source: src/vector.cpp@ 753f02

Action_Thermostats Add_AtomRandomPerturbation Add_FitFragmentPartialChargesAction Add_RotateAroundBondAction Add_SelectAtomByNameAction Added_ParseSaveFragmentResults AddingActions_SaveParseParticleParameters Adding_Graph_to_ChangeBondActions Adding_MD_integration_tests Adding_ParticleName_to_Atom Adding_StructOpt_integration_tests AtomFragments Automaking_mpqc_open AutomationFragmentation_failures Candidate_v1.5.4 Candidate_v1.6.0 Candidate_v1.6.1 ChangeBugEmailaddress ChangingTestPorts ChemicalSpaceEvaluator CombiningParticlePotentialParsing Combining_Subpackages Debian_Package_split Debian_package_split_molecuildergui_only Disabling_MemDebug Docu_Python_wait EmpiricalPotential_contain_HomologyGraph EmpiricalPotential_contain_HomologyGraph_documentation Enable_parallel_make_install Enhance_userguide Enhanced_StructuralOptimization Enhanced_StructuralOptimization_continued Example_ManyWaysToTranslateAtom Exclude_Hydrogens_annealWithBondGraph FitPartialCharges_GlobalError Fix_BoundInBox_CenterInBox_MoleculeActions Fix_ChargeSampling_PBC Fix_ChronosMutex Fix_FitPartialCharges Fix_FitPotential_needs_atomicnumbers Fix_ForceAnnealing Fix_IndependentFragmentGrids Fix_ParseParticles Fix_ParseParticles_split_forward_backward_Actions Fix_PopActions Fix_QtFragmentList_sorted_selection Fix_Restrictedkeyset_FragmentMolecule Fix_StatusMsg Fix_StepWorldTime_single_argument Fix_Verbose_Codepatterns Fix_fitting_potentials Fixes ForceAnnealing_goodresults ForceAnnealing_oldresults ForceAnnealing_tocheck ForceAnnealing_with_BondGraph ForceAnnealing_with_BondGraph_continued ForceAnnealing_with_BondGraph_continued_betteresults ForceAnnealing_with_BondGraph_contraction-expansion FragmentAction_writes_AtomFragments FragmentMolecule_checks_bonddegrees GeometryObjects Gui_Fixes Gui_displays_atomic_force_velocity ImplicitCharges IndependentFragmentGrids IndependentFragmentGrids_IndividualZeroInstances IndependentFragmentGrids_IntegrationTest IndependentFragmentGrids_Sole_NN_Calculation JobMarket_RobustOnKillsSegFaults JobMarket_StableWorkerPool JobMarket_unresolvable_hostname_fix MoreRobust_FragmentAutomation ODR_violation_mpqc_open PartialCharges_OrthogonalSummation PdbParser_setsAtomName PythonUI_with_named_parameters QtGui_reactivate_TimeChanged_changes Recreated_GuiChecks Rewrite_FitPartialCharges RotateToPrincipalAxisSystem_UndoRedo SaturateAtoms_findBestMatching SaturateAtoms_singleDegree StoppableMakroAction Subpackage_CodePatterns Subpackage_JobMarket Subpackage_LinearAlgebra Subpackage_levmar Subpackage_mpqc_open Subpackage_vmg Switchable_LogView ThirdParty_MPQC_rebuilt_buildsystem TrajectoryDependenant_MaxOrder TremoloParser_IncreasedPrecision TremoloParser_MultipleTimesteps TremoloParser_setsAtomName Ubuntu_1604_changes stable
Last change on this file since 753f02 was 753f02, checked in by Tillmann Crueger <crueger@…>, 15 years ago

Removed Algebraic Hierachy from vector.

  • Property mode set to 100644
File size: 17.6 KB
Line 
1/** \file vector.cpp
2 *
3 * Function implementations for the class vector.
4 *
5 */
6
7
8#include "vector.hpp"
9#include "Helpers/Assert.hpp"
10#include "Helpers/fast_functions.hpp"
11
12#include <iostream>
13
14using namespace std;
15
16
17/************************************ Functions for class vector ************************************/
18
19/** Constructor of class vector.
20 */
21Vector::Vector()
22{
23 x[0] = x[1] = x[2] = 0.;
24};
25
26/**
27 * Copy constructor
28 */
29
30Vector::Vector(const Vector& src)
31{
32 x[0] = src[0];
33 x[1] = src[1];
34 x[2] = src[2];
35}
36
37/** Constructor of class vector.
38 */
39Vector::Vector(const double x1, const double x2, const double x3)
40{
41 x[0] = x1;
42 x[1] = x2;
43 x[2] = x3;
44};
45
46/**
47 * Assignment operator
48 */
49Vector& Vector::operator=(const Vector& src){
50 // check for self assignment
51 if(&src!=this){
52 x[0] = src[0];
53 x[1] = src[1];
54 x[2] = src[2];
55 }
56 return *this;
57}
58
59/** Desctructor of class vector.
60 */
61Vector::~Vector() {};
62
63/** Calculates square of distance between this and another vector.
64 * \param *y array to second vector
65 * \return \f$| x - y |^2\f$
66 */
67double Vector::DistanceSquared(const Vector &y) const
68{
69 double res = 0.;
70 for (int i=NDIM;i--;)
71 res += (x[i]-y[i])*(x[i]-y[i]);
72 return (res);
73};
74
75/** Calculates distance between this and another vector.
76 * \param *y array to second vector
77 * \return \f$| x - y |\f$
78 */
79double Vector::Distance(const Vector &y) const
80{
81 return (sqrt(DistanceSquared(y)));
82};
83
84/** Calculates distance between this and another vector in a periodic cell.
85 * \param *y array to second vector
86 * \param *cell_size 6-dimensional array with (xx, xy, yy, xz, yz, zz) entries specifying the periodic cell
87 * \return \f$| x - y |\f$
88 */
89double Vector::PeriodicDistance(const Vector &y, const double * const cell_size) const
90{
91 double res = Distance(y), tmp, matrix[NDIM*NDIM];
92 Vector Shiftedy, TranslationVector;
93 int N[NDIM];
94 matrix[0] = cell_size[0];
95 matrix[1] = cell_size[1];
96 matrix[2] = cell_size[3];
97 matrix[3] = cell_size[1];
98 matrix[4] = cell_size[2];
99 matrix[5] = cell_size[4];
100 matrix[6] = cell_size[3];
101 matrix[7] = cell_size[4];
102 matrix[8] = cell_size[5];
103 // in order to check the periodic distance, translate one of the vectors into each of the 27 neighbouring cells
104 for (N[0]=-1;N[0]<=1;N[0]++)
105 for (N[1]=-1;N[1]<=1;N[1]++)
106 for (N[2]=-1;N[2]<=1;N[2]++) {
107 // create the translation vector
108 TranslationVector.Zero();
109 for (int i=NDIM;i--;)
110 TranslationVector[i] = (double)N[i];
111 TranslationVector.MatrixMultiplication(matrix);
112 // add onto the original vector to compare with
113 Shiftedy = y + TranslationVector;
114 // get distance and compare with minimum so far
115 tmp = Distance(Shiftedy);
116 if (tmp < res) res = tmp;
117 }
118 return (res);
119};
120
121/** Calculates distance between this and another vector in a periodic cell.
122 * \param *y array to second vector
123 * \param *cell_size 6-dimensional array with (xx, xy, yy, xz, yz, zz) entries specifying the periodic cell
124 * \return \f$| x - y |^2\f$
125 */
126double Vector::PeriodicDistanceSquared(const Vector &y, const double * const cell_size) const
127{
128 double res = DistanceSquared(y), tmp, matrix[NDIM*NDIM];
129 Vector Shiftedy, TranslationVector;
130 int N[NDIM];
131 matrix[0] = cell_size[0];
132 matrix[1] = cell_size[1];
133 matrix[2] = cell_size[3];
134 matrix[3] = cell_size[1];
135 matrix[4] = cell_size[2];
136 matrix[5] = cell_size[4];
137 matrix[6] = cell_size[3];
138 matrix[7] = cell_size[4];
139 matrix[8] = cell_size[5];
140 // in order to check the periodic distance, translate one of the vectors into each of the 27 neighbouring cells
141 for (N[0]=-1;N[0]<=1;N[0]++)
142 for (N[1]=-1;N[1]<=1;N[1]++)
143 for (N[2]=-1;N[2]<=1;N[2]++) {
144 // create the translation vector
145 TranslationVector.Zero();
146 for (int i=NDIM;i--;)
147 TranslationVector[i] = (double)N[i];
148 TranslationVector.MatrixMultiplication(matrix);
149 // add onto the original vector to compare with
150 Shiftedy = y + TranslationVector;
151 // get distance and compare with minimum so far
152 tmp = DistanceSquared(Shiftedy);
153 if (tmp < res) res = tmp;
154 }
155 return (res);
156};
157
158/** Keeps the vector in a periodic cell, defined by the symmetric \a *matrix.
159 * \param *out ofstream for debugging messages
160 * Tries to translate a vector into each adjacent neighbouring cell.
161 */
162void Vector::KeepPeriodic(const double * const matrix)
163{
164 // int N[NDIM];
165 // bool flag = false;
166 //vector Shifted, TranslationVector;
167 // Log() << Verbose(1) << "Begin of KeepPeriodic." << endl;
168 // Log() << Verbose(2) << "Vector is: ";
169 // Output(out);
170 // Log() << Verbose(0) << endl;
171 InverseMatrixMultiplication(matrix);
172 for(int i=NDIM;i--;) { // correct periodically
173 if (at(i) < 0) { // get every coefficient into the interval [0,1)
174 at(i) += ceil(at(i));
175 } else {
176 at(i) -= floor(at(i));
177 }
178 }
179 MatrixMultiplication(matrix);
180 // Log() << Verbose(2) << "New corrected vector is: ";
181 // Output(out);
182 // Log() << Verbose(0) << endl;
183 // Log() << Verbose(1) << "End of KeepPeriodic." << endl;
184};
185
186/** Calculates scalar product between this and another vector.
187 * \param *y array to second vector
188 * \return \f$\langle x, y \rangle\f$
189 */
190double Vector::ScalarProduct(const Vector &y) const
191{
192 double res = 0.;
193 for (int i=NDIM;i--;)
194 res += x[i]*y[i];
195 return (res);
196};
197
198
199/** Calculates VectorProduct between this and another vector.
200 * -# returns the Product in place of vector from which it was initiated
201 * -# ATTENTION: Only three dim.
202 * \param *y array to vector with which to calculate crossproduct
203 * \return \f$ x \times y \f&
204 */
205void Vector::VectorProduct(const Vector &y)
206{
207 Vector tmp;
208 tmp[0] = x[1]* (y[2]) - x[2]* (y[1]);
209 tmp[1] = x[2]* (y[0]) - x[0]* (y[2]);
210 tmp[2] = x[0]* (y[1]) - x[1]* (y[0]);
211 (*this) = tmp;
212};
213
214
215/** projects this vector onto plane defined by \a *y.
216 * \param *y normal vector of plane
217 * \return \f$\langle x, y \rangle\f$
218 */
219void Vector::ProjectOntoPlane(const Vector &y)
220{
221 Vector tmp;
222 tmp = y;
223 tmp.Normalize();
224 tmp.Scale(ScalarProduct(tmp));
225 *this -= tmp;
226};
227
228/** Calculates the minimum distance of this vector to the plane.
229 * \param *out output stream for debugging
230 * \param *PlaneNormal normal of plane
231 * \param *PlaneOffset offset of plane
232 * \return distance to plane
233 */
234double Vector::DistanceToPlane(const Vector &PlaneNormal, const Vector &PlaneOffset) const
235{
236 // first create part that is orthonormal to PlaneNormal with withdraw
237 Vector temp = (*this) - PlaneOffset;
238 temp.MakeNormalTo(PlaneNormal);
239 temp.Scale(-1.);
240 // then add connecting vector from plane to point
241 temp += (*this)-PlaneOffset;
242 double sign = temp.ScalarProduct(PlaneNormal);
243 if (fabs(sign) > MYEPSILON)
244 sign /= fabs(sign);
245 else
246 sign = 0.;
247
248 return (temp.Norm()*sign);
249};
250
251/** Calculates the projection of a vector onto another \a *y.
252 * \param *y array to second vector
253 */
254void Vector::ProjectIt(const Vector &y)
255{
256 (*this) += (-ScalarProduct(y))*y;
257};
258
259/** Calculates the projection of a vector onto another \a *y.
260 * \param *y array to second vector
261 * \return Vector
262 */
263Vector Vector::Projection(const Vector &y) const
264{
265 Vector helper = y;
266 helper.Scale((ScalarProduct(y)/y.NormSquared()));
267
268 return helper;
269};
270
271/** Calculates norm of this vector.
272 * \return \f$|x|\f$
273 */
274double Vector::Norm() const
275{
276 return (sqrt(NormSquared()));
277};
278
279/** Calculates squared norm of this vector.
280 * \return \f$|x|^2\f$
281 */
282double Vector::NormSquared() const
283{
284 return (ScalarProduct(*this));
285};
286
287/** Normalizes this vector.
288 */
289void Vector::Normalize()
290{
291 double factor = Norm();
292 (*this) *= 1/factor;
293};
294
295/** Zeros all components of this vector.
296 */
297void Vector::Zero()
298{
299 at(0)=at(1)=at(2)=0;
300};
301
302/** Zeros all components of this vector.
303 */
304void Vector::One(const double one)
305{
306 at(0)=at(1)=at(2)=one;
307};
308
309/** Checks whether vector has all components zero.
310 * @return true - vector is zero, false - vector is not
311 */
312bool Vector::IsZero() const
313{
314 return (fabs(x[0])+fabs(x[1])+fabs(x[2]) < MYEPSILON);
315};
316
317/** Checks whether vector has length of 1.
318 * @return true - vector is normalized, false - vector is not
319 */
320bool Vector::IsOne() const
321{
322 return (fabs(Norm() - 1.) < MYEPSILON);
323};
324
325/** Checks whether vector is normal to \a *normal.
326 * @return true - vector is normalized, false - vector is not
327 */
328bool Vector::IsNormalTo(const Vector &normal) const
329{
330 if (ScalarProduct(normal) < MYEPSILON)
331 return true;
332 else
333 return false;
334};
335
336/** Checks whether vector is normal to \a *normal.
337 * @return true - vector is normalized, false - vector is not
338 */
339bool Vector::IsEqualTo(const Vector &a) const
340{
341 bool status = true;
342 for (int i=0;i<NDIM;i++) {
343 if (fabs(x[i] - a[i]) > MYEPSILON)
344 status = false;
345 }
346 return status;
347};
348
349/** Calculates the angle between this and another vector.
350 * \param *y array to second vector
351 * \return \f$\acos\bigl(frac{\langle x, y \rangle}{|x||y|}\bigr)\f$
352 */
353double Vector::Angle(const Vector &y) const
354{
355 double norm1 = Norm(), norm2 = y.Norm();
356 double angle = -1;
357 if ((fabs(norm1) > MYEPSILON) && (fabs(norm2) > MYEPSILON))
358 angle = this->ScalarProduct(y)/norm1/norm2;
359 // -1-MYEPSILON occured due to numerical imprecision, catch ...
360 //Log() << Verbose(2) << "INFO: acos(-1) = " << acos(-1) << ", acos(-1+MYEPSILON) = " << acos(-1+MYEPSILON) << ", acos(-1-MYEPSILON) = " << acos(-1-MYEPSILON) << "." << endl;
361 if (angle < -1)
362 angle = -1;
363 if (angle > 1)
364 angle = 1;
365 return acos(angle);
366};
367
368
369double& Vector::operator[](size_t i){
370 ASSERT(i<=NDIM && i>=0,"Vector Index out of Range");
371 return x[i];
372}
373
374const double& Vector::operator[](size_t i) const{
375 ASSERT(i<=NDIM && i>=0,"Vector Index out of Range");
376 return x[i];
377}
378
379double& Vector::at(size_t i){
380 return (*this)[i];
381}
382
383const double& Vector::at(size_t i) const{
384 return (*this)[i];
385}
386
387double* Vector::get(){
388 return x;
389}
390
391/** Compares vector \a to vector \a b component-wise.
392 * \param a base vector
393 * \param b vector components to add
394 * \return a == b
395 */
396bool Vector::operator==(const Vector& b) const
397{
398 return IsEqualTo(b);
399};
400
401/** Sums vector \a to this lhs component-wise.
402 * \param a base vector
403 * \param b vector components to add
404 * \return lhs + a
405 */
406const Vector& Vector::operator+=(const Vector& b)
407{
408 this->AddVector(b);
409 return *this;
410};
411
412/** Subtracts vector \a from this lhs component-wise.
413 * \param a base vector
414 * \param b vector components to add
415 * \return lhs - a
416 */
417const Vector& Vector::operator-=(const Vector& b)
418{
419 this->SubtractVector(b);
420 return *this;
421};
422
423/** factor each component of \a a times a double \a m.
424 * \param a base vector
425 * \param m factor
426 * \return lhs.x[i] * m
427 */
428const Vector& operator*=(Vector& a, const double m)
429{
430 a.Scale(m);
431 return a;
432};
433
434/** Sums two vectors \a and \b component-wise.
435 * \param a first vector
436 * \param b second vector
437 * \return a + b
438 */
439Vector const Vector::operator+(const Vector& b) const
440{
441 Vector x = *this;
442 x.AddVector(b);
443 return x;
444};
445
446/** Subtracts vector \a from \b component-wise.
447 * \param a first vector
448 * \param b second vector
449 * \return a - b
450 */
451Vector const Vector::operator-(const Vector& b) const
452{
453 Vector x = *this;
454 x.SubtractVector(b);
455 return x;
456};
457
458/** Factors given vector \a a times \a m.
459 * \param a vector
460 * \param m factor
461 * \return m * a
462 */
463Vector const operator*(const Vector& a, const double m)
464{
465 Vector x(a);
466 x.Scale(m);
467 return x;
468};
469
470/** Factors given vector \a a times \a m.
471 * \param m factor
472 * \param a vector
473 * \return m * a
474 */
475Vector const operator*(const double m, const Vector& a )
476{
477 Vector x(a);
478 x.Scale(m);
479 return x;
480};
481
482ostream& operator<<(ostream& ost, const Vector& m)
483{
484 ost << "(";
485 for (int i=0;i<NDIM;i++) {
486 ost << m[i];
487 if (i != 2)
488 ost << ",";
489 }
490 ost << ")";
491 return ost;
492};
493
494
495void Vector::ScaleAll(const double *factor)
496{
497 for (int i=NDIM;i--;)
498 x[i] *= factor[i];
499};
500
501
502
503void Vector::Scale(const double factor)
504{
505 for (int i=NDIM;i--;)
506 x[i] *= factor;
507};
508
509/** Given a box by its matrix \a *M and its inverse *Minv the vector is made to point within that box.
510 * \param *M matrix of box
511 * \param *Minv inverse matrix
512 */
513void Vector::WrapPeriodically(const double * const M, const double * const Minv)
514{
515 MatrixMultiplication(Minv);
516 // truncate to [0,1] for each axis
517 for (int i=0;i<NDIM;i++) {
518 x[i] += 0.5; // set to center of box
519 while (x[i] >= 1.)
520 x[i] -= 1.;
521 while (x[i] < 0.)
522 x[i] += 1.;
523 }
524 MatrixMultiplication(M);
525};
526
527/** Do a matrix multiplication.
528 * \param *matrix NDIM_NDIM array
529 */
530void Vector::MatrixMultiplication(const double * const M)
531{
532 // do the matrix multiplication
533 at(0) = M[0]*x[0]+M[3]*x[1]+M[6]*x[2];
534 at(1) = M[1]*x[0]+M[4]*x[1]+M[7]*x[2];
535 at(2) = M[2]*x[0]+M[5]*x[1]+M[8]*x[2];
536};
537
538/** Do a matrix multiplication with the \a *A' inverse.
539 * \param *matrix NDIM_NDIM array
540 */
541bool Vector::InverseMatrixMultiplication(const double * const A)
542{
543 double B[NDIM*NDIM];
544 double detA = RDET3(A);
545 double detAReci;
546
547 // calculate the inverse B
548 if (fabs(detA) > MYEPSILON) {; // RDET3(A) yields precisely zero if A irregular
549 detAReci = 1./detA;
550 B[0] = detAReci*RDET2(A[4],A[5],A[7],A[8]); // A_11
551 B[1] = -detAReci*RDET2(A[1],A[2],A[7],A[8]); // A_12
552 B[2] = detAReci*RDET2(A[1],A[2],A[4],A[5]); // A_13
553 B[3] = -detAReci*RDET2(A[3],A[5],A[6],A[8]); // A_21
554 B[4] = detAReci*RDET2(A[0],A[2],A[6],A[8]); // A_22
555 B[5] = -detAReci*RDET2(A[0],A[2],A[3],A[5]); // A_23
556 B[6] = detAReci*RDET2(A[3],A[4],A[6],A[7]); // A_31
557 B[7] = -detAReci*RDET2(A[0],A[1],A[6],A[7]); // A_32
558 B[8] = detAReci*RDET2(A[0],A[1],A[3],A[4]); // A_33
559
560 // do the matrix multiplication
561 at(0) = B[0]*x[0]+B[3]*x[1]+B[6]*x[2];
562 at(1) = B[1]*x[0]+B[4]*x[1]+B[7]*x[2];
563 at(2) = B[2]*x[0]+B[5]*x[1]+B[8]*x[2];
564
565 return true;
566 } else {
567 return false;
568 }
569};
570
571
572/** Creates this vector as the b y *factors' components scaled linear combination of the given three.
573 * this vector = x1*factors[0] + x2* factors[1] + x3*factors[2]
574 * \param *x1 first vector
575 * \param *x2 second vector
576 * \param *x3 third vector
577 * \param *factors three-component vector with the factor for each given vector
578 */
579void Vector::LinearCombinationOfVectors(const Vector &x1, const Vector &x2, const Vector &x3, const double * const factors)
580{
581 (*this) = (factors[0]*x1) +
582 (factors[1]*x2) +
583 (factors[2]*x3);
584};
585
586/** Mirrors atom against a given plane.
587 * \param n[] normal vector of mirror plane.
588 */
589void Vector::Mirror(const Vector &n)
590{
591 double projection;
592 projection = ScalarProduct(n)/n.NormSquared(); // remove constancy from n (keep as logical one)
593 // withdraw projected vector twice from original one
594 for (int i=NDIM;i--;)
595 x[i] -= 2.*projection*n[i];
596};
597
598
599/** Calculates orthonormal vector to one given vector.
600 * Just subtracts the projection onto the given vector from this vector.
601 * The removed part of the vector is Vector::Projection()
602 * \param *x1 vector
603 * \return true - success, false - vector is zero
604 */
605bool Vector::MakeNormalTo(const Vector &y1)
606{
607 bool result = false;
608 double factor = y1.ScalarProduct(*this)/y1.NormSquared();
609 Vector x1;
610 x1 = factor * y1;
611 SubtractVector(x1);
612 for (int i=NDIM;i--;)
613 result = result || (fabs(x[i]) > MYEPSILON);
614
615 return result;
616};
617
618/** Creates this vector as one of the possible orthonormal ones to the given one.
619 * Just scan how many components of given *vector are unequal to zero and
620 * try to get the skp of both to be zero accordingly.
621 * \param *vector given vector
622 * \return true - success, false - failure (null vector given)
623 */
624bool Vector::GetOneNormalVector(const Vector &GivenVector)
625{
626 int Components[NDIM]; // contains indices of non-zero components
627 int Last = 0; // count the number of non-zero entries in vector
628 int j; // loop variables
629 double norm;
630
631 for (j=NDIM;j--;)
632 Components[j] = -1;
633 // find two components != 0
634 for (j=0;j<NDIM;j++)
635 if (fabs(GivenVector[j]) > MYEPSILON)
636 Components[Last++] = j;
637
638 switch(Last) {
639 case 3: // threecomponent system
640 case 2: // two component system
641 norm = sqrt(1./(GivenVector[Components[1]]*GivenVector[Components[1]]) + 1./(GivenVector[Components[0]]*GivenVector[Components[0]]));
642 x[Components[2]] = 0.;
643 // in skp both remaining parts shall become zero but with opposite sign and third is zero
644 x[Components[1]] = -1./GivenVector[Components[1]] / norm;
645 x[Components[0]] = 1./GivenVector[Components[0]] / norm;
646 return true;
647 break;
648 case 1: // one component system
649 // set sole non-zero component to 0, and one of the other zero component pendants to 1
650 x[(Components[0]+2)%NDIM] = 0.;
651 x[(Components[0]+1)%NDIM] = 1.;
652 x[Components[0]] = 0.;
653 return true;
654 break;
655 default:
656 return false;
657 }
658};
659
660/** Adds vector \a *y componentwise.
661 * \param *y vector
662 */
663void Vector::AddVector(const Vector &y)
664{
665 for(int i=NDIM;i--;)
666 x[i] += y[i];
667}
668
669/** Adds vector \a *y componentwise.
670 * \param *y vector
671 */
672void Vector::SubtractVector(const Vector &y)
673{
674 for(int i=NDIM;i--;)
675 x[i] -= y[i];
676}
677
678/**
679 * Checks whether this vector is within the parallelepiped defined by the given three vectors and
680 * their offset.
681 *
682 * @param offest for the origin of the parallelepiped
683 * @param three vectors forming the matrix that defines the shape of the parallelpiped
684 */
685bool Vector::IsInParallelepiped(const Vector &offset, const double * const parallelepiped) const
686{
687 Vector a = (*this)-offset;
688 a.InverseMatrixMultiplication(parallelepiped);
689 bool isInside = true;
690
691 for (int i=NDIM;i--;)
692 isInside = isInside && ((a[i] <= 1) && (a[i] >= 0));
693
694 return isInside;
695}
Note: See TracBrowser for help on using the repository browser.