neighbouring atoms
[c4d4df]534 * \return Map of doubles with values as pairs of atom and the BoundaryTriangleSet that's closest
535 */
[6bd7e0]536CorrelationToSurfaceMap *CorrelationToSurface(std::vector<molecule *> &molecules, const std::vector<const element *> &elements, const Tesselation * const Surface, const LinkedCell_deprecated *LC )
[c4d4df]537{
[3930eb]538 Info FunctionInfo(__func__);
[caa30b]539 CorrelationToSurfaceMap *outmap = new CorrelationToSurfaceMap;
[99593f]540 double distance = 0;
[c4d4df]541 class BoundaryTriangleSet *triangle = NULL;
542 Vector centroid;
[7ea9e6]543
[e65de8]544 if ((Surface == NULL) || (LC == NULL) || (molecules.empty())) {
[47d041]545 ELOG(1, "No Tesselation, no LinkedCell or no molecule given.");
[7ea9e6]546 return outmap;
547 }
[e65de8]548 for (std::vector<molecule *>::const_iterator MolWalker = molecules.begin(); MolWalker != molecules.end(); MolWalker++)
[009607e]549 (*MolWalker)->doCountAtoms();
[7ea9e6]550 outmap = new CorrelationToSurfaceMap;
[e65de8]551 for (std::vector<molecule *>::const_iterator MolWalker = molecules.begin(); MolWalker != molecules.end(); MolWalker++) {
[47d041]552 LOG(2, "Current molecule is " << (*MolWalker)->name << ".");
[e65de8]553 if ((*MolWalker)->empty())
[47d041]554 LOG(2, "\t is empty.");
[e65de8]555 for (molecule::const_iterator iter = (*MolWalker)->begin(); iter != (*MolWalker)->end(); ++iter) {
[47d041]556 LOG(3, "\tCurrent atom is " << *(*iter) << ".");
[e5c0a1]557 for (vector<const element *>::const_iterator type = elements.begin(); type != elements.end(); ++type)
[d74077]558 if ((*type == NULL) || ((*iter)->getType() == *type)) {
559 TriangleIntersectionList Intersections((*iter)->getPosition(),Surface,LC);
[e65de8]560 distance = Intersections.GetSmallestDistance();
561 triangle = Intersections.GetClosestTriangle();
[59fff1]562 outmap->insert (
563 std::pair<double,
564 std::pair<const atom *, BoundaryTriangleSet*> >(
565 distance,
566 std::pair<const atom *, BoundaryTriangleSet*> (
567 (*iter),
568 triangle)
569 )
570 );
[e65de8]571 }
[7fd416]572 }
[e65de8]573 }
[7ea9e6]574
575 return outmap;
576};
577
578/** Calculates the distance (pair) correlation between a given element, all its periodic images and and a surface.
579 * Note that we also put all periodic images found in the cells given by [ -ranges[i], ranges[i] ] and i=0,...,NDIM-1.
580 * I.e. We multiply the atom::node with the inverse of the domain matrix, i.e. transform it to \f$[0,0^3\f$, then add per
581 * axis an integer from [ -ranges[i], ranges[i] ] onto it and multiply with the domain matrix to bring it back into
582 * the real space. Then, we Tesselation::FindClosestTriangleToPoint() and DistanceToTrianglePlane().
583 * \param *molecules list of molecules structure
[c78d44]584 * \param &elements vector of elements to correlate to surface
[7ea9e6]585 * \param *Surface pointer to Tesselation class surface
[6bd7e0]586 * \param *LC LinkedCell_deprecated structure to quickly find neighbouring atoms
[7ea9e6]587 * \param ranges[NDIM] interval boundaries for the periodic images to scan also
588 * \return Map of doubles with values as pairs of atom and the BoundaryTriangleSet that's closest
589 */
[6bd7e0]590CorrelationToSurfaceMap *PeriodicCorrelationToSurface(std::vector<molecule *> &molecules, const std::vector<const element *> &elements, const Tesselation * const Surface, const LinkedCell_deprecated *LC, const int ranges[NDIM] )
[7ea9e6]591{
[3930eb]592 Info FunctionInfo(__func__);
[caa30b]593 CorrelationToSurfaceMap *outmap = new CorrelationToSurfaceMap;
[7ea9e6]594 double distance = 0;
595 class BoundaryTriangleSet *triangle = NULL;
596 Vector centroid;
[99593f]597 int n[NDIM];
598 Vector periodicX;
599 Vector checkX;
[c4d4df]600
[e65de8]601 if ((Surface == NULL) || (LC == NULL) || (molecules.empty())) {
[47d041]602 LOG(1, "No Tesselation, no LinkedCell or no molecule given.");
[c4d4df]603 return outmap;
604 }
[e65de8]605 for (std::vector<molecule *>::const_iterator MolWalker = molecules.begin(); MolWalker != molecules.end(); MolWalker++)
[009607e]606 (*MolWalker)->doCountAtoms();
[c4d4df]607 outmap = new CorrelationToSurfaceMap;
[244a84]608 double ShortestDistance = 0.;
609 BoundaryTriangleSet *ShortestTriangle = NULL;
[e65de8]610 for (std::vector<molecule *>::const_iterator MolWalker = molecules.begin(); MolWalker != molecules.end(); MolWalker++) {
[cca9ef]611 RealSpaceMatrix FullMatrix = World::getInstance().getDomain().getM();
612 RealSpaceMatrix FullInverseMatrix = World::getInstance().getDomain().getMinv();
[47d041]613 LOG(2, "Current molecule is " << *MolWalker << ".");
[e65de8]614 for (molecule::const_iterator iter = (*MolWalker)->begin(); iter != (*MolWalker)->end(); ++iter) {
[47d041]615 LOG(3, "Current atom is " << **iter << ".");
[e5c0a1]616 for (vector<const element *>::const_iterator type = elements.begin(); type != elements.end(); ++type)
[d74077]617 if ((*type == NULL) || ((*iter)->getType() == *type)) {
618 periodicX = FullInverseMatrix * ((*iter)->getPosition()); // x now in [0,1)^3
[e65de8]619 // go through every range in xyz and get distance
620 ShortestDistance = -1.;
621 for (n[0]=-ranges[0]; n[0] <= ranges[0]; n[0]++)
622 for (n[1]=-ranges[1]; n[1] <= ranges[1]; n[1]++)
623 for (n[2]=-ranges[2]; n[2] <= ranges[2]; n[2]++) {
624 checkX = FullMatrix * (Vector(n[0], n[1], n[2]) + periodicX);
[d74077]625 TriangleIntersectionList Intersections(checkX,Surface,LC);
[e65de8]626 distance = Intersections.GetSmallestDistance();
627 triangle = Intersections.GetClosestTriangle();
628 if ((ShortestDistance == -1.) || (distance < ShortestDistance)) {
629 ShortestDistance = distance;
630 ShortestTriangle = triangle;
[99593f]631 }
[e65de8]632 }
633 // insert
[59fff1]634 outmap->insert (
635 std::pair<double,
636 std::pair<const atom *, BoundaryTriangleSet*> >(
637 ShortestDistance,
638 std::pair<const atom *, BoundaryTriangleSet*> (
639 *iter,
640 ShortestTriangle)
641 )
642 );
[47d041]643 //LOG(1, "INFO: Inserting " << Walker << " with distance " << ShortestDistance << " to " << *ShortestTriangle << ".");
[e65de8]644 }
[c4d4df]645 }
[e65de8]646 }
[c4d4df]647
648 return outmap;
649};
650
[bd61b41]651/** Returns the index of the bin for a given value.
[c4d4df]652 * \param value value whose bin to look for
653 * \param BinWidth width of bin
654 * \param BinStart first bin
655 */
[bd61b41]656int GetBin ( const double value, const double BinWidth, const double BinStart )
[c4d4df]657{
[92e5cb]658 //Info FunctionInfo(__func__);
[bd61b41]659 int bin =(int) (floor((value - BinStart)/BinWidth));
660 return (bin);
[c4d4df]661};
662
663
[92e5cb]664/** Adds header part that is unique to BinPairMap.
665 *
666 * @param file stream to print to
[c4d4df]667 */
[92e5cb]668void OutputCorrelation_Header( ofstream * const file )
[c4d4df]669{
[92e5cb]670 *file << "\tCount";
[c4d4df]671};
[b1f254]672
[92e5cb]673/** Prints values stored in BinPairMap iterator.
674 *
675 * @param file stream to print to
676 * @param runner iterator pointing at values to print
[be945c]677 */
[92e5cb]678void OutputCorrelation_Value( ofstream * const file, BinPairMap::const_iterator &runner )
[be945c]679{
[92e5cb]680 *file << runner->second;
[be945c]681};
682
[92e5cb]683
684/** Adds header part that is unique to DipoleAngularCorrelationMap.
685 *
686 * @param file stream to print to
[b1f254]687 */
[92e5cb]688void OutputDipoleAngularCorrelation_Header( ofstream * const file )
[b1f254]689{
[4b8630]690 *file << "\tFirstAtomOfMolecule";
[b1f254]691};
692
[208237b]693/** Prints values stored in DipoleCorrelationMap iterator.
[92e5cb]694 *
695 * @param file stream to print to
696 * @param runner iterator pointing at values to print
[b1f254]697 */
[92e5cb]698void OutputDipoleAngularCorrelation_Value( ofstream * const file, DipoleAngularCorrelationMap::const_iterator &runner )
[208237b]699{
[505d05]700 *file << *(runner->second);
[208237b]701};
702
703
704/** Adds header part that is unique to DipoleAngularCorrelationMap.
705 *
706 * @param file stream to print to
707 */
708void OutputDipoleCorrelation_Header( ofstream * const file )
709{
710 *file << "\tMolecule";
711};
712
713/** Prints values stored in DipoleCorrelationMap iterator.
714 *
715 * @param file stream to print to
716 * @param runner iterator pointing at values to print
717 */
718void OutputDipoleCorrelation_Value( ofstream * const file, DipoleCorrelationMap::const_iterator &runner )
[b1f254]719{
[92e5cb]720 *file << runner->second.first->getId() << "\t" << runner->second.second->getId();
[b1f254]721};
722
[92e5cb]723
724/** Adds header part that is unique to PairCorrelationMap.
725 *
726 * @param file stream to print to
[b1f254]727 */
[92e5cb]728void OutputPairCorrelation_Header( ofstream * const file )
[b1f254]729{
[92e5cb]730 *file << "\tAtom1\tAtom2";
731};
732
733/** Prints values stored in PairCorrelationMap iterator.
734 *
735 * @param file stream to print to
736 * @param runner iterator pointing at values to print
737 */
738void OutputPairCorrelation_Value( ofstream * const file, PairCorrelationMap::const_iterator &runner )
739{
740 *file << *(runner->second.first) << "\t" << *(runner->second.second);
741};
742
743
744/** Adds header part that is unique to CorrelationToPointMap.
745 *
746 * @param file stream to print to
747 */
748void OutputCorrelationToPoint_Header( ofstream * const file )
749{
750 *file << "\tAtom::x[i]-point.x[i]";
751};
752
753/** Prints values stored in CorrelationToPointMap iterator.
754 *
755 * @param file stream to print to
756 * @param runner iterator pointing at values to print
757 */
758void OutputCorrelationToPoint_Value( ofstream * const file, CorrelationToPointMap::const_iterator &runner )
759{
760 for (int i=0;i<NDIM;i++)
761 *file << "\t" << setprecision(8) << (runner->second.first->at(i) - runner->second.second->at(i));
[b1f254]762};
763
[92e5cb]764
765/** Adds header part that is unique to CorrelationToSurfaceMap.
766 *
767 * @param file stream to print to
768 */
769void OutputCorrelationToSurface_Header( ofstream * const file )
770{
771 *file << "\tTriangle";
772};
773
774/** Prints values stored in CorrelationToSurfaceMap iterator.
775 *
776 * @param file stream to print to
777 * @param runner iterator pointing at values to print
778 */
779void OutputCorrelationToSurface_Value( ofstream * const file, CorrelationToSurfaceMap::const_iterator &runner )
780{
781 *file << *(runner->second.first) << "\t" << *(runner->second.second);
782};
Note: See TracBrowser for help on using the repository browser.