Changeset 631dcb for src/molecules.cpp
- Timestamp:
- Jul 23, 2009, 11:23:59 AM (16 years ago)
- Branches:
- Action_Thermostats, Add_AtomRandomPerturbation, Add_FitFragmentPartialChargesAction, Add_RotateAroundBondAction, Add_SelectAtomByNameAction, Added_ParseSaveFragmentResults, AddingActions_SaveParseParticleParameters, Adding_Graph_to_ChangeBondActions, Adding_MD_integration_tests, Adding_ParticleName_to_Atom, Adding_StructOpt_integration_tests, AtomFragments, Automaking_mpqc_open, AutomationFragmentation_failures, Candidate_v1.5.4, Candidate_v1.6.0, Candidate_v1.6.1, ChangeBugEmailaddress, ChangingTestPorts, ChemicalSpaceEvaluator, CombiningParticlePotentialParsing, Combining_Subpackages, Debian_Package_split, Debian_package_split_molecuildergui_only, Disabling_MemDebug, Docu_Python_wait, EmpiricalPotential_contain_HomologyGraph, EmpiricalPotential_contain_HomologyGraph_documentation, Enable_parallel_make_install, Enhance_userguide, Enhanced_StructuralOptimization, Enhanced_StructuralOptimization_continued, Example_ManyWaysToTranslateAtom, Exclude_Hydrogens_annealWithBondGraph, FitPartialCharges_GlobalError, Fix_BoundInBox_CenterInBox_MoleculeActions, Fix_ChargeSampling_PBC, Fix_ChronosMutex, Fix_FitPartialCharges, Fix_FitPotential_needs_atomicnumbers, Fix_ForceAnnealing, Fix_IndependentFragmentGrids, Fix_ParseParticles, Fix_ParseParticles_split_forward_backward_Actions, Fix_PopActions, Fix_QtFragmentList_sorted_selection, Fix_Restrictedkeyset_FragmentMolecule, Fix_StatusMsg, Fix_StepWorldTime_single_argument, Fix_Verbose_Codepatterns, Fix_fitting_potentials, Fixes, ForceAnnealing_goodresults, ForceAnnealing_oldresults, ForceAnnealing_tocheck, ForceAnnealing_with_BondGraph, ForceAnnealing_with_BondGraph_continued, ForceAnnealing_with_BondGraph_continued_betteresults, ForceAnnealing_with_BondGraph_contraction-expansion, FragmentAction_writes_AtomFragments, FragmentMolecule_checks_bonddegrees, GeometryObjects, Gui_Fixes, Gui_displays_atomic_force_velocity, ImplicitCharges, IndependentFragmentGrids, IndependentFragmentGrids_IndividualZeroInstances, IndependentFragmentGrids_IntegrationTest, IndependentFragmentGrids_Sole_NN_Calculation, JobMarket_RobustOnKillsSegFaults, JobMarket_StableWorkerPool, JobMarket_unresolvable_hostname_fix, MoreRobust_FragmentAutomation, ODR_violation_mpqc_open, PartialCharges_OrthogonalSummation, PdbParser_setsAtomName, PythonUI_with_named_parameters, QtGui_reactivate_TimeChanged_changes, Recreated_GuiChecks, Rewrite_FitPartialCharges, RotateToPrincipalAxisSystem_UndoRedo, SaturateAtoms_findBestMatching, SaturateAtoms_singleDegree, StoppableMakroAction, Subpackage_CodePatterns, Subpackage_JobMarket, Subpackage_LinearAlgebra, Subpackage_levmar, Subpackage_mpqc_open, Subpackage_vmg, Switchable_LogView, ThirdParty_MPQC_rebuilt_buildsystem, TrajectoryDependenant_MaxOrder, TremoloParser_IncreasedPrecision, TremoloParser_MultipleTimesteps, TremoloParser_setsAtomName, Ubuntu_1604_changes, stable
- Children:
- 71e7c7
- Parents:
- b38b64 (diff), fcbfc8 (diff)
Note: this is a merge changeset, the changes displayed below correspond to the merge itself.
Use the(diff)
links above to see all the changes relative to each parent. - File:
-
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
src/molecules.cpp
rb38b64 r631dcb 1009 1009 }; 1010 1010 1011 /** Evaluates the potential energy used for constrained molecular dynamics. 1012 * \f$V_i^{con} = c^{bond} \cdot | r_{P(i)} - R_i | + sum_{i \neq j} C^{min} \cdot \frac{1}{C_{ij}} + C^{inj} \Bigl (1 - \theta \bigl (\prod_{i \neq j} (P(i) - P(j)) \bigr ) \Bigr )\f$ 1013 * where the first term points to the target in minimum distance, the second is a penalty for trajectories lying too close to each other (\f$C_{ij}$ is minimum distance between 1014 * trajectories i and j) and the third term is a penalty for two atoms trying to each the same target point. 1015 * Note that for the second term we have to solve the following linear system: 1016 * \f$-c_1 \cdot n_1 + c_2 \cdot n_2 + C \cdot n_3 = - p_2 + p_1\f$, where \f$c_1\f$, \f$c_2\f$ and \f$C\f$ are constants, 1017 * offset vector \f$p_1\f$ in direction \f$n_1\f$, offset vector \f$p_2\f$ in direction \f$n_2\f$, 1018 * \f$n_3\f$ is the normal vector to both directions. \f$C\f$ would be the minimum distance between the two lines. 1019 * \sa molecule::MinimiseConstrainedPotential(), molecule::VerletForceIntegration() 1020 * \param *out output stream for debugging 1021 * \param *PermutationMap gives target ptr for each atom, array of size molecule::AtomCount (this is "x" in \f$ V^{con}(x) \f$ ) 1022 * \param startstep start configuration (MDStep in molecule::trajectories) 1023 * \param endstep end configuration (MDStep in molecule::trajectories) 1024 * \param *constants constant in front of each term 1025 * \param IsAngstroem whether coordinates are in angstroem (true) or bohrradius (false) 1026 * \return potential energy 1027 * \note This routine is scaling quadratically which is not optimal. 1028 * \todo There's a bit double counting going on for the first time, bu nothing to worry really about. 1029 */ 1030 double molecule::ConstrainedPotential(ofstream *out, atom **PermutationMap, int startstep, int endstep, double *constants, bool IsAngstroem) 1031 { 1032 double result = 0., tmp, Norm1, Norm2; 1033 atom *Walker = NULL, *Runner = NULL, *Sprinter = NULL; 1034 Vector trajectory1, trajectory2, normal, TestVector; 1035 gsl_matrix *A = gsl_matrix_alloc(NDIM,NDIM); 1036 gsl_vector *x = gsl_vector_alloc(NDIM); 1037 1038 // go through every atom 1039 Walker = start; 1040 while (Walker->next != end) { 1041 Walker = Walker->next; 1042 // first term: distance to target 1043 Runner = PermutationMap[Walker->nr]; // find target point 1044 tmp = (Trajectories[Walker].R.at(startstep).Distance(&Trajectories[Runner].R.at(endstep))); 1045 tmp *= IsAngstroem ? 1. : 1./AtomicLengthToAngstroem; 1046 result += constants[0] * tmp; 1047 //*out << Verbose(4) << "Adding " << tmp*constants[0] << "." << endl; 1048 1049 // second term: sum of distances to other trajectories 1050 Runner = start; 1051 while (Runner->next != end) { 1052 Runner = Runner->next; 1053 if (Runner == Walker) // hence, we only go up to the Walker, not beyond (similar to i=0; i<j; i++) 1054 break; 1055 // determine normalized trajectories direction vector (n1, n2) 1056 Sprinter = PermutationMap[Walker->nr]; // find first target point 1057 trajectory1.CopyVector(&Trajectories[Sprinter].R.at(endstep)); 1058 trajectory1.SubtractVector(&Trajectories[Walker].R.at(startstep)); 1059 trajectory1.Normalize(); 1060 Norm1 = trajectory1.Norm(); 1061 Sprinter = PermutationMap[Runner->nr]; // find second target point 1062 trajectory2.CopyVector(&Trajectories[Sprinter].R.at(endstep)); 1063 trajectory2.SubtractVector(&Trajectories[Runner].R.at(startstep)); 1064 trajectory2.Normalize(); 1065 Norm2 = trajectory1.Norm(); 1066 // check whether either is zero() 1067 if ((Norm1 < MYEPSILON) && (Norm2 < MYEPSILON)) { 1068 tmp = Trajectories[Walker].R.at(startstep).Distance(&Trajectories[Runner].R.at(startstep)); 1069 } else if (Norm1 < MYEPSILON) { 1070 Sprinter = PermutationMap[Walker->nr]; // find first target point 1071 trajectory1.CopyVector(&Trajectories[Sprinter].R.at(endstep)); // copy first offset 1072 trajectory1.SubtractVector(&Trajectories[Runner].R.at(startstep)); // subtract second offset 1073 trajectory2.Scale( trajectory1.ScalarProduct(&trajectory2) ); // trajectory2 is scaled to unity, hence we don't need to divide by anything 1074 trajectory1.SubtractVector(&trajectory2); // project the part in norm direction away 1075 tmp = trajectory1.Norm(); // remaining norm is distance 1076 } else if (Norm2 < MYEPSILON) { 1077 Sprinter = PermutationMap[Runner->nr]; // find second target point 1078 trajectory2.CopyVector(&Trajectories[Sprinter].R.at(endstep)); // copy second offset 1079 trajectory2.SubtractVector(&Trajectories[Walker].R.at(startstep)); // subtract first offset 1080 trajectory1.Scale( trajectory2.ScalarProduct(&trajectory1) ); // trajectory1 is scaled to unity, hence we don't need to divide by anything 1081 trajectory2.SubtractVector(&trajectory1); // project the part in norm direction away 1082 tmp = trajectory2.Norm(); // remaining norm is distance 1083 } else if ((fabs(trajectory1.ScalarProduct(&trajectory2)/Norm1/Norm2) - 1.) < MYEPSILON) { // check whether they're linear dependent 1084 // *out << Verbose(3) << "Both trajectories of " << *Walker << " and " << *Runner << " are linear dependent: "; 1085 // *out << trajectory1; 1086 // *out << " and "; 1087 // *out << trajectory2; 1088 tmp = Trajectories[Walker].R.at(startstep).Distance(&Trajectories[Runner].R.at(startstep)); 1089 // *out << " with distance " << tmp << "." << endl; 1090 } else { // determine distance by finding minimum distance 1091 // *out << Verbose(3) << "Both trajectories of " << *Walker << " and " << *Runner << " are linear independent "; 1092 // *out << endl; 1093 // *out << "First Trajectory: "; 1094 // *out << trajectory1 << endl; 1095 // *out << "Second Trajectory: "; 1096 // *out << trajectory2 << endl; 1097 // determine normal vector for both 1098 normal.MakeNormalVector(&trajectory1, &trajectory2); 1099 // print all vectors for debugging 1100 // *out << "Normal vector in between: "; 1101 // *out << normal << endl; 1102 // setup matrix 1103 for (int i=NDIM;i--;) { 1104 gsl_matrix_set(A, 0, i, trajectory1.x[i]); 1105 gsl_matrix_set(A, 1, i, trajectory2.x[i]); 1106 gsl_matrix_set(A, 2, i, normal.x[i]); 1107 gsl_vector_set(x,i, (Trajectories[Walker].R.at(startstep).x[i] - Trajectories[Runner].R.at(startstep).x[i])); 1108 } 1109 // solve the linear system by Householder transformations 1110 gsl_linalg_HH_svx(A, x); 1111 // distance from last component 1112 tmp = gsl_vector_get(x,2); 1113 // *out << " with distance " << tmp << "." << endl; 1114 // test whether we really have the intersection (by checking on c_1 and c_2) 1115 TestVector.CopyVector(&Trajectories[Runner].R.at(startstep)); 1116 trajectory2.Scale(gsl_vector_get(x,1)); 1117 TestVector.AddVector(&trajectory2); 1118 normal.Scale(gsl_vector_get(x,2)); 1119 TestVector.AddVector(&normal); 1120 TestVector.SubtractVector(&Trajectories[Walker].R.at(startstep)); 1121 trajectory1.Scale(gsl_vector_get(x,0)); 1122 TestVector.SubtractVector(&trajectory1); 1123 if (TestVector.Norm() < MYEPSILON) { 1124 // *out << Verbose(2) << "Test: ok.\tDistance of " << tmp << " is correct." << endl; 1125 } else { 1126 // *out << Verbose(2) << "Test: failed.\tIntersection is off by "; 1127 // *out << TestVector; 1128 // *out << "." << endl; 1129 } 1130 } 1131 // add up 1132 tmp *= IsAngstroem ? 1. : 1./AtomicLengthToAngstroem; 1133 if (fabs(tmp) > MYEPSILON) { 1134 result += constants[1] * 1./tmp; 1135 //*out << Verbose(4) << "Adding " << 1./tmp*constants[1] << "." << endl; 1136 } 1137 } 1138 1139 // third term: penalty for equal targets 1140 Runner = start; 1141 while (Runner->next != end) { 1142 Runner = Runner->next; 1143 if ((PermutationMap[Walker->nr] == PermutationMap[Runner->nr]) && (Walker->nr < Runner->nr)) { 1144 Sprinter = PermutationMap[Walker->nr]; 1145 // *out << *Walker << " and " << *Runner << " are heading to the same target at "; 1146 // *out << Trajectories[Sprinter].R.at(endstep); 1147 // *out << ", penalting." << endl; 1148 result += constants[2]; 1149 //*out << Verbose(4) << "Adding " << constants[2] << "." << endl; 1150 } 1151 } 1152 } 1153 1154 return result; 1155 }; 1156 1157 void PrintPermutationMap(ofstream *out, atom **PermutationMap, int Nr) 1158 { 1159 stringstream zeile1, zeile2; 1160 int *DoubleList = (int *) Malloc(Nr*sizeof(int), "PrintPermutationMap: *DoubleList"); 1161 int doubles = 0; 1162 for (int i=0;i<Nr;i++) 1163 DoubleList[i] = 0; 1164 zeile1 << "PermutationMap: "; 1165 zeile2 << " "; 1166 for (int i=0;i<Nr;i++) { 1167 DoubleList[PermutationMap[i]->nr]++; 1168 zeile1 << i << " "; 1169 zeile2 << PermutationMap[i]->nr << " "; 1170 } 1171 for (int i=0;i<Nr;i++) 1172 if (DoubleList[i] > 1) 1173 doubles++; 1174 // *out << "Found " << doubles << " Doubles." << endl; 1175 Free((void **)&DoubleList, "PrintPermutationMap: *DoubleList"); 1176 // *out << zeile1.str() << endl << zeile2.str() << endl; 1177 }; 1178 1179 /** Minimises the extra potential for constrained molecular dynamics and gives forces and the constrained potential energy. 1180 * We do the following: 1181 * -# Generate a distance list from all source to all target points 1182 * -# Sort this per source point 1183 * -# Take for each source point the target point with minimum distance, use this as initial permutation 1184 * -# check whether molecule::ConstrainedPotential() is greater than injective penalty 1185 * -# If so, we go through each source point, stepping down in the sorted target point distance list and re-checking potential. 1186 * -# Next, we only apply transformations that keep the injectivity of the permutations list. 1187 * -# Hence, for one source point we step down the ladder and seek the corresponding owner of this new target 1188 * point and try to change it for one with lesser distance, or for the next one with greater distance, but only 1189 * if this decreases the conditional potential. 1190 * -# finished. 1191 * -# Then, we calculate the forces by taking the spatial derivative, where we scale the potential to such a degree, 1192 * that the total force is always pointing in direction of the constraint force (ensuring that we move in the 1193 * right direction). 1194 * -# Finally, we calculate the potential energy and return. 1195 * \param *out output stream for debugging 1196 * \param **PermutationMap on return: mapping between the atom label of the initial and the final configuration 1197 * \param startstep current MD step giving initial position between which and \a endstep we perform the constrained MD (as further steps are always concatenated) 1198 * \param endstep step giving final position in constrained MD 1199 * \param IsAngstroem whether coordinates are in angstroem (true) or bohrradius (false) 1200 * \sa molecule::VerletForceIntegration() 1201 * \return potential energy (and allocated **PermutationMap (array of molecule::AtomCount ^2) 1202 * \todo The constrained potential's constants are set to fixed values right now, but they should scale based on checks of the system in order 1203 * to ensure they're properties (e.g. constants[2] always greater than the energy of the system). 1204 * \bug this all is not O(N log N) but O(N^2) 1205 */ 1206 double molecule::MinimiseConstrainedPotential(ofstream *out, atom **&PermutationMap, int startstep, int endstep, bool IsAngstroem) 1207 { 1208 double Potential, OldPotential, OlderPotential; 1209 PermutationMap = (atom **) Malloc(AtomCount*sizeof(atom *), "molecule::MinimiseConstrainedPotential: **PermutationMap"); 1210 DistanceMap **DistanceList = (DistanceMap **) Malloc(AtomCount*sizeof(DistanceMap *), "molecule::MinimiseConstrainedPotential: **DistanceList"); 1211 DistanceMap::iterator *DistanceIterators = (DistanceMap::iterator *) Malloc(AtomCount*sizeof(DistanceMap::iterator), "molecule::MinimiseConstrainedPotential: *DistanceIterators"); 1212 int *DoubleList = (int *) Malloc(AtomCount*sizeof(int), "molecule::MinimiseConstrainedPotential: *DoubleList"); 1213 DistanceMap::iterator *StepList = (DistanceMap::iterator *) Malloc(AtomCount*sizeof(DistanceMap::iterator), "molecule::MinimiseConstrainedPotential: *StepList"); 1214 double constants[3]; 1215 int round; 1216 atom *Walker = NULL, *Runner = NULL, *Sprinter = NULL; 1217 DistanceMap::iterator Rider, Strider; 1218 1219 /// Minimise the potential 1220 // set Lagrange multiplier constants 1221 constants[0] = 10.; 1222 constants[1] = 1.; 1223 constants[2] = 1e+7; // just a huge penalty 1224 // generate the distance list 1225 *out << Verbose(1) << "Creating the distance list ... " << endl; 1226 for (int i=AtomCount; i--;) { 1227 DoubleList[i] = 0; // stores for how many atoms in startstep this atom is a target in endstep 1228 DistanceList[i] = new DistanceMap; // is the distance sorted target list per atom 1229 DistanceList[i]->clear(); 1230 } 1231 *out << Verbose(1) << "Filling the distance list ... " << endl; 1232 Walker = start; 1233 while (Walker->next != end) { 1234 Walker = Walker->next; 1235 Runner = start; 1236 while(Runner->next != end) { 1237 Runner = Runner->next; 1238 DistanceList[Walker->nr]->insert( DistancePair(Trajectories[Walker].R.at(startstep).Distance(&Trajectories[Runner].R.at(endstep)), Runner) ); 1239 } 1240 } 1241 // create the initial PermutationMap (source -> target) 1242 Walker = start; 1243 while (Walker->next != end) { 1244 Walker = Walker->next; 1245 StepList[Walker->nr] = DistanceList[Walker->nr]->begin(); // stores the step to the next iterator that could be a possible next target 1246 PermutationMap[Walker->nr] = DistanceList[Walker->nr]->begin()->second; // always pick target with the smallest distance 1247 DoubleList[DistanceList[Walker->nr]->begin()->second->nr]++; // increase this target's source count (>1? not injective) 1248 DistanceIterators[Walker->nr] = DistanceList[Walker->nr]->begin(); // and remember which one we picked 1249 *out << *Walker << " starts with distance " << DistanceList[Walker->nr]->begin()->first << "." << endl; 1250 } 1251 *out << Verbose(1) << "done." << endl; 1252 // make the PermutationMap injective by checking whether we have a non-zero constants[2] term in it 1253 *out << Verbose(1) << "Making the PermutationMap injective ... " << endl; 1254 Walker = start; 1255 DistanceMap::iterator NewBase; 1256 OldPotential = fabs(ConstrainedPotential(out, PermutationMap, startstep, endstep, constants, IsAngstroem)); 1257 while ((OldPotential) > constants[2]) { 1258 PrintPermutationMap(out, PermutationMap, AtomCount); 1259 Walker = Walker->next; 1260 if (Walker == end) // round-robin at the end 1261 Walker = start->next; 1262 if (DoubleList[DistanceIterators[Walker->nr]->second->nr] <= 1) // no need to make those injective that aren't 1263 continue; 1264 // now, try finding a new one 1265 NewBase = DistanceIterators[Walker->nr]; // store old base 1266 do { 1267 NewBase++; // take next further distance in distance to targets list that's a target of no one 1268 } while ((DoubleList[NewBase->second->nr] != 0) && (NewBase != DistanceList[Walker->nr]->end())); 1269 if (NewBase != DistanceList[Walker->nr]->end()) { 1270 PermutationMap[Walker->nr] = NewBase->second; 1271 Potential = fabs(ConstrainedPotential(out, PermutationMap, startstep, endstep, constants, IsAngstroem)); 1272 if (Potential > OldPotential) { // undo 1273 PermutationMap[Walker->nr] = DistanceIterators[Walker->nr]->second; 1274 } else { // do 1275 DoubleList[DistanceIterators[Walker->nr]->second->nr]--; // decrease the old entry in the doubles list 1276 DoubleList[NewBase->second->nr]++; // increase the old entry in the doubles list 1277 DistanceIterators[Walker->nr] = NewBase; 1278 OldPotential = Potential; 1279 *out << Verbose(3) << "Found a new permutation, new potential is " << OldPotential << "." << endl; 1280 } 1281 } 1282 } 1283 for (int i=AtomCount; i--;) // now each single entry in the DoubleList should be <=1 1284 if (DoubleList[i] > 1) { 1285 cerr << "Failed to create an injective PermutationMap!" << endl; 1286 exit(1); 1287 } 1288 *out << Verbose(1) << "done." << endl; 1289 Free((void **)&DoubleList, "molecule::MinimiseConstrainedPotential: *DoubleList"); 1290 // argument minimise the constrained potential in this injective PermutationMap 1291 *out << Verbose(1) << "Argument minimising the PermutationMap, at current potential " << OldPotential << " ... " << endl; 1292 OldPotential = 1e+10; 1293 round = 0; 1294 do { 1295 *out << "Starting round " << ++round << " ... " << endl; 1296 OlderPotential = OldPotential; 1297 do { 1298 Walker = start; 1299 while (Walker->next != end) { // pick one 1300 Walker = Walker->next; 1301 PrintPermutationMap(out, PermutationMap, AtomCount); 1302 Sprinter = DistanceIterators[Walker->nr]->second; // store initial partner 1303 Strider = DistanceIterators[Walker->nr]; //remember old iterator 1304 DistanceIterators[Walker->nr] = StepList[Walker->nr]; 1305 if (DistanceIterators[Walker->nr] == DistanceList[Walker->nr]->end()) {// stop, before we run through the list and still on 1306 DistanceIterators[Walker->nr] == DistanceList[Walker->nr]->begin(); 1307 break; 1308 } 1309 //*out << Verbose(2) << "Current Walker: " << *Walker << " with old/next candidate " << *Sprinter << "/" << *DistanceIterators[Walker->nr]->second << "." << endl; 1310 // find source of the new target 1311 Runner = start->next; 1312 while(Runner != end) { // find the source whose toes we might be stepping on (Walker's new target should be in use by another already) 1313 if (PermutationMap[Runner->nr] == DistanceIterators[Walker->nr]->second) { 1314 //*out << Verbose(2) << "Found the corresponding owner " << *Runner << " to " << *PermutationMap[Runner->nr] << "." << endl; 1315 break; 1316 } 1317 Runner = Runner->next; 1318 } 1319 if (Runner != end) { // we found the other source 1320 // then look in its distance list for Sprinter 1321 Rider = DistanceList[Runner->nr]->begin(); 1322 for (; Rider != DistanceList[Runner->nr]->end(); Rider++) 1323 if (Rider->second == Sprinter) 1324 break; 1325 if (Rider != DistanceList[Runner->nr]->end()) { // if we have found one 1326 //*out << Verbose(2) << "Current Other: " << *Runner << " with old/next candidate " << *PermutationMap[Runner->nr] << "/" << *Rider->second << "." << endl; 1327 // exchange both 1328 PermutationMap[Walker->nr] = DistanceIterators[Walker->nr]->second; // put next farther distance into PermutationMap 1329 PermutationMap[Runner->nr] = Sprinter; // and hand the old target to its respective owner 1330 PrintPermutationMap(out, PermutationMap, AtomCount); 1331 // calculate the new potential 1332 //*out << Verbose(2) << "Checking new potential ..." << endl; 1333 Potential = ConstrainedPotential(out, PermutationMap, startstep, endstep, constants, IsAngstroem); 1334 if (Potential > OldPotential) { // we made everything worse! Undo ... 1335 //*out << Verbose(3) << "Nay, made the potential worse: " << Potential << " vs. " << OldPotential << "!" << endl; 1336 //*out << Verbose(3) << "Setting " << *Runner << "'s source to " << *DistanceIterators[Runner->nr]->second << "." << endl; 1337 // Undo for Runner (note, we haven't moved the iteration yet, we may use this) 1338 PermutationMap[Runner->nr] = DistanceIterators[Runner->nr]->second; 1339 // Undo for Walker 1340 DistanceIterators[Walker->nr] = Strider; // take next farther distance target 1341 //*out << Verbose(3) << "Setting " << *Walker << "'s source to " << *DistanceIterators[Walker->nr]->second << "." << endl; 1342 PermutationMap[Walker->nr] = DistanceIterators[Walker->nr]->second; 1343 } else { 1344 DistanceIterators[Runner->nr] = Rider; // if successful also move the pointer in the iterator list 1345 *out << Verbose(3) << "Found a better permutation, new potential is " << Potential << " vs." << OldPotential << "." << endl; 1346 OldPotential = Potential; 1347 } 1348 if (Potential > constants[2]) { 1349 cerr << "ERROR: The two-step permutation procedure did not maintain injectivity!" << endl; 1350 exit(255); 1351 } 1352 //*out << endl; 1353 } else { 1354 cerr << "ERROR: " << *Runner << " was not the owner of " << *Sprinter << "!" << endl; 1355 exit(255); 1356 } 1357 } else { 1358 PermutationMap[Walker->nr] = DistanceIterators[Walker->nr]->second; // new target has no source! 1359 } 1360 StepList[Walker->nr]++; // take next farther distance target 1361 } 1362 } while (Walker->next != end); 1363 } while ((OlderPotential - OldPotential) > 1e-3); 1364 *out << Verbose(1) << "done." << endl; 1365 1366 1367 /// free memory and return with evaluated potential 1368 for (int i=AtomCount; i--;) 1369 DistanceList[i]->clear(); 1370 Free((void **)&DistanceList, "molecule::MinimiseConstrainedPotential: **DistanceList"); 1371 Free((void **)&DistanceIterators, "molecule::MinimiseConstrainedPotential: *DistanceIterators"); 1372 return ConstrainedPotential(out, PermutationMap, startstep, endstep, constants, IsAngstroem); 1373 }; 1374 1375 /** Evaluates the (distance-related part) of the constrained potential for the constrained forces. 1376 * \param *out output stream for debugging 1377 * \param startstep current MD step giving initial position between which and \a endstep we perform the constrained MD (as further steps are always concatenated) 1378 * \param endstep step giving final position in constrained MD 1379 * \param **PermutationMap mapping between the atom label of the initial and the final configuration 1380 * \param *Force ForceMatrix containing force vectors from the external energy functional minimisation. 1381 * \todo the constant for the constrained potential distance part is hard-coded independently of the hard-coded value in MinimiseConstrainedPotential() 1382 */ 1383 void molecule::EvaluateConstrainedForces(ofstream *out, int startstep, int endstep, atom **PermutationMap, ForceMatrix *Force) 1384 { 1385 double constant = 10.; 1386 atom *Walker = NULL, *Sprinter = NULL; 1387 1388 /// evaluate forces (only the distance to target dependent part) with the final PermutationMap 1389 *out << Verbose(1) << "Calculating forces and adding onto ForceMatrix ... " << endl; 1390 Walker = start; 1391 while (Walker->next != NULL) { 1392 Walker = Walker->next; 1393 Sprinter = PermutationMap[Walker->nr]; 1394 // set forces 1395 for (int i=NDIM;i++;) 1396 Force->Matrix[0][Walker->nr][5+i] += 2.*constant*sqrt(Trajectories[Walker].R.at(startstep).Distance(&Trajectories[Sprinter].R.at(endstep))); 1397 } 1398 *out << Verbose(1) << "done." << endl; 1399 }; 1400 1401 /** Performs a linear interpolation between two desired atomic configurations with a given number of steps. 1402 * Note, step number is config::MaxOuterStep 1403 * \param *out output stream for debugging 1404 * \param startstep stating initial configuration in molecule::Trajectories 1405 * \param endstep stating final configuration in molecule::Trajectories 1406 * \param &config configuration structure 1407 * \return true - success in writing step files, false - error writing files or only one step in molecule::Trajectories 1408 */ 1409 bool molecule::LinearInterpolationBetweenConfiguration(ofstream *out, int startstep, int endstep, const char *prefix, config &configuration) 1410 { 1411 bool status = true; 1412 int MaxSteps = configuration.MaxOuterStep; 1413 MoleculeListClass *MoleculePerStep = new MoleculeListClass(MaxSteps+1, AtomCount); 1414 // Get the Permutation Map by MinimiseConstrainedPotential 1415 atom **PermutationMap = NULL; 1416 atom *Walker = NULL, *Sprinter = NULL; 1417 MinimiseConstrainedPotential(out, PermutationMap, startstep, endstep, configuration.GetIsAngstroem()); 1418 1419 // check whether we have sufficient space in Trajectories for each atom 1420 Walker = start; 1421 while (Walker->next != end) { 1422 Walker = Walker->next; 1423 if (Trajectories[Walker].R.size() <= (unsigned int)(MaxSteps)) { 1424 //cout << "Increasing size for trajectory array of " << keyword << " to " << (MaxSteps+1) << "." << endl; 1425 Trajectories[Walker].R.resize(MaxSteps+1); 1426 Trajectories[Walker].U.resize(MaxSteps+1); 1427 Trajectories[Walker].F.resize(MaxSteps+1); 1428 } 1429 } 1430 // push endstep to last one 1431 Walker = start; 1432 while (Walker->next != end) { // remove the endstep (is now the very last one) 1433 Walker = Walker->next; 1434 for (int n=NDIM;n--;) { 1435 Trajectories[Walker].R.at(MaxSteps).x[n] = Trajectories[Walker].R.at(endstep).x[n]; 1436 Trajectories[Walker].U.at(MaxSteps).x[n] = Trajectories[Walker].U.at(endstep).x[n]; 1437 Trajectories[Walker].F.at(MaxSteps).x[n] = Trajectories[Walker].F.at(endstep).x[n]; 1438 } 1439 } 1440 endstep = MaxSteps; 1441 1442 // go through all steps and add the molecular configuration to the list and to the Trajectories of \a this molecule 1443 *out << Verbose(1) << "Filling intermediate " << MaxSteps << " steps with MDSteps of " << MDSteps << "." << endl; 1444 for (int step = 0; step <= MaxSteps; step++) { 1445 MoleculePerStep->ListOfMolecules[step] = new molecule(elemente); 1446 Walker = start; 1447 while (Walker->next != end) { 1448 Walker = Walker->next; 1449 // add to molecule list 1450 Sprinter = MoleculePerStep->ListOfMolecules[step]->AddCopyAtom(Walker); 1451 for (int n=NDIM;n--;) { 1452 Sprinter->x.x[n] = Trajectories[Walker].R.at(startstep).x[n] + (Trajectories[PermutationMap[Walker->nr]].R.at(endstep).x[n] - Trajectories[Walker].R.at(startstep).x[n])*((double)step/(double)MaxSteps); 1453 // add to Trajectories 1454 //*out << Verbose(3) << step << ">=" << MDSteps-1 << endl; 1455 if (step < MaxSteps) { 1456 Trajectories[Walker].R.at(step).x[n] = Trajectories[Walker].R.at(startstep).x[n] + (Trajectories[PermutationMap[Walker->nr]].R.at(endstep).x[n] - Trajectories[Walker].R.at(startstep).x[n])*((double)step/(double)MaxSteps); 1457 Trajectories[Walker].U.at(step).x[n] = 0.; 1458 Trajectories[Walker].F.at(step).x[n] = 0.; 1459 } 1460 } 1461 } 1462 } 1463 MDSteps = MaxSteps+1; // otherwise new Trajectories' points aren't stored on save&exit 1464 1465 // store the list to single step files 1466 int *SortIndex = (int *) Malloc(AtomCount*sizeof(int), "molecule::LinearInterpolationBetweenConfiguration: *SortIndex"); 1467 for (int i=AtomCount; i--; ) 1468 SortIndex[i] = i; 1469 status = MoleculePerStep->OutputConfigForListOfFragments(out, "ConstrainedStep", &configuration, SortIndex, false, false); 1470 1471 // free and return 1472 Free((void **)&PermutationMap, "molecule::MinimiseConstrainedPotential: *PermutationMap"); 1473 delete(MoleculePerStep); 1474 return status; 1475 }; 1476 1011 1477 /** Parses nuclear forces from file and performs Verlet integration. 1012 1478 * Note that we assume the parsed forces to be in atomic units (hence, if coordinates are in angstroem, we 1013 1479 * have to transform them). 1014 1480 * This adds a new MD step to the config file. 1481 * \param *out output stream for debugging 1015 1482 * \param *file filename 1483 * \param config structure with config::Deltat, config::IsAngstroem, config::DoConstrained 1016 1484 * \param delta_t time step width in atomic units 1017 1485 * \param IsAngstroem whether coordinates are in angstroem (true) or bohrradius (false) 1486 * \param DoConstrained whether we perform a constrained (>0, target step in molecule::trajectories) or unconstrained (0) molecular dynamics, \sa molecule::MinimiseConstrainedPotential() 1018 1487 * \return true - file found and parsed, false - file not found or imparsable 1019 * /1020 bool molecule::VerletForceIntegration(char *file, double delta_t, bool IsAngstroem) 1021 { 1022 element *runner = elemente->start; 1488 * \todo This is not yet checked if it is correctly working with DoConstrained set to true. 1489 */ 1490 bool molecule::VerletForceIntegration(ofstream *out, char *file, config &configuration) 1491 { 1023 1492 atom *walker = NULL; 1024 int AtomNo;1025 1493 ifstream input(file); 1026 1494 string token; 1027 1495 stringstream item; 1028 double a, IonMass;1496 double IonMass, Vector[NDIM], ConstrainedPotentialEnergy, ActualTemp; 1029 1497 ForceMatrix Force; 1030 Vector tmpvector;1031 1498 1032 1499 CountElements(); // make sure ElementsInMolecule is up to date … … 1046 1513 } 1047 1514 // correct Forces 1048 // for(int d=0;d<NDIM;d++) 1049 // tmpvector.x[d] = 0.; 1050 // for(int i=0;i<AtomCount;i++) 1051 // for(int d=0;d<NDIM;d++) { 1052 // tmpvector.x[d] += Force.Matrix[0][i][d+5]; 1053 // } 1054 // for(int i=0;i<AtomCount;i++) 1055 // for(int d=0;d<NDIM;d++) { 1056 // Force.Matrix[0][i][d+5] -= tmpvector.x[d]/(double)AtomCount; 1057 // } 1515 for(int d=0;d<NDIM;d++) 1516 Vector[d] = 0.; 1517 for(int i=0;i<AtomCount;i++) 1518 for(int d=0;d<NDIM;d++) { 1519 Vector[d] += Force.Matrix[0][i][d+5]; 1520 } 1521 for(int i=0;i<AtomCount;i++) 1522 for(int d=0;d<NDIM;d++) { 1523 Force.Matrix[0][i][d+5] -= Vector[d]/(double)AtomCount; 1524 } 1525 // solve a constrained potential if we are meant to 1526 if (configuration.DoConstrainedMD) { 1527 // calculate forces and potential 1528 atom **PermutationMap = NULL; 1529 ConstrainedPotentialEnergy = MinimiseConstrainedPotential(out, PermutationMap,configuration.DoConstrainedMD, 0, configuration.GetIsAngstroem()); 1530 EvaluateConstrainedForces(out, configuration.DoConstrainedMD, 0, PermutationMap, &Force); 1531 Free((void **)&PermutationMap, "molecule::MinimiseConstrainedPotential: *PermutationMap"); 1532 } 1533 1058 1534 // and perform Verlet integration for each atom with position, velocity and force vector 1059 runner = elemente->start; 1060 while (runner->next != elemente->end) { // go through every element 1061 runner = runner->next; 1062 IonMass = runner->mass; 1063 a = delta_t*0.5/IonMass; // (F+F_old)/2m = a and thus: v = (F+F_old)/2m * t = (F + F_old) * a 1064 if (ElementsInMolecule[runner->Z]) { // if this element got atoms 1065 AtomNo = 0; 1535 walker = start; 1536 while (walker->next != end) { // go through every atom of this element 1537 walker = walker->next; 1538 //a = configuration.Deltat*0.5/walker->type->mass; // (F+F_old)/2m = a and thus: v = (F+F_old)/2m * t = (F + F_old) * a 1539 // check size of vectors 1540 if (Trajectories[walker].R.size() <= (unsigned int)(MDSteps)) { 1541 //out << "Increasing size for trajectory array of " << *walker << " to " << (size+10) << "." << endl; 1542 Trajectories[walker].R.resize(MDSteps+10); 1543 Trajectories[walker].U.resize(MDSteps+10); 1544 Trajectories[walker].F.resize(MDSteps+10); 1545 } 1546 1547 // Update R (and F) 1548 for (int d=0; d<NDIM; d++) { 1549 Trajectories[walker].F.at(MDSteps).x[d] = -Force.Matrix[0][walker->nr][d+5]*(configuration.GetIsAngstroem() ? AtomicLengthToAngstroem : 1.); 1550 Trajectories[walker].R.at(MDSteps).x[d] = Trajectories[walker].R.at(MDSteps-1).x[d]; 1551 Trajectories[walker].R.at(MDSteps).x[d] += configuration.Deltat*(Trajectories[walker].U.at(MDSteps-1).x[d]); // s(t) = s(0) + v * deltat + 1/2 a * deltat^2 1552 Trajectories[walker].R.at(MDSteps).x[d] += 0.5*configuration.Deltat*configuration.Deltat*(Trajectories[walker].F.at(MDSteps).x[d]/walker->type->mass); // F = m * a and s = 0.5 * F/m * t^2 = F * a * t 1553 } 1554 // Update U 1555 for (int d=0; d<NDIM; d++) { 1556 Trajectories[walker].U.at(MDSteps).x[d] = Trajectories[walker].U.at(MDSteps-1).x[d]; 1557 Trajectories[walker].U.at(MDSteps).x[d] += configuration.Deltat * (Trajectories[walker].F.at(MDSteps).x[d]+Trajectories[walker].F.at(MDSteps-1).x[d]/walker->type->mass); // v = F/m * t 1558 } 1559 // out << "Integrated position&velocity of step " << (MDSteps) << ": ("; 1560 // for (int d=0;d<NDIM;d++) 1561 // out << Trajectories[walker].R.at(MDSteps).x[d] << " "; // next step 1562 // out << ")\t("; 1563 // for (int d=0;d<NDIM;d++) 1564 // cout << Trajectories[walker].U.at(MDSteps).x[d] << " "; // next step 1565 // out << ")" << endl; 1566 // next atom 1567 } 1568 } 1569 // correct velocities (rather momenta) so that center of mass remains motionless 1570 for(int d=0;d<NDIM;d++) 1571 Vector[d] = 0.; 1572 IonMass = 0.; 1573 walker = start; 1574 while (walker->next != end) { // go through every atom 1575 walker = walker->next; 1576 IonMass += walker->type->mass; // sum up total mass 1577 for(int d=0;d<NDIM;d++) { 1578 Vector[d] += Trajectories[walker].U.at(MDSteps).x[d]*walker->type->mass; 1579 } 1580 } 1581 // correct velocities (rather momenta) so that center of mass remains motionless 1582 for(int d=0;d<NDIM;d++) 1583 Vector[d] /= IonMass; 1584 ActualTemp = 0.; 1585 walker = start; 1586 while (walker->next != end) { // go through every atom of this element 1587 walker = walker->next; 1588 for(int d=0;d<NDIM;d++) { 1589 Trajectories[walker].U.at(MDSteps).x[d] -= Vector[d]; 1590 ActualTemp += 0.5 * walker->type->mass * Trajectories[walker].U.at(MDSteps).x[d] * Trajectories[walker].U.at(MDSteps).x[d]; 1591 } 1592 } 1593 Thermostats(configuration, ActualTemp, Berendsen); 1594 MDSteps++; 1595 1596 1597 // exit 1598 return true; 1599 }; 1600 1601 /** Implementation of various thermostats. 1602 * All these thermostats apply an additional force which has the following forms: 1603 * -# Woodcock 1604 * \f$p_i \rightarrow \sqrt{\frac{T_0}{T}} \cdot p_i\f$ 1605 * -# Gaussian 1606 * \f$ \frac{ \sum_i \frac{p_i}{m_i} \frac{\partial V}{\partial q_i}} {\sum_i \frac{p^2_i}{m_i}} \cdot p_i\f$ 1607 * -# Langevin 1608 * \f$p_{i,n} \rightarrow \sqrt{1-\alpha^2} p_{i,0} + \alpha p_r\f$ 1609 * -# Berendsen 1610 * \f$p_i \rightarrow \left [ 1+ \frac{\delta t}{\tau_T} \left ( \frac{T_0}{T} \right ) \right ]^{\frac{1}{2}} \cdot p_i\f$ 1611 * -# Nose-Hoover 1612 * \f$\zeta p_i \f$ with \f$\frac{\partial \zeta}{\partial t} = \frac{1}{M_s} \left ( \sum^N_{i=1} \frac{p_i^2}{m_i} - g k_B T \right )\f$ 1613 * These Thermostats either simply rescale the velocities, thus this function should be called after ion velocities have been updated, and/or 1614 * have a constraint force acting additionally on the ions. In the latter case, the ion speeds have to be modified 1615 * belatedly and the constraint force set. 1616 * \param *P Problem at hand 1617 * \param i which of the thermostats to take: 0 - none, 1 - Woodcock, 2 - Gaussian, 3 - Langevin, 4 - Berendsen, 5 - Nose-Hoover 1618 * \sa InitThermostat() 1619 */ 1620 void molecule::Thermostats(config &configuration, double ActualTemp, int Thermostat) 1621 { 1622 double ekin = 0.; 1623 double E = 0., G = 0.; 1624 double delta_alpha = 0.; 1625 double ScaleTempFactor; 1626 double sigma; 1627 double IonMass; 1628 int d; 1629 gsl_rng * r; 1630 const gsl_rng_type * T; 1631 double *U = NULL, *F = NULL, FConstraint[NDIM]; 1632 atom *walker = NULL; 1633 1634 // calculate scale configuration 1635 ScaleTempFactor = configuration.TargetTemp/ActualTemp; 1636 1637 // differentating between the various thermostats 1638 switch(Thermostat) { 1639 case None: 1640 cout << Verbose(2) << "Applying no thermostat..." << endl; 1641 break; 1642 case Woodcock: 1643 if ((configuration.ScaleTempStep > 0) && ((MDSteps-1) % configuration.ScaleTempStep == 0)) { 1644 cout << Verbose(2) << "Applying Woodcock thermostat..." << endl; 1066 1645 walker = start; 1067 1646 while (walker->next != end) { // go through every atom of this element 1068 1647 walker = walker->next; 1069 if (walker->type == runner) { // if this atom fits to element 1070 // check size of vectors 1071 if (Trajectories[walker].R.size() <= (unsigned int)(MDSteps)) { 1072 //cout << "Increasing size for trajectory array of " << *walker << " to " << (size+10) << "." << endl; 1073 Trajectories[walker].R.resize(MDSteps+10); 1074 Trajectories[walker].U.resize(MDSteps+10); 1075 Trajectories[walker].F.resize(MDSteps+10); 1648 IonMass = walker->type->mass; 1649 U = Trajectories[walker].U.at(MDSteps).x; 1650 if (walker->FixedIon == 0) // even FixedIon moves, only not by other's forces 1651 for (d=0; d<NDIM; d++) { 1652 U[d] *= sqrt(ScaleTempFactor); 1653 ekin += 0.5*IonMass * U[d]*U[d]; 1076 1654 } 1077 // 1. calculate x(t+\delta t) 1078 for (int d=0; d<NDIM; d++) { 1079 Trajectories[walker].F.at(MDSteps).x[d] = -Force.Matrix[0][AtomNo][d+5]; 1080 Trajectories[walker].R.at(MDSteps).x[d] = Trajectories[walker].R.at(MDSteps-1).x[d]; 1081 Trajectories[walker].R.at(MDSteps).x[d] += delta_t*(Trajectories[walker].U.at(MDSteps-1).x[d]); 1082 Trajectories[walker].R.at(MDSteps).x[d] += 0.5*delta_t*delta_t*(Trajectories[walker].F.at(MDSteps-1).x[d])/IonMass; // F = m * a and s = 0.5 * F/m * t^2 = F * a * t 1655 } 1656 } 1657 break; 1658 case Gaussian: 1659 cout << Verbose(2) << "Applying Gaussian thermostat..." << endl; 1660 walker = start; 1661 while (walker->next != end) { // go through every atom of this element 1662 walker = walker->next; 1663 IonMass = walker->type->mass; 1664 U = Trajectories[walker].U.at(MDSteps).x; 1665 F = Trajectories[walker].F.at(MDSteps).x; 1666 if (walker->FixedIon == 0) // even FixedIon moves, only not by other's forces 1667 for (d=0; d<NDIM; d++) { 1668 G += U[d] * F[d]; 1669 E += U[d]*U[d]*IonMass; 1670 } 1671 } 1672 cout << Verbose(1) << "Gaussian Least Constraint constant is " << G/E << "." << endl; 1673 walker = start; 1674 while (walker->next != end) { // go through every atom of this element 1675 walker = walker->next; 1676 IonMass = walker->type->mass; 1677 U = Trajectories[walker].U.at(MDSteps).x; 1678 F = Trajectories[walker].F.at(MDSteps).x; 1679 if (walker->FixedIon == 0) // even FixedIon moves, only not by other's forces 1680 for (d=0; d<NDIM; d++) { 1681 FConstraint[d] = (G/E) * (U[d]*IonMass); 1682 U[d] += configuration.Deltat/IonMass * (FConstraint[d]); 1683 ekin += IonMass * U[d]*U[d]; 1684 } 1685 } 1686 break; 1687 case Langevin: 1688 cout << Verbose(2) << "Applying Langevin thermostat..." << endl; 1689 // init random number generator 1690 gsl_rng_env_setup(); 1691 T = gsl_rng_default; 1692 r = gsl_rng_alloc (T); 1693 // Go through each ion 1694 walker = start; 1695 while (walker->next != end) { // go through every atom of this element 1696 walker = walker->next; 1697 IonMass = walker->type->mass; 1698 sigma = sqrt(configuration.TargetTemp/IonMass); // sigma = (k_b T)/m (Hartree/atomicmass = atomiclength/atomictime) 1699 U = Trajectories[walker].U.at(MDSteps).x; 1700 F = Trajectories[walker].F.at(MDSteps).x; 1701 if (walker->FixedIon == 0) { // even FixedIon moves, only not by other's forces 1702 // throw a dice to determine whether it gets hit by a heat bath particle 1703 if (((((rand()/(double)RAND_MAX))*configuration.TempFrequency) < 1.)) { 1704 cout << Verbose(3) << "Particle " << *walker << " was hit (sigma " << sigma << "): " << sqrt(U[0]*U[0]+U[1]*U[1]+U[2]*U[2]) << " -> "; 1705 // pick three random numbers from a Boltzmann distribution around the desired temperature T for each momenta axis 1706 for (d=0; d<NDIM; d++) { 1707 U[d] = gsl_ran_gaussian (r, sigma); 1083 1708 } 1084 // 2. Calculate v(t+\delta t) 1085 for (int d=0; d<NDIM; d++) { 1086 Trajectories[walker].U.at(MDSteps).x[d] = Trajectories[walker].U.at(MDSteps-1).x[d]; 1087 Trajectories[walker].U.at(MDSteps).x[d] += 0.5*delta_t*(Trajectories[walker].F.at(MDSteps-1).x[d]+Trajectories[walker].F.at(MDSteps).x[d])/IonMass; 1088 } 1089 // cout << "Integrated position&velocity of step " << (MDSteps) << ": ("; 1090 // for (int d=0;d<NDIM;d++) 1091 // cout << Trajectories[walker].R.at(MDSteps).x[d] << " "; // next step 1092 // cout << ")\t("; 1093 // for (int d=0;d<NDIM;d++) 1094 // cout << Trajectories[walker].U.at(MDSteps).x[d] << " "; // next step 1095 // cout << ")" << endl; 1096 // next atom 1097 AtomNo++; 1709 cout << sqrt(U[0]*U[0]+U[1]*U[1]+U[2]*U[2]) << endl; 1710 } 1711 for (d=0; d<NDIM; d++) 1712 ekin += 0.5*IonMass * U[d]*U[d]; 1713 } 1714 } 1715 break; 1716 case Berendsen: 1717 cout << Verbose(2) << "Applying Berendsen-VanGunsteren thermostat..." << endl; 1718 walker = start; 1719 while (walker->next != end) { // go through every atom of this element 1720 walker = walker->next; 1721 IonMass = walker->type->mass; 1722 U = Trajectories[walker].U.at(MDSteps).x; 1723 F = Trajectories[walker].F.at(MDSteps).x; 1724 if (walker->FixedIon == 0) { // even FixedIon moves, only not by other's forces 1725 for (d=0; d<NDIM; d++) { 1726 U[d] *= sqrt(1+(configuration.Deltat/configuration.TempFrequency)*(ScaleTempFactor-1)); 1727 ekin += 0.5*IonMass * U[d]*U[d]; 1098 1728 } 1099 1729 } 1100 1730 } 1101 } 1102 } 1103 // // correct velocities (rather momenta) so that center of mass remains motionless 1104 // tmpvector.zero() 1105 // IonMass = 0.; 1106 // walker = start; 1107 // while (walker->next != end) { // go through every atom 1108 // walker = walker->next; 1109 // IonMass += walker->type->mass; // sum up total mass 1110 // for(int d=0;d<NDIM;d++) { 1111 // tmpvector.x[d] += Trajectories[walker].U.at(MDSteps).x[d]*walker->type->mass; 1112 // } 1113 // } 1114 // walker = start; 1115 // while (walker->next != end) { // go through every atom of this element 1116 // walker = walker->next; 1117 // for(int d=0;d<NDIM;d++) { 1118 // Trajectories[walker].U.at(MDSteps).x[d] -= tmpvector.x[d]*walker->type->mass/IonMass; 1119 // } 1120 // } 1121 MDSteps++; 1122 1123 1124 // exit 1125 return true; 1126 }; 1127 1128 /** Align all atoms in such a manner that given vector \a *n is along z axis. 1731 break; 1732 case NoseHoover: 1733 cout << Verbose(2) << "Applying Nose-Hoover thermostat..." << endl; 1734 // dynamically evolve alpha (the additional degree of freedom) 1735 delta_alpha = 0.; 1736 walker = start; 1737 while (walker->next != end) { // go through every atom of this element 1738 walker = walker->next; 1739 IonMass = walker->type->mass; 1740 U = Trajectories[walker].U.at(MDSteps).x; 1741 if (walker->FixedIon == 0) { // even FixedIon moves, only not by other's forces 1742 for (d=0; d<NDIM; d++) { 1743 delta_alpha += U[d]*U[d]*IonMass; 1744 } 1745 } 1746 } 1747 delta_alpha = (delta_alpha - (3.*AtomCount+1.) * configuration.TargetTemp)/(configuration.HooverMass*Units2Electronmass); 1748 configuration.alpha += delta_alpha*configuration.Deltat; 1749 cout << Verbose(3) << "alpha = " << delta_alpha << " * " << configuration.Deltat << " = " << configuration.alpha << "." << endl; 1750 // apply updated alpha as additional force 1751 walker = start; 1752 while (walker->next != end) { // go through every atom of this element 1753 walker = walker->next; 1754 IonMass = walker->type->mass; 1755 U = Trajectories[walker].U.at(MDSteps).x; 1756 if (walker->FixedIon == 0) { // even FixedIon moves, only not by other's forces 1757 for (d=0; d<NDIM; d++) { 1758 FConstraint[d] = - configuration.alpha * (U[d] * IonMass); 1759 U[d] += configuration.Deltat/IonMass * (FConstraint[d]); 1760 ekin += (0.5*IonMass) * U[d]*U[d]; 1761 } 1762 } 1763 } 1764 break; 1765 } 1766 cout << Verbose(1) << "Kinetic energy is " << ekin << "." << endl; 1767 }; 1768 1769 /** Align all atoms in such a manner that given vector \a *n is along z axis. 1129 1770 * \param n[] alignment vector. 1130 1771 */ … … 1764 2405 Vector x; 1765 2406 int FalseBondDegree = 0; 1766 2407 1767 2408 BondDistance = bonddistance; // * ((IsAngstroem) ? 1. : 1./AtomicLengthToAngstroem); 1768 2409 *out << Verbose(0) << "Begin of CreateAdjacencyList." << endl; … … 1923 2564 *out << Verbose(1) << "BondCount is " << BondCount << ", no bonds between any of the " << AtomCount << " atoms." << endl; 1924 2565 *out << Verbose(1) << "I detected " << BondCount << " bonds in the molecule with distance " << bonddistance << ", " << FalseBondDegree << " bonds could not be corrected." << endl; 1925 2566 1926 2567 // output bonds for debugging (if bond chain list was correctly installed) 1927 2568 *out << Verbose(1) << endl << "From contents of bond chain list:"; … … 2160 2801 ColorList[i] = white; 2161 2802 } 2162 2803 2163 2804 *out << Verbose(1) << "Back edge list - "; 2164 2805 BackEdgeStack->Output(out); … … 3009 3650 while (MolecularWalker->next != NULL) { 3010 3651 MolecularWalker = MolecularWalker->next; 3652 *out << Verbose(0) << "Analysing the cycles of subgraph " << MolecularWalker->Leaf << " with nr. " << FragmentCounter << "." << endl; 3011 3653 LocalBackEdgeStack = new StackClass<bond *> (MolecularWalker->Leaf->BondCount); 3012 3654 // // check the list of local atoms for debugging … … 3024 3666 delete(LocalBackEdgeStack); 3025 3667 } 3026 3668 3027 3669 // ===== 3. if structure still valid, parse key set file and others ===== 3028 3670 FragmentationToDo = FragmentationToDo && ParseKeySetFile(out, configuration->configpath, ParsedFragmentList); … … 3030 3672 // ===== 4. check globally whether there's something to do actually (first adaptivity check) 3031 3673 FragmentationToDo = FragmentationToDo && ParseOrderAtSiteFromFile(out, configuration->configpath); 3032 3033 // =================================== Begin of FRAGMENTATION =============================== 3034 // ===== 6a. assign each keyset to its respective subgraph ===== 3674 3675 // =================================== Begin of FRAGMENTATION =============================== 3676 // ===== 6a. assign each keyset to its respective subgraph ===== 3035 3677 Subgraphs->next->AssignKeySetsToFragment(out, this, ParsedFragmentList, ListOfLocalAtoms, FragmentList, (FragmentCounter = 0), true); 3036 3678 … … 3067 3709 delete(ParsedFragmentList); 3068 3710 delete[](MinimumRingSize); 3069 3711 3070 3712 3071 3713 // ==================================== End of FRAGMENTATION ============================================ … … 3105 3747 3106 3748 *out << Verbose(1) << "Writing " << BondFragments->NumberOfMolecules << " possible bond fragmentation configs" << endl; 3107 if (BondFragments->OutputConfigForListOfFragments(out, configuration, SortIndex))3749 if (BondFragments->OutputConfigForListOfFragments(out, FRAGMENTPREFIX, configuration, SortIndex, true, true)) 3108 3750 *out << Verbose(1) << "All configs written." << endl; 3109 3751 else … … 3160 3802 atom *Walker = NULL, *OtherAtom = NULL; 3161 3803 ReferenceStack->Push(Binder); 3162 3804 3163 3805 do { // go through all bonds and push local ones 3164 3806 Walker = ListOfLocalAtoms[Binder->leftatom->nr]; // get one atom in the reference molecule … … 3173 3815 } 3174 3816 Binder = ReferenceStack->PopFirst(); // loop the stack for next item 3175 3817 *out << Verbose(3) << "Current candidate edge " << Binder << "." << endl; 3176 3818 ReferenceStack->Push(Binder); 3177 3819 } while (FirstBond != Binder); 3178 3820 3179 3821 return status; 3180 3822 }; … … 3321 3963 Walker = start; 3322 3964 while (Walker->next != end) { 3323 Walker = Walker->next; 3965 Walker = Walker->next; 3324 3966 *out << Verbose(4) << "Atom " << Walker->Name << "/" << Walker->nr << " with " << NumberOfBondsPerAtom[Walker->nr] << " bonds: "; 3325 3967 TotalDegree = 0;
Note:
See TracChangeset
for help on using the changeset viewer.