1 | /** \file vector.cpp
|
---|
2 | *
|
---|
3 | * Function implementations for the class vector.
|
---|
4 | *
|
---|
5 | */
|
---|
6 |
|
---|
7 |
|
---|
8 | #include "SingleVector.hpp"
|
---|
9 | #include "Helpers/Assert.hpp"
|
---|
10 |
|
---|
11 | #include <iostream>
|
---|
12 |
|
---|
13 | using namespace std;
|
---|
14 |
|
---|
15 |
|
---|
16 | /************************************ Functions for class vector ************************************/
|
---|
17 |
|
---|
18 | /** Constructor of class vector.
|
---|
19 | */
|
---|
20 | Vector::Vector() :
|
---|
21 | rep(new SingleVector())
|
---|
22 | {};
|
---|
23 |
|
---|
24 | Vector::Vector(Baseconstructor) // used by derived objects to construct their bases
|
---|
25 | {}
|
---|
26 |
|
---|
27 | Vector::Vector(Baseconstructor,const Vector* v) :
|
---|
28 | rep(v->clone())
|
---|
29 | {}
|
---|
30 |
|
---|
31 | Vector Vector::VecFromRep(const Vector* v){
|
---|
32 | return Vector(Baseconstructor(),v);
|
---|
33 | }
|
---|
34 |
|
---|
35 | /** Constructor of class vector.
|
---|
36 | */
|
---|
37 | Vector::Vector(const double x1, const double x2, const double x3) :
|
---|
38 | rep(new SingleVector(x1,x2,x3))
|
---|
39 | {};
|
---|
40 |
|
---|
41 | /**
|
---|
42 | * Copy constructor
|
---|
43 | */
|
---|
44 | Vector::Vector(const Vector& src) :
|
---|
45 | rep(src.rep->clone())
|
---|
46 | {}
|
---|
47 |
|
---|
48 | /**
|
---|
49 | * Assignment operator
|
---|
50 | */
|
---|
51 | Vector& Vector::operator=(const Vector& src){
|
---|
52 | ASSERT(isBaseClass(),"Operator used on Derived Vector object");
|
---|
53 | // check for self assignment
|
---|
54 | if(&src!=this){
|
---|
55 | rep.reset(src.rep->clone());
|
---|
56 | }
|
---|
57 | return *this;
|
---|
58 | }
|
---|
59 |
|
---|
60 | /** Desctructor of class vector.
|
---|
61 | */
|
---|
62 | Vector::~Vector() {};
|
---|
63 |
|
---|
64 | /** Calculates square of distance between this and another vector.
|
---|
65 | * \param *y array to second vector
|
---|
66 | * \return \f$| x - y |^2\f$
|
---|
67 | */
|
---|
68 | double Vector::DistanceSquared(const Vector &y) const
|
---|
69 | {
|
---|
70 | ASSERT((rep.get()) && (!rep->isBaseClass()),"Representation stored in vector Object was not of derived type");
|
---|
71 | return rep->DistanceSquared(y);
|
---|
72 | };
|
---|
73 |
|
---|
74 | /** Calculates distance between this and another vector.
|
---|
75 | * \param *y array to second vector
|
---|
76 | * \return \f$| x - y |\f$
|
---|
77 | */
|
---|
78 | double Vector::Distance(const Vector &y) const
|
---|
79 | {
|
---|
80 | return (sqrt(DistanceSquared(y)));
|
---|
81 | };
|
---|
82 |
|
---|
83 | /** Calculates distance between this and another vector in a periodic cell.
|
---|
84 | * \param *y array to second vector
|
---|
85 | * \param *cell_size 6-dimensional array with (xx, xy, yy, xz, yz, zz) entries specifying the periodic cell
|
---|
86 | * \return \f$| x - y |\f$
|
---|
87 | */
|
---|
88 | double Vector::PeriodicDistance(const Vector &y, const double * const cell_size) const
|
---|
89 | {
|
---|
90 | ASSERT((rep.get()) && (!rep->isBaseClass()),"Representation stored in vector Object was not of derived type");
|
---|
91 | return rep->PeriodicDistance(y,cell_size);
|
---|
92 | };
|
---|
93 |
|
---|
94 | /** Calculates distance between this and another vector in a periodic cell.
|
---|
95 | * \param *y array to second vector
|
---|
96 | * \param *cell_size 6-dimensional array with (xx, xy, yy, xz, yz, zz) entries specifying the periodic cell
|
---|
97 | * \return \f$| x - y |^2\f$
|
---|
98 | */
|
---|
99 | double Vector::PeriodicDistanceSquared(const Vector &y, const double * const cell_size) const
|
---|
100 | {
|
---|
101 | ASSERT((rep.get()) && (!rep->isBaseClass()),"Representation stored in vector Object was not of derived type");
|
---|
102 | return rep->PeriodicDistanceSquared(y,cell_size);
|
---|
103 | };
|
---|
104 |
|
---|
105 | /** Keeps the vector in a periodic cell, defined by the symmetric \a *matrix.
|
---|
106 | * \param *out ofstream for debugging messages
|
---|
107 | * Tries to translate a vector into each adjacent neighbouring cell.
|
---|
108 | */
|
---|
109 | void Vector::KeepPeriodic(const double * const matrix)
|
---|
110 | {
|
---|
111 | ASSERT((rep.get()) && (!rep->isBaseClass()),"Representation stored in vector Object was not of derived type");
|
---|
112 | rep->KeepPeriodic(matrix);
|
---|
113 | };
|
---|
114 |
|
---|
115 | /** Calculates scalar product between this and another vector.
|
---|
116 | * \param *y array to second vector
|
---|
117 | * \return \f$\langle x, y \rangle\f$
|
---|
118 | */
|
---|
119 | double Vector::ScalarProduct(const Vector &y) const
|
---|
120 | {
|
---|
121 | ASSERT((rep.get()) && (!rep->isBaseClass()),"Representation stored in vector Object was not of derived type");
|
---|
122 | return rep->ScalarProduct(y);
|
---|
123 | };
|
---|
124 |
|
---|
125 |
|
---|
126 | /** Calculates VectorProduct between this and another vector.
|
---|
127 | * -# returns the Product in place of vector from which it was initiated
|
---|
128 | * -# ATTENTION: Only three dim.
|
---|
129 | * \param *y array to vector with which to calculate crossproduct
|
---|
130 | * \return \f$ x \times y \f&
|
---|
131 | */
|
---|
132 | void Vector::VectorProduct(const Vector &y)
|
---|
133 | {
|
---|
134 | ASSERT((rep.get()) && (!rep->isBaseClass()),"Representation stored in vector Object was not of derived type");
|
---|
135 | rep->VectorProduct(y);
|
---|
136 | };
|
---|
137 |
|
---|
138 |
|
---|
139 | /** projects this vector onto plane defined by \a *y.
|
---|
140 | * \param *y normal vector of plane
|
---|
141 | * \return \f$\langle x, y \rangle\f$
|
---|
142 | */
|
---|
143 | void Vector::ProjectOntoPlane(const Vector &y)
|
---|
144 | {
|
---|
145 | ASSERT((rep.get()) && (!rep->isBaseClass()),"Representation stored in vector Object was not of derived type");
|
---|
146 | rep->ProjectOntoPlane(y);
|
---|
147 | };
|
---|
148 |
|
---|
149 | /** Calculates the minimum distance of this vector to the plane.
|
---|
150 | * \param *out output stream for debugging
|
---|
151 | * \param *PlaneNormal normal of plane
|
---|
152 | * \param *PlaneOffset offset of plane
|
---|
153 | * \return distance to plane
|
---|
154 | */
|
---|
155 | double Vector::DistanceToPlane(const Vector &PlaneNormal, const Vector &PlaneOffset) const
|
---|
156 | {
|
---|
157 | ASSERT((rep.get()) && (!rep->isBaseClass()),"Representation stored in vector Object was not of derived type");
|
---|
158 | return rep->DistanceToPlane(PlaneNormal,PlaneOffset);
|
---|
159 | };
|
---|
160 |
|
---|
161 | /** Calculates the projection of a vector onto another \a *y.
|
---|
162 | * \param *y array to second vector
|
---|
163 | */
|
---|
164 | void Vector::ProjectIt(const Vector &y)
|
---|
165 | {
|
---|
166 | ASSERT((rep.get()) && (!rep->isBaseClass()),"Representation stored in vector Object was not of derived type");
|
---|
167 | rep->ProjectIt(y);
|
---|
168 | };
|
---|
169 |
|
---|
170 | /** Calculates the projection of a vector onto another \a *y.
|
---|
171 | * \param *y array to second vector
|
---|
172 | * \return Vector
|
---|
173 | */
|
---|
174 | Vector Vector::Projection(const Vector &y) const
|
---|
175 | {
|
---|
176 | ASSERT((rep.get()) && (!rep->isBaseClass()),"Representation stored in vector Object was not of derived type");
|
---|
177 | return rep->Projection(y);
|
---|
178 | };
|
---|
179 |
|
---|
180 | /** Calculates norm of this vector.
|
---|
181 | * \return \f$|x|\f$
|
---|
182 | */
|
---|
183 | double Vector::Norm() const
|
---|
184 | {
|
---|
185 | return (sqrt(NormSquared()));
|
---|
186 | };
|
---|
187 |
|
---|
188 | /** Calculates squared norm of this vector.
|
---|
189 | * \return \f$|x|^2\f$
|
---|
190 | */
|
---|
191 | double Vector::NormSquared() const
|
---|
192 | {
|
---|
193 | return (ScalarProduct(*this));
|
---|
194 | };
|
---|
195 |
|
---|
196 | /** Normalizes this vector.
|
---|
197 | */
|
---|
198 | void Vector::Normalize()
|
---|
199 | {
|
---|
200 | double factor = Norm();
|
---|
201 | (*this) *= 1/factor;
|
---|
202 | };
|
---|
203 |
|
---|
204 | /** Zeros all components of this vector.
|
---|
205 | */
|
---|
206 | void Vector::Zero()
|
---|
207 | {
|
---|
208 | rep.reset(new SingleVector());
|
---|
209 | };
|
---|
210 |
|
---|
211 | /** Zeros all components of this vector.
|
---|
212 | */
|
---|
213 | void Vector::One(const double one)
|
---|
214 | {
|
---|
215 | rep.reset(new SingleVector(one,one,one));
|
---|
216 | };
|
---|
217 |
|
---|
218 | /** Checks whether vector has all components zero.
|
---|
219 | * @return true - vector is zero, false - vector is not
|
---|
220 | */
|
---|
221 | bool Vector::IsZero() const
|
---|
222 | {
|
---|
223 | ASSERT((rep.get()) && (!rep->isBaseClass()),"Representation stored in vector Object was not of derived type");
|
---|
224 | return rep->IsZero();
|
---|
225 | };
|
---|
226 |
|
---|
227 | /** Checks whether vector has length of 1.
|
---|
228 | * @return true - vector is normalized, false - vector is not
|
---|
229 | */
|
---|
230 | bool Vector::IsOne() const
|
---|
231 | {
|
---|
232 | ASSERT((rep.get()) && (!rep->isBaseClass()),"Representation stored in vector Object was not of derived type");
|
---|
233 | return rep->IsOne();
|
---|
234 | };
|
---|
235 |
|
---|
236 | /** Checks whether vector is normal to \a *normal.
|
---|
237 | * @return true - vector is normalized, false - vector is not
|
---|
238 | */
|
---|
239 | bool Vector::IsNormalTo(const Vector &normal) const
|
---|
240 | {
|
---|
241 | ASSERT((rep.get()) && (!rep->isBaseClass()),"Representation stored in vector Object was not of derived type");
|
---|
242 | return rep->IsNormalTo(normal);
|
---|
243 | };
|
---|
244 |
|
---|
245 | /** Checks whether vector is normal to \a *normal.
|
---|
246 | * @return true - vector is normalized, false - vector is not
|
---|
247 | */
|
---|
248 | bool Vector::IsEqualTo(const Vector &a) const
|
---|
249 | {
|
---|
250 | ASSERT((rep.get()) && (!rep->isBaseClass()),"Representation stored in vector Object was not of derived type");
|
---|
251 | return rep->IsEqualTo(a);
|
---|
252 | };
|
---|
253 |
|
---|
254 | /** Calculates the angle between this and another vector.
|
---|
255 | * \param *y array to second vector
|
---|
256 | * \return \f$\acos\bigl(frac{\langle x, y \rangle}{|x||y|}\bigr)\f$
|
---|
257 | */
|
---|
258 | double Vector::Angle(const Vector &y) const
|
---|
259 | {
|
---|
260 | ASSERT((rep.get()) && (!rep->isBaseClass()),"Representation stored in vector Object was not of derived type");
|
---|
261 | return rep->Angle(y);
|
---|
262 | };
|
---|
263 |
|
---|
264 |
|
---|
265 | double& Vector::operator[](size_t i){
|
---|
266 | ASSERT((rep.get()) && (!rep->isBaseClass()),"Representation stored in vector Object was not of derived type");
|
---|
267 | return (*rep)[i];
|
---|
268 | }
|
---|
269 |
|
---|
270 | const double& Vector::operator[](size_t i) const{
|
---|
271 | ASSERT((rep.get()) && (!rep->isBaseClass()),"Representation stored in vector Object was not of derived type");
|
---|
272 | return (*rep)[i];
|
---|
273 | }
|
---|
274 |
|
---|
275 | double& Vector::at(size_t i){
|
---|
276 | return (*this)[i];
|
---|
277 | }
|
---|
278 |
|
---|
279 | const double& Vector::at(size_t i) const{
|
---|
280 | return (*this)[i];
|
---|
281 | }
|
---|
282 |
|
---|
283 | double* Vector::get(){
|
---|
284 | ASSERT((rep.get()) && (!rep->isBaseClass()),"Representation stored in vector Object was not of derived type");
|
---|
285 | return rep->get();
|
---|
286 | }
|
---|
287 |
|
---|
288 | /** Compares vector \a to vector \a b component-wise.
|
---|
289 | * \param a base vector
|
---|
290 | * \param b vector components to add
|
---|
291 | * \return a == b
|
---|
292 | */
|
---|
293 | bool Vector::operator==(const Vector& b) const
|
---|
294 | {
|
---|
295 | ASSERT(isBaseClass(),"Operator used on Derived Vector object");
|
---|
296 | return IsEqualTo(b);
|
---|
297 | };
|
---|
298 |
|
---|
299 | /** Sums vector \a to this lhs component-wise.
|
---|
300 | * \param a base vector
|
---|
301 | * \param b vector components to add
|
---|
302 | * \return lhs + a
|
---|
303 | */
|
---|
304 | const Vector& Vector::operator+=(const Vector& b)
|
---|
305 | {
|
---|
306 | this->AddVector(b);
|
---|
307 | return *this;
|
---|
308 | };
|
---|
309 |
|
---|
310 | /** Subtracts vector \a from this lhs component-wise.
|
---|
311 | * \param a base vector
|
---|
312 | * \param b vector components to add
|
---|
313 | * \return lhs - a
|
---|
314 | */
|
---|
315 | const Vector& Vector::operator-=(const Vector& b)
|
---|
316 | {
|
---|
317 | this->SubtractVector(b);
|
---|
318 | return *this;
|
---|
319 | };
|
---|
320 |
|
---|
321 | /** factor each component of \a a times a double \a m.
|
---|
322 | * \param a base vector
|
---|
323 | * \param m factor
|
---|
324 | * \return lhs.x[i] * m
|
---|
325 | */
|
---|
326 | const Vector& operator*=(Vector& a, const double m)
|
---|
327 | {
|
---|
328 | a.Scale(m);
|
---|
329 | return a;
|
---|
330 | };
|
---|
331 |
|
---|
332 | /** Sums two vectors \a and \b component-wise.
|
---|
333 | * \param a first vector
|
---|
334 | * \param b second vector
|
---|
335 | * \return a + b
|
---|
336 | */
|
---|
337 | Vector const Vector::operator+(const Vector& b) const
|
---|
338 | {
|
---|
339 | ASSERT(isBaseClass(),"Operator used on Derived Vector object");
|
---|
340 | Vector x = *this;
|
---|
341 | x.AddVector(b);
|
---|
342 | return x;
|
---|
343 | };
|
---|
344 |
|
---|
345 | /** Subtracts vector \a from \b component-wise.
|
---|
346 | * \param a first vector
|
---|
347 | * \param b second vector
|
---|
348 | * \return a - b
|
---|
349 | */
|
---|
350 | Vector const Vector::operator-(const Vector& b) const
|
---|
351 | {
|
---|
352 | ASSERT(isBaseClass(),"Operator used on Derived Vector object");
|
---|
353 | Vector x = *this;
|
---|
354 | x.SubtractVector(b);
|
---|
355 | return x;
|
---|
356 | };
|
---|
357 |
|
---|
358 | /** Factors given vector \a a times \a m.
|
---|
359 | * \param a vector
|
---|
360 | * \param m factor
|
---|
361 | * \return m * a
|
---|
362 | */
|
---|
363 | Vector const operator*(const Vector& a, const double m)
|
---|
364 | {
|
---|
365 | Vector x(a);
|
---|
366 | x.Scale(m);
|
---|
367 | return x;
|
---|
368 | };
|
---|
369 |
|
---|
370 | /** Factors given vector \a a times \a m.
|
---|
371 | * \param m factor
|
---|
372 | * \param a vector
|
---|
373 | * \return m * a
|
---|
374 | */
|
---|
375 | Vector const operator*(const double m, const Vector& a )
|
---|
376 | {
|
---|
377 | Vector x(a);
|
---|
378 | x.Scale(m);
|
---|
379 | return x;
|
---|
380 | };
|
---|
381 |
|
---|
382 | ostream& operator<<(ostream& ost, const Vector& m)
|
---|
383 | {
|
---|
384 | ost << "(";
|
---|
385 | for (int i=0;i<NDIM;i++) {
|
---|
386 | ost << m[i];
|
---|
387 | if (i != 2)
|
---|
388 | ost << ",";
|
---|
389 | }
|
---|
390 | ost << ")";
|
---|
391 | return ost;
|
---|
392 | };
|
---|
393 |
|
---|
394 |
|
---|
395 | void Vector::ScaleAll(const double *factor)
|
---|
396 | {
|
---|
397 | ASSERT((rep.get()) && (!rep->isBaseClass()),"Representation stored in vector Object was not of derived type");
|
---|
398 | rep->ScaleAll(factor);
|
---|
399 | };
|
---|
400 |
|
---|
401 |
|
---|
402 |
|
---|
403 | void Vector::Scale(const double factor)
|
---|
404 | {
|
---|
405 | ASSERT((rep.get()) && (!rep->isBaseClass()),"Representation stored in vector Object was not of derived type");
|
---|
406 | rep->Scale(factor);
|
---|
407 | };
|
---|
408 |
|
---|
409 | /** Given a box by its matrix \a *M and its inverse *Minv the vector is made to point within that box.
|
---|
410 | * \param *M matrix of box
|
---|
411 | * \param *Minv inverse matrix
|
---|
412 | */
|
---|
413 | void Vector::WrapPeriodically(const double * const M, const double * const Minv)
|
---|
414 | {
|
---|
415 | ASSERT((rep.get()) && (!rep->isBaseClass()),"Representation stored in vector Object was not of derived type");
|
---|
416 | rep->WrapPeriodically(M,Minv);
|
---|
417 | };
|
---|
418 |
|
---|
419 | /** Do a matrix multiplication.
|
---|
420 | * \param *matrix NDIM_NDIM array
|
---|
421 | */
|
---|
422 | void Vector::MatrixMultiplication(const double * const M)
|
---|
423 | {
|
---|
424 | ASSERT((rep.get()) && (!rep->isBaseClass()),"Representation stored in vector Object was not of derived type");
|
---|
425 | rep->MatrixMultiplication(M);
|
---|
426 | };
|
---|
427 |
|
---|
428 | /** Do a matrix multiplication with the \a *A' inverse.
|
---|
429 | * \param *matrix NDIM_NDIM array
|
---|
430 | */
|
---|
431 | bool Vector::InverseMatrixMultiplication(const double * const A)
|
---|
432 | {
|
---|
433 | ASSERT((rep.get()) && (!rep->isBaseClass()),"Representation stored in vector Object was not of derived type");
|
---|
434 | return rep->InverseMatrixMultiplication(A);
|
---|
435 | };
|
---|
436 |
|
---|
437 |
|
---|
438 | /** Creates this vector as the b y *factors' components scaled linear combination of the given three.
|
---|
439 | * this vector = x1*factors[0] + x2* factors[1] + x3*factors[2]
|
---|
440 | * \param *x1 first vector
|
---|
441 | * \param *x2 second vector
|
---|
442 | * \param *x3 third vector
|
---|
443 | * \param *factors three-component vector with the factor for each given vector
|
---|
444 | */
|
---|
445 | void Vector::LinearCombinationOfVectors(const Vector &x1, const Vector &x2, const Vector &x3, const double * const factors)
|
---|
446 | {
|
---|
447 | (*this) = (factors[0]*x1) +
|
---|
448 | (factors[1]*x2) +
|
---|
449 | (factors[2]*x3);
|
---|
450 | };
|
---|
451 |
|
---|
452 | /** Mirrors atom against a given plane.
|
---|
453 | * \param n[] normal vector of mirror plane.
|
---|
454 | */
|
---|
455 | void Vector::Mirror(const Vector &n)
|
---|
456 | {
|
---|
457 | ASSERT((rep.get()) && (!rep->isBaseClass()),"Representation stored in vector Object was not of derived type");
|
---|
458 | rep->Mirror(n);
|
---|
459 | };
|
---|
460 |
|
---|
461 |
|
---|
462 | /** Calculates orthonormal vector to one given vector.
|
---|
463 | * Just subtracts the projection onto the given vector from this vector.
|
---|
464 | * The removed part of the vector is Vector::Projection()
|
---|
465 | * \param *x1 vector
|
---|
466 | * \return true - success, false - vector is zero
|
---|
467 | */
|
---|
468 | bool Vector::MakeNormalTo(const Vector &y1)
|
---|
469 | {
|
---|
470 | ASSERT((rep.get()) && (!rep->isBaseClass()),"Representation stored in vector Object was not of derived type");
|
---|
471 | return rep->MakeNormalTo(y1);
|
---|
472 | };
|
---|
473 |
|
---|
474 | /** Creates this vector as one of the possible orthonormal ones to the given one.
|
---|
475 | * Just scan how many components of given *vector are unequal to zero and
|
---|
476 | * try to get the skp of both to be zero accordingly.
|
---|
477 | * \param *vector given vector
|
---|
478 | * \return true - success, false - failure (null vector given)
|
---|
479 | */
|
---|
480 | bool Vector::GetOneNormalVector(const Vector &GivenVector)
|
---|
481 | {
|
---|
482 | ASSERT((rep.get()) && (!rep->isBaseClass()),"Representation stored in vector Object was not of derived type");
|
---|
483 | return rep->GetOneNormalVector(GivenVector);
|
---|
484 | };
|
---|
485 |
|
---|
486 | /** Adds vector \a *y componentwise.
|
---|
487 | * \param *y vector
|
---|
488 | */
|
---|
489 | void Vector::AddVector(const Vector &y)
|
---|
490 | {
|
---|
491 | ASSERT((rep.get()) && (!rep->isBaseClass()),"Representation stored in vector Object was not of derived type");
|
---|
492 | rep->AddVector(y);
|
---|
493 | }
|
---|
494 |
|
---|
495 | /** Adds vector \a *y componentwise.
|
---|
496 | * \param *y vector
|
---|
497 | */
|
---|
498 | void Vector::SubtractVector(const Vector &y)
|
---|
499 | {
|
---|
500 | ASSERT((rep.get()) && (!rep->isBaseClass()),"Representation stored in vector Object was not of derived type");
|
---|
501 | rep->SubtractVector(y);
|
---|
502 | }
|
---|
503 |
|
---|
504 | /**
|
---|
505 | * Checks whether this vector is within the parallelepiped defined by the given three vectors and
|
---|
506 | * their offset.
|
---|
507 | *
|
---|
508 | * @param offest for the origin of the parallelepiped
|
---|
509 | * @param three vectors forming the matrix that defines the shape of the parallelpiped
|
---|
510 | */
|
---|
511 | bool Vector::IsInParallelepiped(const Vector &offset, const double * const parallelepiped) const
|
---|
512 | {
|
---|
513 | ASSERT((rep.get()) && (!rep->isBaseClass()),"Representation stored in vector Object was not of derived type");
|
---|
514 | return rep->IsInParallelepiped(offset, parallelepiped);
|
---|
515 | }
|
---|
516 |
|
---|
517 | bool Vector::isBaseClass() const{
|
---|
518 | return true;
|
---|
519 | }
|
---|
520 |
|
---|
521 | Vector* Vector::clone() const{
|
---|
522 | ASSERT(false, "Cannot clone a base Vector object");
|
---|
523 | return 0;
|
---|
524 | }
|
---|