1 | /** \file vector.cpp
|
---|
2 | *
|
---|
3 | * Function implementations for the class vector.
|
---|
4 | *
|
---|
5 | */
|
---|
6 |
|
---|
7 |
|
---|
8 | #include "defs.hpp"
|
---|
9 | #include "helpers.hpp"
|
---|
10 | #include "info.hpp"
|
---|
11 | #include "gslmatrix.hpp"
|
---|
12 | #include "leastsquaremin.hpp"
|
---|
13 | #include "log.hpp"
|
---|
14 | #include "memoryallocator.hpp"
|
---|
15 | #include "vector.hpp"
|
---|
16 | #include "verbose.hpp"
|
---|
17 | #include "World.hpp"
|
---|
18 |
|
---|
19 | #include <gsl/gsl_linalg.h>
|
---|
20 | #include <gsl/gsl_matrix.h>
|
---|
21 | #include <gsl/gsl_permutation.h>
|
---|
22 | #include <gsl/gsl_vector.h>
|
---|
23 |
|
---|
24 | /************************************ Functions for class vector ************************************/
|
---|
25 |
|
---|
26 | /** Constructor of class vector.
|
---|
27 | */
|
---|
28 | Vector::Vector() { x[0] = x[1] = x[2] = 0.; };
|
---|
29 |
|
---|
30 | /** Constructor of class vector.
|
---|
31 | */
|
---|
32 | Vector::Vector(const Vector * const a)
|
---|
33 | {
|
---|
34 | x[0] = a->x[0];
|
---|
35 | x[1] = a->x[1];
|
---|
36 | x[2] = a->x[2];
|
---|
37 | };
|
---|
38 |
|
---|
39 | /** Constructor of class vector.
|
---|
40 | */
|
---|
41 | Vector::Vector(const Vector &a)
|
---|
42 | {
|
---|
43 | x[0] = a.x[0];
|
---|
44 | x[1] = a.x[1];
|
---|
45 | x[2] = a.x[2];
|
---|
46 | };
|
---|
47 |
|
---|
48 | /** Constructor of class vector.
|
---|
49 | */
|
---|
50 | Vector::Vector(const double x1, const double x2, const double x3) { x[0] = x1; x[1] = x2; x[2] = x3; };
|
---|
51 |
|
---|
52 | /** Desctructor of class vector.
|
---|
53 | */
|
---|
54 | Vector::~Vector() {};
|
---|
55 |
|
---|
56 | /** Calculates square of distance between this and another vector.
|
---|
57 | * \param *y array to second vector
|
---|
58 | * \return \f$| x - y |^2\f$
|
---|
59 | */
|
---|
60 | double Vector::DistanceSquared(const Vector * const y) const
|
---|
61 | {
|
---|
62 | double res = 0.;
|
---|
63 | for (int i=NDIM;i--;)
|
---|
64 | res += (x[i]-y->x[i])*(x[i]-y->x[i]);
|
---|
65 | return (res);
|
---|
66 | };
|
---|
67 |
|
---|
68 | /** Calculates distance between this and another vector.
|
---|
69 | * \param *y array to second vector
|
---|
70 | * \return \f$| x - y |\f$
|
---|
71 | */
|
---|
72 | double Vector::Distance(const Vector * const y) const
|
---|
73 | {
|
---|
74 | double res = 0.;
|
---|
75 | for (int i=NDIM;i--;)
|
---|
76 | res += (x[i]-y->x[i])*(x[i]-y->x[i]);
|
---|
77 | return (sqrt(res));
|
---|
78 | };
|
---|
79 |
|
---|
80 | /** Calculates distance between this and another vector in a periodic cell.
|
---|
81 | * \param *y array to second vector
|
---|
82 | * \param *cell_size 6-dimensional array with (xx, xy, yy, xz, yz, zz) entries specifying the periodic cell
|
---|
83 | * \return \f$| x - y |\f$
|
---|
84 | */
|
---|
85 | double Vector::PeriodicDistance(const Vector * const y, const double * const cell_size) const
|
---|
86 | {
|
---|
87 | double res = Distance(y), tmp, matrix[NDIM*NDIM];
|
---|
88 | Vector Shiftedy, TranslationVector;
|
---|
89 | int N[NDIM];
|
---|
90 | matrix[0] = cell_size[0];
|
---|
91 | matrix[1] = cell_size[1];
|
---|
92 | matrix[2] = cell_size[3];
|
---|
93 | matrix[3] = cell_size[1];
|
---|
94 | matrix[4] = cell_size[2];
|
---|
95 | matrix[5] = cell_size[4];
|
---|
96 | matrix[6] = cell_size[3];
|
---|
97 | matrix[7] = cell_size[4];
|
---|
98 | matrix[8] = cell_size[5];
|
---|
99 | // in order to check the periodic distance, translate one of the vectors into each of the 27 neighbouring cells
|
---|
100 | for (N[0]=-1;N[0]<=1;N[0]++)
|
---|
101 | for (N[1]=-1;N[1]<=1;N[1]++)
|
---|
102 | for (N[2]=-1;N[2]<=1;N[2]++) {
|
---|
103 | // create the translation vector
|
---|
104 | TranslationVector.Zero();
|
---|
105 | for (int i=NDIM;i--;)
|
---|
106 | TranslationVector.x[i] = (double)N[i];
|
---|
107 | TranslationVector.MatrixMultiplication(matrix);
|
---|
108 | // add onto the original vector to compare with
|
---|
109 | Shiftedy.CopyVector(y);
|
---|
110 | Shiftedy.AddVector(&TranslationVector);
|
---|
111 | // get distance and compare with minimum so far
|
---|
112 | tmp = Distance(&Shiftedy);
|
---|
113 | if (tmp < res) res = tmp;
|
---|
114 | }
|
---|
115 | return (res);
|
---|
116 | };
|
---|
117 |
|
---|
118 | /** Calculates distance between this and another vector in a periodic cell.
|
---|
119 | * \param *y array to second vector
|
---|
120 | * \param *cell_size 6-dimensional array with (xx, xy, yy, xz, yz, zz) entries specifying the periodic cell
|
---|
121 | * \return \f$| x - y |^2\f$
|
---|
122 | */
|
---|
123 | double Vector::PeriodicDistanceSquared(const Vector * const y, const double * const cell_size) const
|
---|
124 | {
|
---|
125 | double res = DistanceSquared(y), tmp, matrix[NDIM*NDIM];
|
---|
126 | Vector Shiftedy, TranslationVector;
|
---|
127 | int N[NDIM];
|
---|
128 | matrix[0] = cell_size[0];
|
---|
129 | matrix[1] = cell_size[1];
|
---|
130 | matrix[2] = cell_size[3];
|
---|
131 | matrix[3] = cell_size[1];
|
---|
132 | matrix[4] = cell_size[2];
|
---|
133 | matrix[5] = cell_size[4];
|
---|
134 | matrix[6] = cell_size[3];
|
---|
135 | matrix[7] = cell_size[4];
|
---|
136 | matrix[8] = cell_size[5];
|
---|
137 | // in order to check the periodic distance, translate one of the vectors into each of the 27 neighbouring cells
|
---|
138 | for (N[0]=-1;N[0]<=1;N[0]++)
|
---|
139 | for (N[1]=-1;N[1]<=1;N[1]++)
|
---|
140 | for (N[2]=-1;N[2]<=1;N[2]++) {
|
---|
141 | // create the translation vector
|
---|
142 | TranslationVector.Zero();
|
---|
143 | for (int i=NDIM;i--;)
|
---|
144 | TranslationVector.x[i] = (double)N[i];
|
---|
145 | TranslationVector.MatrixMultiplication(matrix);
|
---|
146 | // add onto the original vector to compare with
|
---|
147 | Shiftedy.CopyVector(y);
|
---|
148 | Shiftedy.AddVector(&TranslationVector);
|
---|
149 | // get distance and compare with minimum so far
|
---|
150 | tmp = DistanceSquared(&Shiftedy);
|
---|
151 | if (tmp < res) res = tmp;
|
---|
152 | }
|
---|
153 | return (res);
|
---|
154 | };
|
---|
155 |
|
---|
156 | /** Keeps the vector in a periodic cell, defined by the symmetric \a *matrix.
|
---|
157 | * \param *out ofstream for debugging messages
|
---|
158 | * Tries to translate a vector into each adjacent neighbouring cell.
|
---|
159 | */
|
---|
160 | void Vector::KeepPeriodic(const double * const matrix)
|
---|
161 | {
|
---|
162 | // int N[NDIM];
|
---|
163 | // bool flag = false;
|
---|
164 | //vector Shifted, TranslationVector;
|
---|
165 | Vector TestVector;
|
---|
166 | // Log() << Verbose(1) << "Begin of KeepPeriodic." << endl;
|
---|
167 | // Log() << Verbose(2) << "Vector is: ";
|
---|
168 | // Output(out);
|
---|
169 | // Log() << Verbose(0) << endl;
|
---|
170 | TestVector.CopyVector(this);
|
---|
171 | TestVector.InverseMatrixMultiplication(matrix);
|
---|
172 | for(int i=NDIM;i--;) { // correct periodically
|
---|
173 | if (TestVector.x[i] < 0) { // get every coefficient into the interval [0,1)
|
---|
174 | TestVector.x[i] += ceil(TestVector.x[i]);
|
---|
175 | } else {
|
---|
176 | TestVector.x[i] -= floor(TestVector.x[i]);
|
---|
177 | }
|
---|
178 | }
|
---|
179 | TestVector.MatrixMultiplication(matrix);
|
---|
180 | CopyVector(&TestVector);
|
---|
181 | // Log() << Verbose(2) << "New corrected vector is: ";
|
---|
182 | // Output(out);
|
---|
183 | // Log() << Verbose(0) << endl;
|
---|
184 | // Log() << Verbose(1) << "End of KeepPeriodic." << endl;
|
---|
185 | };
|
---|
186 |
|
---|
187 | /** Calculates scalar product between this and another vector.
|
---|
188 | * \param *y array to second vector
|
---|
189 | * \return \f$\langle x, y \rangle\f$
|
---|
190 | */
|
---|
191 | double Vector::ScalarProduct(const Vector * const y) const
|
---|
192 | {
|
---|
193 | double res = 0.;
|
---|
194 | for (int i=NDIM;i--;)
|
---|
195 | res += x[i]*y->x[i];
|
---|
196 | return (res);
|
---|
197 | };
|
---|
198 |
|
---|
199 |
|
---|
200 | /** Calculates VectorProduct between this and another vector.
|
---|
201 | * -# returns the Product in place of vector from which it was initiated
|
---|
202 | * -# ATTENTION: Only three dim.
|
---|
203 | * \param *y array to vector with which to calculate crossproduct
|
---|
204 | * \return \f$ x \times y \f&
|
---|
205 | */
|
---|
206 | void Vector::VectorProduct(const Vector * const y)
|
---|
207 | {
|
---|
208 | Vector tmp;
|
---|
209 | tmp.x[0] = x[1]* (y->x[2]) - x[2]* (y->x[1]);
|
---|
210 | tmp.x[1] = x[2]* (y->x[0]) - x[0]* (y->x[2]);
|
---|
211 | tmp.x[2] = x[0]* (y->x[1]) - x[1]* (y->x[0]);
|
---|
212 | this->CopyVector(&tmp);
|
---|
213 | };
|
---|
214 |
|
---|
215 |
|
---|
216 | /** projects this vector onto plane defined by \a *y.
|
---|
217 | * \param *y normal vector of plane
|
---|
218 | * \return \f$\langle x, y \rangle\f$
|
---|
219 | */
|
---|
220 | void Vector::ProjectOntoPlane(const Vector * const y)
|
---|
221 | {
|
---|
222 | Vector tmp;
|
---|
223 | tmp.CopyVector(y);
|
---|
224 | tmp.Normalize();
|
---|
225 | tmp.Scale(ScalarProduct(&tmp));
|
---|
226 | this->SubtractVector(&tmp);
|
---|
227 | };
|
---|
228 |
|
---|
229 | /** Calculates the intersection point between a line defined by \a *LineVector and \a *LineVector2 and a plane defined by \a *Normal and \a *PlaneOffset.
|
---|
230 | * According to [Bronstein] the vectorial plane equation is:
|
---|
231 | * -# \f$\stackrel{r}{\rightarrow} \cdot \stackrel{N}{\rightarrow} + D = 0\f$,
|
---|
232 | * where \f$\stackrel{r}{\rightarrow}\f$ is the vector to be testet, \f$\stackrel{N}{\rightarrow}\f$ is the plane's normal vector and
|
---|
233 | * \f$D = - \stackrel{a}{\rightarrow} \stackrel{N}{\rightarrow}\f$, the offset with respect to origin, if \f$\stackrel{a}{\rightarrow}\f$,
|
---|
234 | * is an offset vector onto the plane. The line is parametrized by \f$\stackrel{x}{\rightarrow} + k \stackrel{t}{\rightarrow}\f$, where
|
---|
235 | * \f$\stackrel{x}{\rightarrow}\f$ is the offset and \f$\stackrel{t}{\rightarrow}\f$ the directional vector (NOTE: No need to normalize
|
---|
236 | * the latter). Inserting the parametrized form into the plane equation and solving for \f$k\f$, which we insert then into the parametrization
|
---|
237 | * of the line yields the intersection point on the plane.
|
---|
238 | * \param *out output stream for debugging
|
---|
239 | * \param *PlaneNormal Plane's normal vector
|
---|
240 | * \param *PlaneOffset Plane's offset vector
|
---|
241 | * \param *Origin first vector of line
|
---|
242 | * \param *LineVector second vector of line
|
---|
243 | * \return true - \a this contains intersection point on return, false - line is parallel to plane (even if in-plane)
|
---|
244 | */
|
---|
245 | bool Vector::GetIntersectionWithPlane(const Vector * const PlaneNormal, const Vector * const PlaneOffset, const Vector * const Origin, const Vector * const LineVector)
|
---|
246 | {
|
---|
247 | Info FunctionInfo(__func__);
|
---|
248 | double factor;
|
---|
249 | Vector Direction, helper;
|
---|
250 |
|
---|
251 | // find intersection of a line defined by Offset and Direction with a plane defined by triangle
|
---|
252 | Direction.CopyVector(LineVector);
|
---|
253 | Direction.SubtractVector(Origin);
|
---|
254 | Direction.Normalize();
|
---|
255 | Log() << Verbose(1) << "INFO: Direction is " << Direction << "." << endl;
|
---|
256 | //Log() << Verbose(1) << "INFO: PlaneNormal is " << *PlaneNormal << " and PlaneOffset is " << *PlaneOffset << "." << endl;
|
---|
257 | factor = Direction.ScalarProduct(PlaneNormal);
|
---|
258 | if (fabs(factor) < MYEPSILON) { // Uniqueness: line parallel to plane?
|
---|
259 | Log() << Verbose(1) << "BAD: Line is parallel to plane, no intersection." << endl;
|
---|
260 | return false;
|
---|
261 | }
|
---|
262 | helper.CopyVector(PlaneOffset);
|
---|
263 | helper.SubtractVector(Origin);
|
---|
264 | factor = helper.ScalarProduct(PlaneNormal)/factor;
|
---|
265 | if (fabs(factor) < MYEPSILON) { // Origin is in-plane
|
---|
266 | Log() << Verbose(1) << "GOOD: Origin of line is in-plane." << endl;
|
---|
267 | CopyVector(Origin);
|
---|
268 | return true;
|
---|
269 | }
|
---|
270 | //factor = Origin->ScalarProduct(PlaneNormal)*(-PlaneOffset->ScalarProduct(PlaneNormal))/(Direction.ScalarProduct(PlaneNormal));
|
---|
271 | Direction.Scale(factor);
|
---|
272 | CopyVector(Origin);
|
---|
273 | Log() << Verbose(1) << "INFO: Scaled direction is " << Direction << "." << endl;
|
---|
274 | AddVector(&Direction);
|
---|
275 |
|
---|
276 | // test whether resulting vector really is on plane
|
---|
277 | helper.CopyVector(this);
|
---|
278 | helper.SubtractVector(PlaneOffset);
|
---|
279 | if (helper.ScalarProduct(PlaneNormal) < MYEPSILON) {
|
---|
280 | Log() << Verbose(1) << "GOOD: Intersection is " << *this << "." << endl;
|
---|
281 | return true;
|
---|
282 | } else {
|
---|
283 | DoeLog(2) && (eLog()<< Verbose(2) << "Intersection point " << *this << " is not on plane." << endl);
|
---|
284 | return false;
|
---|
285 | }
|
---|
286 | };
|
---|
287 |
|
---|
288 | /** Calculates the minimum distance vector of this vector to the plane.
|
---|
289 | * \param *out output stream for debugging
|
---|
290 | * \param *PlaneNormal normal of plane
|
---|
291 | * \param *PlaneOffset offset of plane
|
---|
292 | * \return distance vector onto to plane
|
---|
293 | */
|
---|
294 | Vector Vector::GetDistanceVectorToPlane(const Vector * const PlaneNormal, const Vector * const PlaneOffset) const
|
---|
295 | {
|
---|
296 | Vector temp;
|
---|
297 |
|
---|
298 | // first create part that is orthonormal to PlaneNormal with withdraw
|
---|
299 | temp.CopyVector(this);
|
---|
300 | temp.SubtractVector(PlaneOffset);
|
---|
301 | temp.MakeNormalVector(PlaneNormal);
|
---|
302 | temp.Scale(-1.);
|
---|
303 | // then add connecting vector from plane to point
|
---|
304 | temp.AddVector(this);
|
---|
305 | temp.SubtractVector(PlaneOffset);
|
---|
306 | double sign = temp.ScalarProduct(PlaneNormal);
|
---|
307 | if (fabs(sign) > MYEPSILON)
|
---|
308 | sign /= fabs(sign);
|
---|
309 | else
|
---|
310 | sign = 0.;
|
---|
311 |
|
---|
312 | temp.Normalize();
|
---|
313 | temp.Scale(sign);
|
---|
314 | return temp;
|
---|
315 | };
|
---|
316 |
|
---|
317 | /** Calculates the minimum distance of this vector to the plane.
|
---|
318 | * \sa Vector::GetDistanceVectorToPlane()
|
---|
319 | * \param *out output stream for debugging
|
---|
320 | * \param *PlaneNormal normal of plane
|
---|
321 | * \param *PlaneOffset offset of plane
|
---|
322 | * \return distance to plane
|
---|
323 | */
|
---|
324 | double Vector::DistanceToPlane(const Vector * const PlaneNormal, const Vector * const PlaneOffset) const
|
---|
325 | {
|
---|
326 | return GetDistanceVectorToPlane(PlaneNormal,PlaneOffset).Norm();
|
---|
327 | };
|
---|
328 |
|
---|
329 | /** Calculates the intersection of the two lines that are both on the same plane.
|
---|
330 | * This is taken from Weisstein, Eric W. "Line-Line Intersection." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/Line-LineIntersection.html
|
---|
331 | * \param *out output stream for debugging
|
---|
332 | * \param *Line1a first vector of first line
|
---|
333 | * \param *Line1b second vector of first line
|
---|
334 | * \param *Line2a first vector of second line
|
---|
335 | * \param *Line2b second vector of second line
|
---|
336 | * \param *PlaneNormal normal of plane, is supplemental/arbitrary
|
---|
337 | * \return true - \a this will contain the intersection on return, false - lines are parallel
|
---|
338 | */
|
---|
339 | bool Vector::GetIntersectionOfTwoLinesOnPlane(const Vector * const Line1a, const Vector * const Line1b, const Vector * const Line2a, const Vector * const Line2b, const Vector *PlaneNormal)
|
---|
340 | {
|
---|
341 | Info FunctionInfo(__func__);
|
---|
342 |
|
---|
343 | GSLMatrix *M = new GSLMatrix(4,4);
|
---|
344 |
|
---|
345 | M->SetAll(1.);
|
---|
346 | for (int i=0;i<3;i++) {
|
---|
347 | M->Set(0, i, Line1a->x[i]);
|
---|
348 | M->Set(1, i, Line1b->x[i]);
|
---|
349 | M->Set(2, i, Line2a->x[i]);
|
---|
350 | M->Set(3, i, Line2b->x[i]);
|
---|
351 | }
|
---|
352 |
|
---|
353 | //Log() << Verbose(1) << "Coefficent matrix is:" << endl;
|
---|
354 | //ostream &output = Log() << Verbose(1);
|
---|
355 | //for (int i=0;i<4;i++) {
|
---|
356 | // for (int j=0;j<4;j++)
|
---|
357 | // output << "\t" << M->Get(i,j);
|
---|
358 | // output << endl;
|
---|
359 | //}
|
---|
360 | if (fabs(M->Determinant()) > MYEPSILON) {
|
---|
361 | Log() << Verbose(1) << "Determinant of coefficient matrix is NOT zero." << endl;
|
---|
362 | return false;
|
---|
363 | }
|
---|
364 | Log() << Verbose(1) << "INFO: Line1a = " << *Line1a << ", Line1b = " << *Line1b << ", Line2a = " << *Line2a << ", Line2b = " << *Line2b << "." << endl;
|
---|
365 |
|
---|
366 |
|
---|
367 | // constuct a,b,c
|
---|
368 | Vector a;
|
---|
369 | Vector b;
|
---|
370 | Vector c;
|
---|
371 | Vector d;
|
---|
372 | a.CopyVector(Line1b);
|
---|
373 | a.SubtractVector(Line1a);
|
---|
374 | b.CopyVector(Line2b);
|
---|
375 | b.SubtractVector(Line2a);
|
---|
376 | c.CopyVector(Line2a);
|
---|
377 | c.SubtractVector(Line1a);
|
---|
378 | d.CopyVector(Line2b);
|
---|
379 | d.SubtractVector(Line1b);
|
---|
380 | Log() << Verbose(1) << "INFO: a = " << a << ", b = " << b << ", c = " << c << "." << endl;
|
---|
381 | if ((a.NormSquared() < MYEPSILON) || (b.NormSquared() < MYEPSILON)) {
|
---|
382 | Zero();
|
---|
383 | Log() << Verbose(1) << "At least one of the lines is ill-defined, i.e. offset equals second vector." << endl;
|
---|
384 | return false;
|
---|
385 | }
|
---|
386 |
|
---|
387 | // check for parallelity
|
---|
388 | Vector parallel;
|
---|
389 | double factor = 0.;
|
---|
390 | if (fabs(a.ScalarProduct(&b)*a.ScalarProduct(&b)/a.NormSquared()/b.NormSquared() - 1.) < MYEPSILON) {
|
---|
391 | parallel.CopyVector(Line1a);
|
---|
392 | parallel.SubtractVector(Line2a);
|
---|
393 | factor = parallel.ScalarProduct(&a)/a.Norm();
|
---|
394 | if ((factor >= -MYEPSILON) && (factor - 1. < MYEPSILON)) {
|
---|
395 | CopyVector(Line2a);
|
---|
396 | Log() << Verbose(1) << "Lines conincide." << endl;
|
---|
397 | return true;
|
---|
398 | } else {
|
---|
399 | parallel.CopyVector(Line1a);
|
---|
400 | parallel.SubtractVector(Line2b);
|
---|
401 | factor = parallel.ScalarProduct(&a)/a.Norm();
|
---|
402 | if ((factor >= -MYEPSILON) && (factor - 1. < MYEPSILON)) {
|
---|
403 | CopyVector(Line2b);
|
---|
404 | Log() << Verbose(1) << "Lines conincide." << endl;
|
---|
405 | return true;
|
---|
406 | }
|
---|
407 | }
|
---|
408 | Log() << Verbose(1) << "Lines are parallel." << endl;
|
---|
409 | Zero();
|
---|
410 | return false;
|
---|
411 | }
|
---|
412 |
|
---|
413 | // obtain s
|
---|
414 | double s;
|
---|
415 | Vector temp1, temp2;
|
---|
416 | temp1.CopyVector(&c);
|
---|
417 | temp1.VectorProduct(&b);
|
---|
418 | temp2.CopyVector(&a);
|
---|
419 | temp2.VectorProduct(&b);
|
---|
420 | Log() << Verbose(1) << "INFO: temp1 = " << temp1 << ", temp2 = " << temp2 << "." << endl;
|
---|
421 | if (fabs(temp2.NormSquared()) > MYEPSILON)
|
---|
422 | s = temp1.ScalarProduct(&temp2)/temp2.NormSquared();
|
---|
423 | else
|
---|
424 | s = 0.;
|
---|
425 | Log() << Verbose(1) << "Factor s is " << temp1.ScalarProduct(&temp2) << "/" << temp2.NormSquared() << " = " << s << "." << endl;
|
---|
426 |
|
---|
427 | // construct intersection
|
---|
428 | CopyVector(&a);
|
---|
429 | Scale(s);
|
---|
430 | AddVector(Line1a);
|
---|
431 | Log() << Verbose(1) << "Intersection is at " << *this << "." << endl;
|
---|
432 |
|
---|
433 | return true;
|
---|
434 | };
|
---|
435 |
|
---|
436 | /** Calculates the projection of a vector onto another \a *y.
|
---|
437 | * \param *y array to second vector
|
---|
438 | */
|
---|
439 | void Vector::ProjectIt(const Vector * const y)
|
---|
440 | {
|
---|
441 | Vector helper(*y);
|
---|
442 | helper.Scale(-(ScalarProduct(y)));
|
---|
443 | AddVector(&helper);
|
---|
444 | };
|
---|
445 |
|
---|
446 | /** Calculates the projection of a vector onto another \a *y.
|
---|
447 | * \param *y array to second vector
|
---|
448 | * \return Vector
|
---|
449 | */
|
---|
450 | Vector Vector::Projection(const Vector * const y) const
|
---|
451 | {
|
---|
452 | Vector helper(*y);
|
---|
453 | helper.Scale((ScalarProduct(y)/y->NormSquared()));
|
---|
454 |
|
---|
455 | return helper;
|
---|
456 | };
|
---|
457 |
|
---|
458 | /** Calculates norm of this vector.
|
---|
459 | * \return \f$|x|\f$
|
---|
460 | */
|
---|
461 | double Vector::Norm() const
|
---|
462 | {
|
---|
463 | double res = 0.;
|
---|
464 | for (int i=NDIM;i--;)
|
---|
465 | res += this->x[i]*this->x[i];
|
---|
466 | return (sqrt(res));
|
---|
467 | };
|
---|
468 |
|
---|
469 | /** Calculates squared norm of this vector.
|
---|
470 | * \return \f$|x|^2\f$
|
---|
471 | */
|
---|
472 | double Vector::NormSquared() const
|
---|
473 | {
|
---|
474 | return (ScalarProduct(this));
|
---|
475 | };
|
---|
476 |
|
---|
477 | /** Normalizes this vector.
|
---|
478 | */
|
---|
479 | void Vector::Normalize()
|
---|
480 | {
|
---|
481 | double res = 0.;
|
---|
482 | for (int i=NDIM;i--;)
|
---|
483 | res += this->x[i]*this->x[i];
|
---|
484 | if (fabs(res) > MYEPSILON)
|
---|
485 | res = 1./sqrt(res);
|
---|
486 | Scale(&res);
|
---|
487 | };
|
---|
488 |
|
---|
489 | /** Zeros all components of this vector.
|
---|
490 | */
|
---|
491 | void Vector::Zero()
|
---|
492 | {
|
---|
493 | for (int i=NDIM;i--;)
|
---|
494 | this->x[i] = 0.;
|
---|
495 | };
|
---|
496 |
|
---|
497 | /** Zeros all components of this vector.
|
---|
498 | */
|
---|
499 | void Vector::One(const double one)
|
---|
500 | {
|
---|
501 | for (int i=NDIM;i--;)
|
---|
502 | this->x[i] = one;
|
---|
503 | };
|
---|
504 |
|
---|
505 | /** Initialises all components of this vector.
|
---|
506 | */
|
---|
507 | void Vector::Init(const double x1, const double x2, const double x3)
|
---|
508 | {
|
---|
509 | x[0] = x1;
|
---|
510 | x[1] = x2;
|
---|
511 | x[2] = x3;
|
---|
512 | };
|
---|
513 |
|
---|
514 | /** Checks whether vector has all components zero.
|
---|
515 | * @return true - vector is zero, false - vector is not
|
---|
516 | */
|
---|
517 | bool Vector::IsZero() const
|
---|
518 | {
|
---|
519 | return (fabs(x[0])+fabs(x[1])+fabs(x[2]) < MYEPSILON);
|
---|
520 | };
|
---|
521 |
|
---|
522 | /** Checks whether vector has length of 1.
|
---|
523 | * @return true - vector is normalized, false - vector is not
|
---|
524 | */
|
---|
525 | bool Vector::IsOne() const
|
---|
526 | {
|
---|
527 | return (fabs(Norm() - 1.) < MYEPSILON);
|
---|
528 | };
|
---|
529 |
|
---|
530 | /** Checks whether vector is normal to \a *normal.
|
---|
531 | * @return true - vector is normalized, false - vector is not
|
---|
532 | */
|
---|
533 | bool Vector::IsNormalTo(const Vector * const normal) const
|
---|
534 | {
|
---|
535 | if (ScalarProduct(normal) < MYEPSILON)
|
---|
536 | return true;
|
---|
537 | else
|
---|
538 | return false;
|
---|
539 | };
|
---|
540 |
|
---|
541 | /** Checks whether vector is normal to \a *normal.
|
---|
542 | * @return true - vector is normalized, false - vector is not
|
---|
543 | */
|
---|
544 | bool Vector::IsEqualTo(const Vector * const a) const
|
---|
545 | {
|
---|
546 | bool status = true;
|
---|
547 | for (int i=0;i<NDIM;i++) {
|
---|
548 | if (fabs(x[i] - a->x[i]) > MYEPSILON)
|
---|
549 | status = false;
|
---|
550 | }
|
---|
551 | return status;
|
---|
552 | };
|
---|
553 |
|
---|
554 | /** Calculates the angle between this and another vector.
|
---|
555 | * \param *y array to second vector
|
---|
556 | * \return \f$\acos\bigl(frac{\langle x, y \rangle}{|x||y|}\bigr)\f$
|
---|
557 | */
|
---|
558 | double Vector::Angle(const Vector * const y) const
|
---|
559 | {
|
---|
560 | double norm1 = Norm(), norm2 = y->Norm();
|
---|
561 | double angle = -1;
|
---|
562 | if ((fabs(norm1) > MYEPSILON) && (fabs(norm2) > MYEPSILON))
|
---|
563 | angle = this->ScalarProduct(y)/norm1/norm2;
|
---|
564 | // -1-MYEPSILON occured due to numerical imprecision, catch ...
|
---|
565 | //Log() << Verbose(2) << "INFO: acos(-1) = " << acos(-1) << ", acos(-1+MYEPSILON) = " << acos(-1+MYEPSILON) << ", acos(-1-MYEPSILON) = " << acos(-1-MYEPSILON) << "." << endl;
|
---|
566 | if (angle < -1)
|
---|
567 | angle = -1;
|
---|
568 | if (angle > 1)
|
---|
569 | angle = 1;
|
---|
570 | return acos(angle);
|
---|
571 | };
|
---|
572 |
|
---|
573 | /** Rotates the vector relative to the origin around the axis given by \a *axis by an angle of \a alpha.
|
---|
574 | * \param *axis rotation axis
|
---|
575 | * \param alpha rotation angle in radian
|
---|
576 | */
|
---|
577 | void Vector::RotateVector(const Vector * const axis, const double alpha)
|
---|
578 | {
|
---|
579 | Vector a,y;
|
---|
580 | // normalise this vector with respect to axis
|
---|
581 | a.CopyVector(this);
|
---|
582 | a.ProjectOntoPlane(axis);
|
---|
583 | // construct normal vector
|
---|
584 | bool rotatable = y.MakeNormalVector(axis,&a);
|
---|
585 | // The normal vector cannot be created if there is linar dependency.
|
---|
586 | // Then the vector to rotate is on the axis and any rotation leads to the vector itself.
|
---|
587 | if (!rotatable) {
|
---|
588 | return;
|
---|
589 | }
|
---|
590 | y.Scale(Norm());
|
---|
591 | // scale normal vector by sine and this vector by cosine
|
---|
592 | y.Scale(sin(alpha));
|
---|
593 | a.Scale(cos(alpha));
|
---|
594 | CopyVector(Projection(axis));
|
---|
595 | // add scaled normal vector onto this vector
|
---|
596 | AddVector(&y);
|
---|
597 | // add part in axis direction
|
---|
598 | AddVector(&a);
|
---|
599 | };
|
---|
600 |
|
---|
601 | /** Compares vector \a to vector \a b component-wise.
|
---|
602 | * \param a base vector
|
---|
603 | * \param b vector components to add
|
---|
604 | * \return a == b
|
---|
605 | */
|
---|
606 | bool operator==(const Vector& a, const Vector& b)
|
---|
607 | {
|
---|
608 | bool status = true;
|
---|
609 | for (int i=0;i<NDIM;i++)
|
---|
610 | status = status && (fabs(a.x[i] - b.x[i]) < MYEPSILON);
|
---|
611 | return status;
|
---|
612 | };
|
---|
613 |
|
---|
614 | /** Sums vector \a to this lhs component-wise.
|
---|
615 | * \param a base vector
|
---|
616 | * \param b vector components to add
|
---|
617 | * \return lhs + a
|
---|
618 | */
|
---|
619 | Vector& operator+=(Vector& a, const Vector& b)
|
---|
620 | {
|
---|
621 | a.AddVector(&b);
|
---|
622 | return a;
|
---|
623 | };
|
---|
624 |
|
---|
625 | /** Subtracts vector \a from this lhs component-wise.
|
---|
626 | * \param a base vector
|
---|
627 | * \param b vector components to add
|
---|
628 | * \return lhs - a
|
---|
629 | */
|
---|
630 | Vector& operator-=(Vector& a, const Vector& b)
|
---|
631 | {
|
---|
632 | a.SubtractVector(&b);
|
---|
633 | return a;
|
---|
634 | };
|
---|
635 |
|
---|
636 | /** factor each component of \a a times a double \a m.
|
---|
637 | * \param a base vector
|
---|
638 | * \param m factor
|
---|
639 | * \return lhs.x[i] * m
|
---|
640 | */
|
---|
641 | Vector& operator*=(Vector& a, const double m)
|
---|
642 | {
|
---|
643 | a.Scale(m);
|
---|
644 | return a;
|
---|
645 | };
|
---|
646 |
|
---|
647 | /** Sums two vectors \a and \b component-wise.
|
---|
648 | * \param a first vector
|
---|
649 | * \param b second vector
|
---|
650 | * \return a + b
|
---|
651 | */
|
---|
652 | Vector& operator+(const Vector& a, const Vector& b)
|
---|
653 | {
|
---|
654 | Vector *x = new Vector;
|
---|
655 | x->CopyVector(&a);
|
---|
656 | x->AddVector(&b);
|
---|
657 | return *x;
|
---|
658 | };
|
---|
659 |
|
---|
660 | /** Subtracts vector \a from \b component-wise.
|
---|
661 | * \param a first vector
|
---|
662 | * \param b second vector
|
---|
663 | * \return a - b
|
---|
664 | */
|
---|
665 | Vector& operator-(const Vector& a, const Vector& b)
|
---|
666 | {
|
---|
667 | Vector *x = new Vector;
|
---|
668 | x->CopyVector(&a);
|
---|
669 | x->SubtractVector(&b);
|
---|
670 | return *x;
|
---|
671 | };
|
---|
672 |
|
---|
673 | /** Factors given vector \a a times \a m.
|
---|
674 | * \param a vector
|
---|
675 | * \param m factor
|
---|
676 | * \return m * a
|
---|
677 | */
|
---|
678 | Vector& operator*(const Vector& a, const double m)
|
---|
679 | {
|
---|
680 | Vector *x = new Vector;
|
---|
681 | x->CopyVector(&a);
|
---|
682 | x->Scale(m);
|
---|
683 | return *x;
|
---|
684 | };
|
---|
685 |
|
---|
686 | /** Factors given vector \a a times \a m.
|
---|
687 | * \param m factor
|
---|
688 | * \param a vector
|
---|
689 | * \return m * a
|
---|
690 | */
|
---|
691 | Vector& operator*(const double m, const Vector& a )
|
---|
692 | {
|
---|
693 | Vector *x = new Vector;
|
---|
694 | x->CopyVector(&a);
|
---|
695 | x->Scale(m);
|
---|
696 | return *x;
|
---|
697 | };
|
---|
698 |
|
---|
699 | /** Prints a 3dim vector.
|
---|
700 | * prints no end of line.
|
---|
701 | */
|
---|
702 | void Vector::Output() const
|
---|
703 | {
|
---|
704 | Log() << Verbose(0) << "(";
|
---|
705 | for (int i=0;i<NDIM;i++) {
|
---|
706 | Log() << Verbose(0) << x[i];
|
---|
707 | if (i != 2)
|
---|
708 | Log() << Verbose(0) << ",";
|
---|
709 | }
|
---|
710 | Log() << Verbose(0) << ")";
|
---|
711 | };
|
---|
712 |
|
---|
713 | ostream& operator<<(ostream& ost, const Vector& m)
|
---|
714 | {
|
---|
715 | ost << "(";
|
---|
716 | for (int i=0;i<NDIM;i++) {
|
---|
717 | ost << m.x[i];
|
---|
718 | if (i != 2)
|
---|
719 | ost << ",";
|
---|
720 | }
|
---|
721 | ost << ")";
|
---|
722 | return ost;
|
---|
723 | };
|
---|
724 |
|
---|
725 | /** Scales each atom coordinate by an individual \a factor.
|
---|
726 | * \param *factor pointer to scaling factor
|
---|
727 | */
|
---|
728 | void Vector::Scale(const double ** const factor)
|
---|
729 | {
|
---|
730 | for (int i=NDIM;i--;)
|
---|
731 | x[i] *= (*factor)[i];
|
---|
732 | };
|
---|
733 |
|
---|
734 | void Vector::Scale(const double * const factor)
|
---|
735 | {
|
---|
736 | for (int i=NDIM;i--;)
|
---|
737 | x[i] *= *factor;
|
---|
738 | };
|
---|
739 |
|
---|
740 | void Vector::Scale(const double factor)
|
---|
741 | {
|
---|
742 | for (int i=NDIM;i--;)
|
---|
743 | x[i] *= factor;
|
---|
744 | };
|
---|
745 |
|
---|
746 | /** Translate atom by given vector.
|
---|
747 | * \param trans[] translation vector.
|
---|
748 | */
|
---|
749 | void Vector::Translate(const Vector * const trans)
|
---|
750 | {
|
---|
751 | for (int i=NDIM;i--;)
|
---|
752 | x[i] += trans->x[i];
|
---|
753 | };
|
---|
754 |
|
---|
755 | /** Given a box by its matrix \a *M and its inverse *Minv the vector is made to point within that box.
|
---|
756 | * \param *M matrix of box
|
---|
757 | * \param *Minv inverse matrix
|
---|
758 | */
|
---|
759 | void Vector::WrapPeriodically(const double * const M, const double * const Minv)
|
---|
760 | {
|
---|
761 | MatrixMultiplication(Minv);
|
---|
762 | // truncate to [0,1] for each axis
|
---|
763 | for (int i=0;i<NDIM;i++) {
|
---|
764 | x[i] += 0.5; // set to center of box
|
---|
765 | while (x[i] >= 1.)
|
---|
766 | x[i] -= 1.;
|
---|
767 | while (x[i] < 0.)
|
---|
768 | x[i] += 1.;
|
---|
769 | }
|
---|
770 | MatrixMultiplication(M);
|
---|
771 | };
|
---|
772 |
|
---|
773 | /** Do a matrix multiplication.
|
---|
774 | * \param *matrix NDIM_NDIM array
|
---|
775 | */
|
---|
776 | void Vector::MatrixMultiplication(const double * const M)
|
---|
777 | {
|
---|
778 | Vector C;
|
---|
779 | // do the matrix multiplication
|
---|
780 | C.x[0] = M[0]*x[0]+M[3]*x[1]+M[6]*x[2];
|
---|
781 | C.x[1] = M[1]*x[0]+M[4]*x[1]+M[7]*x[2];
|
---|
782 | C.x[2] = M[2]*x[0]+M[5]*x[1]+M[8]*x[2];
|
---|
783 | // transfer the result into this
|
---|
784 | for (int i=NDIM;i--;)
|
---|
785 | x[i] = C.x[i];
|
---|
786 | };
|
---|
787 |
|
---|
788 | /** Do a matrix multiplication with the \a *A' inverse.
|
---|
789 | * \param *matrix NDIM_NDIM array
|
---|
790 | */
|
---|
791 | void Vector::InverseMatrixMultiplication(const double * const A)
|
---|
792 | {
|
---|
793 | Vector C;
|
---|
794 | double B[NDIM*NDIM];
|
---|
795 | double detA = RDET3(A);
|
---|
796 | double detAReci;
|
---|
797 |
|
---|
798 | // calculate the inverse B
|
---|
799 | if (fabs(detA) > MYEPSILON) {; // RDET3(A) yields precisely zero if A irregular
|
---|
800 | detAReci = 1./detA;
|
---|
801 | B[0] = detAReci*RDET2(A[4],A[5],A[7],A[8]); // A_11
|
---|
802 | B[1] = -detAReci*RDET2(A[1],A[2],A[7],A[8]); // A_12
|
---|
803 | B[2] = detAReci*RDET2(A[1],A[2],A[4],A[5]); // A_13
|
---|
804 | B[3] = -detAReci*RDET2(A[3],A[5],A[6],A[8]); // A_21
|
---|
805 | B[4] = detAReci*RDET2(A[0],A[2],A[6],A[8]); // A_22
|
---|
806 | B[5] = -detAReci*RDET2(A[0],A[2],A[3],A[5]); // A_23
|
---|
807 | B[6] = detAReci*RDET2(A[3],A[4],A[6],A[7]); // A_31
|
---|
808 | B[7] = -detAReci*RDET2(A[0],A[1],A[6],A[7]); // A_32
|
---|
809 | B[8] = detAReci*RDET2(A[0],A[1],A[3],A[4]); // A_33
|
---|
810 |
|
---|
811 | // do the matrix multiplication
|
---|
812 | C.x[0] = B[0]*x[0]+B[3]*x[1]+B[6]*x[2];
|
---|
813 | C.x[1] = B[1]*x[0]+B[4]*x[1]+B[7]*x[2];
|
---|
814 | C.x[2] = B[2]*x[0]+B[5]*x[1]+B[8]*x[2];
|
---|
815 | // transfer the result into this
|
---|
816 | for (int i=NDIM;i--;)
|
---|
817 | x[i] = C.x[i];
|
---|
818 | } else {
|
---|
819 | DoeLog(1) && (eLog()<< Verbose(1) << "inverse of matrix does not exists: det A = " << detA << "." << endl);
|
---|
820 | }
|
---|
821 | };
|
---|
822 |
|
---|
823 |
|
---|
824 | /** Creates this vector as the b y *factors' components scaled linear combination of the given three.
|
---|
825 | * this vector = x1*factors[0] + x2* factors[1] + x3*factors[2]
|
---|
826 | * \param *x1 first vector
|
---|
827 | * \param *x2 second vector
|
---|
828 | * \param *x3 third vector
|
---|
829 | * \param *factors three-component vector with the factor for each given vector
|
---|
830 | */
|
---|
831 | void Vector::LinearCombinationOfVectors(const Vector * const x1, const Vector * const x2, const Vector * const x3, const double * const factors)
|
---|
832 | {
|
---|
833 | for(int i=NDIM;i--;)
|
---|
834 | x[i] = factors[0]*x1->x[i] + factors[1]*x2->x[i] + factors[2]*x3->x[i];
|
---|
835 | };
|
---|
836 |
|
---|
837 | /** Mirrors atom against a given plane.
|
---|
838 | * \param n[] normal vector of mirror plane.
|
---|
839 | */
|
---|
840 | void Vector::Mirror(const Vector * const n)
|
---|
841 | {
|
---|
842 | double projection;
|
---|
843 | projection = ScalarProduct(n)/n->ScalarProduct(n); // remove constancy from n (keep as logical one)
|
---|
844 | // withdraw projected vector twice from original one
|
---|
845 | Log() << Verbose(1) << "Vector: ";
|
---|
846 | Output();
|
---|
847 | Log() << Verbose(0) << "\t";
|
---|
848 | for (int i=NDIM;i--;)
|
---|
849 | x[i] -= 2.*projection*n->x[i];
|
---|
850 | Log() << Verbose(0) << "Projected vector: ";
|
---|
851 | Output();
|
---|
852 | Log() << Verbose(0) << endl;
|
---|
853 | };
|
---|
854 |
|
---|
855 | /** Calculates normal vector for three given vectors (being three points in space).
|
---|
856 | * Makes this vector orthonormal to the three given points, making up a place in 3d space.
|
---|
857 | * \param *y1 first vector
|
---|
858 | * \param *y2 second vector
|
---|
859 | * \param *y3 third vector
|
---|
860 | * \return true - success, vectors are linear independent, false - failure due to linear dependency
|
---|
861 | */
|
---|
862 | bool Vector::MakeNormalVector(const Vector * const y1, const Vector * const y2, const Vector * const y3)
|
---|
863 | {
|
---|
864 | Vector x1, x2;
|
---|
865 |
|
---|
866 | x1.CopyVector(y1);
|
---|
867 | x1.SubtractVector(y2);
|
---|
868 | x2.CopyVector(y3);
|
---|
869 | x2.SubtractVector(y2);
|
---|
870 | if ((fabs(x1.Norm()) < MYEPSILON) || (fabs(x2.Norm()) < MYEPSILON) || (fabs(x1.Angle(&x2)) < MYEPSILON)) {
|
---|
871 | DoeLog(2) && (eLog()<< Verbose(2) << "Given vectors are linear dependent." << endl);
|
---|
872 | return false;
|
---|
873 | }
|
---|
874 | // Log() << Verbose(4) << "relative, first plane coordinates:";
|
---|
875 | // x1.Output((ofstream *)&cout);
|
---|
876 | // Log() << Verbose(0) << endl;
|
---|
877 | // Log() << Verbose(4) << "second plane coordinates:";
|
---|
878 | // x2.Output((ofstream *)&cout);
|
---|
879 | // Log() << Verbose(0) << endl;
|
---|
880 |
|
---|
881 | this->x[0] = (x1.x[1]*x2.x[2] - x1.x[2]*x2.x[1]);
|
---|
882 | this->x[1] = (x1.x[2]*x2.x[0] - x1.x[0]*x2.x[2]);
|
---|
883 | this->x[2] = (x1.x[0]*x2.x[1] - x1.x[1]*x2.x[0]);
|
---|
884 | Normalize();
|
---|
885 |
|
---|
886 | return true;
|
---|
887 | };
|
---|
888 |
|
---|
889 |
|
---|
890 | /** Calculates orthonormal vector to two given vectors.
|
---|
891 | * Makes this vector orthonormal to two given vectors. This is very similar to the other
|
---|
892 | * vector::MakeNormalVector(), only there three points whereas here two difference
|
---|
893 | * vectors are given.
|
---|
894 | * \param *x1 first vector
|
---|
895 | * \param *x2 second vector
|
---|
896 | * \return true - success, vectors are linear independent, false - failure due to linear dependency
|
---|
897 | */
|
---|
898 | bool Vector::MakeNormalVector(const Vector * const y1, const Vector * const y2)
|
---|
899 | {
|
---|
900 | Vector x1,x2;
|
---|
901 | x1.CopyVector(y1);
|
---|
902 | x2.CopyVector(y2);
|
---|
903 | Zero();
|
---|
904 | if ((fabs(x1.Norm()) < MYEPSILON) || (fabs(x2.Norm()) < MYEPSILON) || (fabs(x1.Angle(&x2)) < MYEPSILON)) {
|
---|
905 | DoeLog(2) && (eLog()<< Verbose(2) << "Given vectors are linear dependent." << endl);
|
---|
906 | return false;
|
---|
907 | }
|
---|
908 | // Log() << Verbose(4) << "relative, first plane coordinates:";
|
---|
909 | // x1.Output((ofstream *)&cout);
|
---|
910 | // Log() << Verbose(0) << endl;
|
---|
911 | // Log() << Verbose(4) << "second plane coordinates:";
|
---|
912 | // x2.Output((ofstream *)&cout);
|
---|
913 | // Log() << Verbose(0) << endl;
|
---|
914 |
|
---|
915 | this->x[0] = (x1.x[1]*x2.x[2] - x1.x[2]*x2.x[1]);
|
---|
916 | this->x[1] = (x1.x[2]*x2.x[0] - x1.x[0]*x2.x[2]);
|
---|
917 | this->x[2] = (x1.x[0]*x2.x[1] - x1.x[1]*x2.x[0]);
|
---|
918 | Normalize();
|
---|
919 |
|
---|
920 | return true;
|
---|
921 | };
|
---|
922 |
|
---|
923 | /** Calculates orthonormal vector to one given vectors.
|
---|
924 | * Just subtracts the projection onto the given vector from this vector.
|
---|
925 | * The removed part of the vector is Vector::Projection()
|
---|
926 | * \param *x1 vector
|
---|
927 | * \return true - success, false - vector is zero
|
---|
928 | */
|
---|
929 | bool Vector::MakeNormalVector(const Vector * const y1)
|
---|
930 | {
|
---|
931 | bool result = false;
|
---|
932 | double factor = y1->ScalarProduct(this)/y1->NormSquared();
|
---|
933 | Vector x1;
|
---|
934 | x1.CopyVector(y1);
|
---|
935 | x1.Scale(factor);
|
---|
936 | SubtractVector(&x1);
|
---|
937 | for (int i=NDIM;i--;)
|
---|
938 | result = result || (fabs(x[i]) > MYEPSILON);
|
---|
939 |
|
---|
940 | return result;
|
---|
941 | };
|
---|
942 |
|
---|
943 | /** Creates this vector as one of the possible orthonormal ones to the given one.
|
---|
944 | * Just scan how many components of given *vector are unequal to zero and
|
---|
945 | * try to get the skp of both to be zero accordingly.
|
---|
946 | * \param *vector given vector
|
---|
947 | * \return true - success, false - failure (null vector given)
|
---|
948 | */
|
---|
949 | bool Vector::GetOneNormalVector(const Vector * const GivenVector)
|
---|
950 | {
|
---|
951 | int Components[NDIM]; // contains indices of non-zero components
|
---|
952 | int Last = 0; // count the number of non-zero entries in vector
|
---|
953 | int j; // loop variables
|
---|
954 | double norm;
|
---|
955 |
|
---|
956 | Log() << Verbose(4);
|
---|
957 | GivenVector->Output();
|
---|
958 | Log() << Verbose(0) << endl;
|
---|
959 | for (j=NDIM;j--;)
|
---|
960 | Components[j] = -1;
|
---|
961 | // find two components != 0
|
---|
962 | for (j=0;j<NDIM;j++)
|
---|
963 | if (fabs(GivenVector->x[j]) > MYEPSILON)
|
---|
964 | Components[Last++] = j;
|
---|
965 | Log() << Verbose(4) << Last << " Components != 0: (" << Components[0] << "," << Components[1] << "," << Components[2] << ")" << endl;
|
---|
966 |
|
---|
967 | switch(Last) {
|
---|
968 | case 3: // threecomponent system
|
---|
969 | case 2: // two component system
|
---|
970 | norm = sqrt(1./(GivenVector->x[Components[1]]*GivenVector->x[Components[1]]) + 1./(GivenVector->x[Components[0]]*GivenVector->x[Components[0]]));
|
---|
971 | x[Components[2]] = 0.;
|
---|
972 | // in skp both remaining parts shall become zero but with opposite sign and third is zero
|
---|
973 | x[Components[1]] = -1./GivenVector->x[Components[1]] / norm;
|
---|
974 | x[Components[0]] = 1./GivenVector->x[Components[0]] / norm;
|
---|
975 | return true;
|
---|
976 | break;
|
---|
977 | case 1: // one component system
|
---|
978 | // set sole non-zero component to 0, and one of the other zero component pendants to 1
|
---|
979 | x[(Components[0]+2)%NDIM] = 0.;
|
---|
980 | x[(Components[0]+1)%NDIM] = 1.;
|
---|
981 | x[Components[0]] = 0.;
|
---|
982 | return true;
|
---|
983 | break;
|
---|
984 | default:
|
---|
985 | return false;
|
---|
986 | }
|
---|
987 | };
|
---|
988 |
|
---|
989 | /** Determines parameter needed to multiply this vector to obtain intersection point with plane defined by \a *A, \a *B and \a *C.
|
---|
990 | * \param *A first plane vector
|
---|
991 | * \param *B second plane vector
|
---|
992 | * \param *C third plane vector
|
---|
993 | * \return scaling parameter for this vector
|
---|
994 | */
|
---|
995 | double Vector::CutsPlaneAt(const Vector * const A, const Vector * const B, const Vector * const C) const
|
---|
996 | {
|
---|
997 | // Log() << Verbose(3) << "For comparison: ";
|
---|
998 | // Log() << Verbose(0) << "A " << A->Projection(this) << "\t";
|
---|
999 | // Log() << Verbose(0) << "B " << B->Projection(this) << "\t";
|
---|
1000 | // Log() << Verbose(0) << "C " << C->Projection(this) << "\t";
|
---|
1001 | // Log() << Verbose(0) << endl;
|
---|
1002 | return A->ScalarProduct(this);
|
---|
1003 | };
|
---|
1004 |
|
---|
1005 | /** Creates a new vector as the one with least square distance to a given set of \a vectors.
|
---|
1006 | * \param *vectors set of vectors
|
---|
1007 | * \param num number of vectors
|
---|
1008 | * \return true if success, false if failed due to linear dependency
|
---|
1009 | */
|
---|
1010 | bool Vector::LSQdistance(const Vector **vectors, int num)
|
---|
1011 | {
|
---|
1012 | int j;
|
---|
1013 |
|
---|
1014 | for (j=0;j<num;j++) {
|
---|
1015 | Log() << Verbose(1) << j << "th atom's vector: ";
|
---|
1016 | (vectors[j])->Output();
|
---|
1017 | Log() << Verbose(0) << endl;
|
---|
1018 | }
|
---|
1019 |
|
---|
1020 | int np = 3;
|
---|
1021 | struct LSQ_params par;
|
---|
1022 |
|
---|
1023 | const gsl_multimin_fminimizer_type *T =
|
---|
1024 | gsl_multimin_fminimizer_nmsimplex;
|
---|
1025 | gsl_multimin_fminimizer *s = NULL;
|
---|
1026 | gsl_vector *ss, *y;
|
---|
1027 | gsl_multimin_function minex_func;
|
---|
1028 |
|
---|
1029 | size_t iter = 0, i;
|
---|
1030 | int status;
|
---|
1031 | double size;
|
---|
1032 |
|
---|
1033 | /* Initial vertex size vector */
|
---|
1034 | ss = gsl_vector_alloc (np);
|
---|
1035 | y = gsl_vector_alloc (np);
|
---|
1036 |
|
---|
1037 | /* Set all step sizes to 1 */
|
---|
1038 | gsl_vector_set_all (ss, 1.0);
|
---|
1039 |
|
---|
1040 | /* Starting point */
|
---|
1041 | par.vectors = vectors;
|
---|
1042 | par.num = num;
|
---|
1043 |
|
---|
1044 | for (i=NDIM;i--;)
|
---|
1045 | gsl_vector_set(y, i, (vectors[0]->x[i] - vectors[1]->x[i])/2.);
|
---|
1046 |
|
---|
1047 | /* Initialize method and iterate */
|
---|
1048 | minex_func.f = &LSQ;
|
---|
1049 | minex_func.n = np;
|
---|
1050 | minex_func.params = (void *)∥
|
---|
1051 |
|
---|
1052 | s = gsl_multimin_fminimizer_alloc (T, np);
|
---|
1053 | gsl_multimin_fminimizer_set (s, &minex_func, y, ss);
|
---|
1054 |
|
---|
1055 | do
|
---|
1056 | {
|
---|
1057 | iter++;
|
---|
1058 | status = gsl_multimin_fminimizer_iterate(s);
|
---|
1059 |
|
---|
1060 | if (status)
|
---|
1061 | break;
|
---|
1062 |
|
---|
1063 | size = gsl_multimin_fminimizer_size (s);
|
---|
1064 | status = gsl_multimin_test_size (size, 1e-2);
|
---|
1065 |
|
---|
1066 | if (status == GSL_SUCCESS)
|
---|
1067 | {
|
---|
1068 | printf ("converged to minimum at\n");
|
---|
1069 | }
|
---|
1070 |
|
---|
1071 | printf ("%5d ", (int)iter);
|
---|
1072 | for (i = 0; i < (size_t)np; i++)
|
---|
1073 | {
|
---|
1074 | printf ("%10.3e ", gsl_vector_get (s->x, i));
|
---|
1075 | }
|
---|
1076 | printf ("f() = %7.3f size = %.3f\n", s->fval, size);
|
---|
1077 | }
|
---|
1078 | while (status == GSL_CONTINUE && iter < 100);
|
---|
1079 |
|
---|
1080 | for (i=(size_t)np;i--;)
|
---|
1081 | this->x[i] = gsl_vector_get(s->x, i);
|
---|
1082 | gsl_vector_free(y);
|
---|
1083 | gsl_vector_free(ss);
|
---|
1084 | gsl_multimin_fminimizer_free (s);
|
---|
1085 |
|
---|
1086 | return true;
|
---|
1087 | };
|
---|
1088 |
|
---|
1089 | /** Adds vector \a *y componentwise.
|
---|
1090 | * \param *y vector
|
---|
1091 | */
|
---|
1092 | void Vector::AddVector(const Vector * const y)
|
---|
1093 | {
|
---|
1094 | for (int i=NDIM;i--;)
|
---|
1095 | this->x[i] += y->x[i];
|
---|
1096 | }
|
---|
1097 |
|
---|
1098 | /** Adds vector \a *y componentwise.
|
---|
1099 | * \param *y vector
|
---|
1100 | */
|
---|
1101 | void Vector::SubtractVector(const Vector * const y)
|
---|
1102 | {
|
---|
1103 | for (int i=NDIM;i--;)
|
---|
1104 | this->x[i] -= y->x[i];
|
---|
1105 | }
|
---|
1106 |
|
---|
1107 | /** Copy vector \a *y componentwise.
|
---|
1108 | * \param *y vector
|
---|
1109 | */
|
---|
1110 | void Vector::CopyVector(const Vector * const y)
|
---|
1111 | {
|
---|
1112 | for (int i=NDIM;i--;)
|
---|
1113 | this->x[i] = y->x[i];
|
---|
1114 | }
|
---|
1115 |
|
---|
1116 | /** Copy vector \a y componentwise.
|
---|
1117 | * \param y vector
|
---|
1118 | */
|
---|
1119 | void Vector::CopyVector(const Vector &y)
|
---|
1120 | {
|
---|
1121 | for (int i=NDIM;i--;)
|
---|
1122 | this->x[i] = y.x[i];
|
---|
1123 | }
|
---|
1124 |
|
---|
1125 |
|
---|
1126 | /** Asks for position, checks for boundary.
|
---|
1127 | * \param cell_size unitary size of cubic cell, coordinates must be within 0...cell_size
|
---|
1128 | * \param check whether bounds shall be checked (true) or not (false)
|
---|
1129 | */
|
---|
1130 | void Vector::AskPosition(const double * const cell_size, const bool check)
|
---|
1131 | {
|
---|
1132 | char coords[3] = {'x','y','z'};
|
---|
1133 | int j = -1;
|
---|
1134 | for (int i=0;i<3;i++) {
|
---|
1135 | j += i+1;
|
---|
1136 | do {
|
---|
1137 | Log() << Verbose(0) << coords[i] << "[0.." << cell_size[j] << "]: ";
|
---|
1138 | cin >> x[i];
|
---|
1139 | } while (((x[i] < 0) || (x[i] >= cell_size[j])) && (check));
|
---|
1140 | }
|
---|
1141 | };
|
---|
1142 |
|
---|
1143 | /** Solves a vectorial system consisting of two orthogonal statements and a norm statement.
|
---|
1144 | * This is linear system of equations to be solved, however of the three given (skp of this vector\
|
---|
1145 | * with either of the three hast to be zero) only two are linear independent. The third equation
|
---|
1146 | * is that the vector should be of magnitude 1 (orthonormal). This all leads to a case-based solution
|
---|
1147 | * where very often it has to be checked whether a certain value is zero or not and thus forked into
|
---|
1148 | * another case.
|
---|
1149 | * \param *x1 first vector
|
---|
1150 | * \param *x2 second vector
|
---|
1151 | * \param *y third vector
|
---|
1152 | * \param alpha first angle
|
---|
1153 | * \param beta second angle
|
---|
1154 | * \param c norm of final vector
|
---|
1155 | * \return a vector with \f$\langle x1,x2 \rangle=A\f$, \f$\langle x1,y \rangle = B\f$ and with norm \a c.
|
---|
1156 | * \bug this is not yet working properly
|
---|
1157 | */
|
---|
1158 | bool Vector::SolveSystem(Vector * x1, Vector * x2, Vector * y, const double alpha, const double beta, const double c)
|
---|
1159 | {
|
---|
1160 | double D1,D2,D3,E1,E2,F1,F2,F3,p,q=0., A, B1, B2, C;
|
---|
1161 | double ang; // angle on testing
|
---|
1162 | double sign[3];
|
---|
1163 | int i,j,k;
|
---|
1164 | A = cos(alpha) * x1->Norm() * c;
|
---|
1165 | B1 = cos(beta + M_PI/2.) * y->Norm() * c;
|
---|
1166 | B2 = cos(beta) * x2->Norm() * c;
|
---|
1167 | C = c * c;
|
---|
1168 | Log() << Verbose(2) << "A " << A << "\tB " << B1 << "\tC " << C << endl;
|
---|
1169 | int flag = 0;
|
---|
1170 | if (fabs(x1->x[0]) < MYEPSILON) { // check for zero components for the later flipping and back-flipping
|
---|
1171 | if (fabs(x1->x[1]) > MYEPSILON) {
|
---|
1172 | flag = 1;
|
---|
1173 | } else if (fabs(x1->x[2]) > MYEPSILON) {
|
---|
1174 | flag = 2;
|
---|
1175 | } else {
|
---|
1176 | return false;
|
---|
1177 | }
|
---|
1178 | }
|
---|
1179 | switch (flag) {
|
---|
1180 | default:
|
---|
1181 | case 0:
|
---|
1182 | break;
|
---|
1183 | case 2:
|
---|
1184 | flip(x1->x[0],x1->x[1]);
|
---|
1185 | flip(x2->x[0],x2->x[1]);
|
---|
1186 | flip(y->x[0],y->x[1]);
|
---|
1187 | //flip(x[0],x[1]);
|
---|
1188 | flip(x1->x[1],x1->x[2]);
|
---|
1189 | flip(x2->x[1],x2->x[2]);
|
---|
1190 | flip(y->x[1],y->x[2]);
|
---|
1191 | //flip(x[1],x[2]);
|
---|
1192 | case 1:
|
---|
1193 | flip(x1->x[0],x1->x[1]);
|
---|
1194 | flip(x2->x[0],x2->x[1]);
|
---|
1195 | flip(y->x[0],y->x[1]);
|
---|
1196 | //flip(x[0],x[1]);
|
---|
1197 | flip(x1->x[1],x1->x[2]);
|
---|
1198 | flip(x2->x[1],x2->x[2]);
|
---|
1199 | flip(y->x[1],y->x[2]);
|
---|
1200 | //flip(x[1],x[2]);
|
---|
1201 | break;
|
---|
1202 | }
|
---|
1203 | // now comes the case system
|
---|
1204 | D1 = -y->x[0]/x1->x[0]*x1->x[1]+y->x[1];
|
---|
1205 | D2 = -y->x[0]/x1->x[0]*x1->x[2]+y->x[2];
|
---|
1206 | D3 = y->x[0]/x1->x[0]*A-B1;
|
---|
1207 | Log() << Verbose(2) << "D1 " << D1 << "\tD2 " << D2 << "\tD3 " << D3 << "\n";
|
---|
1208 | if (fabs(D1) < MYEPSILON) {
|
---|
1209 | Log() << Verbose(2) << "D1 == 0!\n";
|
---|
1210 | if (fabs(D2) > MYEPSILON) {
|
---|
1211 | Log() << Verbose(3) << "D2 != 0!\n";
|
---|
1212 | x[2] = -D3/D2;
|
---|
1213 | E1 = A/x1->x[0] + x1->x[2]/x1->x[0]*D3/D2;
|
---|
1214 | E2 = -x1->x[1]/x1->x[0];
|
---|
1215 | Log() << Verbose(3) << "E1 " << E1 << "\tE2 " << E2 << "\n";
|
---|
1216 | F1 = E1*E1 + 1.;
|
---|
1217 | F2 = -E1*E2;
|
---|
1218 | F3 = E1*E1 + D3*D3/(D2*D2) - C;
|
---|
1219 | Log() << Verbose(3) << "F1 " << F1 << "\tF2 " << F2 << "\tF3 " << F3 << "\n";
|
---|
1220 | if (fabs(F1) < MYEPSILON) {
|
---|
1221 | Log() << Verbose(4) << "F1 == 0!\n";
|
---|
1222 | Log() << Verbose(4) << "Gleichungssystem linear\n";
|
---|
1223 | x[1] = F3/(2.*F2);
|
---|
1224 | } else {
|
---|
1225 | p = F2/F1;
|
---|
1226 | q = p*p - F3/F1;
|
---|
1227 | Log() << Verbose(4) << "p " << p << "\tq " << q << endl;
|
---|
1228 | if (q < 0) {
|
---|
1229 | Log() << Verbose(4) << "q < 0" << endl;
|
---|
1230 | return false;
|
---|
1231 | }
|
---|
1232 | x[1] = p + sqrt(q);
|
---|
1233 | }
|
---|
1234 | x[0] = A/x1->x[0] - x1->x[1]/x1->x[0]*x[1] + x1->x[2]/x1->x[0]*x[2];
|
---|
1235 | } else {
|
---|
1236 | Log() << Verbose(2) << "Gleichungssystem unterbestimmt\n";
|
---|
1237 | return false;
|
---|
1238 | }
|
---|
1239 | } else {
|
---|
1240 | E1 = A/x1->x[0]+x1->x[1]/x1->x[0]*D3/D1;
|
---|
1241 | E2 = x1->x[1]/x1->x[0]*D2/D1 - x1->x[2];
|
---|
1242 | Log() << Verbose(2) << "E1 " << E1 << "\tE2 " << E2 << "\n";
|
---|
1243 | F1 = E2*E2 + D2*D2/(D1*D1) + 1.;
|
---|
1244 | F2 = -(E1*E2 + D2*D3/(D1*D1));
|
---|
1245 | F3 = E1*E1 + D3*D3/(D1*D1) - C;
|
---|
1246 | Log() << Verbose(2) << "F1 " << F1 << "\tF2 " << F2 << "\tF3 " << F3 << "\n";
|
---|
1247 | if (fabs(F1) < MYEPSILON) {
|
---|
1248 | Log() << Verbose(3) << "F1 == 0!\n";
|
---|
1249 | Log() << Verbose(3) << "Gleichungssystem linear\n";
|
---|
1250 | x[2] = F3/(2.*F2);
|
---|
1251 | } else {
|
---|
1252 | p = F2/F1;
|
---|
1253 | q = p*p - F3/F1;
|
---|
1254 | Log() << Verbose(3) << "p " << p << "\tq " << q << endl;
|
---|
1255 | if (q < 0) {
|
---|
1256 | Log() << Verbose(3) << "q < 0" << endl;
|
---|
1257 | return false;
|
---|
1258 | }
|
---|
1259 | x[2] = p + sqrt(q);
|
---|
1260 | }
|
---|
1261 | x[1] = (-D2 * x[2] - D3)/D1;
|
---|
1262 | x[0] = A/x1->x[0] - x1->x[1]/x1->x[0]*x[1] + x1->x[2]/x1->x[0]*x[2];
|
---|
1263 | }
|
---|
1264 | switch (flag) { // back-flipping
|
---|
1265 | default:
|
---|
1266 | case 0:
|
---|
1267 | break;
|
---|
1268 | case 2:
|
---|
1269 | flip(x1->x[0],x1->x[1]);
|
---|
1270 | flip(x2->x[0],x2->x[1]);
|
---|
1271 | flip(y->x[0],y->x[1]);
|
---|
1272 | flip(x[0],x[1]);
|
---|
1273 | flip(x1->x[1],x1->x[2]);
|
---|
1274 | flip(x2->x[1],x2->x[2]);
|
---|
1275 | flip(y->x[1],y->x[2]);
|
---|
1276 | flip(x[1],x[2]);
|
---|
1277 | case 1:
|
---|
1278 | flip(x1->x[0],x1->x[1]);
|
---|
1279 | flip(x2->x[0],x2->x[1]);
|
---|
1280 | flip(y->x[0],y->x[1]);
|
---|
1281 | //flip(x[0],x[1]);
|
---|
1282 | flip(x1->x[1],x1->x[2]);
|
---|
1283 | flip(x2->x[1],x2->x[2]);
|
---|
1284 | flip(y->x[1],y->x[2]);
|
---|
1285 | flip(x[1],x[2]);
|
---|
1286 | break;
|
---|
1287 | }
|
---|
1288 | // one z component is only determined by its radius (without sign)
|
---|
1289 | // thus check eight possible sign flips and determine by checking angle with second vector
|
---|
1290 | for (i=0;i<8;i++) {
|
---|
1291 | // set sign vector accordingly
|
---|
1292 | for (j=2;j>=0;j--) {
|
---|
1293 | k = (i & pot(2,j)) << j;
|
---|
1294 | Log() << Verbose(2) << "k " << k << "\tpot(2,j) " << pot(2,j) << endl;
|
---|
1295 | sign[j] = (k == 0) ? 1. : -1.;
|
---|
1296 | }
|
---|
1297 | Log() << Verbose(2) << i << ": sign matrix is " << sign[0] << "\t" << sign[1] << "\t" << sign[2] << "\n";
|
---|
1298 | // apply sign matrix
|
---|
1299 | for (j=NDIM;j--;)
|
---|
1300 | x[j] *= sign[j];
|
---|
1301 | // calculate angle and check
|
---|
1302 | ang = x2->Angle (this);
|
---|
1303 | Log() << Verbose(1) << i << "th angle " << ang << "\tbeta " << cos(beta) << " :\t";
|
---|
1304 | if (fabs(ang - cos(beta)) < MYEPSILON) {
|
---|
1305 | break;
|
---|
1306 | }
|
---|
1307 | // unapply sign matrix (is its own inverse)
|
---|
1308 | for (j=NDIM;j--;)
|
---|
1309 | x[j] *= sign[j];
|
---|
1310 | }
|
---|
1311 | return true;
|
---|
1312 | };
|
---|
1313 |
|
---|
1314 | /**
|
---|
1315 | * Checks whether this vector is within the parallelepiped defined by the given three vectors and
|
---|
1316 | * their offset.
|
---|
1317 | *
|
---|
1318 | * @param offest for the origin of the parallelepiped
|
---|
1319 | * @param three vectors forming the matrix that defines the shape of the parallelpiped
|
---|
1320 | */
|
---|
1321 | bool Vector::IsInParallelepiped(const Vector &offset, const double * const parallelepiped) const
|
---|
1322 | {
|
---|
1323 | Vector a;
|
---|
1324 | a.CopyVector(this);
|
---|
1325 | a.SubtractVector(&offset);
|
---|
1326 | a.InverseMatrixMultiplication(parallelepiped);
|
---|
1327 | bool isInside = true;
|
---|
1328 |
|
---|
1329 | for (int i=NDIM;i--;)
|
---|
1330 | isInside = isInside && ((a.x[i] <= 1) && (a.x[i] >= 0));
|
---|
1331 |
|
---|
1332 | return isInside;
|
---|
1333 | }
|
---|