[6ac7ee] | 1 | /** \file vector.cpp
|
---|
| 2 | *
|
---|
| 3 | * Function implementations for the class vector.
|
---|
| 4 | *
|
---|
| 5 | */
|
---|
| 6 |
|
---|
[edb93c] | 7 |
|
---|
[54a746] | 8 | #include "defs.hpp"
|
---|
| 9 | #include "helpers.hpp"
|
---|
[97498a] | 10 | #include "info.hpp"
|
---|
[9d6308] | 11 | #include "gslmatrix.hpp"
|
---|
[54a746] | 12 | #include "leastsquaremin.hpp"
|
---|
[e138de] | 13 | #include "log.hpp"
|
---|
[97498a] | 14 | #include "memoryallocator.hpp"
|
---|
[54a746] | 15 | #include "vector.hpp"
|
---|
| 16 | #include "verbose.hpp"
|
---|
[b34306] | 17 | #include "World.hpp"
|
---|
[6ac7ee] | 18 |
|
---|
[97498a] | 19 | #include <gsl/gsl_linalg.h>
|
---|
| 20 | #include <gsl/gsl_matrix.h>
|
---|
| 21 | #include <gsl/gsl_permutation.h>
|
---|
| 22 | #include <gsl/gsl_vector.h>
|
---|
| 23 |
|
---|
[6ac7ee] | 24 | /************************************ Functions for class vector ************************************/
|
---|
| 25 |
|
---|
| 26 | /** Constructor of class vector.
|
---|
| 27 | */
|
---|
| 28 | Vector::Vector() { x[0] = x[1] = x[2] = 0.; };
|
---|
| 29 |
|
---|
[821907] | 30 | /** Constructor of class vector.
|
---|
| 31 | */
|
---|
| 32 | Vector::Vector(const Vector * const a)
|
---|
| 33 | {
|
---|
| 34 | x[0] = a->x[0];
|
---|
| 35 | x[1] = a->x[1];
|
---|
| 36 | x[2] = a->x[2];
|
---|
| 37 | };
|
---|
| 38 |
|
---|
| 39 | /** Constructor of class vector.
|
---|
| 40 | */
|
---|
| 41 | Vector::Vector(const Vector &a)
|
---|
| 42 | {
|
---|
| 43 | x[0] = a.x[0];
|
---|
| 44 | x[1] = a.x[1];
|
---|
| 45 | x[2] = a.x[2];
|
---|
| 46 | };
|
---|
| 47 |
|
---|
[6ac7ee] | 48 | /** Constructor of class vector.
|
---|
| 49 | */
|
---|
[776b64] | 50 | Vector::Vector(const double x1, const double x2, const double x3) { x[0] = x1; x[1] = x2; x[2] = x3; };
|
---|
[6ac7ee] | 51 |
|
---|
| 52 | /** Desctructor of class vector.
|
---|
| 53 | */
|
---|
| 54 | Vector::~Vector() {};
|
---|
| 55 |
|
---|
| 56 | /** Calculates square of distance between this and another vector.
|
---|
| 57 | * \param *y array to second vector
|
---|
| 58 | * \return \f$| x - y |^2\f$
|
---|
| 59 | */
|
---|
[776b64] | 60 | double Vector::DistanceSquared(const Vector * const y) const
|
---|
[6ac7ee] | 61 | {
|
---|
[042f82] | 62 | double res = 0.;
|
---|
| 63 | for (int i=NDIM;i--;)
|
---|
| 64 | res += (x[i]-y->x[i])*(x[i]-y->x[i]);
|
---|
| 65 | return (res);
|
---|
[6ac7ee] | 66 | };
|
---|
| 67 |
|
---|
| 68 | /** Calculates distance between this and another vector.
|
---|
| 69 | * \param *y array to second vector
|
---|
| 70 | * \return \f$| x - y |\f$
|
---|
| 71 | */
|
---|
[776b64] | 72 | double Vector::Distance(const Vector * const y) const
|
---|
[6ac7ee] | 73 | {
|
---|
[042f82] | 74 | double res = 0.;
|
---|
| 75 | for (int i=NDIM;i--;)
|
---|
| 76 | res += (x[i]-y->x[i])*(x[i]-y->x[i]);
|
---|
| 77 | return (sqrt(res));
|
---|
[6ac7ee] | 78 | };
|
---|
| 79 |
|
---|
| 80 | /** Calculates distance between this and another vector in a periodic cell.
|
---|
| 81 | * \param *y array to second vector
|
---|
| 82 | * \param *cell_size 6-dimensional array with (xx, xy, yy, xz, yz, zz) entries specifying the periodic cell
|
---|
| 83 | * \return \f$| x - y |\f$
|
---|
| 84 | */
|
---|
[776b64] | 85 | double Vector::PeriodicDistance(const Vector * const y, const double * const cell_size) const
|
---|
[6ac7ee] | 86 | {
|
---|
[042f82] | 87 | double res = Distance(y), tmp, matrix[NDIM*NDIM];
|
---|
| 88 | Vector Shiftedy, TranslationVector;
|
---|
| 89 | int N[NDIM];
|
---|
| 90 | matrix[0] = cell_size[0];
|
---|
| 91 | matrix[1] = cell_size[1];
|
---|
| 92 | matrix[2] = cell_size[3];
|
---|
| 93 | matrix[3] = cell_size[1];
|
---|
| 94 | matrix[4] = cell_size[2];
|
---|
| 95 | matrix[5] = cell_size[4];
|
---|
| 96 | matrix[6] = cell_size[3];
|
---|
| 97 | matrix[7] = cell_size[4];
|
---|
| 98 | matrix[8] = cell_size[5];
|
---|
| 99 | // in order to check the periodic distance, translate one of the vectors into each of the 27 neighbouring cells
|
---|
| 100 | for (N[0]=-1;N[0]<=1;N[0]++)
|
---|
| 101 | for (N[1]=-1;N[1]<=1;N[1]++)
|
---|
| 102 | for (N[2]=-1;N[2]<=1;N[2]++) {
|
---|
| 103 | // create the translation vector
|
---|
| 104 | TranslationVector.Zero();
|
---|
| 105 | for (int i=NDIM;i--;)
|
---|
| 106 | TranslationVector.x[i] = (double)N[i];
|
---|
| 107 | TranslationVector.MatrixMultiplication(matrix);
|
---|
| 108 | // add onto the original vector to compare with
|
---|
| 109 | Shiftedy.CopyVector(y);
|
---|
| 110 | Shiftedy.AddVector(&TranslationVector);
|
---|
| 111 | // get distance and compare with minimum so far
|
---|
| 112 | tmp = Distance(&Shiftedy);
|
---|
| 113 | if (tmp < res) res = tmp;
|
---|
| 114 | }
|
---|
| 115 | return (res);
|
---|
[6ac7ee] | 116 | };
|
---|
| 117 |
|
---|
| 118 | /** Calculates distance between this and another vector in a periodic cell.
|
---|
| 119 | * \param *y array to second vector
|
---|
| 120 | * \param *cell_size 6-dimensional array with (xx, xy, yy, xz, yz, zz) entries specifying the periodic cell
|
---|
| 121 | * \return \f$| x - y |^2\f$
|
---|
| 122 | */
|
---|
[776b64] | 123 | double Vector::PeriodicDistanceSquared(const Vector * const y, const double * const cell_size) const
|
---|
[6ac7ee] | 124 | {
|
---|
[042f82] | 125 | double res = DistanceSquared(y), tmp, matrix[NDIM*NDIM];
|
---|
| 126 | Vector Shiftedy, TranslationVector;
|
---|
| 127 | int N[NDIM];
|
---|
| 128 | matrix[0] = cell_size[0];
|
---|
| 129 | matrix[1] = cell_size[1];
|
---|
| 130 | matrix[2] = cell_size[3];
|
---|
| 131 | matrix[3] = cell_size[1];
|
---|
| 132 | matrix[4] = cell_size[2];
|
---|
| 133 | matrix[5] = cell_size[4];
|
---|
| 134 | matrix[6] = cell_size[3];
|
---|
| 135 | matrix[7] = cell_size[4];
|
---|
| 136 | matrix[8] = cell_size[5];
|
---|
| 137 | // in order to check the periodic distance, translate one of the vectors into each of the 27 neighbouring cells
|
---|
| 138 | for (N[0]=-1;N[0]<=1;N[0]++)
|
---|
| 139 | for (N[1]=-1;N[1]<=1;N[1]++)
|
---|
| 140 | for (N[2]=-1;N[2]<=1;N[2]++) {
|
---|
| 141 | // create the translation vector
|
---|
| 142 | TranslationVector.Zero();
|
---|
| 143 | for (int i=NDIM;i--;)
|
---|
| 144 | TranslationVector.x[i] = (double)N[i];
|
---|
| 145 | TranslationVector.MatrixMultiplication(matrix);
|
---|
| 146 | // add onto the original vector to compare with
|
---|
| 147 | Shiftedy.CopyVector(y);
|
---|
| 148 | Shiftedy.AddVector(&TranslationVector);
|
---|
| 149 | // get distance and compare with minimum so far
|
---|
| 150 | tmp = DistanceSquared(&Shiftedy);
|
---|
| 151 | if (tmp < res) res = tmp;
|
---|
| 152 | }
|
---|
| 153 | return (res);
|
---|
[6ac7ee] | 154 | };
|
---|
| 155 |
|
---|
| 156 | /** Keeps the vector in a periodic cell, defined by the symmetric \a *matrix.
|
---|
| 157 | * \param *out ofstream for debugging messages
|
---|
| 158 | * Tries to translate a vector into each adjacent neighbouring cell.
|
---|
| 159 | */
|
---|
[e138de] | 160 | void Vector::KeepPeriodic(const double * const matrix)
|
---|
[6ac7ee] | 161 | {
|
---|
[042f82] | 162 | // int N[NDIM];
|
---|
| 163 | // bool flag = false;
|
---|
| 164 | //vector Shifted, TranslationVector;
|
---|
| 165 | Vector TestVector;
|
---|
[e138de] | 166 | // Log() << Verbose(1) << "Begin of KeepPeriodic." << endl;
|
---|
| 167 | // Log() << Verbose(2) << "Vector is: ";
|
---|
[042f82] | 168 | // Output(out);
|
---|
[e138de] | 169 | // Log() << Verbose(0) << endl;
|
---|
[042f82] | 170 | TestVector.CopyVector(this);
|
---|
| 171 | TestVector.InverseMatrixMultiplication(matrix);
|
---|
| 172 | for(int i=NDIM;i--;) { // correct periodically
|
---|
| 173 | if (TestVector.x[i] < 0) { // get every coefficient into the interval [0,1)
|
---|
| 174 | TestVector.x[i] += ceil(TestVector.x[i]);
|
---|
| 175 | } else {
|
---|
| 176 | TestVector.x[i] -= floor(TestVector.x[i]);
|
---|
| 177 | }
|
---|
| 178 | }
|
---|
| 179 | TestVector.MatrixMultiplication(matrix);
|
---|
| 180 | CopyVector(&TestVector);
|
---|
[e138de] | 181 | // Log() << Verbose(2) << "New corrected vector is: ";
|
---|
[042f82] | 182 | // Output(out);
|
---|
[e138de] | 183 | // Log() << Verbose(0) << endl;
|
---|
| 184 | // Log() << Verbose(1) << "End of KeepPeriodic." << endl;
|
---|
[6ac7ee] | 185 | };
|
---|
| 186 |
|
---|
| 187 | /** Calculates scalar product between this and another vector.
|
---|
| 188 | * \param *y array to second vector
|
---|
| 189 | * \return \f$\langle x, y \rangle\f$
|
---|
| 190 | */
|
---|
[776b64] | 191 | double Vector::ScalarProduct(const Vector * const y) const
|
---|
[6ac7ee] | 192 | {
|
---|
[042f82] | 193 | double res = 0.;
|
---|
| 194 | for (int i=NDIM;i--;)
|
---|
| 195 | res += x[i]*y->x[i];
|
---|
| 196 | return (res);
|
---|
[6ac7ee] | 197 | };
|
---|
| 198 |
|
---|
| 199 |
|
---|
| 200 | /** Calculates VectorProduct between this and another vector.
|
---|
[042f82] | 201 | * -# returns the Product in place of vector from which it was initiated
|
---|
| 202 | * -# ATTENTION: Only three dim.
|
---|
| 203 | * \param *y array to vector with which to calculate crossproduct
|
---|
| 204 | * \return \f$ x \times y \f&
|
---|
[6ac7ee] | 205 | */
|
---|
[776b64] | 206 | void Vector::VectorProduct(const Vector * const y)
|
---|
[6ac7ee] | 207 | {
|
---|
[042f82] | 208 | Vector tmp;
|
---|
| 209 | tmp.x[0] = x[1]* (y->x[2]) - x[2]* (y->x[1]);
|
---|
| 210 | tmp.x[1] = x[2]* (y->x[0]) - x[0]* (y->x[2]);
|
---|
| 211 | tmp.x[2] = x[0]* (y->x[1]) - x[1]* (y->x[0]);
|
---|
| 212 | this->CopyVector(&tmp);
|
---|
[6ac7ee] | 213 | };
|
---|
| 214 |
|
---|
| 215 |
|
---|
| 216 | /** projects this vector onto plane defined by \a *y.
|
---|
| 217 | * \param *y normal vector of plane
|
---|
| 218 | * \return \f$\langle x, y \rangle\f$
|
---|
| 219 | */
|
---|
[776b64] | 220 | void Vector::ProjectOntoPlane(const Vector * const y)
|
---|
[6ac7ee] | 221 | {
|
---|
[042f82] | 222 | Vector tmp;
|
---|
| 223 | tmp.CopyVector(y);
|
---|
| 224 | tmp.Normalize();
|
---|
| 225 | tmp.Scale(ScalarProduct(&tmp));
|
---|
| 226 | this->SubtractVector(&tmp);
|
---|
[6ac7ee] | 227 | };
|
---|
| 228 |
|
---|
[2319ed] | 229 | /** Calculates the intersection point between a line defined by \a *LineVector and \a *LineVector2 and a plane defined by \a *Normal and \a *PlaneOffset.
|
---|
| 230 | * According to [Bronstein] the vectorial plane equation is:
|
---|
| 231 | * -# \f$\stackrel{r}{\rightarrow} \cdot \stackrel{N}{\rightarrow} + D = 0\f$,
|
---|
| 232 | * where \f$\stackrel{r}{\rightarrow}\f$ is the vector to be testet, \f$\stackrel{N}{\rightarrow}\f$ is the plane's normal vector and
|
---|
| 233 | * \f$D = - \stackrel{a}{\rightarrow} \stackrel{N}{\rightarrow}\f$, the offset with respect to origin, if \f$\stackrel{a}{\rightarrow}\f$,
|
---|
| 234 | * is an offset vector onto the plane. The line is parametrized by \f$\stackrel{x}{\rightarrow} + k \stackrel{t}{\rightarrow}\f$, where
|
---|
| 235 | * \f$\stackrel{x}{\rightarrow}\f$ is the offset and \f$\stackrel{t}{\rightarrow}\f$ the directional vector (NOTE: No need to normalize
|
---|
| 236 | * the latter). Inserting the parametrized form into the plane equation and solving for \f$k\f$, which we insert then into the parametrization
|
---|
| 237 | * of the line yields the intersection point on the plane.
|
---|
| 238 | * \param *out output stream for debugging
|
---|
| 239 | * \param *PlaneNormal Plane's normal vector
|
---|
| 240 | * \param *PlaneOffset Plane's offset vector
|
---|
[ef9df36] | 241 | * \param *Origin first vector of line
|
---|
| 242 | * \param *LineVector second vector of line
|
---|
[7b36fe] | 243 | * \return true - \a this contains intersection point on return, false - line is parallel to plane (even if in-plane)
|
---|
[2319ed] | 244 | */
|
---|
[e138de] | 245 | bool Vector::GetIntersectionWithPlane(const Vector * const PlaneNormal, const Vector * const PlaneOffset, const Vector * const Origin, const Vector * const LineVector)
|
---|
[2319ed] | 246 | {
|
---|
[97498a] | 247 | Info FunctionInfo(__func__);
|
---|
[2319ed] | 248 | double factor;
|
---|
[46670d] | 249 | Vector Direction, helper;
|
---|
[2319ed] | 250 |
|
---|
| 251 | // find intersection of a line defined by Offset and Direction with a plane defined by triangle
|
---|
[46670d] | 252 | Direction.CopyVector(LineVector);
|
---|
| 253 | Direction.SubtractVector(Origin);
|
---|
[e4a379] | 254 | Direction.Normalize();
|
---|
[97498a] | 255 | Log() << Verbose(1) << "INFO: Direction is " << Direction << "." << endl;
|
---|
[7b36fe] | 256 | //Log() << Verbose(1) << "INFO: PlaneNormal is " << *PlaneNormal << " and PlaneOffset is " << *PlaneOffset << "." << endl;
|
---|
[46670d] | 257 | factor = Direction.ScalarProduct(PlaneNormal);
|
---|
[7b36fe] | 258 | if (fabs(factor) < MYEPSILON) { // Uniqueness: line parallel to plane?
|
---|
| 259 | Log() << Verbose(1) << "BAD: Line is parallel to plane, no intersection." << endl;
|
---|
[2319ed] | 260 | return false;
|
---|
[46670d] | 261 | }
|
---|
| 262 | helper.CopyVector(PlaneOffset);
|
---|
[ef9df36] | 263 | helper.SubtractVector(Origin);
|
---|
[46670d] | 264 | factor = helper.ScalarProduct(PlaneNormal)/factor;
|
---|
[7b36fe] | 265 | if (fabs(factor) < MYEPSILON) { // Origin is in-plane
|
---|
| 266 | Log() << Verbose(1) << "GOOD: Origin of line is in-plane." << endl;
|
---|
[e4a379] | 267 | CopyVector(Origin);
|
---|
| 268 | return true;
|
---|
| 269 | }
|
---|
[46670d] | 270 | //factor = Origin->ScalarProduct(PlaneNormal)*(-PlaneOffset->ScalarProduct(PlaneNormal))/(Direction.ScalarProduct(PlaneNormal));
|
---|
[2319ed] | 271 | Direction.Scale(factor);
|
---|
[ef9df36] | 272 | CopyVector(Origin);
|
---|
[97498a] | 273 | Log() << Verbose(1) << "INFO: Scaled direction is " << Direction << "." << endl;
|
---|
[46670d] | 274 | AddVector(&Direction);
|
---|
[2319ed] | 275 |
|
---|
| 276 | // test whether resulting vector really is on plane
|
---|
[46670d] | 277 | helper.CopyVector(this);
|
---|
| 278 | helper.SubtractVector(PlaneOffset);
|
---|
| 279 | if (helper.ScalarProduct(PlaneNormal) < MYEPSILON) {
|
---|
[7b36fe] | 280 | Log() << Verbose(1) << "GOOD: Intersection is " << *this << "." << endl;
|
---|
[2319ed] | 281 | return true;
|
---|
[46670d] | 282 | } else {
|
---|
[58ed4a] | 283 | DoeLog(2) && (eLog()<< Verbose(2) << "Intersection point " << *this << " is not on plane." << endl);
|
---|
[2319ed] | 284 | return false;
|
---|
[46670d] | 285 | }
|
---|
[2319ed] | 286 | };
|
---|
| 287 |
|
---|
[821907] | 288 | /** Calculates the minimum distance vector of this vector to the plane.
|
---|
[c4d4df] | 289 | * \param *out output stream for debugging
|
---|
| 290 | * \param *PlaneNormal normal of plane
|
---|
| 291 | * \param *PlaneOffset offset of plane
|
---|
[821907] | 292 | * \return distance vector onto to plane
|
---|
[c4d4df] | 293 | */
|
---|
[821907] | 294 | Vector Vector::GetDistanceVectorToPlane(const Vector * const PlaneNormal, const Vector * const PlaneOffset) const
|
---|
[c4d4df] | 295 | {
|
---|
| 296 | Vector temp;
|
---|
| 297 |
|
---|
| 298 | // first create part that is orthonormal to PlaneNormal with withdraw
|
---|
| 299 | temp.CopyVector(this);
|
---|
| 300 | temp.SubtractVector(PlaneOffset);
|
---|
| 301 | temp.MakeNormalVector(PlaneNormal);
|
---|
| 302 | temp.Scale(-1.);
|
---|
| 303 | // then add connecting vector from plane to point
|
---|
| 304 | temp.AddVector(this);
|
---|
| 305 | temp.SubtractVector(PlaneOffset);
|
---|
[99593f] | 306 | double sign = temp.ScalarProduct(PlaneNormal);
|
---|
[7ea9e6] | 307 | if (fabs(sign) > MYEPSILON)
|
---|
| 308 | sign /= fabs(sign);
|
---|
| 309 | else
|
---|
| 310 | sign = 0.;
|
---|
[c4d4df] | 311 |
|
---|
[821907] | 312 | temp.Normalize();
|
---|
| 313 | temp.Scale(sign);
|
---|
| 314 | return temp;
|
---|
| 315 | };
|
---|
| 316 |
|
---|
| 317 | /** Calculates the minimum distance of this vector to the plane.
|
---|
| 318 | * \sa Vector::GetDistanceVectorToPlane()
|
---|
| 319 | * \param *out output stream for debugging
|
---|
| 320 | * \param *PlaneNormal normal of plane
|
---|
| 321 | * \param *PlaneOffset offset of plane
|
---|
| 322 | * \return distance to plane
|
---|
| 323 | */
|
---|
| 324 | double Vector::DistanceToPlane(const Vector * const PlaneNormal, const Vector * const PlaneOffset) const
|
---|
| 325 | {
|
---|
| 326 | return GetDistanceVectorToPlane(PlaneNormal,PlaneOffset).Norm();
|
---|
[c4d4df] | 327 | };
|
---|
| 328 |
|
---|
[2319ed] | 329 | /** Calculates the intersection of the two lines that are both on the same plane.
|
---|
[9d6308] | 330 | * This is taken from Weisstein, Eric W. "Line-Line Intersection." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/Line-LineIntersection.html
|
---|
[2319ed] | 331 | * \param *out output stream for debugging
|
---|
| 332 | * \param *Line1a first vector of first line
|
---|
| 333 | * \param *Line1b second vector of first line
|
---|
| 334 | * \param *Line2a first vector of second line
|
---|
| 335 | * \param *Line2b second vector of second line
|
---|
[46670d] | 336 | * \param *PlaneNormal normal of plane, is supplemental/arbitrary
|
---|
[2319ed] | 337 | * \return true - \a this will contain the intersection on return, false - lines are parallel
|
---|
| 338 | */
|
---|
[e138de] | 339 | bool Vector::GetIntersectionOfTwoLinesOnPlane(const Vector * const Line1a, const Vector * const Line1b, const Vector * const Line2a, const Vector * const Line2b, const Vector *PlaneNormal)
|
---|
[2319ed] | 340 | {
|
---|
[97498a] | 341 | Info FunctionInfo(__func__);
|
---|
[9d6308] | 342 |
|
---|
| 343 | GSLMatrix *M = new GSLMatrix(4,4);
|
---|
| 344 |
|
---|
| 345 | M->SetAll(1.);
|
---|
| 346 | for (int i=0;i<3;i++) {
|
---|
| 347 | M->Set(0, i, Line1a->x[i]);
|
---|
| 348 | M->Set(1, i, Line1b->x[i]);
|
---|
| 349 | M->Set(2, i, Line2a->x[i]);
|
---|
| 350 | M->Set(3, i, Line2b->x[i]);
|
---|
| 351 | }
|
---|
[fee69b] | 352 |
|
---|
| 353 | //Log() << Verbose(1) << "Coefficent matrix is:" << endl;
|
---|
[bc84ffc] | 354 | //ostream &output = Log() << Verbose(1);
|
---|
[fee69b] | 355 | //for (int i=0;i<4;i++) {
|
---|
| 356 | // for (int j=0;j<4;j++)
|
---|
[bc84ffc] | 357 | // output << "\t" << M->Get(i,j);
|
---|
| 358 | // output << endl;
|
---|
[fee69b] | 359 | //}
|
---|
[fcad4b] | 360 | if (fabs(M->Determinant()) > MYEPSILON) {
|
---|
| 361 | Log() << Verbose(1) << "Determinant of coefficient matrix is NOT zero." << endl;
|
---|
[ef9df36] | 362 | return false;
|
---|
[fcad4b] | 363 | }
|
---|
| 364 | Log() << Verbose(1) << "INFO: Line1a = " << *Line1a << ", Line1b = " << *Line1b << ", Line2a = " << *Line2a << ", Line2b = " << *Line2b << "." << endl;
|
---|
| 365 |
|
---|
[2319ed] | 366 |
|
---|
[9d6308] | 367 | // constuct a,b,c
|
---|
[fee69b] | 368 | Vector a;
|
---|
| 369 | Vector b;
|
---|
| 370 | Vector c;
|
---|
| 371 | Vector d;
|
---|
[9d6308] | 372 | a.CopyVector(Line1b);
|
---|
| 373 | a.SubtractVector(Line1a);
|
---|
| 374 | b.CopyVector(Line2b);
|
---|
| 375 | b.SubtractVector(Line2a);
|
---|
| 376 | c.CopyVector(Line2a);
|
---|
| 377 | c.SubtractVector(Line1a);
|
---|
[fee69b] | 378 | d.CopyVector(Line2b);
|
---|
| 379 | d.SubtractVector(Line1b);
|
---|
[fcad4b] | 380 | Log() << Verbose(1) << "INFO: a = " << a << ", b = " << b << ", c = " << c << "." << endl;
|
---|
[fee69b] | 381 | if ((a.NormSquared() < MYEPSILON) || (b.NormSquared() < MYEPSILON)) {
|
---|
| 382 | Zero();
|
---|
| 383 | Log() << Verbose(1) << "At least one of the lines is ill-defined, i.e. offset equals second vector." << endl;
|
---|
| 384 | return false;
|
---|
| 385 | }
|
---|
[fcad4b] | 386 |
|
---|
| 387 | // check for parallelity
|
---|
| 388 | Vector parallel;
|
---|
[fee69b] | 389 | double factor = 0.;
|
---|
| 390 | if (fabs(a.ScalarProduct(&b)*a.ScalarProduct(&b)/a.NormSquared()/b.NormSquared() - 1.) < MYEPSILON) {
|
---|
| 391 | parallel.CopyVector(Line1a);
|
---|
| 392 | parallel.SubtractVector(Line2a);
|
---|
| 393 | factor = parallel.ScalarProduct(&a)/a.Norm();
|
---|
| 394 | if ((factor >= -MYEPSILON) && (factor - 1. < MYEPSILON)) {
|
---|
| 395 | CopyVector(Line2a);
|
---|
| 396 | Log() << Verbose(1) << "Lines conincide." << endl;
|
---|
| 397 | return true;
|
---|
| 398 | } else {
|
---|
| 399 | parallel.CopyVector(Line1a);
|
---|
| 400 | parallel.SubtractVector(Line2b);
|
---|
| 401 | factor = parallel.ScalarProduct(&a)/a.Norm();
|
---|
| 402 | if ((factor >= -MYEPSILON) && (factor - 1. < MYEPSILON)) {
|
---|
| 403 | CopyVector(Line2b);
|
---|
| 404 | Log() << Verbose(1) << "Lines conincide." << endl;
|
---|
| 405 | return true;
|
---|
| 406 | }
|
---|
| 407 | }
|
---|
[fcad4b] | 408 | Log() << Verbose(1) << "Lines are parallel." << endl;
|
---|
[fee69b] | 409 | Zero();
|
---|
[fcad4b] | 410 | return false;
|
---|
| 411 | }
|
---|
[9d6308] | 412 |
|
---|
| 413 | // obtain s
|
---|
| 414 | double s;
|
---|
| 415 | Vector temp1, temp2;
|
---|
| 416 | temp1.CopyVector(&c);
|
---|
| 417 | temp1.VectorProduct(&b);
|
---|
| 418 | temp2.CopyVector(&a);
|
---|
| 419 | temp2.VectorProduct(&b);
|
---|
[fcad4b] | 420 | Log() << Verbose(1) << "INFO: temp1 = " << temp1 << ", temp2 = " << temp2 << "." << endl;
|
---|
| 421 | if (fabs(temp2.NormSquared()) > MYEPSILON)
|
---|
| 422 | s = temp1.ScalarProduct(&temp2)/temp2.NormSquared();
|
---|
| 423 | else
|
---|
| 424 | s = 0.;
|
---|
| 425 | Log() << Verbose(1) << "Factor s is " << temp1.ScalarProduct(&temp2) << "/" << temp2.NormSquared() << " = " << s << "." << endl;
|
---|
[9d6308] | 426 |
|
---|
| 427 | // construct intersection
|
---|
| 428 | CopyVector(&a);
|
---|
| 429 | Scale(s);
|
---|
[97498a] | 430 | AddVector(Line1a);
|
---|
[9d6308] | 431 | Log() << Verbose(1) << "Intersection is at " << *this << "." << endl;
|
---|
[97498a] | 432 |
|
---|
[fee69b] | 433 | return true;
|
---|
[2319ed] | 434 | };
|
---|
| 435 |
|
---|
[6ac7ee] | 436 | /** Calculates the projection of a vector onto another \a *y.
|
---|
| 437 | * \param *y array to second vector
|
---|
| 438 | */
|
---|
[776b64] | 439 | void Vector::ProjectIt(const Vector * const y)
|
---|
[6ac7ee] | 440 | {
|
---|
[ef9df36] | 441 | Vector helper(*y);
|
---|
| 442 | helper.Scale(-(ScalarProduct(y)));
|
---|
| 443 | AddVector(&helper);
|
---|
| 444 | };
|
---|
| 445 |
|
---|
| 446 | /** Calculates the projection of a vector onto another \a *y.
|
---|
| 447 | * \param *y array to second vector
|
---|
| 448 | * \return Vector
|
---|
| 449 | */
|
---|
[776b64] | 450 | Vector Vector::Projection(const Vector * const y) const
|
---|
[ef9df36] | 451 | {
|
---|
| 452 | Vector helper(*y);
|
---|
| 453 | helper.Scale((ScalarProduct(y)/y->NormSquared()));
|
---|
| 454 |
|
---|
| 455 | return helper;
|
---|
[6ac7ee] | 456 | };
|
---|
| 457 |
|
---|
| 458 | /** Calculates norm of this vector.
|
---|
| 459 | * \return \f$|x|\f$
|
---|
| 460 | */
|
---|
| 461 | double Vector::Norm() const
|
---|
| 462 | {
|
---|
[042f82] | 463 | double res = 0.;
|
---|
| 464 | for (int i=NDIM;i--;)
|
---|
| 465 | res += this->x[i]*this->x[i];
|
---|
| 466 | return (sqrt(res));
|
---|
[6ac7ee] | 467 | };
|
---|
| 468 |
|
---|
[d4d0dd] | 469 | /** Calculates squared norm of this vector.
|
---|
| 470 | * \return \f$|x|^2\f$
|
---|
| 471 | */
|
---|
| 472 | double Vector::NormSquared() const
|
---|
| 473 | {
|
---|
| 474 | return (ScalarProduct(this));
|
---|
| 475 | };
|
---|
| 476 |
|
---|
[6ac7ee] | 477 | /** Normalizes this vector.
|
---|
| 478 | */
|
---|
| 479 | void Vector::Normalize()
|
---|
| 480 | {
|
---|
[042f82] | 481 | double res = 0.;
|
---|
| 482 | for (int i=NDIM;i--;)
|
---|
| 483 | res += this->x[i]*this->x[i];
|
---|
| 484 | if (fabs(res) > MYEPSILON)
|
---|
| 485 | res = 1./sqrt(res);
|
---|
| 486 | Scale(&res);
|
---|
[6ac7ee] | 487 | };
|
---|
| 488 |
|
---|
| 489 | /** Zeros all components of this vector.
|
---|
| 490 | */
|
---|
| 491 | void Vector::Zero()
|
---|
| 492 | {
|
---|
[042f82] | 493 | for (int i=NDIM;i--;)
|
---|
| 494 | this->x[i] = 0.;
|
---|
[6ac7ee] | 495 | };
|
---|
| 496 |
|
---|
| 497 | /** Zeros all components of this vector.
|
---|
| 498 | */
|
---|
[776b64] | 499 | void Vector::One(const double one)
|
---|
[6ac7ee] | 500 | {
|
---|
[042f82] | 501 | for (int i=NDIM;i--;)
|
---|
| 502 | this->x[i] = one;
|
---|
[6ac7ee] | 503 | };
|
---|
| 504 |
|
---|
| 505 | /** Initialises all components of this vector.
|
---|
| 506 | */
|
---|
[776b64] | 507 | void Vector::Init(const double x1, const double x2, const double x3)
|
---|
[6ac7ee] | 508 | {
|
---|
[042f82] | 509 | x[0] = x1;
|
---|
| 510 | x[1] = x2;
|
---|
| 511 | x[2] = x3;
|
---|
[6ac7ee] | 512 | };
|
---|
| 513 |
|
---|
[9c20aa] | 514 | /** Checks whether vector has all components zero.
|
---|
| 515 | * @return true - vector is zero, false - vector is not
|
---|
| 516 | */
|
---|
[54a746] | 517 | bool Vector::IsZero() const
|
---|
[9c20aa] | 518 | {
|
---|
[54a746] | 519 | return (fabs(x[0])+fabs(x[1])+fabs(x[2]) < MYEPSILON);
|
---|
| 520 | };
|
---|
| 521 |
|
---|
| 522 | /** Checks whether vector has length of 1.
|
---|
| 523 | * @return true - vector is normalized, false - vector is not
|
---|
| 524 | */
|
---|
| 525 | bool Vector::IsOne() const
|
---|
| 526 | {
|
---|
| 527 | return (fabs(Norm() - 1.) < MYEPSILON);
|
---|
[9c20aa] | 528 | };
|
---|
| 529 |
|
---|
[ef9df36] | 530 | /** Checks whether vector is normal to \a *normal.
|
---|
| 531 | * @return true - vector is normalized, false - vector is not
|
---|
| 532 | */
|
---|
[776b64] | 533 | bool Vector::IsNormalTo(const Vector * const normal) const
|
---|
[ef9df36] | 534 | {
|
---|
| 535 | if (ScalarProduct(normal) < MYEPSILON)
|
---|
| 536 | return true;
|
---|
| 537 | else
|
---|
| 538 | return false;
|
---|
| 539 | };
|
---|
| 540 |
|
---|
[b998c3] | 541 | /** Checks whether vector is normal to \a *normal.
|
---|
| 542 | * @return true - vector is normalized, false - vector is not
|
---|
| 543 | */
|
---|
| 544 | bool Vector::IsEqualTo(const Vector * const a) const
|
---|
| 545 | {
|
---|
| 546 | bool status = true;
|
---|
| 547 | for (int i=0;i<NDIM;i++) {
|
---|
| 548 | if (fabs(x[i] - a->x[i]) > MYEPSILON)
|
---|
| 549 | status = false;
|
---|
| 550 | }
|
---|
| 551 | return status;
|
---|
| 552 | };
|
---|
| 553 |
|
---|
[6ac7ee] | 554 | /** Calculates the angle between this and another vector.
|
---|
| 555 | * \param *y array to second vector
|
---|
| 556 | * \return \f$\acos\bigl(frac{\langle x, y \rangle}{|x||y|}\bigr)\f$
|
---|
| 557 | */
|
---|
[776b64] | 558 | double Vector::Angle(const Vector * const y) const
|
---|
[6ac7ee] | 559 | {
|
---|
[d4d0dd] | 560 | double norm1 = Norm(), norm2 = y->Norm();
|
---|
[ef9df36] | 561 | double angle = -1;
|
---|
[d4d0dd] | 562 | if ((fabs(norm1) > MYEPSILON) && (fabs(norm2) > MYEPSILON))
|
---|
| 563 | angle = this->ScalarProduct(y)/norm1/norm2;
|
---|
[02da9e] | 564 | // -1-MYEPSILON occured due to numerical imprecision, catch ...
|
---|
[e138de] | 565 | //Log() << Verbose(2) << "INFO: acos(-1) = " << acos(-1) << ", acos(-1+MYEPSILON) = " << acos(-1+MYEPSILON) << ", acos(-1-MYEPSILON) = " << acos(-1-MYEPSILON) << "." << endl;
|
---|
[02da9e] | 566 | if (angle < -1)
|
---|
| 567 | angle = -1;
|
---|
| 568 | if (angle > 1)
|
---|
| 569 | angle = 1;
|
---|
[042f82] | 570 | return acos(angle);
|
---|
[6ac7ee] | 571 | };
|
---|
| 572 |
|
---|
[78b73c] | 573 | /** Rotates the vector relative to the origin around the axis given by \a *axis by an angle of \a alpha.
|
---|
[6ac7ee] | 574 | * \param *axis rotation axis
|
---|
| 575 | * \param alpha rotation angle in radian
|
---|
| 576 | */
|
---|
[776b64] | 577 | void Vector::RotateVector(const Vector * const axis, const double alpha)
|
---|
[6ac7ee] | 578 | {
|
---|
[042f82] | 579 | Vector a,y;
|
---|
| 580 | // normalise this vector with respect to axis
|
---|
| 581 | a.CopyVector(this);
|
---|
[ef9df36] | 582 | a.ProjectOntoPlane(axis);
|
---|
[042f82] | 583 | // construct normal vector
|
---|
[78b73c] | 584 | bool rotatable = y.MakeNormalVector(axis,&a);
|
---|
| 585 | // The normal vector cannot be created if there is linar dependency.
|
---|
| 586 | // Then the vector to rotate is on the axis and any rotation leads to the vector itself.
|
---|
| 587 | if (!rotatable) {
|
---|
| 588 | return;
|
---|
| 589 | }
|
---|
[042f82] | 590 | y.Scale(Norm());
|
---|
| 591 | // scale normal vector by sine and this vector by cosine
|
---|
| 592 | y.Scale(sin(alpha));
|
---|
[78b73c] | 593 | a.Scale(cos(alpha));
|
---|
| 594 | CopyVector(Projection(axis));
|
---|
[042f82] | 595 | // add scaled normal vector onto this vector
|
---|
| 596 | AddVector(&y);
|
---|
| 597 | // add part in axis direction
|
---|
| 598 | AddVector(&a);
|
---|
[6ac7ee] | 599 | };
|
---|
| 600 |
|
---|
[ef9df36] | 601 | /** Compares vector \a to vector \a b component-wise.
|
---|
| 602 | * \param a base vector
|
---|
| 603 | * \param b vector components to add
|
---|
| 604 | * \return a == b
|
---|
| 605 | */
|
---|
| 606 | bool operator==(const Vector& a, const Vector& b)
|
---|
| 607 | {
|
---|
| 608 | bool status = true;
|
---|
| 609 | for (int i=0;i<NDIM;i++)
|
---|
| 610 | status = status && (fabs(a.x[i] - b.x[i]) < MYEPSILON);
|
---|
| 611 | return status;
|
---|
| 612 | };
|
---|
| 613 |
|
---|
[6ac7ee] | 614 | /** Sums vector \a to this lhs component-wise.
|
---|
| 615 | * \param a base vector
|
---|
| 616 | * \param b vector components to add
|
---|
| 617 | * \return lhs + a
|
---|
| 618 | */
|
---|
| 619 | Vector& operator+=(Vector& a, const Vector& b)
|
---|
| 620 | {
|
---|
[042f82] | 621 | a.AddVector(&b);
|
---|
| 622 | return a;
|
---|
[6ac7ee] | 623 | };
|
---|
[54a746] | 624 |
|
---|
| 625 | /** Subtracts vector \a from this lhs component-wise.
|
---|
| 626 | * \param a base vector
|
---|
| 627 | * \param b vector components to add
|
---|
| 628 | * \return lhs - a
|
---|
| 629 | */
|
---|
| 630 | Vector& operator-=(Vector& a, const Vector& b)
|
---|
| 631 | {
|
---|
| 632 | a.SubtractVector(&b);
|
---|
| 633 | return a;
|
---|
| 634 | };
|
---|
| 635 |
|
---|
[6ac7ee] | 636 | /** factor each component of \a a times a double \a m.
|
---|
| 637 | * \param a base vector
|
---|
| 638 | * \param m factor
|
---|
| 639 | * \return lhs.x[i] * m
|
---|
| 640 | */
|
---|
| 641 | Vector& operator*=(Vector& a, const double m)
|
---|
| 642 | {
|
---|
[042f82] | 643 | a.Scale(m);
|
---|
| 644 | return a;
|
---|
[6ac7ee] | 645 | };
|
---|
| 646 |
|
---|
[042f82] | 647 | /** Sums two vectors \a and \b component-wise.
|
---|
[6ac7ee] | 648 | * \param a first vector
|
---|
| 649 | * \param b second vector
|
---|
| 650 | * \return a + b
|
---|
| 651 | */
|
---|
| 652 | Vector& operator+(const Vector& a, const Vector& b)
|
---|
| 653 | {
|
---|
[042f82] | 654 | Vector *x = new Vector;
|
---|
| 655 | x->CopyVector(&a);
|
---|
| 656 | x->AddVector(&b);
|
---|
| 657 | return *x;
|
---|
[6ac7ee] | 658 | };
|
---|
| 659 |
|
---|
[54a746] | 660 | /** Subtracts vector \a from \b component-wise.
|
---|
| 661 | * \param a first vector
|
---|
| 662 | * \param b second vector
|
---|
| 663 | * \return a - b
|
---|
| 664 | */
|
---|
| 665 | Vector& operator-(const Vector& a, const Vector& b)
|
---|
| 666 | {
|
---|
| 667 | Vector *x = new Vector;
|
---|
| 668 | x->CopyVector(&a);
|
---|
| 669 | x->SubtractVector(&b);
|
---|
| 670 | return *x;
|
---|
| 671 | };
|
---|
| 672 |
|
---|
[6ac7ee] | 673 | /** Factors given vector \a a times \a m.
|
---|
| 674 | * \param a vector
|
---|
| 675 | * \param m factor
|
---|
[54a746] | 676 | * \return m * a
|
---|
[6ac7ee] | 677 | */
|
---|
| 678 | Vector& operator*(const Vector& a, const double m)
|
---|
| 679 | {
|
---|
[042f82] | 680 | Vector *x = new Vector;
|
---|
| 681 | x->CopyVector(&a);
|
---|
| 682 | x->Scale(m);
|
---|
| 683 | return *x;
|
---|
[6ac7ee] | 684 | };
|
---|
| 685 |
|
---|
[54a746] | 686 | /** Factors given vector \a a times \a m.
|
---|
| 687 | * \param m factor
|
---|
| 688 | * \param a vector
|
---|
| 689 | * \return m * a
|
---|
| 690 | */
|
---|
| 691 | Vector& operator*(const double m, const Vector& a )
|
---|
| 692 | {
|
---|
| 693 | Vector *x = new Vector;
|
---|
| 694 | x->CopyVector(&a);
|
---|
| 695 | x->Scale(m);
|
---|
| 696 | return *x;
|
---|
| 697 | };
|
---|
| 698 |
|
---|
[6ac7ee] | 699 | /** Prints a 3dim vector.
|
---|
| 700 | * prints no end of line.
|
---|
| 701 | */
|
---|
[e138de] | 702 | void Vector::Output() const
|
---|
[6ac7ee] | 703 | {
|
---|
[e138de] | 704 | Log() << Verbose(0) << "(";
|
---|
| 705 | for (int i=0;i<NDIM;i++) {
|
---|
| 706 | Log() << Verbose(0) << x[i];
|
---|
| 707 | if (i != 2)
|
---|
| 708 | Log() << Verbose(0) << ",";
|
---|
| 709 | }
|
---|
| 710 | Log() << Verbose(0) << ")";
|
---|
[6ac7ee] | 711 | };
|
---|
| 712 |
|
---|
[9c20aa] | 713 | ostream& operator<<(ostream& ost, const Vector& m)
|
---|
[6ac7ee] | 714 | {
|
---|
[042f82] | 715 | ost << "(";
|
---|
| 716 | for (int i=0;i<NDIM;i++) {
|
---|
| 717 | ost << m.x[i];
|
---|
| 718 | if (i != 2)
|
---|
| 719 | ost << ",";
|
---|
| 720 | }
|
---|
| 721 | ost << ")";
|
---|
| 722 | return ost;
|
---|
[6ac7ee] | 723 | };
|
---|
| 724 |
|
---|
| 725 | /** Scales each atom coordinate by an individual \a factor.
|
---|
| 726 | * \param *factor pointer to scaling factor
|
---|
| 727 | */
|
---|
[776b64] | 728 | void Vector::Scale(const double ** const factor)
|
---|
[6ac7ee] | 729 | {
|
---|
[042f82] | 730 | for (int i=NDIM;i--;)
|
---|
| 731 | x[i] *= (*factor)[i];
|
---|
[6ac7ee] | 732 | };
|
---|
| 733 |
|
---|
[776b64] | 734 | void Vector::Scale(const double * const factor)
|
---|
[6ac7ee] | 735 | {
|
---|
[042f82] | 736 | for (int i=NDIM;i--;)
|
---|
| 737 | x[i] *= *factor;
|
---|
[6ac7ee] | 738 | };
|
---|
| 739 |
|
---|
[776b64] | 740 | void Vector::Scale(const double factor)
|
---|
[6ac7ee] | 741 | {
|
---|
[042f82] | 742 | for (int i=NDIM;i--;)
|
---|
| 743 | x[i] *= factor;
|
---|
[6ac7ee] | 744 | };
|
---|
| 745 |
|
---|
| 746 | /** Translate atom by given vector.
|
---|
| 747 | * \param trans[] translation vector.
|
---|
| 748 | */
|
---|
[776b64] | 749 | void Vector::Translate(const Vector * const trans)
|
---|
[6ac7ee] | 750 | {
|
---|
[042f82] | 751 | for (int i=NDIM;i--;)
|
---|
| 752 | x[i] += trans->x[i];
|
---|
[6ac7ee] | 753 | };
|
---|
| 754 |
|
---|
[d09ff7] | 755 | /** Given a box by its matrix \a *M and its inverse *Minv the vector is made to point within that box.
|
---|
| 756 | * \param *M matrix of box
|
---|
| 757 | * \param *Minv inverse matrix
|
---|
| 758 | */
|
---|
[776b64] | 759 | void Vector::WrapPeriodically(const double * const M, const double * const Minv)
|
---|
[d09ff7] | 760 | {
|
---|
| 761 | MatrixMultiplication(Minv);
|
---|
| 762 | // truncate to [0,1] for each axis
|
---|
| 763 | for (int i=0;i<NDIM;i++) {
|
---|
| 764 | x[i] += 0.5; // set to center of box
|
---|
| 765 | while (x[i] >= 1.)
|
---|
| 766 | x[i] -= 1.;
|
---|
| 767 | while (x[i] < 0.)
|
---|
| 768 | x[i] += 1.;
|
---|
| 769 | }
|
---|
| 770 | MatrixMultiplication(M);
|
---|
| 771 | };
|
---|
| 772 |
|
---|
[6ac7ee] | 773 | /** Do a matrix multiplication.
|
---|
| 774 | * \param *matrix NDIM_NDIM array
|
---|
| 775 | */
|
---|
[776b64] | 776 | void Vector::MatrixMultiplication(const double * const M)
|
---|
[6ac7ee] | 777 | {
|
---|
[042f82] | 778 | Vector C;
|
---|
| 779 | // do the matrix multiplication
|
---|
| 780 | C.x[0] = M[0]*x[0]+M[3]*x[1]+M[6]*x[2];
|
---|
| 781 | C.x[1] = M[1]*x[0]+M[4]*x[1]+M[7]*x[2];
|
---|
| 782 | C.x[2] = M[2]*x[0]+M[5]*x[1]+M[8]*x[2];
|
---|
| 783 | // transfer the result into this
|
---|
| 784 | for (int i=NDIM;i--;)
|
---|
| 785 | x[i] = C.x[i];
|
---|
[6ac7ee] | 786 | };
|
---|
| 787 |
|
---|
[2319ed] | 788 | /** Do a matrix multiplication with the \a *A' inverse.
|
---|
[6ac7ee] | 789 | * \param *matrix NDIM_NDIM array
|
---|
| 790 | */
|
---|
[776b64] | 791 | void Vector::InverseMatrixMultiplication(const double * const A)
|
---|
[6ac7ee] | 792 | {
|
---|
[042f82] | 793 | Vector C;
|
---|
| 794 | double B[NDIM*NDIM];
|
---|
| 795 | double detA = RDET3(A);
|
---|
| 796 | double detAReci;
|
---|
| 797 |
|
---|
| 798 | // calculate the inverse B
|
---|
| 799 | if (fabs(detA) > MYEPSILON) {; // RDET3(A) yields precisely zero if A irregular
|
---|
| 800 | detAReci = 1./detA;
|
---|
| 801 | B[0] = detAReci*RDET2(A[4],A[5],A[7],A[8]); // A_11
|
---|
| 802 | B[1] = -detAReci*RDET2(A[1],A[2],A[7],A[8]); // A_12
|
---|
| 803 | B[2] = detAReci*RDET2(A[1],A[2],A[4],A[5]); // A_13
|
---|
| 804 | B[3] = -detAReci*RDET2(A[3],A[5],A[6],A[8]); // A_21
|
---|
| 805 | B[4] = detAReci*RDET2(A[0],A[2],A[6],A[8]); // A_22
|
---|
| 806 | B[5] = -detAReci*RDET2(A[0],A[2],A[3],A[5]); // A_23
|
---|
| 807 | B[6] = detAReci*RDET2(A[3],A[4],A[6],A[7]); // A_31
|
---|
| 808 | B[7] = -detAReci*RDET2(A[0],A[1],A[6],A[7]); // A_32
|
---|
| 809 | B[8] = detAReci*RDET2(A[0],A[1],A[3],A[4]); // A_33
|
---|
| 810 |
|
---|
| 811 | // do the matrix multiplication
|
---|
| 812 | C.x[0] = B[0]*x[0]+B[3]*x[1]+B[6]*x[2];
|
---|
| 813 | C.x[1] = B[1]*x[0]+B[4]*x[1]+B[7]*x[2];
|
---|
| 814 | C.x[2] = B[2]*x[0]+B[5]*x[1]+B[8]*x[2];
|
---|
| 815 | // transfer the result into this
|
---|
| 816 | for (int i=NDIM;i--;)
|
---|
| 817 | x[i] = C.x[i];
|
---|
| 818 | } else {
|
---|
[58ed4a] | 819 | DoeLog(1) && (eLog()<< Verbose(1) << "inverse of matrix does not exists: det A = " << detA << "." << endl);
|
---|
[042f82] | 820 | }
|
---|
[6ac7ee] | 821 | };
|
---|
| 822 |
|
---|
| 823 |
|
---|
| 824 | /** Creates this vector as the b y *factors' components scaled linear combination of the given three.
|
---|
| 825 | * this vector = x1*factors[0] + x2* factors[1] + x3*factors[2]
|
---|
| 826 | * \param *x1 first vector
|
---|
| 827 | * \param *x2 second vector
|
---|
| 828 | * \param *x3 third vector
|
---|
| 829 | * \param *factors three-component vector with the factor for each given vector
|
---|
| 830 | */
|
---|
[776b64] | 831 | void Vector::LinearCombinationOfVectors(const Vector * const x1, const Vector * const x2, const Vector * const x3, const double * const factors)
|
---|
[6ac7ee] | 832 | {
|
---|
[042f82] | 833 | for(int i=NDIM;i--;)
|
---|
| 834 | x[i] = factors[0]*x1->x[i] + factors[1]*x2->x[i] + factors[2]*x3->x[i];
|
---|
[6ac7ee] | 835 | };
|
---|
| 836 |
|
---|
| 837 | /** Mirrors atom against a given plane.
|
---|
| 838 | * \param n[] normal vector of mirror plane.
|
---|
| 839 | */
|
---|
[776b64] | 840 | void Vector::Mirror(const Vector * const n)
|
---|
[6ac7ee] | 841 | {
|
---|
[042f82] | 842 | double projection;
|
---|
| 843 | projection = ScalarProduct(n)/n->ScalarProduct(n); // remove constancy from n (keep as logical one)
|
---|
| 844 | // withdraw projected vector twice from original one
|
---|
[e138de] | 845 | Log() << Verbose(1) << "Vector: ";
|
---|
| 846 | Output();
|
---|
| 847 | Log() << Verbose(0) << "\t";
|
---|
[042f82] | 848 | for (int i=NDIM;i--;)
|
---|
| 849 | x[i] -= 2.*projection*n->x[i];
|
---|
[e138de] | 850 | Log() << Verbose(0) << "Projected vector: ";
|
---|
| 851 | Output();
|
---|
| 852 | Log() << Verbose(0) << endl;
|
---|
[6ac7ee] | 853 | };
|
---|
| 854 |
|
---|
| 855 | /** Calculates normal vector for three given vectors (being three points in space).
|
---|
| 856 | * Makes this vector orthonormal to the three given points, making up a place in 3d space.
|
---|
| 857 | * \param *y1 first vector
|
---|
| 858 | * \param *y2 second vector
|
---|
| 859 | * \param *y3 third vector
|
---|
| 860 | * \return true - success, vectors are linear independent, false - failure due to linear dependency
|
---|
| 861 | */
|
---|
[776b64] | 862 | bool Vector::MakeNormalVector(const Vector * const y1, const Vector * const y2, const Vector * const y3)
|
---|
[6ac7ee] | 863 | {
|
---|
[042f82] | 864 | Vector x1, x2;
|
---|
[6ac7ee] | 865 |
|
---|
[042f82] | 866 | x1.CopyVector(y1);
|
---|
| 867 | x1.SubtractVector(y2);
|
---|
| 868 | x2.CopyVector(y3);
|
---|
| 869 | x2.SubtractVector(y2);
|
---|
| 870 | if ((fabs(x1.Norm()) < MYEPSILON) || (fabs(x2.Norm()) < MYEPSILON) || (fabs(x1.Angle(&x2)) < MYEPSILON)) {
|
---|
[58ed4a] | 871 | DoeLog(2) && (eLog()<< Verbose(2) << "Given vectors are linear dependent." << endl);
|
---|
[042f82] | 872 | return false;
|
---|
| 873 | }
|
---|
[e138de] | 874 | // Log() << Verbose(4) << "relative, first plane coordinates:";
|
---|
[042f82] | 875 | // x1.Output((ofstream *)&cout);
|
---|
[e138de] | 876 | // Log() << Verbose(0) << endl;
|
---|
| 877 | // Log() << Verbose(4) << "second plane coordinates:";
|
---|
[042f82] | 878 | // x2.Output((ofstream *)&cout);
|
---|
[e138de] | 879 | // Log() << Verbose(0) << endl;
|
---|
[6ac7ee] | 880 |
|
---|
[042f82] | 881 | this->x[0] = (x1.x[1]*x2.x[2] - x1.x[2]*x2.x[1]);
|
---|
| 882 | this->x[1] = (x1.x[2]*x2.x[0] - x1.x[0]*x2.x[2]);
|
---|
| 883 | this->x[2] = (x1.x[0]*x2.x[1] - x1.x[1]*x2.x[0]);
|
---|
| 884 | Normalize();
|
---|
[6ac7ee] | 885 |
|
---|
[042f82] | 886 | return true;
|
---|
[6ac7ee] | 887 | };
|
---|
| 888 |
|
---|
| 889 |
|
---|
| 890 | /** Calculates orthonormal vector to two given vectors.
|
---|
| 891 | * Makes this vector orthonormal to two given vectors. This is very similar to the other
|
---|
| 892 | * vector::MakeNormalVector(), only there three points whereas here two difference
|
---|
| 893 | * vectors are given.
|
---|
| 894 | * \param *x1 first vector
|
---|
| 895 | * \param *x2 second vector
|
---|
| 896 | * \return true - success, vectors are linear independent, false - failure due to linear dependency
|
---|
| 897 | */
|
---|
[776b64] | 898 | bool Vector::MakeNormalVector(const Vector * const y1, const Vector * const y2)
|
---|
[6ac7ee] | 899 | {
|
---|
[042f82] | 900 | Vector x1,x2;
|
---|
| 901 | x1.CopyVector(y1);
|
---|
| 902 | x2.CopyVector(y2);
|
---|
| 903 | Zero();
|
---|
| 904 | if ((fabs(x1.Norm()) < MYEPSILON) || (fabs(x2.Norm()) < MYEPSILON) || (fabs(x1.Angle(&x2)) < MYEPSILON)) {
|
---|
[58ed4a] | 905 | DoeLog(2) && (eLog()<< Verbose(2) << "Given vectors are linear dependent." << endl);
|
---|
[042f82] | 906 | return false;
|
---|
| 907 | }
|
---|
[e138de] | 908 | // Log() << Verbose(4) << "relative, first plane coordinates:";
|
---|
[042f82] | 909 | // x1.Output((ofstream *)&cout);
|
---|
[e138de] | 910 | // Log() << Verbose(0) << endl;
|
---|
| 911 | // Log() << Verbose(4) << "second plane coordinates:";
|
---|
[042f82] | 912 | // x2.Output((ofstream *)&cout);
|
---|
[e138de] | 913 | // Log() << Verbose(0) << endl;
|
---|
[042f82] | 914 |
|
---|
| 915 | this->x[0] = (x1.x[1]*x2.x[2] - x1.x[2]*x2.x[1]);
|
---|
| 916 | this->x[1] = (x1.x[2]*x2.x[0] - x1.x[0]*x2.x[2]);
|
---|
| 917 | this->x[2] = (x1.x[0]*x2.x[1] - x1.x[1]*x2.x[0]);
|
---|
| 918 | Normalize();
|
---|
| 919 |
|
---|
| 920 | return true;
|
---|
[6ac7ee] | 921 | };
|
---|
| 922 |
|
---|
| 923 | /** Calculates orthonormal vector to one given vectors.
|
---|
| 924 | * Just subtracts the projection onto the given vector from this vector.
|
---|
[ef9df36] | 925 | * The removed part of the vector is Vector::Projection()
|
---|
[6ac7ee] | 926 | * \param *x1 vector
|
---|
| 927 | * \return true - success, false - vector is zero
|
---|
| 928 | */
|
---|
[776b64] | 929 | bool Vector::MakeNormalVector(const Vector * const y1)
|
---|
[6ac7ee] | 930 | {
|
---|
[042f82] | 931 | bool result = false;
|
---|
[ef9df36] | 932 | double factor = y1->ScalarProduct(this)/y1->NormSquared();
|
---|
[042f82] | 933 | Vector x1;
|
---|
| 934 | x1.CopyVector(y1);
|
---|
[46670d] | 935 | x1.Scale(factor);
|
---|
[042f82] | 936 | SubtractVector(&x1);
|
---|
| 937 | for (int i=NDIM;i--;)
|
---|
| 938 | result = result || (fabs(x[i]) > MYEPSILON);
|
---|
[6ac7ee] | 939 |
|
---|
[042f82] | 940 | return result;
|
---|
[6ac7ee] | 941 | };
|
---|
| 942 |
|
---|
| 943 | /** Creates this vector as one of the possible orthonormal ones to the given one.
|
---|
| 944 | * Just scan how many components of given *vector are unequal to zero and
|
---|
| 945 | * try to get the skp of both to be zero accordingly.
|
---|
| 946 | * \param *vector given vector
|
---|
| 947 | * \return true - success, false - failure (null vector given)
|
---|
| 948 | */
|
---|
[776b64] | 949 | bool Vector::GetOneNormalVector(const Vector * const GivenVector)
|
---|
[6ac7ee] | 950 | {
|
---|
[042f82] | 951 | int Components[NDIM]; // contains indices of non-zero components
|
---|
| 952 | int Last = 0; // count the number of non-zero entries in vector
|
---|
| 953 | int j; // loop variables
|
---|
| 954 | double norm;
|
---|
| 955 |
|
---|
[e138de] | 956 | Log() << Verbose(4);
|
---|
| 957 | GivenVector->Output();
|
---|
| 958 | Log() << Verbose(0) << endl;
|
---|
[042f82] | 959 | for (j=NDIM;j--;)
|
---|
| 960 | Components[j] = -1;
|
---|
| 961 | // find two components != 0
|
---|
| 962 | for (j=0;j<NDIM;j++)
|
---|
| 963 | if (fabs(GivenVector->x[j]) > MYEPSILON)
|
---|
| 964 | Components[Last++] = j;
|
---|
[e138de] | 965 | Log() << Verbose(4) << Last << " Components != 0: (" << Components[0] << "," << Components[1] << "," << Components[2] << ")" << endl;
|
---|
[042f82] | 966 |
|
---|
| 967 | switch(Last) {
|
---|
| 968 | case 3: // threecomponent system
|
---|
| 969 | case 2: // two component system
|
---|
| 970 | norm = sqrt(1./(GivenVector->x[Components[1]]*GivenVector->x[Components[1]]) + 1./(GivenVector->x[Components[0]]*GivenVector->x[Components[0]]));
|
---|
| 971 | x[Components[2]] = 0.;
|
---|
| 972 | // in skp both remaining parts shall become zero but with opposite sign and third is zero
|
---|
| 973 | x[Components[1]] = -1./GivenVector->x[Components[1]] / norm;
|
---|
| 974 | x[Components[0]] = 1./GivenVector->x[Components[0]] / norm;
|
---|
| 975 | return true;
|
---|
| 976 | break;
|
---|
| 977 | case 1: // one component system
|
---|
| 978 | // set sole non-zero component to 0, and one of the other zero component pendants to 1
|
---|
| 979 | x[(Components[0]+2)%NDIM] = 0.;
|
---|
| 980 | x[(Components[0]+1)%NDIM] = 1.;
|
---|
| 981 | x[Components[0]] = 0.;
|
---|
| 982 | return true;
|
---|
| 983 | break;
|
---|
| 984 | default:
|
---|
| 985 | return false;
|
---|
| 986 | }
|
---|
[6ac7ee] | 987 | };
|
---|
| 988 |
|
---|
[ef9df36] | 989 | /** Determines parameter needed to multiply this vector to obtain intersection point with plane defined by \a *A, \a *B and \a *C.
|
---|
[6ac7ee] | 990 | * \param *A first plane vector
|
---|
| 991 | * \param *B second plane vector
|
---|
| 992 | * \param *C third plane vector
|
---|
| 993 | * \return scaling parameter for this vector
|
---|
| 994 | */
|
---|
[776b64] | 995 | double Vector::CutsPlaneAt(const Vector * const A, const Vector * const B, const Vector * const C) const
|
---|
[6ac7ee] | 996 | {
|
---|
[e138de] | 997 | // Log() << Verbose(3) << "For comparison: ";
|
---|
| 998 | // Log() << Verbose(0) << "A " << A->Projection(this) << "\t";
|
---|
| 999 | // Log() << Verbose(0) << "B " << B->Projection(this) << "\t";
|
---|
| 1000 | // Log() << Verbose(0) << "C " << C->Projection(this) << "\t";
|
---|
| 1001 | // Log() << Verbose(0) << endl;
|
---|
[ef9df36] | 1002 | return A->ScalarProduct(this);
|
---|
[6ac7ee] | 1003 | };
|
---|
| 1004 |
|
---|
| 1005 | /** Creates a new vector as the one with least square distance to a given set of \a vectors.
|
---|
| 1006 | * \param *vectors set of vectors
|
---|
| 1007 | * \param num number of vectors
|
---|
| 1008 | * \return true if success, false if failed due to linear dependency
|
---|
| 1009 | */
|
---|
[776b64] | 1010 | bool Vector::LSQdistance(const Vector **vectors, int num)
|
---|
[6ac7ee] | 1011 | {
|
---|
[042f82] | 1012 | int j;
|
---|
[6ac7ee] | 1013 |
|
---|
[042f82] | 1014 | for (j=0;j<num;j++) {
|
---|
[e138de] | 1015 | Log() << Verbose(1) << j << "th atom's vector: ";
|
---|
| 1016 | (vectors[j])->Output();
|
---|
| 1017 | Log() << Verbose(0) << endl;
|
---|
[042f82] | 1018 | }
|
---|
[6ac7ee] | 1019 |
|
---|
[042f82] | 1020 | int np = 3;
|
---|
| 1021 | struct LSQ_params par;
|
---|
[6ac7ee] | 1022 |
|
---|
[042f82] | 1023 | const gsl_multimin_fminimizer_type *T =
|
---|
| 1024 | gsl_multimin_fminimizer_nmsimplex;
|
---|
| 1025 | gsl_multimin_fminimizer *s = NULL;
|
---|
| 1026 | gsl_vector *ss, *y;
|
---|
| 1027 | gsl_multimin_function minex_func;
|
---|
[6ac7ee] | 1028 |
|
---|
[042f82] | 1029 | size_t iter = 0, i;
|
---|
| 1030 | int status;
|
---|
| 1031 | double size;
|
---|
[6ac7ee] | 1032 |
|
---|
[042f82] | 1033 | /* Initial vertex size vector */
|
---|
| 1034 | ss = gsl_vector_alloc (np);
|
---|
| 1035 | y = gsl_vector_alloc (np);
|
---|
[6ac7ee] | 1036 |
|
---|
[042f82] | 1037 | /* Set all step sizes to 1 */
|
---|
| 1038 | gsl_vector_set_all (ss, 1.0);
|
---|
[6ac7ee] | 1039 |
|
---|
[042f82] | 1040 | /* Starting point */
|
---|
| 1041 | par.vectors = vectors;
|
---|
| 1042 | par.num = num;
|
---|
[6ac7ee] | 1043 |
|
---|
[042f82] | 1044 | for (i=NDIM;i--;)
|
---|
| 1045 | gsl_vector_set(y, i, (vectors[0]->x[i] - vectors[1]->x[i])/2.);
|
---|
[6ac7ee] | 1046 |
|
---|
[042f82] | 1047 | /* Initialize method and iterate */
|
---|
| 1048 | minex_func.f = &LSQ;
|
---|
| 1049 | minex_func.n = np;
|
---|
| 1050 | minex_func.params = (void *)∥
|
---|
[6ac7ee] | 1051 |
|
---|
[042f82] | 1052 | s = gsl_multimin_fminimizer_alloc (T, np);
|
---|
| 1053 | gsl_multimin_fminimizer_set (s, &minex_func, y, ss);
|
---|
[6ac7ee] | 1054 |
|
---|
[042f82] | 1055 | do
|
---|
| 1056 | {
|
---|
| 1057 | iter++;
|
---|
| 1058 | status = gsl_multimin_fminimizer_iterate(s);
|
---|
[6ac7ee] | 1059 |
|
---|
[042f82] | 1060 | if (status)
|
---|
| 1061 | break;
|
---|
[6ac7ee] | 1062 |
|
---|
[042f82] | 1063 | size = gsl_multimin_fminimizer_size (s);
|
---|
| 1064 | status = gsl_multimin_test_size (size, 1e-2);
|
---|
[6ac7ee] | 1065 |
|
---|
[042f82] | 1066 | if (status == GSL_SUCCESS)
|
---|
| 1067 | {
|
---|
| 1068 | printf ("converged to minimum at\n");
|
---|
| 1069 | }
|
---|
[6ac7ee] | 1070 |
|
---|
[042f82] | 1071 | printf ("%5d ", (int)iter);
|
---|
| 1072 | for (i = 0; i < (size_t)np; i++)
|
---|
| 1073 | {
|
---|
| 1074 | printf ("%10.3e ", gsl_vector_get (s->x, i));
|
---|
| 1075 | }
|
---|
| 1076 | printf ("f() = %7.3f size = %.3f\n", s->fval, size);
|
---|
| 1077 | }
|
---|
| 1078 | while (status == GSL_CONTINUE && iter < 100);
|
---|
[6ac7ee] | 1079 |
|
---|
[042f82] | 1080 | for (i=(size_t)np;i--;)
|
---|
| 1081 | this->x[i] = gsl_vector_get(s->x, i);
|
---|
| 1082 | gsl_vector_free(y);
|
---|
| 1083 | gsl_vector_free(ss);
|
---|
| 1084 | gsl_multimin_fminimizer_free (s);
|
---|
[6ac7ee] | 1085 |
|
---|
[042f82] | 1086 | return true;
|
---|
[6ac7ee] | 1087 | };
|
---|
| 1088 |
|
---|
| 1089 | /** Adds vector \a *y componentwise.
|
---|
| 1090 | * \param *y vector
|
---|
| 1091 | */
|
---|
[776b64] | 1092 | void Vector::AddVector(const Vector * const y)
|
---|
[6ac7ee] | 1093 | {
|
---|
[042f82] | 1094 | for (int i=NDIM;i--;)
|
---|
| 1095 | this->x[i] += y->x[i];
|
---|
[6ac7ee] | 1096 | }
|
---|
| 1097 |
|
---|
| 1098 | /** Adds vector \a *y componentwise.
|
---|
| 1099 | * \param *y vector
|
---|
| 1100 | */
|
---|
[776b64] | 1101 | void Vector::SubtractVector(const Vector * const y)
|
---|
[6ac7ee] | 1102 | {
|
---|
[042f82] | 1103 | for (int i=NDIM;i--;)
|
---|
| 1104 | this->x[i] -= y->x[i];
|
---|
[6ac7ee] | 1105 | }
|
---|
| 1106 |
|
---|
| 1107 | /** Copy vector \a *y componentwise.
|
---|
| 1108 | * \param *y vector
|
---|
| 1109 | */
|
---|
[776b64] | 1110 | void Vector::CopyVector(const Vector * const y)
|
---|
[6ac7ee] | 1111 | {
|
---|
[042f82] | 1112 | for (int i=NDIM;i--;)
|
---|
| 1113 | this->x[i] = y->x[i];
|
---|
[6ac7ee] | 1114 | }
|
---|
| 1115 |
|
---|
[ef9df36] | 1116 | /** Copy vector \a y componentwise.
|
---|
| 1117 | * \param y vector
|
---|
| 1118 | */
|
---|
[776b64] | 1119 | void Vector::CopyVector(const Vector &y)
|
---|
[ef9df36] | 1120 | {
|
---|
| 1121 | for (int i=NDIM;i--;)
|
---|
| 1122 | this->x[i] = y.x[i];
|
---|
| 1123 | }
|
---|
| 1124 |
|
---|
[6ac7ee] | 1125 |
|
---|
| 1126 | /** Asks for position, checks for boundary.
|
---|
| 1127 | * \param cell_size unitary size of cubic cell, coordinates must be within 0...cell_size
|
---|
| 1128 | * \param check whether bounds shall be checked (true) or not (false)
|
---|
| 1129 | */
|
---|
[776b64] | 1130 | void Vector::AskPosition(const double * const cell_size, const bool check)
|
---|
[6ac7ee] | 1131 | {
|
---|
[042f82] | 1132 | char coords[3] = {'x','y','z'};
|
---|
| 1133 | int j = -1;
|
---|
| 1134 | for (int i=0;i<3;i++) {
|
---|
| 1135 | j += i+1;
|
---|
| 1136 | do {
|
---|
[e138de] | 1137 | Log() << Verbose(0) << coords[i] << "[0.." << cell_size[j] << "]: ";
|
---|
[042f82] | 1138 | cin >> x[i];
|
---|
| 1139 | } while (((x[i] < 0) || (x[i] >= cell_size[j])) && (check));
|
---|
| 1140 | }
|
---|
[6ac7ee] | 1141 | };
|
---|
| 1142 |
|
---|
| 1143 | /** Solves a vectorial system consisting of two orthogonal statements and a norm statement.
|
---|
| 1144 | * This is linear system of equations to be solved, however of the three given (skp of this vector\
|
---|
| 1145 | * with either of the three hast to be zero) only two are linear independent. The third equation
|
---|
| 1146 | * is that the vector should be of magnitude 1 (orthonormal). This all leads to a case-based solution
|
---|
| 1147 | * where very often it has to be checked whether a certain value is zero or not and thus forked into
|
---|
| 1148 | * another case.
|
---|
| 1149 | * \param *x1 first vector
|
---|
| 1150 | * \param *x2 second vector
|
---|
| 1151 | * \param *y third vector
|
---|
| 1152 | * \param alpha first angle
|
---|
| 1153 | * \param beta second angle
|
---|
| 1154 | * \param c norm of final vector
|
---|
| 1155 | * \return a vector with \f$\langle x1,x2 \rangle=A\f$, \f$\langle x1,y \rangle = B\f$ and with norm \a c.
|
---|
| 1156 | * \bug this is not yet working properly
|
---|
| 1157 | */
|
---|
[776b64] | 1158 | bool Vector::SolveSystem(Vector * x1, Vector * x2, Vector * y, const double alpha, const double beta, const double c)
|
---|
[6ac7ee] | 1159 | {
|
---|
[042f82] | 1160 | double D1,D2,D3,E1,E2,F1,F2,F3,p,q=0., A, B1, B2, C;
|
---|
| 1161 | double ang; // angle on testing
|
---|
| 1162 | double sign[3];
|
---|
| 1163 | int i,j,k;
|
---|
| 1164 | A = cos(alpha) * x1->Norm() * c;
|
---|
| 1165 | B1 = cos(beta + M_PI/2.) * y->Norm() * c;
|
---|
| 1166 | B2 = cos(beta) * x2->Norm() * c;
|
---|
| 1167 | C = c * c;
|
---|
[e138de] | 1168 | Log() << Verbose(2) << "A " << A << "\tB " << B1 << "\tC " << C << endl;
|
---|
[042f82] | 1169 | int flag = 0;
|
---|
| 1170 | if (fabs(x1->x[0]) < MYEPSILON) { // check for zero components for the later flipping and back-flipping
|
---|
| 1171 | if (fabs(x1->x[1]) > MYEPSILON) {
|
---|
| 1172 | flag = 1;
|
---|
| 1173 | } else if (fabs(x1->x[2]) > MYEPSILON) {
|
---|
| 1174 | flag = 2;
|
---|
| 1175 | } else {
|
---|
| 1176 | return false;
|
---|
| 1177 | }
|
---|
| 1178 | }
|
---|
| 1179 | switch (flag) {
|
---|
| 1180 | default:
|
---|
| 1181 | case 0:
|
---|
| 1182 | break;
|
---|
| 1183 | case 2:
|
---|
[ad8b0d] | 1184 | flip(x1->x[0],x1->x[1]);
|
---|
| 1185 | flip(x2->x[0],x2->x[1]);
|
---|
| 1186 | flip(y->x[0],y->x[1]);
|
---|
| 1187 | //flip(x[0],x[1]);
|
---|
| 1188 | flip(x1->x[1],x1->x[2]);
|
---|
| 1189 | flip(x2->x[1],x2->x[2]);
|
---|
| 1190 | flip(y->x[1],y->x[2]);
|
---|
| 1191 | //flip(x[1],x[2]);
|
---|
[042f82] | 1192 | case 1:
|
---|
[ad8b0d] | 1193 | flip(x1->x[0],x1->x[1]);
|
---|
| 1194 | flip(x2->x[0],x2->x[1]);
|
---|
| 1195 | flip(y->x[0],y->x[1]);
|
---|
| 1196 | //flip(x[0],x[1]);
|
---|
| 1197 | flip(x1->x[1],x1->x[2]);
|
---|
| 1198 | flip(x2->x[1],x2->x[2]);
|
---|
| 1199 | flip(y->x[1],y->x[2]);
|
---|
| 1200 | //flip(x[1],x[2]);
|
---|
[042f82] | 1201 | break;
|
---|
| 1202 | }
|
---|
| 1203 | // now comes the case system
|
---|
| 1204 | D1 = -y->x[0]/x1->x[0]*x1->x[1]+y->x[1];
|
---|
| 1205 | D2 = -y->x[0]/x1->x[0]*x1->x[2]+y->x[2];
|
---|
| 1206 | D3 = y->x[0]/x1->x[0]*A-B1;
|
---|
[e138de] | 1207 | Log() << Verbose(2) << "D1 " << D1 << "\tD2 " << D2 << "\tD3 " << D3 << "\n";
|
---|
[042f82] | 1208 | if (fabs(D1) < MYEPSILON) {
|
---|
[e138de] | 1209 | Log() << Verbose(2) << "D1 == 0!\n";
|
---|
[042f82] | 1210 | if (fabs(D2) > MYEPSILON) {
|
---|
[e138de] | 1211 | Log() << Verbose(3) << "D2 != 0!\n";
|
---|
[042f82] | 1212 | x[2] = -D3/D2;
|
---|
| 1213 | E1 = A/x1->x[0] + x1->x[2]/x1->x[0]*D3/D2;
|
---|
| 1214 | E2 = -x1->x[1]/x1->x[0];
|
---|
[e138de] | 1215 | Log() << Verbose(3) << "E1 " << E1 << "\tE2 " << E2 << "\n";
|
---|
[042f82] | 1216 | F1 = E1*E1 + 1.;
|
---|
| 1217 | F2 = -E1*E2;
|
---|
| 1218 | F3 = E1*E1 + D3*D3/(D2*D2) - C;
|
---|
[e138de] | 1219 | Log() << Verbose(3) << "F1 " << F1 << "\tF2 " << F2 << "\tF3 " << F3 << "\n";
|
---|
[042f82] | 1220 | if (fabs(F1) < MYEPSILON) {
|
---|
[e138de] | 1221 | Log() << Verbose(4) << "F1 == 0!\n";
|
---|
| 1222 | Log() << Verbose(4) << "Gleichungssystem linear\n";
|
---|
[042f82] | 1223 | x[1] = F3/(2.*F2);
|
---|
| 1224 | } else {
|
---|
| 1225 | p = F2/F1;
|
---|
| 1226 | q = p*p - F3/F1;
|
---|
[e138de] | 1227 | Log() << Verbose(4) << "p " << p << "\tq " << q << endl;
|
---|
[042f82] | 1228 | if (q < 0) {
|
---|
[e138de] | 1229 | Log() << Verbose(4) << "q < 0" << endl;
|
---|
[042f82] | 1230 | return false;
|
---|
| 1231 | }
|
---|
| 1232 | x[1] = p + sqrt(q);
|
---|
| 1233 | }
|
---|
| 1234 | x[0] = A/x1->x[0] - x1->x[1]/x1->x[0]*x[1] + x1->x[2]/x1->x[0]*x[2];
|
---|
| 1235 | } else {
|
---|
[e138de] | 1236 | Log() << Verbose(2) << "Gleichungssystem unterbestimmt\n";
|
---|
[042f82] | 1237 | return false;
|
---|
| 1238 | }
|
---|
| 1239 | } else {
|
---|
| 1240 | E1 = A/x1->x[0]+x1->x[1]/x1->x[0]*D3/D1;
|
---|
| 1241 | E2 = x1->x[1]/x1->x[0]*D2/D1 - x1->x[2];
|
---|
[e138de] | 1242 | Log() << Verbose(2) << "E1 " << E1 << "\tE2 " << E2 << "\n";
|
---|
[042f82] | 1243 | F1 = E2*E2 + D2*D2/(D1*D1) + 1.;
|
---|
| 1244 | F2 = -(E1*E2 + D2*D3/(D1*D1));
|
---|
| 1245 | F3 = E1*E1 + D3*D3/(D1*D1) - C;
|
---|
[e138de] | 1246 | Log() << Verbose(2) << "F1 " << F1 << "\tF2 " << F2 << "\tF3 " << F3 << "\n";
|
---|
[042f82] | 1247 | if (fabs(F1) < MYEPSILON) {
|
---|
[e138de] | 1248 | Log() << Verbose(3) << "F1 == 0!\n";
|
---|
| 1249 | Log() << Verbose(3) << "Gleichungssystem linear\n";
|
---|
[042f82] | 1250 | x[2] = F3/(2.*F2);
|
---|
| 1251 | } else {
|
---|
| 1252 | p = F2/F1;
|
---|
| 1253 | q = p*p - F3/F1;
|
---|
[e138de] | 1254 | Log() << Verbose(3) << "p " << p << "\tq " << q << endl;
|
---|
[042f82] | 1255 | if (q < 0) {
|
---|
[e138de] | 1256 | Log() << Verbose(3) << "q < 0" << endl;
|
---|
[042f82] | 1257 | return false;
|
---|
| 1258 | }
|
---|
| 1259 | x[2] = p + sqrt(q);
|
---|
| 1260 | }
|
---|
| 1261 | x[1] = (-D2 * x[2] - D3)/D1;
|
---|
| 1262 | x[0] = A/x1->x[0] - x1->x[1]/x1->x[0]*x[1] + x1->x[2]/x1->x[0]*x[2];
|
---|
| 1263 | }
|
---|
| 1264 | switch (flag) { // back-flipping
|
---|
| 1265 | default:
|
---|
| 1266 | case 0:
|
---|
| 1267 | break;
|
---|
| 1268 | case 2:
|
---|
[ad8b0d] | 1269 | flip(x1->x[0],x1->x[1]);
|
---|
| 1270 | flip(x2->x[0],x2->x[1]);
|
---|
| 1271 | flip(y->x[0],y->x[1]);
|
---|
| 1272 | flip(x[0],x[1]);
|
---|
| 1273 | flip(x1->x[1],x1->x[2]);
|
---|
| 1274 | flip(x2->x[1],x2->x[2]);
|
---|
| 1275 | flip(y->x[1],y->x[2]);
|
---|
| 1276 | flip(x[1],x[2]);
|
---|
[042f82] | 1277 | case 1:
|
---|
[ad8b0d] | 1278 | flip(x1->x[0],x1->x[1]);
|
---|
| 1279 | flip(x2->x[0],x2->x[1]);
|
---|
| 1280 | flip(y->x[0],y->x[1]);
|
---|
| 1281 | //flip(x[0],x[1]);
|
---|
| 1282 | flip(x1->x[1],x1->x[2]);
|
---|
| 1283 | flip(x2->x[1],x2->x[2]);
|
---|
| 1284 | flip(y->x[1],y->x[2]);
|
---|
| 1285 | flip(x[1],x[2]);
|
---|
[042f82] | 1286 | break;
|
---|
| 1287 | }
|
---|
| 1288 | // one z component is only determined by its radius (without sign)
|
---|
| 1289 | // thus check eight possible sign flips and determine by checking angle with second vector
|
---|
| 1290 | for (i=0;i<8;i++) {
|
---|
| 1291 | // set sign vector accordingly
|
---|
| 1292 | for (j=2;j>=0;j--) {
|
---|
| 1293 | k = (i & pot(2,j)) << j;
|
---|
[e138de] | 1294 | Log() << Verbose(2) << "k " << k << "\tpot(2,j) " << pot(2,j) << endl;
|
---|
[042f82] | 1295 | sign[j] = (k == 0) ? 1. : -1.;
|
---|
| 1296 | }
|
---|
[e138de] | 1297 | Log() << Verbose(2) << i << ": sign matrix is " << sign[0] << "\t" << sign[1] << "\t" << sign[2] << "\n";
|
---|
[042f82] | 1298 | // apply sign matrix
|
---|
| 1299 | for (j=NDIM;j--;)
|
---|
| 1300 | x[j] *= sign[j];
|
---|
| 1301 | // calculate angle and check
|
---|
| 1302 | ang = x2->Angle (this);
|
---|
[e138de] | 1303 | Log() << Verbose(1) << i << "th angle " << ang << "\tbeta " << cos(beta) << " :\t";
|
---|
[042f82] | 1304 | if (fabs(ang - cos(beta)) < MYEPSILON) {
|
---|
| 1305 | break;
|
---|
| 1306 | }
|
---|
| 1307 | // unapply sign matrix (is its own inverse)
|
---|
| 1308 | for (j=NDIM;j--;)
|
---|
| 1309 | x[j] *= sign[j];
|
---|
| 1310 | }
|
---|
| 1311 | return true;
|
---|
[6ac7ee] | 1312 | };
|
---|
[89c8b2] | 1313 |
|
---|
| 1314 | /**
|
---|
| 1315 | * Checks whether this vector is within the parallelepiped defined by the given three vectors and
|
---|
| 1316 | * their offset.
|
---|
| 1317 | *
|
---|
| 1318 | * @param offest for the origin of the parallelepiped
|
---|
| 1319 | * @param three vectors forming the matrix that defines the shape of the parallelpiped
|
---|
| 1320 | */
|
---|
[776b64] | 1321 | bool Vector::IsInParallelepiped(const Vector &offset, const double * const parallelepiped) const
|
---|
[89c8b2] | 1322 | {
|
---|
| 1323 | Vector a;
|
---|
| 1324 | a.CopyVector(this);
|
---|
| 1325 | a.SubtractVector(&offset);
|
---|
| 1326 | a.InverseMatrixMultiplication(parallelepiped);
|
---|
| 1327 | bool isInside = true;
|
---|
| 1328 |
|
---|
| 1329 | for (int i=NDIM;i--;)
|
---|
| 1330 | isInside = isInside && ((a.x[i] <= 1) && (a.x[i] >= 0));
|
---|
| 1331 |
|
---|
| 1332 | return isInside;
|
---|
| 1333 | }
|
---|