source: src/molecules.cpp@ 3b15bb

Action_Thermostats Add_AtomRandomPerturbation Add_FitFragmentPartialChargesAction Add_RotateAroundBondAction Add_SelectAtomByNameAction Added_ParseSaveFragmentResults AddingActions_SaveParseParticleParameters Adding_Graph_to_ChangeBondActions Adding_MD_integration_tests Adding_ParticleName_to_Atom Adding_StructOpt_integration_tests AtomFragments Automaking_mpqc_open AutomationFragmentation_failures Candidate_v1.5.4 Candidate_v1.6.0 Candidate_v1.6.1 ChangeBugEmailaddress ChangingTestPorts ChemicalSpaceEvaluator CombiningParticlePotentialParsing Combining_Subpackages Debian_Package_split Debian_package_split_molecuildergui_only Disabling_MemDebug Docu_Python_wait EmpiricalPotential_contain_HomologyGraph EmpiricalPotential_contain_HomologyGraph_documentation Enable_parallel_make_install Enhance_userguide Enhanced_StructuralOptimization Enhanced_StructuralOptimization_continued Example_ManyWaysToTranslateAtom Exclude_Hydrogens_annealWithBondGraph FitPartialCharges_GlobalError Fix_BoundInBox_CenterInBox_MoleculeActions Fix_ChargeSampling_PBC Fix_ChronosMutex Fix_FitPartialCharges Fix_FitPotential_needs_atomicnumbers Fix_ForceAnnealing Fix_IndependentFragmentGrids Fix_ParseParticles Fix_ParseParticles_split_forward_backward_Actions Fix_PopActions Fix_QtFragmentList_sorted_selection Fix_Restrictedkeyset_FragmentMolecule Fix_StatusMsg Fix_StepWorldTime_single_argument Fix_Verbose_Codepatterns Fix_fitting_potentials Fixes ForceAnnealing_goodresults ForceAnnealing_oldresults ForceAnnealing_tocheck ForceAnnealing_with_BondGraph ForceAnnealing_with_BondGraph_continued ForceAnnealing_with_BondGraph_continued_betteresults ForceAnnealing_with_BondGraph_contraction-expansion FragmentAction_writes_AtomFragments FragmentMolecule_checks_bonddegrees GeometryObjects Gui_Fixes Gui_displays_atomic_force_velocity ImplicitCharges IndependentFragmentGrids IndependentFragmentGrids_IndividualZeroInstances IndependentFragmentGrids_IntegrationTest IndependentFragmentGrids_Sole_NN_Calculation JobMarket_RobustOnKillsSegFaults JobMarket_StableWorkerPool JobMarket_unresolvable_hostname_fix MoreRobust_FragmentAutomation ODR_violation_mpqc_open PartialCharges_OrthogonalSummation PdbParser_setsAtomName PythonUI_with_named_parameters QtGui_reactivate_TimeChanged_changes Recreated_GuiChecks Rewrite_FitPartialCharges RotateToPrincipalAxisSystem_UndoRedo SaturateAtoms_findBestMatching SaturateAtoms_singleDegree StoppableMakroAction Subpackage_CodePatterns Subpackage_JobMarket Subpackage_LinearAlgebra Subpackage_levmar Subpackage_mpqc_open Subpackage_vmg Switchable_LogView ThirdParty_MPQC_rebuilt_buildsystem TrajectoryDependenant_MaxOrder TremoloParser_IncreasedPrecision TremoloParser_MultipleTimesteps TremoloParser_setsAtomName Ubuntu_1604_changes stable
Last change on this file since 3b15bb was e6f8b7, checked in by Frederik Heber <heber@…>, 17 years ago

commenting in header changed for the four main functions that basically do the fragmentation

  • Property mode set to 100644
File size: 171.2 KB
Line 
1/** \file molecules.cpp
2 *
3 * Functions for the class molecule.
4 *
5 */
6
7#include "molecules.hpp"
8
9/************************************* Other Functions *************************************/
10
11/** Determines sum of squared distances of \a X to all \a **vectors.
12 * \param *x reference vector
13 * \param *params
14 * \return sum of square distances
15 */
16double LSQ (const gsl_vector * x, void * params)
17{
18 double sum = 0.;
19 struct LSQ_params *par = (struct LSQ_params *)params;
20 vector **vectors = par->vectors;
21 int num = par->num;
22
23 for (int i=0;i<num;i++) {
24 for(int j=0;j<NDIM;j++)
25 sum += (gsl_vector_get(x,j) - (vectors[i])->x[j])*(gsl_vector_get(x,j) - (vectors[i])->x[j]);
26 }
27
28 return sum;
29};
30
31/************************************* Functions for class molecule *********************************/
32
33/** Constructor of class molecule.
34 * Initialises molecule list with correctly referenced start and end, and sets molecule::last_atom to zero.
35 */
36molecule::molecule(periodentafel *teil)
37{
38 // init atom chain list
39 start = new atom;
40 end = new atom;
41 start->father = NULL;
42 end->father = NULL;
43 link(start,end);
44 // init bond chain list
45 first = new bond(start, end, 1, -1);
46 last = new bond(start, end, 1, -1);
47 link(first,last);
48 // other stuff
49 last_atom = 0;
50 elemente = teil;
51 AtomCount = 0;
52 BondCount = 0;
53 NoNonBonds = 0;
54 NoNonHydrogen = 0;
55 NoCyclicBonds = 0;
56 ListOfBondsPerAtom = NULL;
57 NumberOfBondsPerAtom = NULL;
58 ElementCount = 0;
59 for(int i=0;i<MAX_ELEMENTS;i++)
60 ElementsInMolecule[i] = 0;
61 cell_size[0] = cell_size[2] = cell_size[5]= 20.;
62 cell_size[1] = cell_size[3] = cell_size[4]= 0.;
63};
64
65/** Destructor of class molecule.
66 * Initialises molecule list with correctly referenced start and end, and sets molecule::last_atom to zero.
67 */
68molecule::~molecule()
69{
70 if (ListOfBondsPerAtom != NULL)
71 for(int i=0;i<AtomCount;i++)
72 Free((void **)&ListOfBondsPerAtom[i], "molecule::~molecule: ListOfBondsPerAtom[i]");
73 Free((void **)&ListOfBondsPerAtom, "molecule::~molecule: ListOfBondsPerAtom");
74 Free((void **)&NumberOfBondsPerAtom, "molecule::~molecule: NumberOfBondsPerAtom");
75 CleanupMolecule();
76 delete(first);
77 delete(last);
78 delete(end);
79 delete(start);
80};
81
82/** Adds given atom \a *pointer from molecule list.
83 * Increases molecule::last_atom and gives last number to added atom and names it according to its element::abbrev and molecule::AtomCount
84 * \param *pointer allocated and set atom
85 * \return true - succeeded, false - atom not found in list
86 */
87bool molecule::AddAtom(atom *pointer)
88{
89 if (pointer != NULL) {
90 pointer->sort = &pointer->nr;
91 pointer->nr = last_atom++; // increase number within molecule
92 AtomCount++;
93 if (pointer->type != NULL) {
94 if (ElementsInMolecule[pointer->type->Z] == 0)
95 ElementCount++;
96 ElementsInMolecule[pointer->type->Z]++; // increase number of elements
97 if (pointer->type->Z != 1)
98 NoNonHydrogen++;
99 if (pointer->Name == NULL) {
100 Free((void **)&pointer->Name, "molecule::AddAtom: *pointer->Name");
101 pointer->Name = (char *) Malloc(sizeof(char)*6, "molecule::AddAtom: *pointer->Name");
102 sprintf(pointer->Name, "%2s%02d", pointer->type->symbol, pointer->nr+1);
103 }
104 }
105 return add(pointer, end);
106 } else
107 return false;
108};
109
110/** Adds a copy of the given atom \a *pointer from molecule list.
111 * Increases molecule::last_atom and gives last number to added atom.
112 * \param *pointer allocated and set atom
113 * \return true - succeeded, false - atom not found in list
114 */
115atom * molecule::AddCopyAtom(atom *pointer)
116{
117 if (pointer != NULL) {
118 atom *walker = new atom();
119 walker->type = pointer->type; // copy element of atom
120 walker->x.CopyVector(&pointer->x); // copy coordination
121 walker->v.CopyVector(&pointer->v); // copy velocity
122 walker->FixedIon = pointer->FixedIon;
123 walker->sort = &walker->nr;
124 walker->nr = last_atom++; // increase number within molecule
125 walker->father = pointer; //->GetTrueFather();
126 walker->Name = (char *) Malloc(sizeof(char)*strlen(pointer->Name)+1, "molecule::AddCopyAtom: *Name");
127 strcpy (walker->Name, pointer->Name);
128 add(walker, end);
129 if ((pointer->type != NULL) && (pointer->type->Z != 1))
130 NoNonHydrogen++;
131 AtomCount++;
132 return walker;
133 } else
134 return NULL;
135};
136
137/** Adds a Hydrogen atom in replacement for the given atom \a *partner in bond with a *origin.
138 * Here, we have to distinguish between single, double or triple bonds as stated by \a BondDegree, that each demand
139 * a different scheme when adding \a *replacement atom for the given one.
140 * -# Single Bond: Simply add new atom with bond distance rescaled to typical hydrogen one
141 * -# Double Bond: Here, we need the **BondList of the \a *origin atom, by scanning for the other bonds instead of
142 * *Bond, we use the through these connected atoms to determine the plane they lie in, vector::MakeNormalVector().
143 * The orthonormal vector to this plane along with the vector in *Bond direction determines the plane the two
144 * replacing hydrogens shall lie in. Now, all remains to do is take the usual hydrogen double bond angle for the
145 * element of *origin and form the sin/cos admixture of both plane vectors for the new coordinates of the two
146 * hydrogens forming this angle with *origin.
147 * -# Triple Bond: The idea is to set up a tetraoid (C1-H1-H2-H3) (however the lengths \f$b\f$ of the sides of the base
148 * triangle formed by the to be added hydrogens are not equal to the typical bond distance \f$l\f$ but have to be
149 * determined from the typical angle \f$\alpha\f$ for a hydrogen triple connected to the element of *origin):
150 * We have the height \f$d\f$ as the vector in *Bond direction (from triangle C1-H1-H2).
151 * \f[ h = l \cdot \cos{\left (\frac{\alpha}{2} \right )} \qquad b = 2l \cdot \sin{\left (\frac{\alpha}{2} \right)} \quad \rightarrow \quad d = l \cdot \sqrt{\cos^2{\left (\frac{\alpha}{2} \right)}-\frac{1}{3}\cdot\sin^2{\left (\frac{\alpha}{2}\right )}}
152 * \f]
153 * vector::GetNormalVector() creates one orthonormal vector from this *Bond vector and vector::MakeNormalVector creates
154 * the third one from the former two vectors. The latter ones form the plane of the base triangle mentioned above.
155 * The lengths for these are \f$f\f$ and \f$g\f$ (from triangle H1-H2-(center of H1-H2-H3)) with knowledge that
156 * the median lines in an isosceles triangle meet in the center point with a ratio 2:1.
157 * \f[ f = \frac{b}{\sqrt{3}} \qquad g = \frac{b}{2}
158 * \f]
159 * as the coordination of all three atoms in the coordinate system of these three vectors:
160 * \f$\pmatrix{d & f & 0}\f$, \f$\pmatrix{d & -0.5 \cdot f & g}\f$ and \f$\pmatrix{d & -0.5 \cdot f & -g}\f$.
161 *
162 * \param *out output stream for debugging
163 * \param *Bond pointer to bond between \a *origin and \a *replacement
164 * \param *TopOrigin son of \a *origin of upper level molecule (the atom added to this molecule as a copy of \a *origin)
165 * \param *origin pointer to atom which acts as the origin for scaling the added hydrogen to correct bond length
166 * \param *replacement pointer to the atom which shall be copied as a hydrogen atom in this molecule
167 * \param **BondList list of bonds \a *replacement has (necessary to determine plane for double and triple bonds)
168 * \param NumBond number of bonds in \a **BondList
169 * \param isAngstroem whether the coordination of the given atoms is in AtomicLength (false) or Angstrom(true)
170 * \return number of atoms added, if < bond::BondDegree then something went wrong
171 * \todo double and triple bonds splitting (always use the tetraeder angle!)
172 */
173bool molecule::AddHydrogenReplacementAtom(ofstream *out, bond *TopBond, atom *BottomOrigin, atom *TopOrigin, atom *TopReplacement, bond **BondList, int NumBond, bool IsAngstroem)
174{
175 double bondlength; // bond length of the bond to be replaced/cut
176 double bondangle; // bond angle of the bond to be replaced/cut
177 double BondRescale; // rescale value for the hydrogen bond length
178 bool AllWentWell = true; // flag gathering the boolean return value of molecule::AddAtom and other functions, as return value on exit
179 bond *FirstBond = NULL, *SecondBond = NULL; // Other bonds in double bond case to determine "other" plane
180 atom *FirstOtherAtom = NULL, *SecondOtherAtom = NULL, *ThirdOtherAtom = NULL; // pointer to hydrogen atoms to be added
181 int i; // loop variable
182 double b,l,d,f,g, alpha, factors[NDIM]; // hold temporary values in triple bond case for coordination determination
183 vector OrthoVector1, OrthoVector2; // temporary vectors in coordination construction
184 vector InBondVector; // vector in direction of *Bond
185 bond *Binder = NULL;
186 double *matrix;
187
188// *out << Verbose(3) << "Begin of AddHydrogenReplacementAtom." << endl;
189 // create vector in direction of bond
190 InBondVector.CopyVector(&TopReplacement->x);
191 InBondVector.SubtractVector(&TopOrigin->x);
192 bondlength = InBondVector.Norm();
193
194 // is greater than typical bond distance? Then we have to correct periodically
195 // the problem is not the H being out of the box, but InBondVector have the wrong direction
196 // due to TopReplacement or Origin being on the wrong side!
197 if (bondlength > BondDistance) {
198// *out << Verbose(4) << "InBondVector is: ";
199// InBondVector.Output(out);
200// *out << endl;
201 OrthoVector1.Zero();
202 for (int i=0;i<NDIM;i++) {
203 l = TopReplacement->x.x[i] - TopOrigin->x.x[i];
204 if (fabs(l) > BondDistance) { // is component greater than bond distance
205 OrthoVector1.x[i] = (l < 0) ? -1. : +1.;
206 } // (signs are correct, was tested!)
207 }
208 matrix = ReturnFullMatrixforSymmetric(cell_size);
209 OrthoVector1.MatrixMultiplication(matrix);
210 InBondVector.SubtractVector(&OrthoVector1); // subtract just the additional translation
211 Free((void **)&matrix, "molecule::AddHydrogenReplacementAtom: *matrix");
212 bondlength = InBondVector.Norm();
213// *out << Verbose(4) << "Corrected InBondVector is now: ";
214// InBondVector.Output(out);
215// *out << endl;
216 } // periodic correction finished
217
218 InBondVector.Normalize();
219 // get typical bond length and store as scale factor for later
220 BondRescale = TopOrigin->type->HBondDistance[TopBond->BondDegree-1];
221 if (BondRescale == -1) {
222 cerr << Verbose(3) << "WARNING: There is no typical bond distance for bond (" << TopOrigin->Name << "<->" << TopReplacement->Name << ") of degree " << TopBond->BondDegree << "!" << endl;
223 BondRescale = bondlength;
224 } else {
225 if (!IsAngstroem)
226 BondRescale /= (1.*AtomicLengthToAngstroem);
227 }
228
229 // discern single, double and triple bonds
230 switch(TopBond->BondDegree) {
231 case 1:
232 FirstOtherAtom = new atom(); // new atom
233 FirstOtherAtom->type = elemente->FindElement(1); // element is Hydrogen
234 FirstOtherAtom->v.CopyVector(&TopReplacement->v); // copy velocity
235 FirstOtherAtom->FixedIon = TopReplacement->FixedIon;
236 if (TopReplacement->type->Z == 1) { // neither rescale nor replace if it's already hydrogen
237 FirstOtherAtom->father = TopReplacement;
238 BondRescale = bondlength;
239 } else {
240 FirstOtherAtom->father = NULL; // if we replace hydrogen, we mark it as our father, otherwise we are just an added hydrogen with no father
241 }
242 InBondVector.Scale(&BondRescale); // rescale the distance vector to Hydrogen bond length
243 FirstOtherAtom->x.CopyVector(&TopOrigin->x); // set coordination to origin ...
244 FirstOtherAtom->x.AddVector(&InBondVector); // ... and add distance vector to replacement atom
245 AllWentWell = AllWentWell && AddAtom(FirstOtherAtom);
246// *out << Verbose(4) << "Added " << *FirstOtherAtom << " at: ";
247// FirstOtherAtom->x.Output(out);
248// *out << endl;
249 Binder = AddBond(BottomOrigin, FirstOtherAtom, 1);
250 Binder->Cyclic = false;
251 Binder->Type = TreeEdge;
252 break;
253 case 2:
254 // determine two other bonds (warning if there are more than two other) plus valence sanity check
255 for (i=0;i<NumBond;i++) {
256 if (BondList[i] != TopBond) {
257 if (FirstBond == NULL) {
258 FirstBond = BondList[i];
259 FirstOtherAtom = BondList[i]->GetOtherAtom(TopOrigin);
260 } else if (SecondBond == NULL) {
261 SecondBond = BondList[i];
262 SecondOtherAtom = BondList[i]->GetOtherAtom(TopOrigin);
263 } else {
264 *out << Verbose(3) << "WARNING: Detected more than four bonds for atom " << TopOrigin->Name;
265 }
266 }
267 }
268 if (SecondOtherAtom == NULL) { // then we have an atom with valence four, but only 3 bonds: one to replace and one which is TopBond (third is FirstBond)
269 SecondBond = TopBond;
270 SecondOtherAtom = TopReplacement;
271 }
272 if (FirstOtherAtom != NULL) { // then we just have this double bond and the plane does not matter at all
273// *out << Verbose(3) << "Regarding the double bond (" << TopOrigin->Name << "<->" << TopReplacement->Name << ") to be constructed: Taking " << FirstOtherAtom->Name << " and " << SecondOtherAtom->Name << " along with " << TopOrigin->Name << " to determine orthogonal plane." << endl;
274
275 // determine the plane of these two with the *origin
276 AllWentWell = AllWentWell && OrthoVector1.MakeNormalVector(&TopOrigin->x, &FirstOtherAtom->x, &SecondOtherAtom->x);
277 } else {
278 OrthoVector1.GetOneNormalVector(&InBondVector);
279 }
280 //*out << Verbose(3)<< "Orthovector1: ";
281 //OrthoVector1.Output(out);
282 //*out << endl;
283 // orthogonal vector and bond vector between origin and replacement form the new plane
284 OrthoVector1.MakeNormalVector(&InBondVector);
285 OrthoVector1.Normalize();
286 //*out << Verbose(3) << "ReScaleCheck: " << OrthoVector1.Norm() << " and " << InBondVector.Norm() << "." << endl;
287
288 // create the two Hydrogens ...
289 FirstOtherAtom = new atom();
290 SecondOtherAtom = new atom();
291 FirstOtherAtom->type = elemente->FindElement(1);
292 SecondOtherAtom->type = elemente->FindElement(1);
293 FirstOtherAtom->v.CopyVector(&TopReplacement->v); // copy velocity
294 FirstOtherAtom->FixedIon = TopReplacement->FixedIon;
295 SecondOtherAtom->v.CopyVector(&TopReplacement->v); // copy velocity
296 SecondOtherAtom->FixedIon = TopReplacement->FixedIon;
297 FirstOtherAtom->father = NULL; // we are just an added hydrogen with no father
298 SecondOtherAtom->father = NULL; // we are just an added hydrogen with no father
299 bondangle = TopOrigin->type->HBondAngle[1];
300 if (bondangle == -1) {
301 *out << Verbose(3) << "WARNING: There is no typical bond angle for bond (" << TopOrigin->Name << "<->" << TopReplacement->Name << ") of degree " << TopBond->BondDegree << "!" << endl;
302 bondangle = 0;
303 }
304 bondangle *= M_PI/180./2.;
305// *out << Verbose(3) << "ReScaleCheck: InBondVector ";
306// InBondVector.Output(out);
307// *out << endl;
308// *out << Verbose(3) << "ReScaleCheck: Orthovector ";
309// OrthoVector1.Output(out);
310// *out << endl;
311// *out << Verbose(3) << "Half the bond angle is " << bondangle << ", sin and cos of it: " << sin(bondangle) << ", " << cos(bondangle) << endl;
312 FirstOtherAtom->x.Zero();
313 SecondOtherAtom->x.Zero();
314 for(i=0;i<NDIM;i++) { // rotate by half the bond angle in both directions (InBondVector is bondangle = 0 direction)
315 FirstOtherAtom->x.x[i] = InBondVector.x[i] * cos(bondangle) + OrthoVector1.x[i] * (sin(bondangle));
316 SecondOtherAtom->x.x[i] = InBondVector.x[i] * cos(bondangle) + OrthoVector1.x[i] * (-sin(bondangle));
317 }
318 FirstOtherAtom->x.Scale(&BondRescale); // rescale by correct BondDistance
319 SecondOtherAtom->x.Scale(&BondRescale);
320 //*out << Verbose(3) << "ReScaleCheck: " << FirstOtherAtom->x.Norm() << " and " << SecondOtherAtom->x.Norm() << "." << endl;
321 for(i=0;i<NDIM;i++) { // and make relative to origin atom
322 FirstOtherAtom->x.x[i] += TopOrigin->x.x[i];
323 SecondOtherAtom->x.x[i] += TopOrigin->x.x[i];
324 }
325 // ... and add to molecule
326 AllWentWell = AllWentWell && AddAtom(FirstOtherAtom);
327 AllWentWell = AllWentWell && AddAtom(SecondOtherAtom);
328// *out << Verbose(4) << "Added " << *FirstOtherAtom << " at: ";
329// FirstOtherAtom->x.Output(out);
330// *out << endl;
331// *out << Verbose(4) << "Added " << *SecondOtherAtom << " at: ";
332// SecondOtherAtom->x.Output(out);
333// *out << endl;
334 Binder = AddBond(BottomOrigin, FirstOtherAtom, 1);
335 Binder->Cyclic = false;
336 Binder->Type = TreeEdge;
337 Binder = AddBond(BottomOrigin, SecondOtherAtom, 1);
338 Binder->Cyclic = false;
339 Binder->Type = TreeEdge;
340 break;
341 case 3:
342 // take the "usual" tetraoidal angle and add the three Hydrogen in direction of the bond (height of the tetraoid)
343 FirstOtherAtom = new atom();
344 SecondOtherAtom = new atom();
345 ThirdOtherAtom = new atom();
346 FirstOtherAtom->type = elemente->FindElement(1);
347 SecondOtherAtom->type = elemente->FindElement(1);
348 ThirdOtherAtom->type = elemente->FindElement(1);
349 FirstOtherAtom->v.CopyVector(&TopReplacement->v); // copy velocity
350 FirstOtherAtom->FixedIon = TopReplacement->FixedIon;
351 SecondOtherAtom->v.CopyVector(&TopReplacement->v); // copy velocity
352 SecondOtherAtom->FixedIon = TopReplacement->FixedIon;
353 ThirdOtherAtom->v.CopyVector(&TopReplacement->v); // copy velocity
354 ThirdOtherAtom->FixedIon = TopReplacement->FixedIon;
355 FirstOtherAtom->father = NULL; // we are just an added hydrogen with no father
356 SecondOtherAtom->father = NULL; // we are just an added hydrogen with no father
357 ThirdOtherAtom->father = NULL; // we are just an added hydrogen with no father
358
359 // we need to vectors orthonormal the InBondVector
360 AllWentWell = AllWentWell && OrthoVector1.GetOneNormalVector(&InBondVector);
361// *out << Verbose(3) << "Orthovector1: ";
362// OrthoVector1.Output(out);
363// *out << endl;
364 AllWentWell = AllWentWell && OrthoVector2.MakeNormalVector(&InBondVector, &OrthoVector1);
365// *out << Verbose(3) << "Orthovector2: ";
366// OrthoVector2.Output(out);
367// *out << endl;
368
369 // create correct coordination for the three atoms
370 alpha = (TopOrigin->type->HBondAngle[2])/180.*M_PI/2.; // retrieve triple bond angle from database
371 l = BondRescale; // desired bond length
372 b = 2.*l*sin(alpha); // base length of isosceles triangle
373 d = l*sqrt(cos(alpha)*cos(alpha) - sin(alpha)*sin(alpha)/3.); // length for InBondvector
374 f = b/sqrt(3.); // length for OrthVector1
375 g = b/2.; // length for OrthVector2
376// *out << Verbose(3) << "Bond length and half-angle: " << l << ", " << alpha << "\t (b,d,f,g) = " << b << ", " << d << ", " << f << ", " << g << ", " << endl;
377// *out << Verbose(3) << "The three Bond lengths: " << sqrt(d*d+f*f) << ", " << sqrt(d*d+(-0.5*f)*(-0.5*f)+g*g) << ", " << sqrt(d*d+(-0.5*f)*(-0.5*f)+g*g) << endl;
378 factors[0] = d;
379 factors[1] = f;
380 factors[2] = 0.;
381 FirstOtherAtom->x.LinearCombinationOfVectors(&InBondVector, &OrthoVector1, &OrthoVector2, factors);
382 factors[1] = -0.5*f;
383 factors[2] = g;
384 SecondOtherAtom->x.LinearCombinationOfVectors(&InBondVector, &OrthoVector1, &OrthoVector2, factors);
385 factors[2] = -g;
386 ThirdOtherAtom->x.LinearCombinationOfVectors(&InBondVector, &OrthoVector1, &OrthoVector2, factors);
387
388 // rescale each to correct BondDistance
389// FirstOtherAtom->x.Scale(&BondRescale);
390// SecondOtherAtom->x.Scale(&BondRescale);
391// ThirdOtherAtom->x.Scale(&BondRescale);
392
393 // and relative to *origin atom
394 FirstOtherAtom->x.AddVector(&TopOrigin->x);
395 SecondOtherAtom->x.AddVector(&TopOrigin->x);
396 ThirdOtherAtom->x.AddVector(&TopOrigin->x);
397
398 // ... and add to molecule
399 AllWentWell = AllWentWell && AddAtom(FirstOtherAtom);
400 AllWentWell = AllWentWell && AddAtom(SecondOtherAtom);
401 AllWentWell = AllWentWell && AddAtom(ThirdOtherAtom);
402// *out << Verbose(4) << "Added " << *FirstOtherAtom << " at: ";
403// FirstOtherAtom->x.Output(out);
404// *out << endl;
405// *out << Verbose(4) << "Added " << *SecondOtherAtom << " at: ";
406// SecondOtherAtom->x.Output(out);
407// *out << endl;
408// *out << Verbose(4) << "Added " << *ThirdOtherAtom << " at: ";
409// ThirdOtherAtom->x.Output(out);
410// *out << endl;
411 Binder = AddBond(BottomOrigin, FirstOtherAtom, 1);
412 Binder->Cyclic = false;
413 Binder->Type = TreeEdge;
414 Binder = AddBond(BottomOrigin, SecondOtherAtom, 1);
415 Binder->Cyclic = false;
416 Binder->Type = TreeEdge;
417 Binder = AddBond(BottomOrigin, ThirdOtherAtom, 1);
418 Binder->Cyclic = false;
419 Binder->Type = TreeEdge;
420 break;
421 default:
422 cerr << "ERROR: BondDegree does not state single, double or triple bond!" << endl;
423 AllWentWell = false;
424 break;
425 }
426
427// *out << Verbose(3) << "End of AddHydrogenReplacementAtom." << endl;
428 return AllWentWell;
429};
430
431/** Adds given atom \a *pointer from molecule list.
432 * Increases molecule::last_atom and gives last number to added atom.
433 * \param filename name and path of xyz file
434 * \return true - succeeded, false - file not found
435 */
436bool molecule::AddXYZFile(string filename)
437{
438 istringstream *input = NULL;
439 int NumberOfAtoms = 0; // atom number in xyz read
440 int i, j; // loop variables
441 atom *first = NULL; // pointer to added atom
442 char shorthand[3]; // shorthand for atom name
443 ifstream xyzfile; // xyz file
444 string line; // currently parsed line
445 double x[3]; // atom coordinates
446
447 xyzfile.open(filename.c_str());
448 if (!xyzfile)
449 return false;
450
451 getline(xyzfile,line,'\n'); // Read numer of atoms in file
452 input = new istringstream(line);
453 *input >> NumberOfAtoms;
454 cout << Verbose(0) << "Parsing " << NumberOfAtoms << " atoms in file." << endl;
455 getline(xyzfile,line,'\n'); // Read comment
456 cout << Verbose(1) << "Comment: " << line << endl;
457
458 for(i=0;i<NumberOfAtoms;i++){
459 first = new atom;
460 getline(xyzfile,line,'\n');
461 istringstream *item = new istringstream(line);
462 //istringstream input(line);
463 cout << Verbose(1) << "Reading: " << line << endl;
464 *item >> shorthand;
465 *item >> x[0];
466 *item >> x[1];
467 *item >> x[2];
468 first->type = elemente->FindElement(shorthand);
469 if (first->type == NULL) {
470 cerr << "Could not parse the element at line: '" << line << "', setting to H.";
471 first->type = elemente->FindElement(1);
472 }
473 for(j=0;j<NDIM;j++)
474 first->x.x[j] = x[j];
475 AddAtom(first); // add to molecule
476 delete(item);
477 }
478 xyzfile.close();
479 delete(input);
480 return true;
481};
482
483/** Creates a copy of this molecule.
484 * \return copy of molecule
485 */
486molecule *molecule::CopyMolecule()
487{
488 molecule *copy = new molecule(elemente);
489 atom *CurrentAtom = NULL;
490 atom *LeftAtom = NULL, *RightAtom = NULL;
491 atom *Walker = NULL;
492
493 // copy all atoms
494 Walker = start;
495 while(Walker->next != end) {
496 Walker = Walker->next;
497 CurrentAtom = copy->AddCopyAtom(Walker);
498 }
499
500 // copy all bonds
501 bond *Binder = first;
502 bond *NewBond = NULL;
503 while(Binder->next != last) {
504 Binder = Binder->next;
505 // get the pendant atoms of current bond in the copy molecule
506 LeftAtom = copy->start;
507 while (LeftAtom->next != copy->end) {
508 LeftAtom = LeftAtom->next;
509 if (LeftAtom->father == Binder->leftatom)
510 break;
511 }
512 RightAtom = copy->start;
513 while (RightAtom->next != copy->end) {
514 RightAtom = RightAtom->next;
515 if (RightAtom->father == Binder->rightatom)
516 break;
517 }
518 NewBond = copy->AddBond(LeftAtom, RightAtom, Binder->BondDegree);
519 NewBond->Cyclic = Binder->Cyclic;
520 if (Binder->Cyclic)
521 copy->NoCyclicBonds++;
522 NewBond->Type = Binder->Type;
523 }
524 // correct fathers
525 Walker = copy->start;
526 while(Walker->next != copy->end) {
527 Walker = Walker->next;
528 if (Walker->father->father == Walker->father) // same atom in copy's father points to itself
529 Walker->father = Walker; // set father to itself (copy of a whole molecule)
530 else
531 Walker->father = Walker->father->father; // set father to original's father
532 }
533 // copy values
534 copy->CountAtoms((ofstream *)&cout);
535 copy->CountElements();
536 if (first->next != last) { // if adjaceny list is present
537 copy->BondDistance = BondDistance;
538 copy->CreateListOfBondsPerAtom((ofstream *)&cout);
539 }
540
541 return copy;
542};
543
544/** Adds a bond to a the molecule specified by two atoms, \a *first and \a *second.
545 * Also updates molecule::BondCount and molecule::NoNonBonds.
546 * \param *first first atom in bond
547 * \param *second atom in bond
548 * \return pointer to bond or NULL on failure
549 */
550bond * molecule::AddBond(atom *atom1, atom *atom2, int degree=1)
551{
552 bond *Binder = NULL;
553 if ((atom1 != NULL) && (FindAtom(atom1->nr) != NULL) && (atom2 != NULL) && (FindAtom(atom2->nr) != NULL)) {
554 Binder = new bond(atom1, atom2, degree, BondCount++);
555 if ((atom1->type != NULL) && (atom1->type->Z != 1) && (atom2->type != NULL) && (atom2->type->Z != 1))
556 NoNonBonds++;
557 add(Binder, last);
558 } else {
559 cerr << Verbose(1) << "ERROR: Could not add bond between " << atom1->Name << " and " << atom2->Name << " as one or both are not present in the molecule." << endl;
560 }
561 return Binder;
562};
563
564/** Remove bond from bond chain list.
565 * \todo Function not implemented yet
566 * \param *pointer bond pointer
567 * \return true - bound found and removed, false - bond not found/removed
568 */
569bool molecule::RemoveBond(bond *pointer)
570{
571 //cerr << Verbose(1) << "molecule::RemoveBond: Function not implemented yet." << endl;
572 removewithoutcheck(pointer);
573 return true;
574};
575
576/** Remove every bond from bond chain list that atom \a *BondPartner is a constituent of.
577 * \todo Function not implemented yet
578 * \param *BondPartner atom to be removed
579 * \return true - bounds found and removed, false - bonds not found/removed
580 */
581bool molecule::RemoveBonds(atom *BondPartner)
582{
583 cerr << Verbose(1) << "molecule::RemoveBond: Function not implemented yet." << endl;
584 return false;
585};
586
587/** Sets the molecule::cell_size to the components of \a *dim (rectangular box)
588 * \param *dim vector class
589 */
590void molecule::SetBoxDimension(vector *dim)
591{
592 cell_size[0] = dim->x[0];
593 cell_size[1] = 0.;
594 cell_size[2] = dim->x[1];
595 cell_size[3] = 0.;
596 cell_size[4] = 0.;
597 cell_size[5] = dim->x[2];
598};
599
600/** Centers the edge of the atoms at (0,0,0).
601 * \param *out output stream for debugging
602 * \param *max coordinates of other edge, specifying box dimensions.
603 */
604void molecule::CenterEdge(ofstream *out, vector *max)
605{
606 vector *min = new vector;
607
608// *out << Verbose(3) << "Begin of CenterEdge." << endl;
609 atom *ptr = start->next; // start at first in list
610 if (ptr != end) { //list not empty?
611 for (int i=0;i<NDIM;i++) {
612 max->x[i] = ptr->x.x[i];
613 min->x[i] = ptr->x.x[i];
614 }
615 while (ptr->next != end) { // continue with second if present
616 ptr = ptr->next;
617 //ptr->Output(1,1,out);
618 for (int i=0;i<NDIM;i++) {
619 max->x[i] = (max->x[i] < ptr->x.x[i]) ? ptr->x.x[i] : max->x[i];
620 min->x[i] = (min->x[i] > ptr->x.x[i]) ? ptr->x.x[i] : min->x[i];
621 }
622 }
623// *out << Verbose(4) << "Maximum is ";
624// max->Output(out);
625// *out << ", Minimum is ";
626// min->Output(out);
627// *out << endl;
628
629 for (int i=0;i<NDIM;i++) {
630 min->x[i] *= -1.;
631 max->x[i] += min->x[i];
632 }
633 Translate(min);
634 }
635 delete(min);
636// *out << Verbose(3) << "End of CenterEdge." << endl;
637};
638
639/** Centers the center of the atoms at (0,0,0).
640 * \param *out output stream for debugging
641 * \param *center return vector for translation vector
642 */
643void molecule::CenterOrigin(ofstream *out, vector *center)
644{
645 int Num = 0;
646 atom *ptr = start->next; // start at first in list
647
648 for(int i=0;i<NDIM;i++) // zero center vector
649 center->x[i] = 0.;
650
651 if (ptr != end) { //list not empty?
652 while (ptr->next != end) { // continue with second if present
653 ptr = ptr->next;
654 Num++;
655 center->AddVector(&ptr->x);
656 }
657 center->Scale(-1./Num); // divide through total number (and sign for direction)
658 Translate(center);
659 }
660};
661
662/** Centers the center of gravity of the atoms at (0,0,0).
663 * \param *out output stream for debugging
664 * \param *center return vector for translation vector
665 */
666void molecule::CenterGravity(ofstream *out, vector *center)
667{
668 double Num = 0;
669 atom *ptr = start->next; // start at first in list
670 vector tmp;
671
672 for(int i=0;i<NDIM;i++) // zero center vector
673 center->x[i] = 0.;
674
675 if (ptr != end) { //list not empty?
676 while (ptr->next != end) { // continue with second if present
677 ptr = ptr->next;
678 Num += ptr->type->mass;
679 tmp.CopyVector(&ptr->x);
680 tmp.Scale(ptr->type->mass); // scale by mass
681 center->AddVector(&tmp);
682 }
683 center->Scale(-1./Num); // divide through total mass (and sign for direction)
684 Translate(center);
685 }
686};
687
688/** Scales all atoms by \a *factor.
689 * \param *factor pointer to scaling factor
690 */
691void molecule::Scale(double **factor)
692{
693 atom *ptr = start;
694
695 while (ptr->next != end) {
696 ptr = ptr->next;
697 ptr->x.Scale(factor);
698 }
699};
700
701/** Translate all atoms by given vector.
702 * \param trans[] translation vector.
703 */
704void molecule::Translate(const vector *trans)
705{
706 atom *ptr = start;
707
708 while (ptr->next != end) {
709 ptr = ptr->next;
710 ptr->x.Translate(trans);
711 }
712};
713
714/** Mirrors all atoms against a given plane.
715 * \param n[] normal vector of mirror plane.
716 */
717void molecule::Mirror(const vector *n)
718{
719 atom *ptr = start;
720
721 while (ptr->next != end) {
722 ptr = ptr->next;
723 ptr->x.Mirror(n);
724 }
725};
726
727/** Determines center of gravity (yet not considering atom masses).
728 * \param CenterOfGravity reference to return vector
729 */
730void molecule::DetermineCenterOfGravity(vector &CenterOfGravity)
731{
732 atom *Walker = start;
733 bond *Binder = NULL;
734 double *matrix = ReturnFullMatrixforSymmetric(cell_size);
735 double tmp;
736 bool flag;
737 vector TestVector, TranslationVector;
738
739 do {
740 CenterOfGravity.Zero();
741 flag = true;
742 while (Walker->next != end) {
743 Walker = Walker->next;
744#ifdef ADDHYDROGEN
745 if (Walker->type->Z != 1) {
746#endif
747 TestVector.CopyVector(&Walker->x);
748 TestVector.InverseMatrixMultiplication(matrix);
749 TranslationVector.Zero();
750 for (int i=0;i<NumberOfBondsPerAtom[Walker->nr]; i++) {
751 Binder = ListOfBondsPerAtom[Walker->nr][i];
752 if (Walker->nr < Binder->GetOtherAtom(Walker)->nr) // otherwise we shift one to, the other fro and gain nothing
753 for (int j=0;j<NDIM;j++) {
754 tmp = Walker->x.x[j] - Binder->GetOtherAtom(Walker)->x.x[j];
755 if ((fabs(tmp)) > BondDistance) {
756 flag = false;
757 cout << Verbose(0) << "Hit: atom " << Walker->Name << " in bond " << *Binder << " has to be shifted due to " << tmp << "." << endl;
758 if (tmp > 0)
759 TranslationVector.x[j] -= 1.;
760 else
761 TranslationVector.x[j] += 1.;
762 }
763 }
764 }
765 TestVector.AddVector(&TranslationVector);
766 TestVector.MatrixMultiplication(matrix);
767 CenterOfGravity.AddVector(&TestVector);
768 cout << Verbose(1) << "Vector is: ";
769 TestVector.Output((ofstream *)&cout);
770 cout << endl;
771#ifdef ADDHYDROGEN
772 // now also change all hydrogens
773 for (int i=0;i<NumberOfBondsPerAtom[Walker->nr]; i++) {
774 Binder = ListOfBondsPerAtom[Walker->nr][i];
775 if (Binder->GetOtherAtom(Walker)->type->Z == 1) {
776 TestVector.CopyVector(&Binder->GetOtherAtom(Walker)->x);
777 TestVector.InverseMatrixMultiplication(matrix);
778 TestVector.AddVector(&TranslationVector);
779 TestVector.MatrixMultiplication(matrix);
780 CenterOfGravity.AddVector(&TestVector);
781 cout << Verbose(1) << "Hydrogen Vector is: ";
782 TestVector.Output((ofstream *)&cout);
783 cout << endl;
784 }
785 }
786 }
787#endif
788 }
789 } while (!flag);
790 Free((void **)&matrix, "molecule::DetermineCenterOfGravity: *matrix");
791 CenterOfGravity.Scale(1./(double)AtomCount);
792};
793
794/** Align all atoms in such a manner that given vector \a *n is along z axis.
795 * \param n[] alignment vector.
796 */
797void molecule::Align(vector *n)
798{
799 atom *ptr = start;
800 double alpha, tmp;
801 vector z_axis;
802 z_axis.x[0] = 0.;
803 z_axis.x[1] = 0.;
804 z_axis.x[2] = 1.;
805
806 // rotate on z-x plane
807 cout << Verbose(0) << "Begin of Aligning all atoms." << endl;
808 alpha = atan(-n->x[0]/n->x[2]);
809 cout << Verbose(1) << "Z-X-angle: " << alpha << " ... ";
810 while (ptr->next != end) {
811 ptr = ptr->next;
812 tmp = ptr->x.x[0];
813 ptr->x.x[0] = cos(alpha) * tmp + sin(alpha) * ptr->x.x[2];
814 ptr->x.x[2] = -sin(alpha) * tmp + cos(alpha) * ptr->x.x[2];
815 }
816 // rotate n vector
817 tmp = n->x[0];
818 n->x[0] = cos(alpha) * tmp + sin(alpha) * n->x[2];
819 n->x[2] = -sin(alpha) * tmp + cos(alpha) * n->x[2];
820 cout << Verbose(1) << "alignment vector after first rotation: ";
821 n->Output((ofstream *)&cout);
822 cout << endl;
823
824 // rotate on z-y plane
825 ptr = start;
826 alpha = atan(-n->x[1]/n->x[2]);
827 cout << Verbose(1) << "Z-Y-angle: " << alpha << " ... ";
828 while (ptr->next != end) {
829 ptr = ptr->next;
830 tmp = ptr->x.x[1];
831 ptr->x.x[1] = cos(alpha) * tmp + sin(alpha) * ptr->x.x[2];
832 ptr->x.x[2] = -sin(alpha) * tmp + cos(alpha) * ptr->x.x[2];
833 }
834 // rotate n vector (for consistency check)
835 tmp = n->x[1];
836 n->x[1] = cos(alpha) * tmp + sin(alpha) * n->x[2];
837 n->x[2] = -sin(alpha) * tmp + cos(alpha) * n->x[2];
838
839 cout << Verbose(1) << "alignment vector after second rotation: ";
840 n->Output((ofstream *)&cout);
841 cout << Verbose(1) << endl;
842 cout << Verbose(0) << "End of Aligning all atoms." << endl;
843};
844
845/** Removes atom from molecule list.
846 * \param *pointer atom to be removed
847 * \return true - succeeded, false - atom not found in list
848 */
849bool molecule::RemoveAtom(atom *pointer)
850{
851 if (ElementsInMolecule[pointer->type->Z] != 0) // this would indicate an error
852 ElementsInMolecule[pointer->type->Z]--; // decrease number of atom of this element
853 else
854 cerr << "ERROR: Atom " << pointer->Name << " is of element " << pointer->type->Z << " but the entry in the table of the molecule is 0!" << endl;
855 if (ElementsInMolecule[pointer->type->Z] == 0) // was last atom of this element?
856 ElementCount--;
857 return remove(pointer, start, end);
858};
859
860/** Removes every atom from molecule list.
861 * \return true - succeeded, false - atom not found in list
862 */
863bool molecule::CleanupMolecule()
864{
865 return (cleanup(start,end) && cleanup(first,last));
866};
867
868/** Finds an atom specified by its continuous number.
869 * \param Nr number of atom withim molecule
870 * \return pointer to atom or NULL
871 */
872atom * molecule::FindAtom(int Nr) const{
873 atom * walker = find(&Nr, start,end);
874 if (walker != NULL) {
875 //cout << Verbose(0) << "Found Atom Nr. " << walker->nr << endl;
876 return walker;
877 } else {
878 cout << Verbose(0) << "Atom not found in list." << endl;
879 return NULL;
880 }
881};
882
883/** Asks for atom number, and checks whether in list.
884 * \param *text question before entering
885 */
886atom * molecule::AskAtom(char *text)
887{
888 int No;
889 atom *ion = NULL;
890 do {
891 //cout << Verbose(0) << "============Atom list==========================" << endl;
892 //mol->Output((ofstream *)&cout);
893 //cout << Verbose(0) << "===============================================" << endl;
894 cout << Verbose(0) << text;
895 cin >> No;
896 ion = this->FindAtom(No);
897 } while (ion == NULL);
898 return ion;
899};
900
901/** Checks if given coordinates are within cell volume.
902 * \param *x array of coordinates
903 * \return true - is within, false - out of cell
904 */
905bool molecule::CheckBounds(const vector *x) const
906{
907 bool result = true;
908 int j =-1;
909 for (int i=0;i<3;i++) {
910 j += i+1;
911 result = result && ((x->x[i] >= 0) && (x->x[i] < cell_size[j]));
912 }
913 //return result;
914 return true; /// probably not gonna use the check no more
915};
916
917/** Calculates sum over least square distance to line hidden in \a *x.
918 * \param *x offset and direction vector
919 * \param *params pointer to lsq_params structure
920 * \return \f$ sum_i^N | y_i - (a + t_i b)|^2\f$
921 */
922double LeastSquareDistance (const gsl_vector * x, void * params)
923{
924 double res = 0, t;
925 vector a,b,c,d;
926 struct lsq_params *par = (struct lsq_params *)params;
927 atom *ptr = par->mol->start;
928
929 // initialize vectors
930 a.x[0] = gsl_vector_get(x,0);
931 a.x[1] = gsl_vector_get(x,1);
932 a.x[2] = gsl_vector_get(x,2);
933 b.x[0] = gsl_vector_get(x,3);
934 b.x[1] = gsl_vector_get(x,4);
935 b.x[2] = gsl_vector_get(x,5);
936 // go through all atoms
937 while (ptr != par->mol->end) {
938 ptr = ptr->next;
939 if (ptr->type == ((struct lsq_params *)params)->type) { // for specific type
940 c.CopyVector(&ptr->x); // copy vector to temporary one
941 c.SubtractVector(&a); // subtract offset vector
942 t = c.ScalarProduct(&b); // get direction parameter
943 d.CopyVector(&b); // and create vector
944 d.Scale(&t);
945 c.SubtractVector(&d); // ... yielding distance vector
946 res += d.ScalarProduct((const vector *)&d); // add squared distance
947 }
948 }
949 return res;
950};
951
952/** By minimizing the least square distance gains alignment vector.
953 * \bug this is not yet working properly it seems
954 */
955void molecule::GetAlignVector(struct lsq_params * par) const
956{
957 int np = 6;
958
959 const gsl_multimin_fminimizer_type *T =
960 gsl_multimin_fminimizer_nmsimplex;
961 gsl_multimin_fminimizer *s = NULL;
962 gsl_vector *ss;
963 gsl_multimin_function minex_func;
964
965 size_t iter = 0, i;
966 int status;
967 double size;
968
969 /* Initial vertex size vector */
970 ss = gsl_vector_alloc (np);
971
972 /* Set all step sizes to 1 */
973 gsl_vector_set_all (ss, 1.0);
974
975 /* Starting point */
976 par->x = gsl_vector_alloc (np);
977 par->mol = this;
978
979 gsl_vector_set (par->x, 0, 0.0); // offset
980 gsl_vector_set (par->x, 1, 0.0);
981 gsl_vector_set (par->x, 2, 0.0);
982 gsl_vector_set (par->x, 3, 0.0); // direction
983 gsl_vector_set (par->x, 4, 0.0);
984 gsl_vector_set (par->x, 5, 1.0);
985
986 /* Initialize method and iterate */
987 minex_func.f = &LeastSquareDistance;
988 minex_func.n = np;
989 minex_func.params = (void *)par;
990
991 s = gsl_multimin_fminimizer_alloc (T, np);
992 gsl_multimin_fminimizer_set (s, &minex_func, par->x, ss);
993
994 do
995 {
996 iter++;
997 status = gsl_multimin_fminimizer_iterate(s);
998
999 if (status)
1000 break;
1001
1002 size = gsl_multimin_fminimizer_size (s);
1003 status = gsl_multimin_test_size (size, 1e-2);
1004
1005 if (status == GSL_SUCCESS)
1006 {
1007 printf ("converged to minimum at\n");
1008 }
1009
1010 printf ("%5d ", (int)iter);
1011 for (i = 0; i < (size_t)np; i++)
1012 {
1013 printf ("%10.3e ", gsl_vector_get (s->x, i));
1014 }
1015 printf ("f() = %7.3f size = %.3f\n", s->fval, size);
1016 }
1017 while (status == GSL_CONTINUE && iter < 100);
1018
1019 for (i=0;i<(size_t)np;i++)
1020 gsl_vector_set(par->x, i, gsl_vector_get(s->x, i));
1021 //gsl_vector_free(par->x);
1022 gsl_vector_free(ss);
1023 gsl_multimin_fminimizer_free (s);
1024};
1025
1026/** Prints molecule to *out.
1027 * \param *out output stream
1028 */
1029bool molecule::Output(ofstream *out)
1030{
1031 element *runner = elemente->start;
1032 atom *walker = NULL;
1033 int ElementNo, AtomNo;
1034 CountElements();
1035
1036 if (out == NULL) {
1037 return false;
1038 } else {
1039 *out << "#Ion_TypeNr._Nr.R[0] R[1] R[2] MoveType (0 MoveIon, 1 FixedIon)" << endl;
1040 ElementNo = 0;
1041 while (runner->next != elemente->end) { // go through every element
1042 runner = runner->next;
1043 if (ElementsInMolecule[runner->Z]) { // if this element got atoms
1044 ElementNo++;
1045 AtomNo = 0;
1046 walker = start;
1047 while (walker->next != end) { // go through every atom of this element
1048 walker = walker->next;
1049 if (walker->type == runner) { // if this atom fits to element
1050 AtomNo++;
1051 walker->Output(ElementNo, AtomNo, out);
1052 }
1053 }
1054 }
1055 }
1056 return true;
1057 }
1058};
1059
1060/** Output of element before the actual coordination list.
1061 * \param *out stream pointer
1062 */
1063bool molecule::Checkout(ofstream *out) const
1064{
1065 return elemente->Checkout(out, ElementsInMolecule);
1066};
1067
1068/** Prints molecule to *out as xyz file.
1069 * \param *out output stream
1070 */
1071bool molecule::OutputXYZ(ofstream *out) const
1072{
1073 atom *walker = NULL;
1074 int No = 0;
1075 time_t now;
1076
1077 now = time((time_t *)NULL); // Get the system time and put it into 'now' as 'calender time'
1078 walker = start;
1079 while (walker->next != end) { // go through every atom and count
1080 walker = walker->next;
1081 No++;
1082 }
1083 if (out != NULL) {
1084 *out << No << "\n\tCreated by molecuilder on " << ctime(&now);
1085 walker = start;
1086 while (walker->next != end) { // go through every atom of this element
1087 walker = walker->next;
1088 walker->OutputXYZLine(out);
1089 }
1090 return true;
1091 } else
1092 return false;
1093};
1094
1095/** Brings molecule::AtomCount and atom::*Name up-to-date.
1096 * \param *out output stream for debugging
1097 */
1098void molecule::CountAtoms(ofstream *out)
1099{
1100 int i = 0;
1101 atom *Walker = start;
1102 while (Walker->next != end) {
1103 Walker = Walker->next;
1104 i++;
1105 }
1106 if ((AtomCount == 0) || (i != AtomCount)) {
1107 *out << Verbose(3) << "Mismatch in AtomCount " << AtomCount << " and recounted number " << i << ", renaming all." << endl;
1108 AtomCount = i;
1109
1110 // count NonHydrogen atoms and give each atom a unique name
1111 if (AtomCount != 0) {
1112 i=0;
1113 NoNonHydrogen = 0;
1114 Walker = start;
1115 while (Walker->next != end) {
1116 Walker = Walker->next;
1117 Walker->nr = i; // update number in molecule (for easier referencing in FragmentMolecule lateron)
1118 if (Walker->type->Z != 1) // count non-hydrogen atoms whilst at it
1119 NoNonHydrogen++;
1120 Free((void **)&Walker->Name, "molecule::CountAtoms: *walker->Name");
1121 Walker->Name = (char *) Malloc(sizeof(char)*6, "molecule::CountAtoms: *walker->Name");
1122 sprintf(Walker->Name, "%2s%02d", Walker->type->symbol, Walker->nr+1);
1123 *out << "Naming atom nr. " << Walker->nr << " " << Walker->Name << "." << endl;
1124 i++;
1125 }
1126 } else
1127 *out << Verbose(3) << "AtomCount is still " << AtomCount << ", thus counting nothing." << endl;
1128 }
1129};
1130
1131/** Brings molecule::ElementCount and molecule::ElementsInMolecule up-to-date.
1132 */
1133void molecule::CountElements()
1134{
1135 int i = 0;
1136 for(i=0;i<MAX_ELEMENTS;i++)
1137 ElementsInMolecule[i] = 0;
1138 ElementCount = 0;
1139
1140 atom *walker = start;
1141 while (walker->next != end) {
1142 walker = walker->next;
1143 ElementsInMolecule[walker->type->Z]++;
1144 i++;
1145 }
1146 for(i=0;i<MAX_ELEMENTS;i++)
1147 ElementCount += (ElementsInMolecule[i] != 0 ? 1 : 0);
1148};
1149
1150/** Counts all cyclic bonds and returns their number.
1151 * \note Hydrogen bonds can never by cyclic, thus no check for that
1152 * \param *out output stream for debugging
1153 * \return number opf cyclic bonds
1154 */
1155int molecule::CountCyclicBonds(ofstream *out)
1156{
1157 int No = 0;
1158 int MinimumRingSize;
1159 MoleculeLeafClass *Subgraphs = NULL;
1160 bond *Binder = first;
1161 if ((Binder->next != last) && (Binder->next->Type == Undetermined)) {
1162 *out << Verbose(0) << "No Depth-First-Search analysis performed so far, calling ..." << endl;
1163 Subgraphs = DepthFirstSearchAnalysis(out, false, MinimumRingSize);
1164 while (Subgraphs->next != NULL) {
1165 Subgraphs = Subgraphs->next;
1166 delete(Subgraphs->previous);
1167 }
1168 delete(Subgraphs);
1169 }
1170 while(Binder->next != last) {
1171 Binder = Binder->next;
1172 if (Binder->Cyclic)
1173 No++;
1174 }
1175 return No;
1176};
1177
1178/** Returns Shading as a char string.
1179 * \param color the Shading
1180 * \return string of the flag
1181 */
1182char * molecule::GetColor(enum Shading color)
1183{
1184 switch(color) {
1185 case white:
1186 return "white";
1187 break;
1188 case lightgray:
1189 return "lightgray";
1190 break;
1191 case darkgray:
1192 return "darkgray";
1193 break;
1194 case black:
1195 return "black";
1196 break;
1197 default:
1198 return "uncolored";
1199 break;
1200 };
1201};
1202
1203
1204/** Counts necessary number of valence electrons and returns number and SpinType.
1205 * \param configuration containing everything
1206 */
1207void molecule::CalculateOrbitals(class config &configuration)
1208{
1209 configuration.MaxPsiDouble = configuration.PsiMaxNoDown = configuration.PsiMaxNoUp = configuration.PsiType = 0;
1210 for(int i=0;i<MAX_ELEMENTS;i++) {
1211 if (ElementsInMolecule[i] != 0) {
1212 //cout << "CalculateOrbitals: " << elemente->FindElement(i)->name << " has a valence of " << (int)elemente->FindElement(i)->Valence << " and there are " << ElementsInMolecule[i] << " of it." << endl;
1213 configuration.MaxPsiDouble += ElementsInMolecule[i]*((int)elemente->FindElement(i)->Valence);
1214 }
1215 }
1216 configuration.PsiMaxNoDown = configuration.MaxPsiDouble/2 + (configuration.MaxPsiDouble % 2);
1217 configuration.PsiMaxNoUp = configuration.MaxPsiDouble/2;
1218 configuration.MaxPsiDouble /= 2;
1219 configuration.PsiType = (configuration.PsiMaxNoDown == configuration.PsiMaxNoUp) ? 0 : 1;
1220 if ((configuration.PsiType == 1) && (configuration.ProcPEPsi < 2)) {
1221 configuration.ProcPEGamma /= 2;
1222 configuration.ProcPEPsi *= 2;
1223 } else {
1224 configuration.ProcPEGamma *= configuration.ProcPEPsi;
1225 configuration.ProcPEPsi = 1;
1226 }
1227 configuration.InitMaxMinStopStep = configuration.MaxMinStopStep = configuration.MaxPsiDouble;
1228};
1229
1230/** Creates an adjacency list of the molecule.
1231 * Generally, we use the CSD approach to bond recognition, that is the the distance
1232 * between two atoms A and B must be within [Rcov(A)+Rcov(B)-t,Rcov(A)+Rcov(B)+t] with
1233 * a threshold t = 0.4 Angstroem.
1234 * To make it O(N log N) the function uses the linked-cell technique as follows:
1235 * The procedure is step-wise:
1236 * -# Remove every bond in list
1237 * -# Count the atoms in the molecule with CountAtoms()
1238 * -# partition cell into smaller linked cells of size \a bonddistance
1239 * -# put each atom into its corresponding cell
1240 * -# go through every cell, check the atoms therein against all possible bond partners in the 27 adjacent cells, add bond if true
1241 * -# create the list of bonds via CreateListOfBondsPerAtom()
1242 * -# correct the bond degree iteratively (single->double->triple bond)
1243 * -# finally print the bond list to \a *out if desired
1244 * \param *out out stream for printing the matrix, NULL if no output
1245 * \param bonddistance length of linked cells (i.e. maximum minimal length checked)
1246 */
1247void molecule::CreateAdjacencyList(ofstream *out, double bonddistance)
1248{
1249 atom *Walker = NULL, *OtherWalker = NULL;
1250 int No, NoBonds;
1251 bond *Binder = NULL;
1252 int NumberCells, divisor[NDIM], n[NDIM], N[NDIM], index, Index, j;
1253 molecule **CellList;
1254 double distance, MinDistance, MaxDistance;
1255 double *matrix = ReturnFullMatrixforSymmetric(cell_size);
1256 vector x;
1257
1258 BondDistance = bonddistance;
1259 *out << Verbose(0) << "Begin of CreateAdjacencyList." << endl;
1260 // remove every bond from the list
1261 if ((first->next != last) && (last->previous != first)) { // there are bonds present
1262 cleanup(first,last);
1263 }
1264
1265 // count atoms in molecule = dimension of matrix (also give each unique name and continuous numbering)
1266 CountAtoms(out);
1267 *out << Verbose(1) << "AtomCount " << AtomCount << "." << endl;
1268
1269 if (AtomCount != 0) {
1270 // 1. find divisor for each axis, such that a sphere with radius of at least bonddistance can be placed into each cell
1271 j=-1;
1272 for (int i=0;i<NDIM;i++) {
1273 j += i+1;
1274 divisor[i] = (int)floor(cell_size[j]/bonddistance); // take smaller value such that size of linked cell is at least bonddistance
1275 *out << Verbose(1) << "divisor[" << i << "] = " << divisor[i] << "." << endl;
1276 }
1277 // 2a. allocate memory for the cell list
1278 NumberCells = divisor[0]*divisor[1]*divisor[2];
1279 *out << Verbose(1) << "Allocating " << NumberCells << " cells." << endl;
1280 CellList = (molecule **) Malloc(sizeof(molecule *)*NumberCells, "molecule::CreateAdjacencyList - ** CellList");
1281 for (int i=0;i<NumberCells;i++)
1282 CellList[i] = NULL;
1283
1284 // 2b. put all atoms into its corresponding list
1285 Walker = start;
1286 while(Walker->next != end) {
1287 Walker = Walker->next;
1288 //*out << Verbose(1) << "Current atom is " << *Walker << " with coordinates ";
1289 //Walker->x.Output(out);
1290 //*out << "." << endl;
1291 // compute the cell by the atom's coordinates
1292 j=-1;
1293 for (int i=0;i<NDIM;i++) {
1294 j += i+1;
1295 x.CopyVector(&(Walker->x));
1296 x.KeepPeriodic(out, matrix);
1297 n[i] = (int)floor(x.x[i]/cell_size[j]*(double)divisor[i]);
1298 }
1299 index = n[2] + (n[1] + n[0] * divisor[1]) * divisor[2];
1300 *out << Verbose(1) << "Atom " << *Walker << " goes into cell number [" << n[0] << "," << n[1] << "," << n[2] << "] = " << index << "." << endl;
1301 // add copy atom to this cell
1302 if (CellList[index] == NULL) // allocate molecule if not done
1303 CellList[index] = new molecule(elemente);
1304 OtherWalker = CellList[index]->AddCopyAtom(Walker); // add a copy of walker to this atom, father will be walker for later reference
1305 //*out << Verbose(1) << "Copy Atom is " << *OtherWalker << "." << endl;
1306 }
1307 //for (int i=0;i<NumberCells;i++)
1308 //*out << Verbose(1) << "Cell number " << i << ": " << CellList[i] << "." << endl;
1309
1310 // 3a. go through every cell
1311 for (N[0]=0;N[0]<divisor[0];N[0]++)
1312 for (N[1]=0;N[1]<divisor[1];N[1]++)
1313 for (N[2]=0;N[2]<divisor[2];N[2]++) {
1314 Index = N[2] + (N[1] + N[0] * divisor[1]) * divisor[2];
1315 if (CellList[Index] != NULL) { // if there atoms in this cell
1316 //*out << Verbose(1) << "Current cell is " << Index << "." << endl;
1317 // 3b. for every atom therein
1318 Walker = CellList[Index]->start;
1319 while (Walker->next != CellList[Index]->end) { // go through every atom
1320 Walker = Walker->next;
1321 //*out << Verbose(0) << "Current Atom is " << *Walker << "." << endl;
1322 // 3c. check for possible bond between each atom in this and every one in the 27 cells
1323 for (n[0]=-1;n[0]<=1;n[0]++)
1324 for (n[1]=-1;n[1]<=1;n[1]++)
1325 for (n[2]=-1;n[2]<=1;n[2]++) {
1326 // compute the index of this comparison cell and make it periodic
1327 index = ((N[2]+n[2]+divisor[2])%divisor[2]) + (((N[1]+n[1]+divisor[1])%divisor[1]) + ((N[0]+n[0]+divisor[0])%divisor[0]) * divisor[1]) * divisor[2];
1328 //*out << Verbose(1) << "Number of comparison cell is " << index << "." << endl;
1329 if (CellList[index] != NULL) { // if there are any atoms in this cell
1330 OtherWalker = CellList[index]->start;
1331 while(OtherWalker->next != CellList[index]->end) { // go through every atom in this cell
1332 OtherWalker = OtherWalker->next;
1333 //*out << Verbose(0) << "Current comparison atom is " << *OtherWalker << "." << endl;
1334 /// \todo periodic check is missing here!
1335 //*out << Verbose(1) << "Checking distance " << OtherWalker->x.PeriodicDistance(&(Walker->x), cell_size) << " against typical bond length of " << bonddistance*bonddistance << "." << endl;
1336 MinDistance = OtherWalker->type->CovalentRadius + Walker->type->CovalentRadius;
1337 MaxDistance = MinDistance + BONDTHRESHOLD;
1338 MinDistance -= BONDTHRESHOLD;
1339 distance = OtherWalker->x.PeriodicDistance(&(Walker->x), cell_size);
1340 if ((OtherWalker->father->nr > Walker->father->nr) && (distance <= MaxDistance*MaxDistance) && (distance >= MinDistance*MinDistance)) { // create bond if distance is smaller
1341 *out << Verbose(0) << "Adding Bond between " << *Walker << " and " << *OtherWalker << "." << endl;
1342 AddBond(Walker->father, OtherWalker->father, 1); // also increases molecule::BondCount
1343 } else {
1344 //*out << Verbose(1) << "Not Adding: Wrong label order or distance too great." << endl;
1345 }
1346 }
1347 }
1348 }
1349 }
1350 }
1351 }
1352 // 4. free the cell again
1353 for (int i=0;i<NumberCells;i++)
1354 if (CellList[i] != NULL) {
1355 delete(CellList[i]);
1356 }
1357 Free((void **)&CellList, "molecule::CreateAdjacencyList - ** CellList");
1358
1359 // create the adjacency list per atom
1360 CreateListOfBondsPerAtom(out);
1361
1362 // correct Bond degree of each bond by checking of updated(!) sum of bond degree for an atom match its valence count
1363 // bond degrres are correctled iteratively by one, so that 2-2 instead of 1-3 or 3-1 corrections are favoured: We want
1364 // a rather symmetric distribution of higher bond degrees
1365 if (BondCount != 0) {
1366 NoCyclicBonds = 0;
1367 *out << Verbose(1) << "correct Bond degree of each bond" << endl;
1368 do {
1369 No = 0; // No acts as breakup flag (if 1 we still continue)
1370 Walker = start;
1371 while (Walker->next != end) { // go through every atom
1372 Walker = Walker->next;
1373 for(int i=0;i<NumberOfBondsPerAtom[Walker->nr];i++) { // go through each of its bond partners
1374 OtherWalker = ListOfBondsPerAtom[Walker->nr][i]->GetOtherAtom(Walker);
1375 // count valence of first partner (updated!), might have changed during last bond partner
1376 NoBonds = 0;
1377 for(j=0;j<NumberOfBondsPerAtom[Walker->nr];j++)
1378 NoBonds += ListOfBondsPerAtom[Walker->nr][j]->BondDegree;
1379 *out << Verbose(3) << "Walker: " << (int)Walker->type->NoValenceOrbitals << " > " << NoBonds << "?" << endl;
1380 if ((int)(Walker->type->NoValenceOrbitals) > NoBonds) { // we have a mismatch, check NoBonds of other atom
1381 // count valence of second partner
1382 NoBonds = 0;
1383 for(j=0;j<NumberOfBondsPerAtom[OtherWalker->nr];j++)
1384 NoBonds += ListOfBondsPerAtom[OtherWalker->nr][j]->BondDegree;
1385 *out << Verbose(3) << "OtherWalker: " << (int)OtherWalker->type->NoValenceOrbitals << " > " << NoBonds << "?" << endl;
1386 if ((int)(OtherWalker->type->NoValenceOrbitals) > NoBonds) // increase bond degree by one
1387 ListOfBondsPerAtom[Walker->nr][i]->BondDegree++;
1388 }
1389 }
1390 }
1391 } while (No);
1392
1393 } else
1394 *out << Verbose(1) << "BondCount is " << BondCount << ", no bonds between any of the " << AtomCount << " atoms." << endl;
1395 *out << Verbose(1) << "I detected " << BondCount << " bonds in the molecule with distance " << bonddistance << "." << endl;
1396
1397 // output bonds for debugging (if bond chain list was correctly installed)
1398 *out << Verbose(1) << endl << "From contents of bond chain list:";
1399 Binder = first;
1400 while(Binder->next != last) {
1401 Binder = Binder->next;
1402 *out << *Binder << "\t" << endl;
1403 }
1404 *out << endl;
1405 } else
1406 *out << Verbose(1) << "AtomCount is " << AtomCount << ", thus no bonds, no connections!." << endl;
1407 *out << Verbose(0) << "End of CreateAdjacencyList." << endl;
1408 Free((void **)&matrix, "molecule::CreateAdjacencyList: *matrix");
1409};
1410
1411/** Performs a Depth-First search on this molecule.
1412 * Marks bonds in molecule as cyclic, bridge, ... and atoms as
1413 * articulations points, ...
1414 * We use the algorithm from [Even, Graph Algorithms, p.62].
1415 * \param *out output stream for debugging
1416 * \param ReturnStack true - return pointer to atom stack of separable components, false - return NULL
1417 * \param MinimumRingSize contains smallest ring size in molecular structure on return or -1 if no rings were found
1418 * \return list of each disconnected subgraph as an individual molecule class structure
1419 */
1420MoleculeLeafClass * molecule::DepthFirstSearchAnalysis(ofstream *out, bool ReturnStack, int &MinimumRingSize)
1421{
1422 AtomStackClass *AtomStack = new AtomStackClass(AtomCount);
1423 MoleculeLeafClass *SubGraphs = new MoleculeLeafClass(NULL);
1424 MoleculeLeafClass *LeafWalker = SubGraphs;
1425 int CurrentGraphNr = 0, OldGraphNr;
1426 int CyclicBonds;
1427 int ComponentNumber = 0;
1428 atom *Walker = NULL, *OtherAtom = NULL, *Root = start->next;
1429 bond *Binder = NULL;
1430 bool BackStepping = false;
1431
1432 *out << Verbose(0) << "Begin of DepthFirstSearchAnalysis" << endl;
1433
1434 ResetAllBondsToUnused();
1435 ResetAllAtomNumbers();
1436 InitComponentNumbers();
1437 while (Root != end) { // if there any atoms at all
1438 // (1) mark all edges unused, empty stack, set atom->GraphNr = 0 for all
1439 AtomStack->ClearStack();
1440
1441 // put into new subgraph molecule and add this to list of subgraphs
1442 LeafWalker = new MoleculeLeafClass(LeafWalker);
1443 LeafWalker->Leaf = new molecule(elemente);
1444 LeafWalker->Leaf->AddCopyAtom(Root);
1445
1446 OldGraphNr = CurrentGraphNr;
1447 Walker = Root;
1448 do { // (10)
1449 do { // (2) set number and Lowpoint of Atom to i, increase i, push current atom
1450 if (!BackStepping) { // if we don't just return from (8)
1451 Walker->GraphNr = CurrentGraphNr;
1452 Walker->LowpointNr = CurrentGraphNr;
1453 *out << Verbose(1) << "Setting Walker[" << Walker->Name << "]'s number to " << Walker->GraphNr << " with Lowpoint " << Walker->LowpointNr << "." << endl;
1454 AtomStack->Push(Walker);
1455 CurrentGraphNr++;
1456 }
1457 do { // (3) if Walker has no unused egdes, go to (5)
1458 BackStepping = false; // reset backstepping flag for (8)
1459 if (Binder == NULL) // if we don't just return from (11), Binder is already set to next unused
1460 Binder = FindNextUnused(Walker);
1461 if (Binder == NULL)
1462 break;
1463 *out << Verbose(2) << "Current Unused Bond is " << *Binder << "." << endl;
1464 // (4) Mark Binder used, ...
1465 Binder->MarkUsed(black);
1466 OtherAtom = Binder->GetOtherAtom(Walker);
1467 *out << Verbose(2) << "(4) OtherAtom is " << OtherAtom->Name << "." << endl;
1468 if (OtherAtom->GraphNr != -1) {
1469 // (4a) ... if "other" atom has been visited (GraphNr != 0), set lowpoint to minimum of both, go to (3)
1470 Binder->Type = BackEdge;
1471 Walker->LowpointNr = ( Walker->LowpointNr < OtherAtom->GraphNr ) ? Walker->LowpointNr : OtherAtom->GraphNr;
1472 *out << Verbose(3) << "(4a) Visited: Setting Lowpoint of Walker[" << Walker->Name << "] to " << Walker->LowpointNr << "." << endl;
1473 } else {
1474 // (4b) ... otherwise set OtherAtom as Ancestor of Walker and Walker as OtherAtom, go to (2)
1475 Binder->Type = TreeEdge;
1476 OtherAtom->Ancestor = Walker;
1477 Walker = OtherAtom;
1478 *out << Verbose(3) << "(4b) Not Visited: OtherAtom[" << OtherAtom->Name << "]'s Ancestor is now " << OtherAtom->Ancestor->Name << ", Walker is OtherAtom " << OtherAtom->Name << "." << endl;
1479 break;
1480 }
1481 Binder = NULL;
1482 } while (1); // (3)
1483 if (Binder == NULL) {
1484 *out << Verbose(2) << "No more Unused Bonds." << endl;
1485 break;
1486 } else
1487 Binder = NULL;
1488 } while (1); // (2)
1489
1490 // if we came from backstepping, yet there were no more unused bonds, we end up here with no Ancestor, because Walker is Root! Then we are finished!
1491 if ((Walker == Root) && (Binder == NULL))
1492 break;
1493
1494 // (5) if Ancestor of Walker is ...
1495 *out << Verbose(1) << "(5) Number of Walker[" << Walker->Name << "]'s Ancestor[" << Walker->Ancestor->Name << "] is " << Walker->Ancestor->GraphNr << "." << endl;
1496 if (Walker->Ancestor->GraphNr != Root->GraphNr) {
1497 // (6) (Ancestor of Walker is not Root)
1498 if (Walker->LowpointNr < Walker->Ancestor->GraphNr) {
1499 // (6a) set Ancestor's Lowpoint number to minimum of of its Ancestor and itself, go to Step(8)
1500 Walker->Ancestor->LowpointNr = (Walker->Ancestor->LowpointNr < Walker->LowpointNr) ? Walker->Ancestor->LowpointNr : Walker->LowpointNr;
1501 *out << Verbose(2) << "(6) Setting Walker[" << Walker->Name << "]'s Ancestor[" << Walker->Ancestor->Name << "]'s Lowpoint to " << Walker->Ancestor->LowpointNr << "." << endl;
1502 } else {
1503 // (7) (Ancestor of Walker is a separating vertex, remove all from stack till Walker (including), these and Ancestor form a component
1504 Walker->Ancestor->SeparationVertex = true;
1505 *out << Verbose(2) << "(7) Walker[" << Walker->Name << "]'s Ancestor[" << Walker->Ancestor->Name << "]'s is a separating vertex, creating component." << endl;
1506 SetNextComponentNumber(Walker->Ancestor, ComponentNumber);
1507 *out << Verbose(3) << "(7) Walker[" << Walker->Name << "]'s Ancestor's Compont is " << ComponentNumber << "." << endl;
1508 SetNextComponentNumber(Walker, ComponentNumber);
1509 *out << Verbose(3) << "(7) Walker[" << Walker->Name << "]'s Compont is " << ComponentNumber << "." << endl;
1510 do {
1511 OtherAtom = AtomStack->PopLast();
1512 LeafWalker->Leaf->AddCopyAtom(OtherAtom);
1513 SetNextComponentNumber(OtherAtom, ComponentNumber);
1514 *out << Verbose(3) << "(7) Other[" << OtherAtom->Name << "]'s Compont is " << ComponentNumber << "." << endl;
1515 } while (OtherAtom != Walker);
1516 ComponentNumber++;
1517 }
1518 // (8) Walker becomes its Ancestor, go to (3)
1519 *out << Verbose(2) << "(8) Walker[" << Walker->Name << "] is now its Ancestor " << Walker->Ancestor->Name << ", backstepping. " << endl;
1520 Walker = Walker->Ancestor;
1521 BackStepping = true;
1522 }
1523 if (!BackStepping) { // coming from (8) want to go to (3)
1524 // (9) remove all from stack till Walker (including), these and Root form a component
1525 AtomStack->Output(out);
1526 SetNextComponentNumber(Root, ComponentNumber);
1527 *out << Verbose(3) << "(9) Root[" << Root->Name << "]'s Component is " << ComponentNumber << "." << endl;
1528 SetNextComponentNumber(Walker, ComponentNumber);
1529 *out << Verbose(3) << "(9) Walker[" << Walker->Name << "]'s Component is " << ComponentNumber << "." << endl;
1530 do {
1531 OtherAtom = AtomStack->PopLast();
1532 LeafWalker->Leaf->AddCopyAtom(OtherAtom);
1533 SetNextComponentNumber(OtherAtom, ComponentNumber);
1534 *out << Verbose(3) << "(7) Other[" << OtherAtom->Name << "]'s Compont is " << ComponentNumber << "." << endl;
1535 } while (OtherAtom != Walker);
1536 ComponentNumber++;
1537
1538 // (11) Root is separation vertex, set Walker to Root and go to (4)
1539 Walker = Root;
1540 Binder = FindNextUnused(Walker);
1541 *out << Verbose(1) << "(10) Walker is Root[" << Root->Name << "], next Unused Bond is " << Binder << "." << endl;
1542 if (Binder != NULL) { // Root is separation vertex
1543 *out << Verbose(1) << "(11) Root is a separation vertex." << endl;
1544 Walker->SeparationVertex = true;
1545 }
1546 }
1547 } while ((BackStepping) || (Binder != NULL)); // (10) halt only if Root has no unused edges
1548
1549 // From OldGraphNr to CurrentGraphNr ranges an disconnected subgraph
1550 *out << Verbose(0) << "Disconnected subgraph ranges from " << OldGraphNr << " to " << CurrentGraphNr << "." << endl;
1551 LeafWalker->Leaf->Output(out);
1552 *out << endl;
1553
1554 // step on to next root
1555 while ((Root != end) && (Root->GraphNr != -1)) {
1556 //*out << Verbose(1) << "Current next subgraph root candidate is " << Root->Name << "." << endl;
1557 if (Root->GraphNr != -1) // if already discovered, step on
1558 Root = Root->next;
1559 }
1560 }
1561 // set cyclic bond criterium on "same LP" basis
1562 Binder = first;
1563 while(Binder->next != last) {
1564 Binder = Binder->next;
1565 if (Binder->rightatom->LowpointNr == Binder->leftatom->LowpointNr) { // cyclic ??
1566 Binder->Cyclic = true;
1567 NoCyclicBonds++;
1568 }
1569 }
1570
1571 // correct cyclic bonds that are not included in "same LP" argument
1572 Binder = first;
1573 while (Binder->next != last) {
1574 Binder = Binder->next;
1575 Walker = Binder->leftatom;
1576 OtherAtom = Binder->rightatom;
1577 // now check whether both have a cyclic bond in their list
1578 CyclicBonds = 0; // counts cyclic bonds;
1579 for(int i=0;i<NumberOfBondsPerAtom[Walker->nr];i++)
1580 if ((CyclicBonds == 0) && (ListOfBondsPerAtom[Walker->nr][i]->Cyclic))
1581 CyclicBonds = 1;
1582 for(int i=0;i<NumberOfBondsPerAtom[OtherAtom->nr];i++)
1583 if ((CyclicBonds == 1) && (ListOfBondsPerAtom[OtherAtom->nr][i]->Cyclic))
1584 CyclicBonds = 2;
1585 Binder->Cyclic = (Binder->Cyclic) || (CyclicBonds == 2); // set the Cyclic criterium either or ...
1586 }
1587
1588 // further analysis of the found cycles (print rings, get minimum cycle length)
1589 CyclicStructureAnalysis(out, MinimumRingSize);
1590 *out << Verbose(1) << "Final graph info for each atom is:" << endl;
1591 Walker = start;
1592 while (Walker->next != end) {
1593 Walker = Walker->next;
1594 *out << Verbose(2) << "Atom " << Walker->Name << " is " << ((Walker->SeparationVertex) ? "a" : "not a") << " separation vertex, components are ";
1595 OutputComponentNumber(out, Walker);
1596 *out << " with Lowpoint " << Walker->LowpointNr << " and Graph Nr. " << Walker->GraphNr << "." << endl;
1597 }
1598
1599 *out << Verbose(1) << "Final graph info for each bond is:" << endl;
1600 Binder = first;
1601 while(Binder->next != last) {
1602 Binder = Binder->next;
1603 *out << Verbose(2) << ((Binder->Type == TreeEdge) ? "TreeEdge " : "BackEdge ") << *Binder << ": <";
1604 *out << ((Binder->leftatom->SeparationVertex) ? "SP," : "") << "L" << Binder->leftatom->LowpointNr << " G" << Binder->leftatom->GraphNr << " Comp.";
1605 OutputComponentNumber(out, Binder->leftatom);
1606 *out << " === ";
1607 *out << ((Binder->rightatom->SeparationVertex) ? "SP," : "") << "L" << Binder->rightatom->LowpointNr << " G" << Binder->rightatom->GraphNr << " Comp.";
1608 OutputComponentNumber(out, Binder->rightatom);
1609 *out << ">." << endl;
1610 if (Binder->Cyclic) // cyclic ??
1611 *out << Verbose(3) << "Lowpoint at each side are equal: CYCLIC!" << endl;
1612 }
1613
1614 // further analysis of the found cycles (print rings, get minimum cycle length)
1615 CyclicStructureAnalysis(out, MinimumRingSize);
1616
1617 // free all and exit
1618 delete(AtomStack);
1619 *out << Verbose(0) << "End of DepthFirstSearchAnalysis" << endl;
1620 return SubGraphs;
1621};
1622
1623/** Analyses the cycles found and returns minimum of all cycle lengths.
1624 * \param *out output stream for debugging
1625 * \param MinimumRingSize contains smallest ring size in molecular structure on return or -1 if no rings were found
1626 * \todo BFS from the not-same-LP to find back to starting point of tributary cycle over more than one bond
1627 */
1628void molecule::CyclicStructureAnalysis(ofstream *out, int &MinimumRingSize)
1629{
1630 AtomStackClass *AtomStack = new AtomStackClass(AtomCount);
1631 int LP;
1632 atom *Walker = NULL, *OtherAtom = NULL, *Root = NULL, *Runner = NULL;
1633 bond *Binder = NULL;
1634 int RingSize, NumCycles;
1635
1636 // go through every atom
1637 AtomStack->ClearStack();
1638 int *NoCyclicBondsPerAtom = (int *) Malloc(sizeof(int)*AtomCount, "molecule::CyclicStructureAnalysis: *NoCyclicBondsPerAtom");
1639 Walker = start;
1640 while (Walker->next != end) {
1641 Walker = Walker->next;
1642 NoCyclicBondsPerAtom[Walker->nr] = 0;
1643 // check whether it's connected to cyclic bonds and count per atom
1644 // 0 means not part of a cycle, 2 means in a cycle, 3 or more means interconnection site of cycles
1645 for (int i=0;i<NumberOfBondsPerAtom[Walker->nr]; i++) {
1646 Binder = ListOfBondsPerAtom[Walker->nr][i];
1647 NoCyclicBondsPerAtom[Walker->nr] += (int) Binder->Cyclic;
1648 if (NoCyclicBondsPerAtom[Walker->nr] == 3) //push all intersections
1649 AtomStack->Push(Walker);
1650 }
1651 }
1652 *out << Verbose(1) << "NoCyclicBondsPerAtom: ";
1653 for(int i=0;i<AtomCount;i++) {
1654 *out << NoCyclicBondsPerAtom[i] << " ";
1655 }
1656 *out << endl;
1657 *out << Verbose(1) << "Analysing cycles ... " << endl;
1658 MinimumRingSize = -1;
1659 NumCycles = 0;
1660 while (!AtomStack->IsEmpty()) {
1661 Walker = AtomStack->PopFirst();
1662 if (NoCyclicBondsPerAtom[Walker->nr] > 1) {
1663 NoCyclicBondsPerAtom[Walker->nr]--; // remove one for being intersection
1664 RingSize = 0;
1665 *out << Verbose(2) << "Current intersection is " << *Walker << ", expect to find " << NoCyclicBondsPerAtom[Walker->nr] << " cycles." << endl;
1666 for(int i=0;i<NumberOfBondsPerAtom[Walker->nr];i++) {
1667 Binder = ListOfBondsPerAtom[Walker->nr][i];
1668 OtherAtom = Binder->GetOtherAtom(Walker);
1669 // note down the LowPoint number of this cycle
1670 if (NoCyclicBondsPerAtom[OtherAtom->nr] > 1) {
1671 LP = OtherAtom->LowpointNr;
1672 NoCyclicBondsPerAtom[Walker->nr]--; // walker is start of cycle
1673 if (LP != Walker->LowpointNr)
1674 *out << Verbose(2) << "Tributary cycle: ... <-> " << Walker->Name;
1675 else
1676 *out << Verbose(2) << "Main cycle: ... <-> " << Walker->Name;
1677 Root = Walker; // root acts as predecessor marker so that we don't step back accidentally
1678 RingSize = 1;
1679 do {
1680 for(int j=0;j<NumberOfBondsPerAtom[OtherAtom->nr];j++) { // search among its bonds for next in cycle (same lowpoint nr)
1681 Runner = ListOfBondsPerAtom[OtherAtom->nr][j]->GetOtherAtom(OtherAtom);
1682 if (((Runner->LowpointNr == LP) || (Runner->LowpointNr == Walker->LowpointNr)) && (Runner != Root)) {
1683 // first check is to stay in the cycle
1684 // middle check is allow for getting back into main cycle briefly from tributary cycle (just one step, then while further down stops)
1685 // last check is not step back
1686 *out << " <-> " << OtherAtom->Name;
1687 NoCyclicBondsPerAtom[OtherAtom->nr]--;
1688 Root = OtherAtom;
1689 OtherAtom = Runner;
1690 NoCyclicBondsPerAtom[Root->nr]--;
1691 RingSize++;
1692 break;
1693 }
1694 }
1695 } while ((OtherAtom->LowpointNr == LP) && (Walker != OtherAtom) && (Root->LowpointNr == OtherAtom->LowpointNr));
1696 // now check if the LP is different from Walker's, as then there is one more bond to follow
1697 if (LP != Walker->LowpointNr) {
1698 // find last bond to home base
1699 for(int j=0;j<NumberOfBondsPerAtom[OtherAtom->nr];j++)
1700 if (ListOfBondsPerAtom[OtherAtom->nr][j]->GetOtherAtom(OtherAtom) == Root) {
1701 *out << " <-> " << OtherAtom->Name;
1702 RingSize++;
1703 NoCyclicBondsPerAtom[OtherAtom->nr]--;
1704 }
1705 } else {
1706 // we have made the complete cycle
1707 }
1708 *out << " <-> ... with cycle length of " << RingSize << "." << endl;
1709 NumCycles++;
1710 if ((RingSize < MinimumRingSize) || (MinimumRingSize == -1))
1711 MinimumRingSize = RingSize;
1712 }
1713 }
1714 }
1715 }
1716
1717 // print NoCyclicBondsPerAtom to visually check of all are zero
1718 *out << Verbose(1) << "NoCyclicBondsPerAtom: ";
1719 for(int i=0;i<AtomCount;i++) {
1720 if (NoCyclicBondsPerAtom[i] > 0)
1721 cerr << "There was an error in molecule::CyclicStructureAnalysis!" << endl;
1722 *out << NoCyclicBondsPerAtom[i] << " ";
1723 }
1724 *out << endl;
1725
1726 if (MinimumRingSize != -1)
1727 *out << Verbose(1) << "Minimum ring size is " << MinimumRingSize << ", over " << NumCycles << " cycles total." << endl;
1728 else
1729 *out << Verbose(1) << "No rings were detected in the molecular structure." << endl;
1730
1731 Free((void **)&NoCyclicBondsPerAtom, "molecule::CyclicStructureAnalysis: *NoCyclicBondsPerAtom");
1732 delete(AtomStack);
1733};
1734
1735/** Sets the next component number.
1736 * This is O(N) as the number of bonds per atom is bound.
1737 * \param *vertex atom whose next atom::*ComponentNr is to be set
1738 * \param nr number to use
1739 */
1740void molecule::SetNextComponentNumber(atom *vertex, int nr)
1741{
1742 int i=0;
1743 if (vertex != NULL) {
1744 for(;i<NumberOfBondsPerAtom[vertex->nr];i++) {
1745 if (vertex->ComponentNr[i] == -1) { // check if not yet used
1746 vertex->ComponentNr[i] = nr;
1747 break;
1748 }
1749 else if (vertex->ComponentNr[i] == nr) // if number is already present, don't add another time
1750 break; // breaking here will not cause error!
1751 }
1752 if (i == NumberOfBondsPerAtom[vertex->nr])
1753 cerr << "Error: All Component entries are already occupied!" << endl;
1754 } else
1755 cerr << "Error: Given vertex is NULL!" << endl;
1756};
1757
1758/** Output a list of flags, stating whether the bond was visited or not.
1759 * \param *out output stream for debugging
1760 */
1761void molecule::OutputComponentNumber(ofstream *out, atom *vertex)
1762{
1763 for(int i=0;i<NumberOfBondsPerAtom[vertex->nr];i++)
1764 *out << vertex->ComponentNr[i] << " ";
1765};
1766
1767/** Allocates memory for all atom::*ComponentNr in this molecule and sets each entry to -1.
1768 */
1769void molecule::InitComponentNumbers()
1770{
1771 atom *Walker = start;
1772 while(Walker->next != end) {
1773 Walker = Walker->next;
1774 if (Walker->ComponentNr != NULL)
1775 Free((void **)&Walker->ComponentNr, "molecule::InitComponentNumbers: **Walker->ComponentNr");
1776 Walker->ComponentNr = (int *) Malloc(sizeof(int)*NumberOfBondsPerAtom[Walker->nr], "molecule::InitComponentNumbers: *Walker->ComponentNr");
1777 for (int i=0;i<NumberOfBondsPerAtom[Walker->nr];i++)
1778 Walker->ComponentNr[i] = -1;
1779 }
1780};
1781
1782/** Returns next unused bond for this atom \a *vertex or NULL of none exists.
1783 * \param *vertex atom to regard
1784 * \return bond class or NULL
1785 */
1786bond * molecule::FindNextUnused(atom *vertex)
1787{
1788 for(int i=0;i<NumberOfBondsPerAtom[vertex->nr];i++)
1789 if (ListOfBondsPerAtom[vertex->nr][i]->IsUsed() == white)
1790 return(ListOfBondsPerAtom[vertex->nr][i]);
1791 return NULL;
1792};
1793
1794/** Resets bond::Used flag of all bonds in this molecule.
1795 * \return true - success, false - -failure
1796 */
1797void molecule::ResetAllBondsToUnused()
1798{
1799 bond *Binder = first;
1800 while (Binder->next != last) {
1801 Binder = Binder->next;
1802 Binder->ResetUsed();
1803 }
1804};
1805
1806/** Resets atom::nr to -1 of all atoms in this molecule.
1807 */
1808void molecule::ResetAllAtomNumbers()
1809{
1810 atom *Walker = start;
1811 while (Walker->next != end) {
1812 Walker = Walker->next;
1813 Walker->GraphNr = -1;
1814 }
1815};
1816
1817/** Output a list of flags, stating whether the bond was visited or not.
1818 * \param *out output stream for debugging
1819 * \param *list
1820 */
1821void OutputAlreadyVisited(ofstream *out, int *list)
1822{
1823 *out << Verbose(4) << "Already Visited Bonds:\t";
1824 for(int i=1;i<=list[0];i++) *out << Verbose(0) << list[i] << " ";
1825 *out << endl;
1826};
1827
1828/** Estimates by educated guessing (using upper limit) the expected number of fragments.
1829 * The upper limit is
1830 * \f[
1831 * n = N \cdot C^k
1832 * \f]
1833 * where \f$C=2^c\f$ and c is the maximum bond degree over N number of atoms.
1834 * \param *out output stream for debugging
1835 * \param order bond order k
1836 * \return number n of fragments
1837 */
1838int molecule::GuesstimateFragmentCount(ofstream *out, int order)
1839{
1840 int c = 0;
1841 int FragmentCount;
1842 // get maximum bond degree
1843 atom *Walker = start;
1844 while (Walker->next != end) {
1845 Walker = Walker->next;
1846 c = (NumberOfBondsPerAtom[Walker->nr] > c) ? NumberOfBondsPerAtom[Walker->nr] : c;
1847 }
1848 FragmentCount = NoNonHydrogen*(1 << (c*order));
1849 *out << Verbose(1) << "Upper limit for this subgraph is " << FragmentCount << " for " << NoNonHydrogen << " non-H atoms with maximum bond degree of " << c << "." << endl;
1850 return FragmentCount;
1851};
1852
1853/** Scans a single line for number and puts them into \a KeySet.
1854 * \param *out output stream for debugging
1855 * \param *buffer buffer to scan
1856 * \param &CurrentSet filled KeySet on return
1857 * \return true - at least one valid atom id parsed, false - CurrentSet is empty
1858 */
1859bool molecule::ScanBufferIntoKeySet(ofstream *out, char *buffer, KeySet &CurrentSet)
1860{
1861 stringstream line;
1862 int AtomNr;
1863 int status = 0;
1864
1865 line.str(buffer);
1866 while (!line.eof()) {
1867 line >> AtomNr;
1868 if ((AtomNr >= 0) && (AtomNr < AtomCount)) {
1869 CurrentSet.insert(AtomNr); // insert at end, hence in same order as in file!
1870 status++;
1871 } // else it's "-1" or else and thus must not be added
1872 }
1873 *out << Verbose(1) << "The scanned KeySet is ";
1874 for(KeySet::iterator runner = CurrentSet.begin(); runner != CurrentSet.end(); runner++) {
1875 *out << (*runner) << "\t";
1876 }
1877 *out << endl;
1878 return (status != 0);
1879};
1880
1881/** Parses the KeySet file and fills \a *FragmentList from the known molecule structure.
1882 * \param *out output stream for debugging
1883 * \param *path path to file
1884 * \param **ListOfAtoms allocated (molecule::AtomCount) and filled lookup table for ids (Atom::nr) to *Atom
1885 * \param *FragmentList NULL, filled on return
1886 * \param IsAngstroem whether we have Ansgtroem or bohrradius
1887 * \return true - parsing successfully, false - failure on parsing (FragmentList will be NULL)
1888 */
1889bool molecule::ParseKeySetFile(ofstream *out, char *path, atom **ListOfAtoms, MoleculeListClass *&FragmentList, bool IsAngstroem)
1890{
1891 bool status = true;
1892 ifstream KeySetFile;
1893 stringstream line;
1894 char *filename = (char *) Malloc(sizeof(char)*MAXSTRINGSIZE, "molecule::ParseKeySetFile - filename");
1895
1896 if (FragmentList != NULL) { // check list pointer
1897 cerr << "Error: FragmentList was not NULL as supposed to be, already atoms present therein?" << endl;
1898 return false;
1899 }
1900 cout << Verbose(1) << "Parsing the KeySet file ... " << endl;
1901 // open file and read
1902 sprintf(filename, "%s/%s%s", path, FRAGMENTPREFIX, KEYSETFILE);
1903 KeySetFile.open(filename);
1904 if (KeySetFile != NULL) {
1905 // each line represents a new fragment
1906 int NumberOfFragments = 0;
1907 char *buffer = (char *) Malloc(sizeof(char)*MAXSTRINGSIZE, "molecule::ParseKeySetFile - *buffer");
1908 // 1. scan through file to know number of fragments
1909 while (!KeySetFile.eof()) {
1910 KeySetFile.getline(buffer, MAXSTRINGSIZE);
1911 if (strlen(buffer) > 0) // there is at least on possible number on the parsed line
1912 NumberOfFragments++;
1913 }
1914 // 2. allocate the MoleculeListClass accordingly
1915 FragmentList = new MoleculeListClass(NumberOfFragments, AtomCount);
1916 // 3. Clear File, go to beginning and parse again, now adding found ids to each keyset and converting into molecules
1917 KeySetFile.clear();
1918 KeySetFile.seekg(ios::beg);
1919 NumberOfFragments = 0;
1920 while ((!KeySetFile.eof()) && (FragmentList->NumberOfMolecules > NumberOfFragments)) {
1921 KeySetFile.getline(buffer, MAXSTRINGSIZE);
1922 KeySet CurrentSet;
1923 if ((strlen(buffer) > 0) && (ScanBufferIntoKeySet(out, buffer, CurrentSet))) // if at least one valid atom was added, write config
1924 FragmentList->ListOfMolecules[NumberOfFragments++] = StoreFragmentFromKeySet(out, CurrentSet, IsAngstroem);
1925 }
1926 // 4. Free and done
1927 Free((void **)&buffer, "molecule::ParseKeySetFile - *buffer");
1928 cout << "done." << endl;
1929 } else {
1930 cout << "File not found." << endl;
1931 status = false;
1932 }
1933 Free((void **)&filename, "molecule::ParseKeySetFile - filename");
1934
1935 return status;
1936};
1937
1938/** Storing the bond structure of a molecule to file.
1939 * Simply stores Atom::nr and then the Atom::nr of all bond partners per line.
1940 * \param *out output stream for debugging
1941 * \param *path path to file
1942 * \return true - file written successfully, false - writing failed
1943 */
1944bool molecule::StoreAdjacencyToFile(ofstream *out, char *path)
1945{
1946 ofstream AdjacencyFile;
1947 atom *Walker = NULL;
1948 char *filename = (char *) Malloc(sizeof(char)*MAXSTRINGSIZE, "molecule::StoreAdjacencyToFile - filename");
1949 bool status = true;
1950
1951 sprintf(filename, "%s/%s%s", path, FRAGMENTPREFIX, ADJACENCYFILE);
1952 AdjacencyFile.open(filename);
1953 cout << Verbose(1) << "Saving adjacency list ... ";
1954 if (AdjacencyFile != NULL) {
1955 Walker = start;
1956 while(Walker->next != end) {
1957 Walker = Walker->next;
1958 AdjacencyFile << Walker->nr << "\t";
1959 for (int i=0;i<NumberOfBondsPerAtom[Walker->nr];i++)
1960 AdjacencyFile << ListOfBondsPerAtom[Walker->nr][i]->GetOtherAtom(Walker)->nr << "\t";
1961 AdjacencyFile << endl;
1962 }
1963 AdjacencyFile.close();
1964 cout << "done." << endl;
1965 } else {
1966 cout << "failed." << endl;
1967 status = false;
1968 }
1969 Free((void **)&filename, "molecule::StoreAdjacencyToFile - filename");
1970
1971 return status;
1972};
1973
1974/** Checks contents of adjacency file against bond structure in structure molecule.
1975 * \param *out output stream for debugging
1976 * \param *path path to file
1977 * \param **ListOfAtoms allocated (molecule::AtomCount) and filled lookup table for ids (Atom::nr) to *Atom
1978 * \return true - structure is equal, false - not equivalence
1979 */
1980bool molecule::CheckAdjacencyFileAgainstMolecule(ofstream *out, char *path, atom **ListOfAtoms)
1981{
1982 char *filename = (char *) Malloc(sizeof(char)*MAXSTRINGSIZE, "molecule::CheckAdjacencyFileAgainstMolecule - filename");
1983 ifstream File;
1984 bool status = true;
1985
1986 sprintf(filename, "%s/%s%s", path, FRAGMENTPREFIX, ADJACENCYFILE);
1987 File.open(filename);
1988 *out << Verbose(1) << "Looking at bond structure stored in adjacency file and comparing to present one ...";
1989 if (File != NULL) {
1990 // allocate storage structure
1991 int NonMatchNumber = 0; // will number of atoms with differing bond structure
1992 int *CurrentBonds = (int *) Malloc(sizeof(int)*8, "molecule::CheckAdjacencyFileAgainstMolecule - CurrentBonds"); // contains parsed bonds of current atom
1993 int CurrentBondsOfAtom;
1994
1995 // Parse the file line by line and count the bonds
1996 while (!File.eof()) {
1997 File.getline(filename, MAXSTRINGSIZE);
1998 stringstream line;
1999 line.str(filename);
2000 int AtomNr = -1;
2001 line >> AtomNr;
2002 CurrentBondsOfAtom = -1; // we count one too far due to line end
2003 // parse into structure
2004 if ((AtomNr >= 0) && (AtomNr < AtomCount)) {
2005 while (!line.eof())
2006 line >> CurrentBonds[ ++CurrentBondsOfAtom ];
2007 // compare against present bonds
2008 //cout << Verbose(2) << "Walker is " << *Walker << ", bond partners: ";
2009 if (CurrentBondsOfAtom == NumberOfBondsPerAtom[AtomNr]) {
2010 for(int i=0;i<NumberOfBondsPerAtom[AtomNr];i++) {
2011 int id = ListOfBondsPerAtom[AtomNr][i]->GetOtherAtom(ListOfAtoms[AtomNr])->nr;
2012 int j = 0;
2013 for (;(j<CurrentBondsOfAtom) && (CurrentBonds[j++] != id);); // check against all parsed bonds
2014 if (CurrentBonds[j-1] != id) { // no match ? Then mark in ListOfAtoms
2015 ListOfAtoms[AtomNr] = NULL;
2016 NonMatchNumber++;
2017 status = false;
2018 //out << "[" << id << "]\t";
2019 } else {
2020 //out << id << "\t";
2021 }
2022 }
2023 //out << endl;
2024 } else {
2025 *out << "Number of bonds for Atom " << *ListOfAtoms[AtomNr] << " does not match, parsed " << CurrentBondsOfAtom << " against " << NumberOfBondsPerAtom[AtomNr] << "." << endl;
2026 status = false;
2027 }
2028 }
2029 }
2030 File.close();
2031 File.clear();
2032 if (status) { // if equal we parse the KeySetFile
2033 *out << " done: Equal." << endl;
2034 status = true;
2035 } else
2036 *out << " done: Not equal by " << NonMatchNumber << " atoms." << endl;
2037 Free((void **)&CurrentBonds, "molecule::CheckAdjacencyFileAgainstMolecule - **CurrentBonds");
2038 } else {
2039 *out << " Adjacency file not found." << endl;
2040 status = false;
2041 }
2042 Free((void **)&filename, "molecule::CheckAdjacencyFileAgainstMolecule - filename");
2043
2044 return status;
2045};
2046
2047/** Performs a many-body bond order analysis for a given bond order.
2048 * -# parses adjacency, keysets and orderatsite files
2049 * -# performs DFS to find connected subgraphs (to leave this in was a design decision: might be useful later)
2050 * -# RootStack is created for every subgraph (here, later we implement the "update 10 sites with highest energ
2051y contribution", and that's why this consciously not done in the following loop)
2052 * -# in a loop over all subgraphs
2053 * -# calls FragmentBOSSANOVA with this RootStack and within the subgraph molecule structure
2054 * -# creates molecule (fragment)s from the returned keysets (StoreFragmentFromKeySet)
2055 * -# combines the generated molecule lists from all subgraphs
2056 * -# saves to disk: fragment configs, adjacency, orderatsite, keyset files
2057 * \param *out output stream for debugging
2058 * \param Order up to how many neighbouring bonds a fragment contains in BondOrderScheme::BottumUp scheme
2059 * \param *configuration configuration for writing config files for each fragment
2060 */
2061void molecule::FragmentMolecule(ofstream *out, int Order, config *configuration)
2062{
2063 MoleculeListClass **BondFragments = NULL;
2064 MoleculeListClass *FragmentList = NULL;
2065 atom *Walker = NULL;
2066 int *SortIndex = NULL;
2067 element *runner = NULL;
2068 int AtomNo;
2069 int MinimumRingSize;
2070 int TotalFragmentCounter;
2071 int FragmentCounter;
2072 MoleculeLeafClass *MolecularWalker = NULL;
2073 MoleculeLeafClass *Subgraphs = NULL; // list of subgraphs from DFS analysis
2074 fstream File;
2075 bool FragmentationToDo = true;
2076
2077 *out << endl;
2078#ifdef ADDHYDROGEN
2079 *out << Verbose(0) << "I will treat hydrogen special and saturate dangling bonds with it." << endl;
2080#else
2081 *out << Verbose(0) << "Hydrogen is treated just like the rest of the lot." << endl;
2082#endif
2083
2084 // fill the adjacency list
2085 CreateListOfBondsPerAtom(out);
2086
2087 // === compare it with adjacency file ===
2088 atom **ListOfAtoms = (atom **) Malloc(sizeof(atom *)*AtomCount, "molecule::FragmentMolecule - **ListOfAtoms");
2089 Walker = start;
2090 while (Walker->next != end) { // create a lookup table (Atom::nr -> atom) used as a marker table lateron
2091 Walker = Walker->next;
2092 if ((Walker->nr >= 0) && (Walker->nr < AtomCount)) {
2093 ListOfAtoms[Walker->nr] = Walker;
2094 } else
2095 break;
2096 }
2097 if (Walker->next != end) { // everything went alright
2098 *out << " range of nuclear ids exceeded [0, AtomCount)." << endl;
2099 FragmentationToDo = false;
2100 }
2101 FragmentationToDo = FragmentationToDo && CheckAdjacencyFileAgainstMolecule(out, configuration->configpath, ListOfAtoms);
2102 if (FragmentationToDo) // NULL entries in ListOfAtoms contain NonMatches
2103 FragmentationToDo = FragmentationToDo && ParseKeySetFile(out, configuration->configpath, ListOfAtoms, FragmentList, configuration->GetIsAngstroem());
2104 if (FragmentationToDo) // parse the adaptive order per atom/site/vertex
2105 FragmentationToDo = FragmentationToDo && ParseOrderAtSiteFromFile(out, configuration->configpath);
2106 Free((void **)&ListOfAtoms, "molecule::FragmentMolecule - **ListOfAtoms");
2107
2108 // =================================== Begin of FRAGMENTATION ===============================
2109 if (FragmentationToDo) { // if we parsed Adjacancy, check whether OrderAtSite is above Order everywhere
2110 Walker = start;
2111 while (Walker->next != end) { // create a lookup table (Atom::nr -> atom) used as a marker table lateron
2112 Walker = Walker->next;
2113#ifdef ADDHYDROGEN
2114 if (Walker->type->Z != 1) // skip hydrogen
2115#endif
2116 if (Walker->AdaptiveOrder < Order)
2117 FragmentationToDo = false;
2118 }
2119 }
2120
2121 if (!FragmentationToDo) { // if we have still do something, FragmentationToDo will be false
2122 // === first perform a DFS analysis to gather info on cyclic structure and a list of disconnected subgraphs ===
2123 Subgraphs = DepthFirstSearchAnalysis((ofstream *)&*out, false, MinimumRingSize);
2124 MolecularWalker = Subgraphs;
2125 // fill the bond structure of the individually stored subgraphs
2126 while (MolecularWalker->next != NULL) {
2127 MolecularWalker = MolecularWalker->next;
2128 *out << Verbose(1) << "Creating adjacency list for subgraph " << MolecularWalker << "." << endl;
2129 MolecularWalker->Leaf->CreateAdjacencyList(out, BondDistance);
2130 MolecularWalker->Leaf->CreateListOfBondsPerAtom(out);
2131 }
2132
2133 // === fragment all subgraphs ===
2134 if ((MinimumRingSize != -1) && (Order >= MinimumRingSize)) {
2135 *out << Verbose(0) << "Bond order greater than or equal to Minimum Ring size of " << MinimumRingSize << " found is not allowed." << endl;
2136 } else {
2137 FragmentCounter = 0;
2138 MolecularWalker = Subgraphs;
2139 // count subgraphs and allocate fragments
2140 while (MolecularWalker->next != NULL) {
2141 MolecularWalker = MolecularWalker->next;
2142 FragmentCounter++;
2143 }
2144 BondFragments = (MoleculeListClass **) Malloc(sizeof(MoleculeListClass *)*FragmentCounter, "molecule::FragmentMolecule - **BondFragments");
2145
2146 // create RootStack for each Subgraph
2147 // NOTE: (keep this extern of following while loop, as lateron we may here look for which site to add to which subgraph)
2148 KeyStack RootStack[FragmentCounter];
2149
2150 FragmentCounter = 0;
2151 MolecularWalker = Subgraphs;
2152 // count subgraphs and allocate fragments
2153 while (MolecularWalker->next != NULL) {
2154 MolecularWalker = MolecularWalker->next;
2155 RootStack[FragmentCounter].clear();
2156 // find first root candidates
2157 Walker = MolecularWalker->Leaf->start;
2158 while (Walker->next != MolecularWalker->Leaf->end) { // go through all (non-hydrogen) atoms
2159 Walker = Walker->next;
2160 #ifdef ADDHYDROGEN
2161 if (Walker->type->Z != 1) // skip hydrogen
2162 #endif
2163 if (Walker->GetTrueFather()->AdaptiveOrder < Order) // only if Order is still greater
2164 RootStack[FragmentCounter].push_front(Walker->nr);
2165 }
2166 FragmentCounter++;
2167 }
2168
2169 // fill the bond fragment list
2170 FragmentCounter = 0;
2171 TotalFragmentCounter = 0;
2172 MolecularWalker = Subgraphs;
2173 while (MolecularWalker->next != NULL) {
2174 MolecularWalker = MolecularWalker->next;
2175 *out << Verbose(1) << "Fragmenting subgraph " << MolecularWalker << "." << endl;
2176 if (MolecularWalker->Leaf->first->next != MolecularWalker->Leaf->last) {
2177 // output ListOfBondsPerAtom for debugging
2178 *out << Verbose(0) << endl << "From Contents of ListOfBondsPerAtom, all non-hydrogen atoms:" << endl;
2179 Walker = MolecularWalker->Leaf->start;
2180 while (Walker->next != MolecularWalker->Leaf->end) {
2181 Walker = Walker->next;
2182 #ifdef ADDHYDROGEN
2183 if (Walker->type->Z != 1) { // regard only non-hydrogen
2184 #endif
2185 *out << Verbose(0) << "Atom " << Walker->Name << " has Bonds: "<<endl;
2186 for(int j=0;j<MolecularWalker->Leaf->NumberOfBondsPerAtom[Walker->nr];j++) {
2187 *out << Verbose(1) << *(MolecularWalker->Leaf->ListOfBondsPerAtom)[Walker->nr][j] << endl;
2188 }
2189 #ifdef ADDHYDROGEN
2190 }
2191 #endif
2192 }
2193 *out << endl;
2194
2195 *out << Verbose(0) << endl << " ========== BOND ENERGY ========================= " << endl;
2196 *out << Verbose(0) << "Begin of bond fragmentation." << endl;
2197 BondFragments[FragmentCounter] = NULL;
2198 // call BOSSANOVA method
2199 Graph *FragmentList = MolecularWalker->Leaf->FragmentBOSSANOVA(out, RootStack[FragmentCounter]);
2200
2201 // allocate memory for the pointer array and transmorph graphs into full molecular fragments
2202 int TotalNumberOfMolecules = 0;
2203 for(Graph::iterator runner = FragmentList->begin(); runner != FragmentList->end(); runner++)
2204 TotalNumberOfMolecules++;
2205 BondFragments[FragmentCounter] = new MoleculeListClass(TotalNumberOfMolecules, AtomCount);
2206 int k=0;
2207 for(Graph::iterator runner = FragmentList->begin(); runner != FragmentList->end(); runner++) {
2208 KeySet test = (*runner).first;
2209 *out << "Fragment No." << (*runner).second.first << " was created " << (int)(*runner).second.second << " time(s)." << endl;
2210 BondFragments[FragmentCounter]->ListOfMolecules[k] = MolecularWalker->Leaf->StoreFragmentFromKeySet(out, test, configuration);
2211 k++;
2212 }
2213 *out << k << "/" << BondFragments[FragmentCounter]->NumberOfMolecules << " fragments generated from the keysets." << endl;
2214 } else {
2215 *out << Verbose(0) << "Connection matrix has not yet been generated!" << endl;
2216 }
2217 TotalFragmentCounter += BondFragments[FragmentCounter]->NumberOfMolecules;
2218 FragmentCounter++; // next fragment list
2219 }
2220 }
2221
2222 // === combine bond fragments list into a single one ===
2223 FragmentList = new MoleculeListClass(TotalFragmentCounter, AtomCount);
2224 TotalFragmentCounter = 0;
2225 for (int i=0;i<FragmentCounter;i++) {
2226 for(int j=0;j<BondFragments[i]->NumberOfMolecules;j++) {
2227 FragmentList->ListOfMolecules[TotalFragmentCounter] = BondFragments[i]->ListOfMolecules[j];
2228 BondFragments[i]->ListOfMolecules[j] = NULL;
2229 TotalFragmentCounter++;
2230 }
2231 delete(BondFragments[i]);
2232 }
2233 Free((void **)&BondFragments, "molecule::FragmentMolecule - **BondFragments");
2234 } else
2235 *out << Verbose(0) << "Nothing to do, using only fragments reconstructed from the KeySetFile." << endl;
2236 // ==================================== End of FRAGMENTATION ================================
2237
2238 // === Save fragments' configuration to disk ===
2239 if (FragmentList != NULL) {
2240 // create a SortIndex to map from BFS labels to the sequence in which the atoms are given in the config file
2241 SortIndex = (int *) Malloc(sizeof(int)*AtomCount, "molecule::FragmentMolecule: *SortIndex");
2242 for(int i=0;i<AtomCount;i++)
2243 SortIndex[i] = -1;
2244 runner = elemente->start;
2245 AtomNo = 0;
2246 while (runner->next != elemente->end) { // go through every element
2247 runner = runner->next;
2248 if (ElementsInMolecule[runner->Z]) { // if this element got atoms
2249 Walker = start;
2250 while (Walker->next != end) { // go through every atom of this element
2251 Walker = Walker->next;
2252 if (Walker->type->Z == runner->Z) // if this atom fits to element
2253 SortIndex[Walker->nr] = AtomNo++;
2254 }
2255 }
2256 }
2257 *out << Verbose(1) << "Writing " << FragmentList->NumberOfMolecules << " possible bond fragmentation configs" << endl;
2258 if (FragmentList->OutputConfigForListOfFragments(out, configuration, SortIndex))
2259 *out << Verbose(1) << "All configs written." << endl;
2260 else
2261 *out << Verbose(1) << "Some configs' writing failed." << endl;
2262 Free((void **)&SortIndex, "molecule::FragmentMolecule: *SortIndex");
2263
2264 // === store Adjacency file ===
2265 StoreAdjacencyToFile(out, configuration->configpath);
2266
2267 // Store adaptive orders into file
2268 StoreOrderAtSiteFile(out, configuration->configpath);
2269
2270 // restore orbital and Stop values
2271 CalculateOrbitals(*configuration);
2272
2273 // free memory for bond part
2274 *out << Verbose(1) << "Freeing bond memory" << endl;
2275 delete(FragmentList); // remove bond molecule from memory
2276 FragmentList = NULL;
2277 } else
2278 *out << Verbose(1) << "FragmentList is zero on return, splitting failed." << endl;
2279
2280 // free subgraph memory again
2281 if (Subgraphs != NULL) {
2282 while (Subgraphs->next != NULL) {
2283 Subgraphs = Subgraphs->next;
2284 delete(Subgraphs->previous);
2285 }
2286 delete(Subgraphs);
2287 }
2288
2289 *out << Verbose(0) << "End of bond fragmentation." << endl;
2290};
2291
2292/** Stores pairs (Atom::nr, Atom::AdaptiveOrder) into file.
2293 * Atoms not present in the file get "-1".
2294 * \param *out output stream for debugging
2295 * \param *path path to file ORDERATSITEFILE
2296 * \return true - file writable, false - not writable
2297 */
2298bool molecule::StoreOrderAtSiteFile(ofstream *out, char *path)
2299{
2300 stringstream line;
2301 ofstream file;
2302
2303 line << path << "/" << FRAGMENTPREFIX << ORDERATSITEFILE;
2304 file.open(line.str().c_str());
2305 *out << Verbose(0) << "Writing OrderAtSite " << ORDERATSITEFILE << " ... " << endl;
2306 if (file != NULL) {
2307 atom *Walker = start;
2308 while (Walker->next != end) {
2309 Walker = Walker->next;
2310 file << Walker->nr << "\t" << (int)Walker->AdaptiveOrder << endl;
2311 *out << Verbose(2) << "Storing: " << Walker->nr << "\t" << (int)Walker->AdaptiveOrder << "." << endl;
2312 }
2313 file.close();
2314 return true;
2315 } else {
2316 return false;
2317 }
2318};
2319
2320/** Parses pairs(Atom::nr, Atom::AdaptiveOrder) from file and stores in molecule's Atom's.
2321 * Atoms not present in the file get "0".
2322 * \param *out output stream for debugging
2323 * \param *path path to file ORDERATSITEFILEe
2324 * \return true - file found and scanned, false - file not found
2325 * \sa ParseKeySetFile() and CheckAdjacencyFileAgainstMolecule() as this is meant to be used in conjunction with the two
2326 */
2327bool molecule::ParseOrderAtSiteFromFile(ofstream *out, char *path)
2328{
2329 unsigned char *OrderArray = (unsigned char *) Malloc(sizeof(unsigned char)*AtomCount, "molecule::ParseOrderAtSiteFromFile - *OrderArray");
2330 bool status;
2331 int AtomNr;
2332 stringstream line;
2333 ifstream file;
2334 int Order;
2335
2336 *out << Verbose(1) << "Begin of ParseOrderAtSiteFromFile" << endl;
2337 for(int i=0;i<AtomCount;i++)
2338 OrderArray[i] = 0;
2339 line << path << "/" << FRAGMENTPREFIX << ORDERATSITEFILE;
2340 file.open(line.str().c_str());
2341 if (file != NULL) {
2342 for (int i=0;i<AtomCount;i++) // initialise with 0
2343 OrderArray[i] = 0;
2344 while (!file.eof()) { // parse from file
2345 file >> AtomNr;
2346 file >> Order;
2347 OrderArray[AtomNr] = (unsigned char) Order;
2348 //*out << Verbose(2) << "AtomNr " << AtomNr << " with order " << (int)OrderArray[AtomNr] << "." << endl;
2349 }
2350 atom *Walker = start;
2351 while (Walker->next != end) { // fill into atom classes
2352 Walker = Walker->next;
2353 Walker->AdaptiveOrder = OrderArray[Walker->nr];
2354 *out << Verbose(2) << *Walker << " gets order " << (int)Walker->AdaptiveOrder << "." << endl;
2355 }
2356 file.close();
2357 status = true;
2358 } else {
2359 status = false;
2360 }
2361 Free((void **)&OrderArray, "molecule::ParseOrderAtSiteFromFile - *OrderArray");
2362
2363 *out << Verbose(1) << "End of ParseOrderAtSiteFromFile" << endl;
2364 return status;
2365};
2366
2367/** Creates an 2d array of pointer with an entry for each atom and each bond it has.
2368 * Updates molecule::ListOfBondsPerAtom, molecule::NumberOfBondsPerAtom by parsing through
2369 * bond chain list, using molecule::AtomCount and molecule::BondCount.
2370 * Allocates memory, fills the array and exits
2371 * \param *out output stream for debugging
2372 */
2373void molecule::CreateListOfBondsPerAtom(ofstream *out)
2374{
2375 bond *Binder = NULL;
2376 atom *Walker = NULL;
2377 int TotalDegree;
2378 *out << Verbose(1) << "Begin of Creating ListOfBondsPerAtom: AtomCount = " << AtomCount << "\tBondCount = " << BondCount << "\tNoNonBonds = " << NoNonBonds << "." << endl;
2379
2380 // re-allocate memory
2381 *out << Verbose(2) << "(Re-)Allocating memory." << endl;
2382 if (ListOfBondsPerAtom != NULL) {
2383 for(int i=0;i<AtomCount;i++)
2384 Free((void **)&ListOfBondsPerAtom[i], "molecule::CreateListOfBondsPerAtom: ListOfBondsPerAtom[i]");
2385 Free((void **)&ListOfBondsPerAtom, "molecule::CreateListOfBondsPerAtom: ListOfBondsPerAtom");
2386 }
2387 if (NumberOfBondsPerAtom != NULL)
2388 Free((void **)&NumberOfBondsPerAtom, "molecule::CreateListOfBondsPerAtom: NumberOfBondsPerAtom");
2389 ListOfBondsPerAtom = (bond ***) Malloc(sizeof(bond **)*AtomCount, "molecule::CreateListOfBondsPerAtom: ***ListOfBondsPerAtom");
2390 NumberOfBondsPerAtom = (int *) Malloc(sizeof(int)*AtomCount, "molecule::CreateListOfBondsPerAtom: *NumberOfBondsPerAtom");
2391
2392 // reset bond counts per atom
2393 for(int i=0;i<AtomCount;i++)
2394 NumberOfBondsPerAtom[i] = 0;
2395 // count bonds per atom
2396 Binder = first;
2397 while (Binder->next != last) {
2398 Binder = Binder->next;
2399 NumberOfBondsPerAtom[Binder->leftatom->nr]++;
2400 NumberOfBondsPerAtom[Binder->rightatom->nr]++;
2401 }
2402 // allocate list of bonds per atom
2403 for(int i=0;i<AtomCount;i++)
2404 ListOfBondsPerAtom[i] = (bond **) Malloc(sizeof(bond *)*NumberOfBondsPerAtom[i], "molecule::CreateListOfBondsPerAtom: **ListOfBondsPerAtom[]");
2405 // clear the list again, now each NumberOfBondsPerAtom marks current free field
2406 for(int i=0;i<AtomCount;i++)
2407 NumberOfBondsPerAtom[i] = 0;
2408 // fill the list
2409 Binder = first;
2410 while (Binder->next != last) {
2411 Binder = Binder->next;
2412 ListOfBondsPerAtom[Binder->leftatom->nr][NumberOfBondsPerAtom[Binder->leftatom->nr]++] = Binder;
2413 ListOfBondsPerAtom[Binder->rightatom->nr][NumberOfBondsPerAtom[Binder->rightatom->nr]++] = Binder;
2414 }
2415
2416 // output list for debugging
2417 *out << Verbose(3) << "ListOfBondsPerAtom for each atom:" << endl;
2418 Walker = start;
2419 while (Walker->next != end) {
2420 Walker = Walker->next;
2421 *out << Verbose(4) << "Atom " << Walker->Name << " with " << NumberOfBondsPerAtom[Walker->nr] << " bonds: ";
2422 TotalDegree = 0;
2423 for (int j=0;j<NumberOfBondsPerAtom[Walker->nr];j++) {
2424 *out << *ListOfBondsPerAtom[Walker->nr][j] << "\t";
2425 TotalDegree += ListOfBondsPerAtom[Walker->nr][j]->BondDegree;
2426 }
2427 *out << " -- TotalDegree: " << TotalDegree << endl;
2428 }
2429 *out << Verbose(1) << "End of Creating ListOfBondsPerAtom." << endl << endl;
2430};
2431
2432/** Adds atoms up to \a BondCount distance from \a *Root and notes them down in \a **AddedAtomList.
2433 * Gray vertices are always enqueued in an AtomStackClass FIFO queue, the rest is usual BFS with adding vertices found was
2434 * white and putting into queue.
2435 * \param *out output stream for debugging
2436 * \param *Mol Molecule class to add atoms to
2437 * \param **AddedAtomList list with added atom pointers, index is atom father's number
2438 * \param **AddedBondList list with added bond pointers, index is bond father's number
2439 * \param *Root root vertex for BFS
2440 * \param *Bond bond not to look beyond
2441 * \param BondOrder maximum distance for vertices to add
2442 * \param IsAngstroem lengths are in angstroem or bohrradii
2443 */
2444void molecule::BreadthFirstSearchAdd(ofstream *out, molecule *Mol, atom **&AddedAtomList, bond **&AddedBondList, atom *Root, bond *Bond, int BondOrder, bool IsAngstroem)
2445{
2446 atom **PredecessorList = (atom **) Malloc(sizeof(atom *)*AtomCount, "molecule::BreadthFirstSearchAdd: **PredecessorList");
2447 int *ShortestPathList = (int *) Malloc(sizeof(int)*AtomCount, "molecule::BreadthFirstSearchAdd: *ShortestPathList");
2448 enum Shading *ColorList = (enum Shading *) Malloc(sizeof(enum Shading)*AtomCount, "molecule::BreadthFirstSearchAdd: *ColorList");
2449 AtomStackClass *AtomStack = new AtomStackClass(AtomCount);
2450 atom *Walker = NULL, *OtherAtom = NULL;
2451 bond *Binder = NULL;
2452
2453 // add Root if not done yet
2454 AtomStack->ClearStack();
2455 if (AddedAtomList[Root->nr] == NULL) // add Root if not yet present
2456 AddedAtomList[Root->nr] = Mol->AddCopyAtom(Root);
2457 AtomStack->Push(Root);
2458
2459 // initialise each vertex as white with no predecessor, empty queue, color Root lightgray
2460 for (int i=0;i<AtomCount;i++) {
2461 PredecessorList[i] = NULL;
2462 ShortestPathList[i] = -1;
2463 if (AddedAtomList[i] != NULL) // mark already present atoms (i.e. Root and maybe others) as visited
2464 ColorList[i] = lightgray;
2465 else
2466 ColorList[i] = white;
2467 }
2468 ShortestPathList[Root->nr] = 0;
2469
2470 // and go on ... Queue always contains all lightgray vertices
2471 while (!AtomStack->IsEmpty()) {
2472 // we have to pop the oldest atom from stack. This keeps the atoms on the stack always of the same ShortestPath distance.
2473 // e.g. if current atom is 2, push to end of stack are of length 3, but first all of length 2 would be popped. They again
2474 // append length of 3 (their neighbours). Thus on stack we have always atoms of a certain length n at bottom of stack and
2475 // followed by n+1 till top of stack.
2476 Walker = AtomStack->PopFirst(); // pop oldest added
2477 *out << Verbose(1) << "Current Walker is: " << Walker->Name << ", and has " << NumberOfBondsPerAtom[Walker->nr] << " bonds." << endl;
2478 for(int i=0;i<NumberOfBondsPerAtom[Walker->nr];i++) {
2479 Binder = ListOfBondsPerAtom[Walker->nr][i];
2480 if (Binder != NULL) { // don't look at bond equal NULL
2481 OtherAtom = Binder->GetOtherAtom(Walker);
2482 *out << Verbose(2) << "Current OtherAtom is: " << OtherAtom->Name << " for bond " << *Binder << "." << endl;
2483 if (ColorList[OtherAtom->nr] == white) {
2484 if (Binder != Bond) // let other atom white if it's via Root bond. In case it's cyclic it has to be reached again (yet Root is from OtherAtom already black, thus no problem)
2485 ColorList[OtherAtom->nr] = lightgray;
2486 PredecessorList[OtherAtom->nr] = Walker; // Walker is the predecessor
2487 ShortestPathList[OtherAtom->nr] = ShortestPathList[Walker->nr]+1;
2488 *out << Verbose(2) << "Coloring OtherAtom " << OtherAtom->Name << " " << ((ColorList[OtherAtom->nr] == white) ? "white" : "lightgray") << ", its predecessor is " << Walker->Name << " and its Shortest Path is " << ShortestPathList[OtherAtom->nr] << " egde(s) long." << endl;
2489 if ((((ShortestPathList[OtherAtom->nr] < BondOrder) && (Binder != Bond))) ) { // Check for maximum distance
2490 *out << Verbose(3);
2491 if (AddedAtomList[OtherAtom->nr] == NULL) { // add if it's not been so far
2492 AddedAtomList[OtherAtom->nr] = Mol->AddCopyAtom(OtherAtom);
2493 *out << "Added OtherAtom " << OtherAtom->Name;
2494 AddedBondList[Binder->nr] = Mol->AddBond(AddedAtomList[Walker->nr], AddedAtomList[OtherAtom->nr], Binder->BondDegree);
2495 AddedBondList[Binder->nr]->Cyclic = Binder->Cyclic;
2496 AddedBondList[Binder->nr]->Type = Binder->Type;
2497 *out << " and bond " << *(AddedBondList[Binder->nr]) << ", ";
2498 } else { // this code should actually never come into play (all white atoms are not yet present in BondMolecule, that's why they are white in the first place)
2499 *out << "Not adding OtherAtom " << OtherAtom->Name;
2500 if (AddedBondList[Binder->nr] == NULL) {
2501 AddedBondList[Binder->nr] = Mol->AddBond(AddedAtomList[Walker->nr], AddedAtomList[OtherAtom->nr], Binder->BondDegree);
2502 AddedBondList[Binder->nr]->Cyclic = Binder->Cyclic;
2503 AddedBondList[Binder->nr]->Type = Binder->Type;
2504 *out << ", added Bond " << *(AddedBondList[Binder->nr]);
2505 } else
2506 *out << ", not added Bond ";
2507 }
2508 *out << ", putting OtherAtom into queue." << endl;
2509 AtomStack->Push(OtherAtom);
2510 } else { // out of bond order, then replace
2511 if ((AddedAtomList[OtherAtom->nr] == NULL) && (Binder->Cyclic))
2512 ColorList[OtherAtom->nr] = white; // unmark if it has not been queued/added, to make it available via its other bonds (cyclic)
2513 if (Binder == Bond)
2514 *out << Verbose(3) << "Not Queueing, is the Root bond";
2515 else if (ShortestPathList[OtherAtom->nr] >= BondOrder)
2516 *out << Verbose(3) << "Not Queueing, is out of Bond Count of " << BondOrder;
2517 if (!Binder->Cyclic)
2518 *out << ", is not part of a cyclic bond, saturating bond with Hydrogen." << endl;
2519 if (AddedBondList[Binder->nr] == NULL) {
2520 if ((AddedAtomList[OtherAtom->nr] != NULL)) { // .. whether we add or saturate
2521 AddedBondList[Binder->nr] = Mol->AddBond(AddedAtomList[Walker->nr], AddedAtomList[OtherAtom->nr], Binder->BondDegree);
2522 AddedBondList[Binder->nr]->Cyclic = Binder->Cyclic;
2523 AddedBondList[Binder->nr]->Type = Binder->Type;
2524 } else {
2525#ifdef ADDHYDROGEN
2526 Mol->AddHydrogenReplacementAtom(out, Binder, AddedAtomList[Walker->nr], Walker, OtherAtom, ListOfBondsPerAtom[Walker->nr], NumberOfBondsPerAtom[Walker->nr], IsAngstroem);
2527#endif
2528 }
2529 }
2530 }
2531 } else {
2532 *out << Verbose(3) << "Not Adding, has already been visited." << endl;
2533 // This has to be a cyclic bond, check whether it's present ...
2534 if (AddedBondList[Binder->nr] == NULL) {
2535 if ((Binder != Bond) && (Binder->Cyclic) && (((ShortestPathList[Walker->nr]+1) < BondOrder))) {
2536 AddedBondList[Binder->nr] = Mol->AddBond(AddedAtomList[Walker->nr], AddedAtomList[OtherAtom->nr], Binder->BondDegree);
2537 AddedBondList[Binder->nr]->Cyclic = Binder->Cyclic;
2538 AddedBondList[Binder->nr]->Type = Binder->Type;
2539 } else { // if it's root bond it has to broken (otherwise we would not create the fragments)
2540#ifdef ADDHYDROGEN
2541 Mol->AddHydrogenReplacementAtom(out, Binder, AddedAtomList[Walker->nr], Walker, OtherAtom, ListOfBondsPerAtom[Walker->nr], NumberOfBondsPerAtom[Walker->nr], IsAngstroem);
2542#endif
2543 }
2544 }
2545 }
2546 }
2547 }
2548 ColorList[Walker->nr] = black;
2549 *out << Verbose(1) << "Coloring Walker " << Walker->Name << " black." << endl;
2550 }
2551 Free((void **)&PredecessorList, "molecule::BreadthFirstSearchAdd: **PredecessorList");
2552 Free((void **)&ShortestPathList, "molecule::BreadthFirstSearchAdd: **ShortestPathList");
2553 Free((void **)&ColorList, "molecule::BreadthFirstSearchAdd: **ColorList");
2554 delete(AtomStack);
2555};
2556
2557/** Adds bond structure to this molecule from \a Father molecule.
2558 * This basically causes this molecule to become an induced subgraph of the \a Father, i.e. for every bond in Father
2559 * with end points present in this molecule, bond is created in this molecule.
2560 * Special care was taken to ensure that this is of complexity O(N), where N is the \a Father's molecule::AtomCount.
2561 * \param *out output stream for debugging
2562 * \param *Father father molecule
2563 * \return true - is induced subgraph, false - there are atoms with fathers not in \a Father
2564 * \todo not checked, not fully working probably
2565 */
2566bool molecule::BuildInducedSubgraph(ofstream *out, const molecule *Father)
2567{
2568 atom *Walker = NULL, *OtherAtom = NULL;
2569 bool status = true;
2570 atom **ParentList = (atom **) Malloc(sizeof(atom *)*Father->AtomCount, "molecule::BuildInducedSubgraph: **ParentList");
2571
2572 *out << Verbose(2) << "Begin of BuildInducedSubgraph." << endl;
2573
2574 // reset parent list
2575 *out << Verbose(3) << "Resetting ParentList." << endl;
2576 for (int i=0;i<Father->AtomCount;i++)
2577 ParentList[i] = NULL;
2578
2579 // fill parent list with sons
2580 *out << Verbose(3) << "Filling Parent List." << endl;
2581 Walker = start;
2582 while (Walker->next != end) {
2583 Walker = Walker->next;
2584 ParentList[Walker->father->nr] = Walker;
2585 // Outputting List for debugging
2586 *out << Verbose(4) << "Son["<< Walker->father->nr <<"] of " << Walker->father << " is " << ParentList[Walker->father->nr] << "." << endl;
2587 }
2588
2589 // check each entry of parent list and if ok (one-to-and-onto matching) create bonds
2590 *out << Verbose(3) << "Creating bonds." << endl;
2591 Walker = Father->start;
2592 while (Walker->next != Father->end) {
2593 Walker = Walker->next;
2594 if (ParentList[Walker->nr] != NULL) {
2595 if (ParentList[Walker->nr]->father != Walker) {
2596 status = false;
2597 } else {
2598 for (int i=0;i<Father->NumberOfBondsPerAtom[Walker->nr];i++) {
2599 OtherAtom = Father->ListOfBondsPerAtom[Walker->nr][i]->GetOtherAtom(Walker);
2600 if (ParentList[OtherAtom->nr] != NULL) { // if otheratom is also a father of an atom on this molecule, create the bond
2601 *out << Verbose(4) << "Endpoints of Bond " << Father->ListOfBondsPerAtom[Walker->nr][i] << " are both present: " << ParentList[Walker->nr]->Name << " and " << ParentList[OtherAtom->nr]->Name << "." << endl;
2602 AddBond(ParentList[Walker->nr], ParentList[OtherAtom->nr], Father->ListOfBondsPerAtom[Walker->nr][i]->BondDegree);
2603 }
2604 }
2605 }
2606 }
2607 }
2608
2609 Free((void **)&ParentList, "molecule::BuildInducedSubgraph: **ParentList");
2610 *out << Verbose(2) << "End of BuildInducedSubgraph." << endl;
2611 return status;
2612};
2613
2614
2615/** Looks through a AtomStackClass and returns the likeliest removal candiate.
2616 * \param *out output stream for debugging messages
2617 * \param *&Leaf KeySet to look through
2618 * \param *&ShortestPathList list of the shortest path to decide which atom to suggest as removal candidate in the end
2619 * \param index of the atom suggested for removal
2620 */
2621int molecule::LookForRemovalCandidate(ofstream *&out, KeySet *&Leaf, int *&ShortestPathList)
2622{
2623 atom *Runner = NULL;
2624 int SP, Removal;
2625
2626 *out << Verbose(2) << "Looking for removal candidate." << endl;
2627 SP = -1; //0; // not -1, so that Root is never removed
2628 Removal = -1;
2629 for (KeySet::iterator runner = Leaf->begin(); runner != Leaf->end(); runner++) {
2630 Runner = FindAtom((*runner));
2631 if (Runner->type->Z != 1) { // skip all those added hydrogens when re-filling snake stack
2632 if (ShortestPathList[(*runner)] > SP) { // remove the oldest one with longest shortest path
2633 SP = ShortestPathList[(*runner)];
2634 Removal = (*runner);
2635 }
2636 }
2637 }
2638 return Removal;
2639};
2640
2641/** Stores a fragment from \a KeySet into \a molecule.
2642 * First creates the minimal set of atoms from the KeySet, then creates the bond structure from the complete
2643 * molecule and adds missing hydrogen where bonds were cut.
2644 * \param *out output stream for debugging messages
2645 * \param &Leaflet pointer to KeySet structure
2646 * \param IsAngstroem whether we have Ansgtroem or bohrradius
2647 * \return pointer to constructed molecule
2648 */
2649molecule * molecule::StoreFragmentFromKeySet(ofstream *out, KeySet &Leaflet, bool IsAngstroem)
2650{
2651 atom *Runner = NULL, *FatherOfRunner = NULL, *OtherFather = NULL;
2652 atom **SonList = (atom **) Malloc(sizeof(atom *)*AtomCount, "molecule::StoreFragmentFromStack: **SonList");
2653 molecule *Leaf = new molecule(elemente);
2654
2655// *out << Verbose(1) << "Begin of StoreFragmentFromKeyset." << endl;
2656
2657 Leaf->BondDistance = BondDistance;
2658 for(int i=0;i<NDIM*2;i++)
2659 Leaf->cell_size[i] = cell_size[i];
2660
2661 // initialise SonList (indicates when we need to replace a bond with hydrogen instead)
2662 for(int i=0;i<AtomCount;i++)
2663 SonList[i] = NULL;
2664
2665 // first create the minimal set of atoms from the KeySet
2666 for(KeySet::iterator runner = Leaflet.begin(); runner != Leaflet.end(); runner++) {
2667 FatherOfRunner = FindAtom((*runner)); // find the id
2668 SonList[FatherOfRunner->nr] = Leaf->AddCopyAtom(FatherOfRunner);
2669 }
2670
2671 // create the bonds between all: Make it an induced subgraph and add hydrogen
2672// *out << Verbose(2) << "Creating bonds from father graph (i.e. induced subgraph creation)." << endl;
2673 Runner = Leaf->start;
2674 while (Runner->next != Leaf->end) {
2675 Runner = Runner->next;
2676 FatherOfRunner = Runner->father;
2677 if (SonList[FatherOfRunner->nr] != NULL) { // check if this, our father, is present in list
2678 // create all bonds
2679 for (int i=0;i<NumberOfBondsPerAtom[FatherOfRunner->nr];i++) { // go through every bond of father
2680 OtherFather = ListOfBondsPerAtom[FatherOfRunner->nr][i]->GetOtherAtom(FatherOfRunner);
2681// *out << Verbose(2) << "Father " << *FatherOfRunner << " of son " << *SonList[FatherOfRunner->nr] << " is bound to " << *OtherFather;
2682 if (SonList[OtherFather->nr] != NULL) {
2683// *out << ", whose son is " << *SonList[OtherFather->nr] << "." << endl;
2684 if (OtherFather->nr > FatherOfRunner->nr) { // add bond (nr check is for adding only one of both variants: ab, ba)
2685// *out << Verbose(3) << "Adding Bond: " << Leaf->AddBond(Runner, SonList[OtherFather->nr], ListOfBondsPerAtom[FatherOfRunner->nr][i]->BondDegree) << "." << endl;
2686 //NumBonds[Runner->nr]++;
2687 } else {
2688// *out << Verbose(3) << "Not adding bond, labels in wrong order." << endl;
2689 }
2690 } else {
2691// *out << ", who has no son in this fragment molecule." << endl;
2692#ifdef ADDHYDROGEN
2693// *out << Verbose(3) << "Adding Hydrogen to " << Runner->Name << " and a bond in between." << endl;
2694 Leaf->AddHydrogenReplacementAtom(out, ListOfBondsPerAtom[FatherOfRunner->nr][i], Runner, FatherOfRunner, OtherFather, ListOfBondsPerAtom[FatherOfRunner->nr],NumberOfBondsPerAtom[FatherOfRunner->nr], IsAngstroem);
2695#endif
2696 //NumBonds[Runner->nr] += ListOfBondsPerAtom[FatherOfRunner->nr][i]->BondDegree;
2697 }
2698 }
2699 } else {
2700 *out << Verbose(0) << "ERROR: Son " << Runner->Name << " has father " << FatherOfRunner->Name << " but its entry in SonList is " << SonList[FatherOfRunner->nr] << "!" << endl;
2701 }
2702#ifdef ADDHYDROGEN
2703 while ((Runner->next != Leaf->end) && (Runner->next->type->Z == 1)) // skip added hydrogen
2704 Runner = Runner->next;
2705#endif
2706 }
2707 Leaf->CreateListOfBondsPerAtom(out);
2708 //Leaflet->Leaf->ScanForPeriodicCorrection(out);
2709 Free((void **)&SonList, "molecule::StoreFragmentFromStack: **SonList");
2710// *out << Verbose(1) << "End of StoreFragmentFromKeyset." << endl;
2711 return Leaf;
2712};
2713
2714/** Creates \a MoleculeListClass of all unique fragments of the \a molecule containing \a Order atoms or vertices.
2715 * The picture to have in mind is that of a DFS "snake" of a certain length \a Order, i.e. as in the infamous
2716 * computer game, that winds through the connected graph representing the molecule. Color (white,
2717 * lightgray, darkgray, black) indicates whether a vertex has been discovered so far or not. Labels will help in
2718 * creating only unique fragments and not additional ones with vertices simply in different sequence.
2719 * The Predecessor is always the one that came before in discovering, needed on backstepping. And
2720 * finally, the ShortestPath is needed for removing vertices from the snake stack during the back-
2721 * stepping.
2722 * \param *out output stream for debugging
2723 * \param Order number of atoms in each fragment
2724 * \param *configuration configuration for writing config files for each fragment
2725 * \return List of all unique fragments with \a Order atoms
2726 */
2727/*
2728MoleculeListClass * molecule::CreateListOfUniqueFragmentsOfOrder(ofstream *out, int Order, config *configuration)
2729{
2730 atom **PredecessorList = (atom **) Malloc(sizeof(atom *)*AtomCount, "molecule::CreateListOfUniqueFragmentsOfOrder: **PredecessorList");
2731 int *ShortestPathList = (int *) Malloc(sizeof(int)*AtomCount, "molecule::CreateListOfUniqueFragmentsOfOrder: *ShortestPathList");
2732 int *Labels = (int *) Malloc(sizeof(int)*AtomCount, "molecule::CreateListOfUniqueFragmentsOfOrder: *Labels");
2733 enum Shading *ColorVertexList = (enum Shading *) Malloc(sizeof(enum Shading)*AtomCount, "molecule::CreateListOfUniqueFragmentsOfOrder: *ColorList");
2734 enum Shading *ColorEdgeList = (enum Shading *) Malloc(sizeof(enum Shading)*BondCount, "molecule::CreateListOfUniqueFragmentsOfOrder: *ColorBondList");
2735 AtomStackClass *RootStack = new AtomStackClass(AtomCount);
2736 AtomStackClass *TouchedStack = new AtomStackClass((int)pow(4,Order)+2); // number of atoms reached from one with maximal 4 bonds plus Root itself
2737 AtomStackClass *SnakeStack = new AtomStackClass(Order+1); // equal to Order is not possible, as then the AtomStackClass cannot discern between full and empty stack!
2738 MoleculeLeafClass *Leaflet = NULL, *TempLeaf = NULL;
2739 MoleculeListClass *FragmentList = NULL;
2740 atom *Walker = NULL, *OtherAtom = NULL, *Root = NULL, *Removal = NULL;
2741 bond *Binder = NULL;
2742 int RunningIndex = 0, FragmentCounter = 0;
2743
2744 *out << Verbose(1) << "Begin of CreateListOfUniqueFragmentsOfOrder." << endl;
2745
2746 // reset parent list
2747 *out << Verbose(3) << "Resetting labels, parent, predecessor, color and shortest path lists." << endl;
2748 for (int i=0;i<AtomCount;i++) { // reset all atom labels
2749 // initialise each vertex as white with no predecessor, empty queue, color lightgray, not labelled, no sons
2750 Labels[i] = -1;
2751 SonList[i] = NULL;
2752 PredecessorList[i] = NULL;
2753 ColorVertexList[i] = white;
2754 ShortestPathList[i] = -1;
2755 }
2756 for (int i=0;i<BondCount;i++)
2757 ColorEdgeList[i] = white;
2758 RootStack->ClearStack(); // clearstack and push first atom if exists
2759 TouchedStack->ClearStack();
2760 Walker = start->next;
2761 while ((Walker != end)
2762#ifdef ADDHYDROGEN
2763 && (Walker->type->Z == 1)
2764#endif
2765 ) { // search for first non-hydrogen atom
2766 *out << Verbose(4) << "Current Root candidate is " << Walker->Name << "." << endl;
2767 Walker = Walker->next;
2768 }
2769 if (Walker != end)
2770 RootStack->Push(Walker);
2771 else
2772 *out << Verbose(0) << "ERROR: Could not find an appropriate Root atom!" << endl;
2773 *out << Verbose(3) << "Root " << Walker->Name << " is on AtomStack, beginning loop through all vertices ..." << endl;
2774
2775 ///// OUTER LOOP ////////////
2776 while (!RootStack->IsEmpty()) {
2777 // get new root vertex from atom stack
2778 Root = RootStack->PopFirst();
2779 ShortestPathList[Root->nr] = 0;
2780 if (Labels[Root->nr] == -1)
2781 Labels[Root->nr] = RunningIndex++; // prevent it from getting again on AtomStack
2782 PredecessorList[Root->nr] = Root;
2783 TouchedStack->Push(Root);
2784 *out << Verbose(0) << "Root for this loop is: " << Root->Name << ".\n";
2785
2786 // clear snake stack
2787 SnakeStack->ClearStack();
2788 //SnakeStack->TestImplementation(out, start->next);
2789
2790 ///// INNER LOOP ////////////
2791 // Problems:
2792 // - what about cyclic bonds?
2793 Walker = Root;
2794 do {
2795 *out << Verbose(1) << "Current Walker is: " << Walker->Name;
2796 // initial setting of the new Walker: label, color, shortest path and put on stacks
2797 if (Labels[Walker->nr] == -1) { // give atom a unique, monotonely increasing number
2798 Labels[Walker->nr] = RunningIndex++;
2799 RootStack->Push(Walker);
2800 }
2801 *out << ", has label " << Labels[Walker->nr];
2802 if ((ColorVertexList[Walker->nr] == white) || ((Binder != NULL) && (ColorEdgeList[Binder->nr] == white))) { // color it if newly discovered and push on stacks (and if within reach!)
2803 if ((Binder != NULL) && (ColorEdgeList[Binder->nr] == white)) {
2804 // Binder ought to be set still from last neighbour search
2805 *out << ", coloring bond " << *Binder << " black";
2806 ColorEdgeList[Binder->nr] = black; // mark this bond as used
2807 }
2808 if (ShortestPathList[Walker->nr] == -1) {
2809 ShortestPathList[Walker->nr] = ShortestPathList[PredecessorList[Walker->nr]->nr]+1;
2810 TouchedStack->Push(Walker); // mark every atom for lists cleanup later, whose shortest path has been changed
2811 }
2812 if ((ShortestPathList[Walker->nr] < Order) && (ColorVertexList[Walker->nr] != darkgray)) { // if not already on snake stack
2813 SnakeStack->Push(Walker);
2814 ColorVertexList[Walker->nr] = darkgray; // mark as dark gray of on snake stack
2815 }
2816 }
2817 *out << ", SP of " << ShortestPathList[Walker->nr] << " and its color is " << GetColor(ColorVertexList[Walker->nr]) << "." << endl;
2818
2819 // then check the stack for a newly stumbled upon fragment
2820 if (SnakeStack->ItemCount() == Order) { // is stack full?
2821 // store the fragment if it is one and get a removal candidate
2822 Removal = StoreFragmentFromStack(out, Root, Walker, Leaflet, SnakeStack, ShortestPathList, SonList, Labels, &FragmentCounter, configuration);
2823 // remove the candidate if one was found
2824 if (Removal != NULL) {
2825 *out << Verbose(2) << "Removing item " << Removal->Name << " with SP of " << ShortestPathList[Removal->nr] << " from snake stack." << endl;
2826 SnakeStack->RemoveItem(Removal);
2827 ColorVertexList[Removal->nr] = lightgray; // return back to not on snake stack but explored marking
2828 if (Walker == Removal) { // if the current atom is to be removed, we also have to take a step back
2829 Walker = PredecessorList[Removal->nr];
2830 *out << Verbose(2) << "Stepping back to " << Walker->Name << "." << endl;
2831 }
2832 }
2833 } else
2834 Removal = NULL;
2835
2836 // finally, look for a white neighbour as the next Walker
2837 Binder = NULL;
2838 if ((Removal == NULL) || (Walker != PredecessorList[Removal->nr])) { // don't look, if a new walker has been set above
2839 *out << Verbose(2) << "Snake has currently " << SnakeStack->ItemCount() << " item(s)." << endl;
2840 OtherAtom = NULL; // this is actually not needed, every atom has at least one neighbour
2841 if (ShortestPathList[Walker->nr] < Order) {
2842 for(int i=0;i<NumberOfBondsPerAtom[Walker->nr];i++) {
2843 Binder = ListOfBondsPerAtom[Walker->nr][i];
2844 *out << Verbose(2) << "Current bond is " << *Binder << ": ";
2845 OtherAtom = Binder->GetOtherAtom(Walker);
2846 if ((Labels[OtherAtom->nr] != -1) && (Labels[OtherAtom->nr] < Labels[Root->nr])) { // we don't step up to labels bigger than us
2847 *out << "Label " << Labels[OtherAtom->nr] << " is smaller than Root's " << Labels[Root->nr] << "." << endl;
2848 //ColorVertexList[OtherAtom->nr] = lightgray; // mark as explored
2849 } else { // otherwise check its colour and element
2850 if (
2851#ifdef ADDHYDROGEN
2852 (OtherAtom->type->Z != 1) &&
2853#endif
2854 (ColorEdgeList[Binder->nr] == white)) { // skip hydrogen, look for unexplored vertices
2855 *out << "Moving along " << GetColor(ColorEdgeList[Binder->nr]) << " bond " << Binder << " to " << ((ColorVertexList[OtherAtom->nr] == white) ? "unexplored" : "explored") << " item: " << OtherAtom->Name << "." << endl;
2856 // i find it currently rather sensible to always set the predecessor in order to find one's way back
2857 //if (PredecessorList[OtherAtom->nr] == NULL) {
2858 PredecessorList[OtherAtom->nr] = Walker;
2859 *out << Verbose(3) << "Setting Predecessor of " << OtherAtom->Name << " to " << PredecessorList[OtherAtom->nr]->Name << "." << endl;
2860 //} else {
2861 // *out << Verbose(3) << "Predecessor of " << OtherAtom->Name << " is " << PredecessorList[OtherAtom->nr]->Name << "." << endl;
2862 //}
2863 Walker = OtherAtom;
2864 break;
2865 } else {
2866 if (OtherAtom->type->Z == 1)
2867 *out << "Links to a hydrogen atom." << endl;
2868 else
2869 *out << "Bond has not white but " << GetColor(ColorEdgeList[Binder->nr]) << " color." << endl;
2870 }
2871 }
2872 }
2873 } else { // means we have stepped beyond the horizon: Return!
2874 Walker = PredecessorList[Walker->nr];
2875 OtherAtom = Walker;
2876 *out << Verbose(3) << "We have gone too far, stepping back to " << Walker->Name << "." << endl;
2877 }
2878 if (Walker != OtherAtom) { // if no white neighbours anymore, color it black
2879 *out << Verbose(2) << "Coloring " << Walker->Name << " black." << endl;
2880 ColorVertexList[Walker->nr] = black;
2881 Walker = PredecessorList[Walker->nr];
2882 }
2883 }
2884 } while ((Walker != Root) || (ColorVertexList[Root->nr] != black));
2885 *out << Verbose(2) << "Inner Looping is finished." << endl;
2886
2887 // if we reset all AtomCount atoms, we have again technically O(N^2) ...
2888 *out << Verbose(2) << "Resetting lists." << endl;
2889 Walker = NULL;
2890 Binder = NULL;
2891 while (!TouchedStack->IsEmpty()) {
2892 Walker = TouchedStack->PopLast();
2893 *out << Verbose(3) << "Re-initialising entries of " << *Walker << "." << endl;
2894 for(int i=0;i<NumberOfBondsPerAtom[Walker->nr];i++)
2895 ColorEdgeList[ListOfBondsPerAtom[Walker->nr][i]->nr] = white;
2896 PredecessorList[Walker->nr] = NULL;
2897 ColorVertexList[Walker->nr] = white;
2898 ShortestPathList[Walker->nr] = -1;
2899 }
2900 }
2901 *out << Verbose(1) << "Outer Looping over all vertices is done." << endl;
2902
2903 // copy together
2904 *out << Verbose(1) << "Copying all fragments into MoleculeList structure." << endl;
2905 FragmentList = new MoleculeListClass(FragmentCounter, AtomCount);
2906 RunningIndex = 0;
2907 while ((Leaflet != NULL) && (RunningIndex < FragmentCounter)) {
2908 FragmentList->ListOfMolecules[RunningIndex++] = Leaflet->Leaf;
2909 Leaflet->Leaf = NULL; // prevent molecule from being removed
2910 TempLeaf = Leaflet;
2911 Leaflet = Leaflet->previous;
2912 delete(TempLeaf);
2913 };
2914
2915 // free memory and exit
2916 Free((void **)&PredecessorList, "molecule::CreateListOfUniqueFragmentsOfOrder: **PredecessorList");
2917 Free((void **)&ShortestPathList, "molecule::CreateListOfUniqueFragmentsOfOrder: *ShortestPathList");
2918 Free((void **)&Labels, "molecule::CreateListOfUniqueFragmentsOfOrder: *Labels");
2919 Free((void **)&ColorVertexList, "molecule::CreateListOfUniqueFragmentsOfOrder: *ColorList");
2920 delete(RootStack);
2921 delete(TouchedStack);
2922 delete(SnakeStack);
2923
2924 *out << Verbose(1) << "End of CreateListOfUniqueFragmentsOfOrder." << endl;
2925 return FragmentList;
2926};
2927*/
2928
2929/** Structure containing all values in power set combination generation.
2930 */
2931struct UniqueFragments {
2932 config *configuration;
2933 atom *Root;
2934 Graph *Leaflet;
2935 KeySet *FragmentSet;
2936 int ANOVAOrder;
2937 int FragmentCounter;
2938 int CurrentIndex;
2939 int *Labels;
2940 int *ShortestPathList;
2941 bool **UsedList;
2942 bond **BondsPerSPList;
2943 int *BondsPerSPCount;
2944};
2945
2946/** From a given set of Bond sorted by Shortest Path distance, create all possible fragments of size \a SetDimension.
2947 * -# loops over every possible combination (2^dimension of edge set)
2948 * -# inserts current set, if there's still space left
2949 * -# yes: calls SPFragmentGenerator with structure, created new edge list and size respective to root dist
2950ance+1
2951 * -# no: stores fragment into keyset list by calling InsertFragmentIntoGraph
2952 * -# removes all items added into the snake stack (in UniqueFragments structure) added during level (root
2953distance) and current set
2954 * \param *out output stream for debugging
2955 * \param FragmentSearch UniqueFragments structure with all values needed
2956 * \param RootDistance current shortest path level, whose set of edges is represented by **BondsSet
2957 * \param SetDimension Number of possible bonds on this level (i.e. size of the array BondsSet[])
2958 * \param SubOrder remaining number of allowed vertices to add
2959 */
2960void molecule::SPFragmentGenerator(ofstream *out, struct UniqueFragments *FragmentSearch, int RootDistance, bond **BondsSet, int SetDimension, int SubOrder)
2961{
2962 atom *OtherWalker = NULL;
2963 int verbosity = 0; //FragmentSearch->ANOVAOrder-SubOrder;
2964 int NumCombinations;
2965 bool bit;
2966 int bits, TouchedIndex, SubSetDimension, SP;
2967 int Removal;
2968 int *TouchedList = (int *) Malloc(sizeof(int)*(SubOrder+1), "molecule::SPFragmentGenerator: *TouchedList");
2969 bond *Binder = NULL;
2970 bond **BondsList = NULL;
2971
2972 NumCombinations = 1 << SetDimension;
2973
2974 // Hier muessen von 1 bis NumberOfBondsPerAtom[Walker->nr] alle Kombinationen
2975 // von Endstuecken (aus den Bonds) hinzugefÃŒgt werden und fÃŒr verbleibende ANOVAOrder
2976 // rekursiv GraphCrawler in der nÀchsten Ebene aufgerufen werden
2977
2978 *out << Verbose(1+verbosity) << "Begin of SPFragmentGenerator." << endl;
2979 *out << Verbose(1+verbosity) << "We are " << RootDistance << " away from Root, which is " << *FragmentSearch->Root << ", SubOrder is " << SubOrder << ", SetDimension is " << SetDimension << " and this means " << NumCombinations-1 << " combination(s)." << endl;
2980
2981 // initialised touched list (stores added atoms on this level)
2982 *out << Verbose(1+verbosity) << "Clearing touched list." << endl;
2983 for (TouchedIndex=0;TouchedIndex<=SubOrder;TouchedIndex++) // empty touched list
2984 TouchedList[TouchedIndex] = -1;
2985 TouchedIndex = 0;
2986
2987 // create every possible combination of the endpieces
2988 *out << Verbose(1+verbosity) << "Going through all combinations of the power set." << endl;
2989 for (int i=1;i<NumCombinations;i++) { // sweep through all power set combinations (skip empty set!)
2990 // count the set bit of i
2991 bits = 0;
2992 for (int j=0;j<SetDimension;j++)
2993 bits += (i & (1 << j)) >> j;
2994
2995 *out << Verbose(1+verbosity) << "Current set is " << Binary(i | (1 << SetDimension)) << ", number of bits is " << bits << "." << endl;
2996 if (bits <= SubOrder) { // if not greater than additional atoms allowed on stack, continue
2997 // --1-- add this set of the power set of bond partners to the snake stack
2998 for (int j=0;j<SetDimension;j++) { // pull out every bit by shifting
2999 bit = ((i & (1 << j)) != 0); // mask the bit for the j-th bond
3000 if (bit) { // if bit is set, we add this bond partner
3001 OtherWalker = BondsSet[j]->rightatom; // rightatom is always the one more distant, i.e. the one to add
3002 //*out << Verbose(1+verbosity) << "Current Bond is " << ListOfBondsPerAtom[Walker->nr][i] << ", checking on " << *OtherWalker << "." << endl;
3003 //if ((!FragmentSearch->UsedList[OtherWalker->nr][i]) && (FragmentSearch->Labels[OtherWalker->nr] > FragmentSearch->Labels[FragmentSearch->Root->nr])) {
3004 //*out << Verbose(2+verbosity) << "Not used so far, label " << FragmentSearch->Labels[OtherWalker->nr] << " is bigger than Root's " << FragmentSearch->Labels[FragmentSearch->Root->nr] << "." << endl;
3005 *out << Verbose(2+verbosity) << "Adding " << *OtherWalker << " with nr " << OtherWalker->nr << "." << endl;
3006 TouchedList[TouchedIndex++] = OtherWalker->nr; // note as added
3007 FragmentSearch->FragmentSet->insert(OtherWalker->nr);
3008 //FragmentSearch->UsedList[OtherWalker->nr][i] = true;
3009 //}
3010 } else {
3011 *out << Verbose(2+verbosity) << "Not adding." << endl;
3012 }
3013 }
3014
3015 if (bits < SubOrder) {
3016 *out << Verbose(1+verbosity) << "There's still some space left on stack: " << (SubOrder - bits) << "." << endl;
3017 // --2-- look at all added end pieces of this combination, construct bond subsets and sweep through a power set of these by recursion
3018 SP = RootDistance+1; // this is the next level
3019 // first count the members in the subset
3020 SubSetDimension = 0;
3021 Binder = FragmentSearch->BondsPerSPList[2*SP]; // start node for this level
3022 while (Binder->next != FragmentSearch->BondsPerSPList[2*SP+1]) { // compare to end node of this level
3023 Binder = Binder->next;
3024 for (int k=0;k<TouchedIndex;k++) {
3025 if (Binder->Contains(TouchedList[k])) // if we added this very endpiece
3026 SubSetDimension++;
3027 }
3028 }
3029 // then allocate and fill the list
3030 BondsList = (bond **) Malloc(sizeof(bond *)*SubSetDimension, "molecule::SPFragmentGenerator: **BondsList");
3031 SubSetDimension = 0;
3032 Binder = FragmentSearch->BondsPerSPList[2*SP];
3033 while (Binder->next != FragmentSearch->BondsPerSPList[2*SP+1]) {
3034 Binder = Binder->next;
3035 for (int k=0;k<TouchedIndex;k++) {
3036 if (Binder->leftatom->nr == TouchedList[k]) // leftatom is always the close one
3037 BondsList[SubSetDimension++] = Binder;
3038 }
3039 }
3040 *out << Verbose(2+verbosity) << "Calling subset generator " << SP << " away from root " << *FragmentSearch->Root << " with sub set dimension " << SubSetDimension << "." << endl;
3041 SPFragmentGenerator(out, FragmentSearch, SP, BondsList, SubSetDimension, SubOrder-bits);
3042 Free((void **)&BondsList, "molecule::SPFragmentGenerator: **BondsList");
3043 } else {
3044 // --2-- otherwise store the complete fragment
3045 *out << Verbose(1+verbosity) << "Enough items on stack for a fragment!" << endl;
3046 // store fragment as a KeySet
3047 *out << Verbose(2) << "Found a new fragment[" << FragmentSearch->FragmentCounter << "], local nr.s are: ";
3048 for(KeySet::iterator runner = FragmentSearch->FragmentSet->begin(); runner != FragmentSearch->FragmentSet->end(); runner++)
3049 *out << (*runner) << " ";
3050 InsertFragmentIntoGraph(out, FragmentSearch);
3051 //Removal = LookForRemovalCandidate(out, FragmentSearch->FragmentSet, FragmentSearch->ShortestPathList);
3052 //Removal = StoreFragmentFromStack(out, FragmentSearch->Root, FragmentSearch->Leaflet, FragmentSearch->FragmentStack, FragmentSearch->ShortestPathList,FragmentSearch->Labels, &FragmentSearch->FragmentCounter, FragmentSearch->configuration);
3053 }
3054
3055 // --3-- remove all added items in this level from snake stack
3056 *out << Verbose(1+verbosity) << "Removing all items that were added on this SP level " << RootDistance << "." << endl;
3057 for(int j=0;j<TouchedIndex;j++) {
3058 Removal = TouchedList[j];
3059 *out << Verbose(2+verbosity) << "Removing item nr. " << Removal << " from snake stack." << endl;
3060 FragmentSearch->FragmentSet->erase(Removal);
3061 TouchedList[j] = -1;
3062 }
3063 *out << Verbose(2) << "Remaining local nr.s on snake stack are: ";
3064 for(KeySet::iterator runner = FragmentSearch->FragmentSet->begin(); runner != FragmentSearch->FragmentSet->end(); runner++)
3065 *out << (*runner) << " ";
3066 *out << endl;
3067 TouchedIndex = 0; // set Index to 0 for list of atoms added on this level
3068 } else {
3069 *out << Verbose(2+verbosity) << "More atoms to add for this set (" << bits << ") than space left on stack " << SubOrder << ", skipping this set." << endl;
3070 }
3071 }
3072 Free((void **)&TouchedList, "molecule::SPFragmentGenerator: *TouchedList");
3073 *out << Verbose(1+verbosity) << "End of SPFragmentGenerator, " << RootDistance << " away from Root " << *FragmentSearch->Root << " and SubOrder is " << SubOrder << "." << endl;
3074};
3075
3076/** Creates a list of all unique fragments of certain vertex size from a given graph \a Fragment for a given root vertex in the context of \a this molecule.
3077 * -# initialises UniqueFragments structure
3078 * -# fills edge list via BFS
3079 * -# creates the fragment by calling recursive function SPFragmentGenerator with UniqueFragments structure, 0 as
3080 root distance, the edge set, its dimension and the current suborder
3081 * -# Free'ing structure
3082 * Note that we may use the fact that the atoms are SP-ordered on the atomstack. I.e. when popping always the last, we first get all
3083 * with SP of 2, then those with SP of 3, then those with SP of 4 and so on.
3084 * \param *out output stream for debugging
3085 * \param Order bond order (limits BFS exploration and "number of digits" in power set generation
3086 * \param *ReturnKeySets Graph structure to insert found keysets/fragments into
3087 * \param RestrictedKeySet Restricted vertex set to use in context of molecule
3088 * \param RootKeyNr Atom::nr of the atom acting as current fragment root
3089 * \return number of inserted fragments
3090 * \note ShortestPathList in FragmentSearch structure is probably due to NumberOfAtomsSPLevel and SP not needed anymore
3091 */
3092int molecule::PowerSetGenerator(ofstream *out, int Order, Graph *ReturnKeySets, KeySet RestrictedKeySet, int RootKeyNr)
3093{
3094 int SP, UniqueIndex, AtomKeyNr;
3095 int *NumberOfAtomsSPLevel = (int *) Malloc(sizeof(int)*Order, "molecule::PowerSetGenerator: *SPLevelCount");
3096 atom *Walker = NULL, *OtherWalker = NULL;
3097 bond *Binder = NULL;
3098 bond **BondsList = NULL;
3099 KeyStack AtomStack;
3100 atom **PredecessorList = (atom **) Malloc(sizeof(atom *)*AtomCount, "molecule::PowerSetGenerator: **PredecessorList");
3101 KeySet::iterator runner;
3102 //int Count = RestrictedKeySet.size();
3103
3104 // initialise the fragments structure
3105 struct UniqueFragments FragmentSearch;
3106 FragmentSearch.BondsPerSPList = (bond **) Malloc(sizeof(bond *)*Order*2, "molecule::PowerSetGenerator: ***BondsPerSPList");
3107 FragmentSearch.BondsPerSPCount = (int *) Malloc(sizeof(int)*Order, "molecule::PowerSetGenerator: *BondsPerSPCount");
3108 FragmentSearch.ShortestPathList = (int *) Malloc(sizeof(int)*AtomCount, "molecule::PowerSetGenerator: *ShortestPathList");
3109 FragmentSearch.Labels = (int *) Malloc(sizeof(int)*AtomCount, "molecule::PowerSetGenerator: *Labels");
3110 FragmentSearch.FragmentCounter = 0;
3111 FragmentSearch.FragmentSet = new KeySet;
3112 FragmentSearch.Leaflet = ReturnKeySets; // set to insertion graph
3113 FragmentSearch.Root = FindAtom(RootKeyNr);
3114 for (int i=0;i<AtomCount;i++) {
3115 FragmentSearch.Labels[i] = -1;
3116 FragmentSearch.ShortestPathList[i] = -1;
3117 PredecessorList[i] = NULL;
3118 }
3119 for (int i=0;i<Order;i++) {
3120 FragmentSearch.BondsPerSPList[2*i] = new bond(); // start node
3121 FragmentSearch.BondsPerSPList[2*i+1] = new bond(); // end node
3122 FragmentSearch.BondsPerSPList[2*i]->next = FragmentSearch.BondsPerSPList[2*i+1]; // intertwine these two
3123 FragmentSearch.BondsPerSPList[2*i+1]->previous = FragmentSearch.BondsPerSPList[2*i];
3124 FragmentSearch.BondsPerSPCount[i] = 0;
3125 }
3126
3127 *out << endl;
3128 *out << Verbose(0) << "Begin of PowerSetGenerator with order " << Order << " at Root " << *FragmentSearch.Root << "." << endl;
3129
3130 UniqueIndex = 0;
3131 if (FragmentSearch.Labels[RootKeyNr] == -1)
3132 FragmentSearch.Labels[RootKeyNr] = UniqueIndex++;
3133 FragmentSearch.ShortestPathList[RootKeyNr] = 0;
3134 // prepare the atom stack counters (number of atoms with certain SP on stack)
3135 for (int i=0;i<Order;i++)
3136 NumberOfAtomsSPLevel[i] = 0;
3137 NumberOfAtomsSPLevel[0] = 1; // for root
3138 SP = -1;
3139 *out << endl;
3140 *out << Verbose(0) << "Starting BFS analysis ..." << endl;
3141 // push as first on atom stack and goooo ...
3142 AtomStack.clear();
3143 AtomStack.push_back(RootKeyNr);
3144 *out << Verbose(0) << "Cleared AtomStack and pushed root as first item onto it." << endl;
3145 // do a BFS search to fill the SP lists and label the found vertices
3146 while (!AtomStack.empty()) {
3147 // pop next atom
3148 AtomKeyNr = AtomStack.front();
3149 AtomStack.pop_front();
3150 if (SP != -1)
3151 NumberOfAtomsSPLevel[SP]--;
3152 if ((SP == -1) || (NumberOfAtomsSPLevel[SP] == -1)) {
3153 SP++;
3154 NumberOfAtomsSPLevel[SP]--; // carry over "-1" to next level
3155 *out << Verbose(1) << "New SP level reached: " << SP << ", creating new SP list with 0 item(s)";
3156 if (SP > 0)
3157 *out << ", old level closed with " << FragmentSearch.BondsPerSPCount[SP-1] << " item(s)." << endl;
3158 else
3159 *out << "." << endl;
3160 FragmentSearch.BondsPerSPCount[SP] = 0;
3161 } else {
3162 *out << Verbose(1) << "Still " << NumberOfAtomsSPLevel[SP]+1 << " on this SP (" << SP << ") level, currently having " << FragmentSearch.BondsPerSPCount[SP] << " item(s)." << endl;
3163 }
3164 Walker = FindAtom(AtomKeyNr);
3165 *out << Verbose(0) << "Current Walker is: " << *Walker << " with nr " << Walker->nr << " and label " << FragmentSearch.Labels[AtomKeyNr] << " and SP of " << SP << "." << endl;
3166 // check for new sp level
3167 // go through all its bonds
3168 *out << Verbose(1) << "Going through all bonds of Walker." << endl;
3169 for (int i=0;i<NumberOfBondsPerAtom[AtomKeyNr];i++) {
3170 Binder = ListOfBondsPerAtom[AtomKeyNr][i];
3171 OtherWalker = Binder->GetOtherAtom(Walker);
3172 if ((RestrictedKeySet.find(OtherWalker->nr) != RestrictedKeySet.end())
3173#ifdef ADDHYDROGEN
3174 && (OtherWalker->type->Z != 1)
3175#endif
3176 ) { // skip hydrogens and restrict to fragment
3177 *out << Verbose(2) << "Current partner is " << *OtherWalker << " with nr " << OtherWalker->nr << " in bond " << *Binder << "." << endl;
3178 // set the label if not set (and push on root stack as well)
3179 if (FragmentSearch.Labels[OtherWalker->nr] == -1) {
3180 FragmentSearch.Labels[OtherWalker->nr] = UniqueIndex++;
3181 *out << Verbose(3) << "Set label to " << FragmentSearch.Labels[OtherWalker->nr] << "." << endl;
3182 } else {
3183 *out << Verbose(3) << "Label is already " << FragmentSearch.Labels[OtherWalker->nr] << "." << endl;
3184 }
3185 if ((OtherWalker != PredecessorList[AtomKeyNr]) && (FragmentSearch.Labels[OtherWalker->nr] > FragmentSearch.Labels[RootKeyNr])) { // only pass through those with label bigger than Root's
3186 FragmentSearch.ShortestPathList[OtherWalker->nr] = SP+1;
3187 *out << Verbose(3) << "Set Shortest Path to " << FragmentSearch.ShortestPathList[OtherWalker->nr] << "." << endl;
3188 if (FragmentSearch.ShortestPathList[OtherWalker->nr] < Order) { // only pass through those within reach of Order
3189 // push for exploration on stack (only if the SP of OtherWalker is longer than of Walker! (otherwise it has been added already!)
3190 if (FragmentSearch.ShortestPathList[OtherWalker->nr] > SP) {
3191 if (FragmentSearch.ShortestPathList[OtherWalker->nr] < (Order-1)) {
3192 *out << Verbose(3) << "Putting on atom stack for further exploration." << endl;
3193 PredecessorList[OtherWalker->nr] = Walker; // note down the one further up the exploration tree
3194 AtomStack.push_back(OtherWalker->nr);
3195 NumberOfAtomsSPLevel[FragmentSearch.ShortestPathList[OtherWalker->nr]]++;
3196 } else {
3197 *out << Verbose(3) << "Not putting on atom stack, is at end of reach." << endl;
3198 }
3199 // add the bond in between to the SP list
3200 Binder = new bond(Walker, OtherWalker); // create a new bond in such a manner, that bond::rightatom is always the one more distant
3201 add(Binder, FragmentSearch.BondsPerSPList[2*SP+1]);
3202 FragmentSearch.BondsPerSPCount[SP]++;
3203 *out << Verbose(3) << "Added its bond to SP list, having now " << FragmentSearch.BondsPerSPCount[SP] << " item(s)." << endl;
3204 } else *out << Verbose(3) << "Not putting on atom stack, nor adding bond, as " << *OtherWalker << "'s SP is shorter than Walker's." << endl;
3205 } else *out << Verbose(3) << "Not continuing, as " << *OtherWalker << " is out of reach of order " << Order << "." << endl;
3206 } else *out << Verbose(3) << "Not passing on, as label of " << *OtherWalker << " " << FragmentSearch.Labels[OtherWalker->nr] << " is smaller than that of Root " << FragmentSearch.Labels[RootKeyNr] << " or this is my predecessor." << endl;
3207 } else *out << Verbose(2) << "Is not in the retstricted keyset or skipping hydrogen " << *OtherWalker << "." << endl;
3208 }
3209 }
3210 // reset predecessor list
3211 for(int i=0;i<Order;i++) {
3212 Binder = FragmentSearch.BondsPerSPList[2*i];
3213 *out << Verbose(1) << "Current SP level is " << i << "." << endl;
3214 while (Binder->next != FragmentSearch.BondsPerSPList[2*i+1]) {
3215 Binder = Binder->next;
3216 PredecessorList[Binder->rightatom->nr] = NULL; // By construction "OtherAtom" is always Bond::rightatom!
3217 }
3218 }
3219 *out << endl;
3220
3221 // outputting all list for debugging
3222 *out << Verbose(0) << "Printing all found lists." << endl;
3223 for(int i=0;i<Order;i++) {
3224 Binder = FragmentSearch.BondsPerSPList[2*i];
3225 *out << Verbose(1) << "Current SP level is " << i << "." << endl;
3226 while (Binder->next != FragmentSearch.BondsPerSPList[2*i+1]) {
3227 Binder = Binder->next;
3228 *out << Verbose(2) << *Binder << endl;
3229 }
3230 }
3231
3232 // creating fragments with the found edge sets
3233 SP = 0;
3234 for(int i=0;i<Order;i++) { // sum up all found edges
3235 Binder = FragmentSearch.BondsPerSPList[2*i];
3236 while (Binder->next != FragmentSearch.BondsPerSPList[2*i+1]) {
3237 Binder = Binder->next;
3238 SP ++;
3239 }
3240 }
3241 *out << Verbose(0) << "Total number of edges is " << SP << "." << endl;
3242 if (SP >= (Order-1)) {
3243 // start with root (push on fragment stack)
3244 *out << Verbose(0) << "Starting fragment generation with " << *FragmentSearch.Root << ", local nr is " << FragmentSearch.Root->nr << "." << endl;
3245 FragmentSearch.FragmentSet->clear();
3246 FragmentSearch.FragmentSet->insert(FragmentSearch.Root->nr);
3247
3248 if (FragmentSearch.FragmentSet->size() == (unsigned int) Order) {
3249 *out << Verbose(0) << "Enough items on stack already for a fragment!" << endl;
3250 // store fragment as a KeySet
3251 *out << Verbose(2) << "Found a new fragment[" << FragmentSearch.FragmentCounter << "], local nr.s are: ";
3252 for(KeySet::iterator runner = FragmentSearch.FragmentSet->begin(); runner != FragmentSearch.FragmentSet->end(); runner++) {
3253 *out << (*runner) << " ";
3254 }
3255 *out << endl;
3256 InsertFragmentIntoGraph(out, &FragmentSearch);
3257 } else {
3258 *out << Verbose(0) << "Preparing subset for this root and calling generator." << endl;
3259 // prepare the subset and call the generator
3260 BondsList = (bond **) Malloc(sizeof(bond *)*FragmentSearch.BondsPerSPCount[0], "molecule::PowerSetGenerator: **BondsList");
3261 Binder = FragmentSearch.BondsPerSPList[0];
3262 for(int i=0;i<FragmentSearch.BondsPerSPCount[0];i++) {
3263 Binder = Binder->next;
3264 BondsList[i] = Binder;
3265 }
3266 SPFragmentGenerator(out, &FragmentSearch, 0, BondsList, FragmentSearch.BondsPerSPCount[0], Order-1);
3267 Free((void **)&BondsList, "molecule::PowerSetGenerator: **BondsList");
3268 }
3269 } else {
3270 *out << Verbose(0) << "Not enough total number of edges to build " << Order << "-body fragments." << endl;
3271 }
3272
3273/* // as FragmentSearch structure is used only once, we don't have to clean it anymore
3274 // remove root from stack
3275 *out << Verbose(0) << "Removing root again from stack." << endl;
3276 FragmentSearch.FragmentSet->erase(FragmentSearch.Root->nr);
3277
3278 // free'ing the bonds lists
3279 *out << Verbose(0) << "Free'ing all found lists. and resetting index lists" << endl;
3280 for(int i=0;i<Order;i++) {
3281 *out << Verbose(1) << "Current SP level is " << i << ": ";
3282 Binder = FragmentSearch.BondsPerSPList[2*i];
3283 while (Binder->next != FragmentSearch.BondsPerSPList[2*i+1]) {
3284 Binder = Binder->next;
3285 // *out << "Removing atom " << Binder->leftatom->nr << " and " << Binder->rightatom->nr << "." << endl; // make sure numbers are local
3286 FragmentSearch.ShortestPathList[Binder->leftatom->nr] = -1;
3287 FragmentSearch.ShortestPathList[Binder->rightatom->nr] = -1;
3288 }
3289 // delete added bonds
3290 cleanup(FragmentSearch.BondsPerSPList[2*i], FragmentSearch.BondsPerSPList[2*i+1]);
3291 // also start and end node
3292 *out << "cleaned." << endl;
3293 }
3294*/
3295 // free allocated memory
3296 Free((void **)&NumberOfAtomsSPLevel, "molecule::PowerSetGenerator: *SPLevelCount");
3297 Free((void **)&PredecessorList, "molecule::PowerSetGenerator: **PredecessorList");
3298 for(int i=0;i<Order;i++) { // delete start and end of each list
3299 delete(FragmentSearch.BondsPerSPList[2*i]);
3300 delete(FragmentSearch.BondsPerSPList[2*i+1]);
3301 }
3302 Free((void **)&FragmentSearch.BondsPerSPList, "molecule::PowerSetGenerator: ***BondsPerSPList");
3303 Free((void **)&FragmentSearch.BondsPerSPCount, "molecule::PowerSetGenerator: *BondsPerSPCount");
3304 Free((void **)&FragmentSearch.ShortestPathList, "molecule::PowerSetGenerator: *ShortestPathList");
3305 Free((void **)&FragmentSearch.Labels, "molecule::PowerSetGenerator: *Labels");
3306 delete(FragmentSearch.FragmentSet);
3307
3308 // return list
3309 *out << Verbose(0) << "End of PowerSetGenerator." << endl;
3310 return FragmentSearch.FragmentCounter;
3311};
3312
3313/** Corrects the nuclei position if the fragment was created over the cell borders.
3314 * Scans all bonds, checks the distance, if greater than typical, we have a candidate for the correction.
3315 * We remove the bond whereafter the graph probably separates. Then, we translate the one component periodically
3316 * and re-add the bond. Looping on the distance check.
3317 * \param *out ofstream for debugging messages
3318 */
3319void molecule::ScanForPeriodicCorrection(ofstream *out)
3320{
3321 bond *Binder = NULL;
3322 bond *OtherBinder = NULL;
3323 atom *Walker = NULL;
3324 atom *OtherWalker = NULL;
3325 double *matrix = ReturnFullMatrixforSymmetric(cell_size);
3326 enum Shading *ColorList = NULL;
3327 double tmp;
3328 vector TranslationVector;
3329 //AtomStackClass *CompStack = NULL;
3330 AtomStackClass *AtomStack = new AtomStackClass(AtomCount);
3331 bool flag = true;
3332
3333// *out << Verbose(1) << "Begin of ScanForPeriodicCorrection." << endl;
3334
3335 ColorList = (enum Shading *) Malloc(sizeof(enum Shading)*AtomCount, "molecule::ScanForPeriodicCorrection: *ColorList");
3336 while (flag) {
3337 // remove bonds that are beyond bonddistance
3338 for(int i=0;i<NDIM;i++)
3339 TranslationVector.x[i] = 0.;
3340 // scan all bonds
3341 Binder = first;
3342 flag = false;
3343 while ((!flag) && (Binder->next != last)) {
3344 Binder = Binder->next;
3345 for (int i=0;i<NDIM;i++) {
3346 tmp = fabs(Binder->leftatom->x.x[i] - Binder->rightatom->x.x[i]);
3347 //*out << Verbose(3) << "Checking " << i << "th distance of " << *Binder->leftatom << " to " << *Binder->rightatom << ": " << tmp << "." << endl;
3348 if (tmp > BondDistance) {
3349 OtherBinder = Binder->next; // note down binding partner for later re-insertion
3350 unlink(Binder); // unlink bond
3351// *out << Verbose(2) << "Correcting at bond " << *Binder << "." << endl;
3352 flag = true;
3353 break;
3354 }
3355 }
3356 }
3357 if (flag) {
3358 // create translation vector from their periodically modified distance
3359 for (int i=0;i<NDIM;i++) {
3360 tmp = Binder->leftatom->x.x[i] - Binder->rightatom->x.x[i];
3361 if (fabs(tmp) > BondDistance)
3362 TranslationVector.x[i] = (tmp < 0) ? +1. : -1.;
3363 }
3364 TranslationVector.MatrixMultiplication(matrix);
3365 //*out << "Translation vector is ";
3366 //TranslationVector.Output(out);
3367 //*out << endl;
3368 // apply to all atoms of first component via BFS
3369 for (int i=0;i<AtomCount;i++)
3370 ColorList[i] = white;
3371 AtomStack->Push(Binder->leftatom);
3372 while (!AtomStack->IsEmpty()) {
3373 Walker = AtomStack->PopFirst();
3374 //*out << Verbose (3) << "Current Walker is: " << *Walker << "." << endl;
3375 ColorList[Walker->nr] = black; // mark as explored
3376 Walker->x.AddVector(&TranslationVector); // translate
3377 for (int i=0;i<NumberOfBondsPerAtom[Walker->nr];i++) { // go through all binding partners
3378 if (ListOfBondsPerAtom[Walker->nr][i] != Binder) {
3379 OtherWalker = ListOfBondsPerAtom[Walker->nr][i]->GetOtherAtom(Walker);
3380 if (ColorList[OtherWalker->nr] == white) {
3381 AtomStack->Push(OtherWalker); // push if yet unexplored
3382 }
3383 }
3384 }
3385 }
3386 // re-add bond
3387 link(Binder, OtherBinder);
3388 } else {
3389// *out << Verbose(2) << "No corrections for this fragment." << endl;
3390 }
3391 //delete(CompStack);
3392 }
3393
3394 // free allocated space from ReturnFullMatrixforSymmetric()
3395 delete(AtomStack);
3396 Free((void **)&ColorList, "molecule::ScanForPeriodicCorrection: *ColorList");
3397 Free((void **)&matrix, "molecule::ScanForPeriodicCorrection: *matrix");
3398// *out << Verbose(1) << "End of ScanForPeriodicCorrection." << endl;
3399};
3400
3401/** Blows the 6-dimensional \a cell_size array up to a full NDIM by NDIM matrix.
3402 * \param *symm 6-dim array of unique symmetric matrix components
3403 * \return allocated NDIM*NDIM array with the symmetric matrix
3404 */
3405double * molecule::ReturnFullMatrixforSymmetric(double *symm)
3406{
3407 double *matrix = (double *) Malloc(sizeof(double)*NDIM*NDIM, "molecule::ReturnFullMatrixforSymmetric: *matrix");
3408 matrix[0] = symm[0];
3409 matrix[1] = symm[1];
3410 matrix[2] = symm[3];
3411 matrix[3] = symm[1];
3412 matrix[4] = symm[2];
3413 matrix[5] = symm[4];
3414 matrix[6] = symm[3];
3415 matrix[7] = symm[4];
3416 matrix[8] = symm[5];
3417 return matrix;
3418};
3419
3420bool KeyCompare::operator() (const KeySet SubgraphA, const KeySet SubgraphB) const
3421{
3422 //cout << "my check is used." << endl;
3423 if (SubgraphA.size() < SubgraphB.size()) {
3424 return true;
3425 } else {
3426 if (SubgraphA.size() > SubgraphB.size()) {
3427 return false;
3428 } else {
3429 KeySet::iterator IteratorA = SubgraphA.begin();
3430 KeySet::iterator IteratorB = SubgraphB.begin();
3431 while ((IteratorA != SubgraphA.end()) && (IteratorB != SubgraphB.end())) {
3432 if ((*IteratorA) < (*IteratorB))
3433 return true;
3434 else if ((*IteratorA) > (*IteratorB)) {
3435 return false;
3436 } // else, go on to next index
3437 IteratorA++;
3438 IteratorB++;
3439 } // end of while loop
3440 }// end of check in case of equal sizes
3441 }
3442 return false; // if we reach this point, they are equal
3443};
3444
3445//bool operator < (KeySet SubgraphA, KeySet SubgraphB)
3446//{
3447// return KeyCompare(SubgraphA, SubgraphB);
3448//};
3449
3450/** Checking whether KeySet is not already present in Graph, if so just adds factor.
3451 * \param *out output stream for debugging
3452 * \param &set KeySet to insert
3453 * \param &graph Graph to insert into
3454 * \param *counter pointer to unique fragment count
3455 * \param factor energy factor for the fragment
3456 */
3457inline void InsertFragmentIntoGraph(ofstream *out, struct UniqueFragments *Fragment)
3458{
3459 GraphTestPair testGraphInsert;
3460
3461 testGraphInsert = Fragment->Leaflet->insert(GraphPair (*Fragment->FragmentSet,pair<int,double>(Fragment->FragmentCounter,1))); // store fragment number and current factor
3462 if (testGraphInsert.second) {
3463 *out << Verbose(2) << "KeySet " << Fragment->FragmentCounter << " successfully inserted." << endl;
3464 Fragment->FragmentCounter++;
3465 } else {
3466 *out << Verbose(2) << "KeySet " << Fragment->FragmentCounter << " failed to insert, present fragment is " << ((*(testGraphInsert.first)).second).first << endl;
3467 ((*(testGraphInsert.first)).second).second ++; // increase the "created" counter
3468 *out << Verbose(2) << "New factor is " << ((*(testGraphInsert.first)).second).second << "." << endl;
3469 }
3470};
3471//void inline InsertIntoGraph(ofstream *out, KeyStack &stack, Graph &graph, int *counter, double factor)
3472//{
3473// // copy stack contents to set and call overloaded function again
3474// KeySet set;
3475// for(KeyStack::iterator runner = stack.begin(); runner != stack.begin(); runner++)
3476// set.insert((*runner));
3477// InsertIntoGraph(out, set, graph, counter, factor);
3478//};
3479
3480/** Inserts each KeySet in \a graph2 into \a graph1.
3481 * \param *out output stream for debugging
3482 * \param graph1 first (dest) graph
3483 * \param graph2 second (source) graph
3484 * \param *counter keyset counter that gets increased
3485 */
3486inline void InsertGraphIntoGraph(ofstream *out, Graph &graph1, Graph &graph2, int *counter)
3487{
3488 GraphTestPair testGraphInsert;
3489
3490 for(Graph::iterator runner = graph2.begin(); runner != graph2.end(); runner++) {
3491 testGraphInsert = graph1.insert(GraphPair ((*runner).first,pair<int,double>((*counter)++,((*runner).second).second))); // store fragment number and current factor
3492 if (testGraphInsert.second) {
3493 *out << Verbose(2) << "KeySet " << (*counter)-1 << " successfully inserted." << endl;
3494 } else {
3495 *out << Verbose(2) << "KeySet " << (*counter)-1 << " failed to insert, present fragment is " << ((*(testGraphInsert.first)).second).first << endl;
3496 ((*(testGraphInsert.first)).second).second += (*runner).second.second;
3497 *out << Verbose(2) << "New factor is " << (*(testGraphInsert.first)).second.second << "." << endl;
3498 }
3499 }
3500};
3501
3502
3503/** Performs BOSSANOVA decomposition at selected sites, increasing the cutoff by one at these sites.
3504 * -# constructs a complete keyset of the molecule
3505 * -# In a loop over all possible roots from the given rootstack
3506 * -# increases order of root site
3507 * -# calls PowerSetGenerator with this order, the complete keyset and the rootkeynr
3508 * -# for all consecutive lower levels PowerSetGenerator is called with the suborder, the higher order keyset
3509as the restricted one and each site in the set as the root)
3510 * -# these are merged into a fragment list of keysets
3511 * -# All fragment lists (for all orders, i.e. from all destination fields) are merged into one list for return
3512 * Important only is that we create all fragments, it is not important if we create them more than once
3513 * as these copies are filtered out via use of the hash table (KeySet).
3514 * \param *out output stream for debugging
3515 * \return pointer to Graph list
3516 */
3517Graph * molecule::FragmentBOSSANOVA(ofstream *out, KeyStack &RootStack)
3518{
3519 Graph *FragmentList = NULL, ***FragmentLowerOrdersList = NULL;
3520 int Order, NumLevels, NumMolecules, TotalNumMolecules = 0, *NumMoleculesOfOrder = NULL;
3521 int counter = 0;
3522 int UpgradeCount = RootStack.size();
3523 KeyStack FragmentRootStack;
3524 int RootKeyNr, RootNr;
3525
3526 *out << Verbose(0) << "Begin of FragmentBOSSANOVA." << endl;
3527
3528 // FragmentLowerOrdersList is a 2D-array of pointer to MoleculeListClass objects, one dimension represents the ANOVA expansion of a single order (i.e. 5)
3529 // with all needed lower orders that are subtracted, the other dimension is the BondOrder (i.e. from 1 to 5)
3530 NumMoleculesOfOrder = (int *) Malloc(sizeof(int)*UpgradeCount, "molecule::FragmentBOSSANOVA: *NumMoleculesOfOrder");
3531 FragmentLowerOrdersList = (Graph ***) Malloc(sizeof(Graph **)*UpgradeCount, "molecule::FragmentBOSSANOVA: ***FragmentLowerOrdersList");
3532
3533 // Construct the complete KeySet which we need for topmost level only (but for all Roots)
3534 atom *Walker = start;
3535 KeySet CompleteMolecule;
3536 while (Walker->next != end) {
3537 Walker = Walker->next;
3538 CompleteMolecule.insert(Walker->GetTrueFather()->nr);
3539 }
3540
3541 // this can easily be seen: if Order is 5, then the number of levels for each lower order is the total sum of the number of levels above, as
3542 // each has to be split up. E.g. for the second level we have one from 5th, one from 4th, two from 3th (which in turn is one from 5th, one from 4th),
3543 // hence we have overall four 2th order levels for splitting. This also allows for putting all into a single array (FragmentLowerOrdersList[])
3544 // with the order along the cells as this: 5433222211111111 for BondOrder 5 needing 16=pow(2,5-1) cells (only we use bit-shifting which is faster)
3545 RootNr = 0; // counts through the roots in RootStack
3546 while (RootNr < UpgradeCount) {
3547 RootKeyNr = RootStack.front();
3548 RootStack.pop_front();
3549 // increase adaptive order by one
3550 Walker = FindAtom(RootKeyNr);
3551 Walker->GetTrueFather()->AdaptiveOrder++;
3552 Order = Walker->AdaptiveOrder = Walker->GetTrueFather()->AdaptiveOrder;
3553
3554 // allocate memory for all lower level orders in this 1D-array of ptrs
3555 NumLevels = 1 << (Order); // (int)pow(2,Order);
3556 FragmentLowerOrdersList[RootNr] = (Graph **) Malloc(sizeof(Graph *)*NumLevels, "molecule::FragmentBOSSANOVA: **FragmentLowerOrdersList[]");
3557
3558 // create top order where nothing is reduced
3559 *out << Verbose(0) << "==============================================================================================================" << endl;
3560 *out << Verbose(0) << "Creating KeySets of Bond Order " << Order << " for " << *Walker << ", NumLevels is " << NumLevels << ", " << RootStack.size() << " Roots remaining." << endl;
3561
3562 // Create list of Graphs of current Bond Order (i.e. F_{ij})
3563 FragmentLowerOrdersList[RootNr][0] = new Graph;
3564 NumMoleculesOfOrder[RootNr] = PowerSetGenerator(out, Walker->AdaptiveOrder, FragmentLowerOrdersList[RootNr][0], CompleteMolecule, RootKeyNr);
3565 *out << Verbose(1) << "Number of resulting KeySets is: " << NumMoleculesOfOrder[RootNr] << "." << endl;
3566 NumMolecules = 0;
3567
3568 if ((NumLevels >> 1) > 0) {
3569 // create lower order fragments
3570 *out << Verbose(0) << "Creating list of unique fragments of lower Bond Order terms to be subtracted." << endl;
3571 Order = Walker->AdaptiveOrder;
3572 for (int source=0;source<(NumLevels >> 1);source++) { // 1-terms don't need any more splitting, that's why only half is gone through (shift again)
3573 // step down to next order at (virtual) boundary of powers of 2 in array
3574 while (source >= (1 << (Walker->AdaptiveOrder-Order))) // (int)pow(2,Walker->AdaptiveOrder-Order))
3575 Order--;
3576 *out << Verbose(0) << "Current Order is: " << Order << "." << endl;
3577 for (int SubOrder=Order;SubOrder>1;SubOrder--) {
3578 int dest = source + (1 << (Walker->AdaptiveOrder-SubOrder));
3579 *out << Verbose(0) << "--------------------------------------------------------------------------------------------------------------" << endl;
3580 *out << Verbose(0) << "Current SubOrder is: " << SubOrder-1 << " with source " << source << " to destination " << dest << "." << endl;
3581
3582 // every molecule is split into a list of again (Order - 1) molecules, while counting all molecules
3583 //*out << Verbose(1) << "Splitting the " << (*FragmentLowerOrdersList[RootNr][source]).size() << " molecules of the " << source << "th cell in the array." << endl;
3584 //NumMolecules = 0;
3585 FragmentLowerOrdersList[RootNr][dest] = new Graph;
3586 for(Graph::iterator runner = (*FragmentLowerOrdersList[RootNr][source]).begin();runner != (*FragmentLowerOrdersList[RootNr][source]).end(); runner++) {
3587 for (KeySet::iterator sprinter = (*runner).first.begin();sprinter != (*runner).first.end(); sprinter++) {
3588 FragmentList = new Graph();
3589 PowerSetGenerator(out, SubOrder-1, FragmentList, (*runner).first, *sprinter);
3590 // insert new keysets FragmentList into FragmentLowerOrdersList[Walker->AdaptiveOrder-1][dest]
3591 *out << Verbose(1) << "Merging resulting key sets with those present in destination " << dest << "." << endl;
3592 InsertGraphIntoGraph(out, *FragmentLowerOrdersList[RootNr][dest], *FragmentList, &NumMolecules);
3593 delete(FragmentList);
3594 }
3595 }
3596 *out << Verbose(1) << "Number of resulting molecules for SubOrder " << SubOrder << " is: " << NumMolecules << "." << endl;
3597 }
3598 }
3599 }
3600 // now, we have completely filled each cell of FragmentLowerOrdersList[] for the current Walker->AdaptiveOrder
3601 //NumMoleculesOfOrder[Walker->AdaptiveOrder-1] = NumMolecules;
3602 TotalNumMolecules += NumMoleculesOfOrder[RootNr];
3603 *out << Verbose(1) << "Number of resulting molecules for Order " << Walker->AdaptiveOrder << " is: " << NumMoleculesOfOrder[RootNr] << "." << endl;
3604 RootStack.push_back(RootKeyNr); // put back on stack
3605 RootNr++;
3606 }
3607 *out << Verbose(0) << "==============================================================================================================" << endl;
3608 *out << Verbose(1) << "Total number of resulting molecules is: " << TotalNumMolecules << "." << endl;
3609 *out << Verbose(0) << "==============================================================================================================" << endl;
3610 // now, FragmentLowerOrdersList is complete, it looks - for BondOrder 5 - as this (number is the ANOVA Order of the terms therein)
3611 // 5433222211111111
3612 // 43221111
3613 // 3211
3614 // 21
3615 // 1
3616 // Subsequently, we combine all into a single list (FragmentList)
3617
3618 *out << Verbose(0) << "Combining the lists of all orders per order and finally into a single one." << endl;
3619 FragmentList = new Graph;
3620 RootNr = 0;
3621 while (!RootStack.empty()) {
3622 RootKeyNr = RootStack.front();
3623 RootStack.pop_front();
3624 Walker = FindAtom(RootKeyNr);
3625 NumLevels = 1 << (Walker->AdaptiveOrder - 1);
3626 for(int i=0;i<NumLevels;i++) {
3627 InsertGraphIntoGraph(out, *FragmentList, (*FragmentLowerOrdersList[RootNr][i]), &counter);
3628 delete(FragmentLowerOrdersList[RootNr][i]);
3629 }
3630 Free((void **)&FragmentLowerOrdersList[RootNr], "molecule::FragmentBOSSANOVA: **FragmentLowerOrdersList[]");
3631 RootNr++;
3632 }
3633 Free((void **)&FragmentLowerOrdersList, "molecule::FragmentBOSSANOVA: ***FragmentLowerOrdersList");
3634 Free((void **)&NumMoleculesOfOrder, "molecule::FragmentBOSSANOVA: *NumMoleculesOfOrder");
3635
3636 *out << Verbose(0) << "End of FragmentBOSSANOVA." << endl;
3637 return FragmentList;
3638};
3639
3640/** Comparision function for GSL heapsort on distances in two molecules.
3641 * \param *a
3642 * \param *b
3643 * \return <0, \a *a less than \a *b, ==0 if equal, >0 \a *a greater than \a *b
3644 */
3645int CompareDoubles (const void * a, const void * b)
3646{
3647 if (*(double *)a > *(double *)b)
3648 return -1;
3649 else if (*(double *)a < *(double *)b)
3650 return 1;
3651 else
3652 return 0;
3653};
3654
3655/** Determines whether two molecules actually contain the same atoms and coordination.
3656 * \param *out output stream for debugging
3657 * \param *OtherMolecule the molecule to compare this one to
3658 * \param threshold upper limit of difference when comparing the coordination.
3659 * \return NULL - not equal, otherwise an allocated (molecule::AtomCount) permutation map of the atom numbers (which corresponds to which)
3660 */
3661int * molecule::IsEqualToWithinThreshold(ofstream *out, molecule *OtherMolecule, double threshold)
3662{
3663 int flag;
3664 double *Distances = NULL, *OtherDistances = NULL;
3665 vector CenterOfGravity, OtherCenterOfGravity;
3666 size_t *PermMap = NULL, *OtherPermMap = NULL;
3667 int *PermutationMap = NULL;
3668 atom *Walker = NULL;
3669 bool result = true; // status of comparison
3670
3671 *out << Verbose(3) << "Begin of IsEqualToWithinThreshold." << endl;
3672 /// first count both their atoms and elements and update lists thereby ...
3673 //*out << Verbose(0) << "Counting atoms, updating list" << endl;
3674 CountAtoms(out);
3675 OtherMolecule->CountAtoms(out);
3676 CountElements();
3677 OtherMolecule->CountElements();
3678
3679 /// ... and compare:
3680 /// -# AtomCount
3681 if (result) {
3682 if (AtomCount != OtherMolecule->AtomCount) {
3683 *out << Verbose(4) << "AtomCounts don't match: " << AtomCount << " == " << OtherMolecule->AtomCount << endl;
3684 result = false;
3685 } else *out << Verbose(4) << "AtomCounts match: " << AtomCount << " == " << OtherMolecule->AtomCount << endl;
3686 }
3687 /// -# ElementCount
3688 if (result) {
3689 if (ElementCount != OtherMolecule->ElementCount) {
3690 *out << Verbose(4) << "ElementCount don't match: " << ElementCount << " == " << OtherMolecule->ElementCount << endl;
3691 result = false;
3692 } else *out << Verbose(4) << "ElementCount match: " << ElementCount << " == " << OtherMolecule->ElementCount << endl;
3693 }
3694 /// -# ElementsInMolecule
3695 if (result) {
3696 for (flag=0;flag<MAX_ELEMENTS;flag++) {
3697 //*out << Verbose(5) << "Element " << flag << ": " << ElementsInMolecule[flag] << " <-> " << OtherMolecule->ElementsInMolecule[flag] << "." << endl;
3698 if (ElementsInMolecule[flag] != OtherMolecule->ElementsInMolecule[flag])
3699 break;
3700 }
3701 if (flag < MAX_ELEMENTS) {
3702 *out << Verbose(4) << "ElementsInMolecule don't match." << endl;
3703 result = false;
3704 } else *out << Verbose(4) << "ElementsInMolecule match." << endl;
3705 }
3706 /// then determine and compare center of gravity for each molecule ...
3707 if (result) {
3708 *out << Verbose(5) << "Calculating Centers of Gravity" << endl;
3709 DetermineCenterOfGravity(CenterOfGravity);
3710 OtherMolecule->DetermineCenterOfGravity(OtherCenterOfGravity);
3711 *out << Verbose(5) << "Center of Gravity: ";
3712 CenterOfGravity.Output(out);
3713 *out << endl << Verbose(5) << "Other Center of Gravity: ";
3714 OtherCenterOfGravity.Output(out);
3715 *out << endl;
3716 if (CenterOfGravity.Distance(&OtherCenterOfGravity) > threshold) {
3717 *out << Verbose(4) << "Centers of gravity don't match." << endl;
3718 result = false;
3719 }
3720 }
3721
3722 /// ... then make a list with the euclidian distance to this center for each atom of both molecules
3723 if (result) {
3724 *out << Verbose(5) << "Calculating distances" << endl;
3725 Distances = (double *) Malloc(sizeof(double)*AtomCount, "molecule::IsEqualToWithinThreshold: Distances");
3726 OtherDistances = (double *) Malloc(sizeof(double)*AtomCount, "molecule::IsEqualToWithinThreshold: OtherDistances");
3727 Walker = start;
3728 while (Walker->next != end) {
3729 Walker = Walker->next;
3730 //for (i=0;i<AtomCount;i++) {
3731 Distances[Walker->nr] = CenterOfGravity.Distance(&Walker->x);
3732 }
3733 Walker = OtherMolecule->start;
3734 while (Walker->next != OtherMolecule->end) {
3735 Walker = Walker->next;
3736 OtherDistances[Walker->nr] = OtherCenterOfGravity.Distance(&Walker->x);
3737 }
3738
3739 /// ... sort each list (using heapsort (o(N log N)) from GSL)
3740 *out << Verbose(5) << "Sorting distances" << endl;
3741 PermMap = (size_t *) Malloc(sizeof(size_t)*AtomCount, "molecule::IsEqualToWithinThreshold: *PermMap");
3742 OtherPermMap = (size_t *) Malloc(sizeof(size_t)*AtomCount, "molecule::IsEqualToWithinThreshold: *OtherPermMap");
3743 gsl_heapsort_index (PermMap, Distances, AtomCount, sizeof(double), CompareDoubles);
3744 gsl_heapsort_index (OtherPermMap, OtherDistances, AtomCount, sizeof(double), CompareDoubles);
3745 PermutationMap = (int *) Malloc(sizeof(int)*AtomCount, "molecule::IsEqualToWithinThreshold: *PermutationMap");
3746 *out << Verbose(5) << "Combining Permutation Maps" << endl;
3747 for(int i=0;i<AtomCount;i++)
3748 PermutationMap[PermMap[i]] = (int) OtherPermMap[i];
3749
3750 /// ... and compare them step by step, whether the difference is individiually(!) below \a threshold for all
3751 *out << Verbose(4) << "Comparing distances" << endl;
3752 flag = 0;
3753 for (int i=0;i<AtomCount;i++) {
3754 *out << Verbose(5) << "Distances: |" << Distances[PermMap[i]] << " - " << OtherDistances[OtherPermMap[i]] << "| = " << fabs(Distances[PermMap[i]] - OtherDistances[OtherPermMap[i]]) << " ?<? " << threshold << endl;
3755 if (fabs(Distances[PermMap[i]] - OtherDistances[OtherPermMap[i]]) > threshold)
3756 flag = 1;
3757 }
3758 Free((void **)&PermMap, "molecule::IsEqualToWithinThreshold: *PermMap");
3759 Free((void **)&OtherPermMap, "molecule::IsEqualToWithinThreshold: *OtherPermMap");
3760
3761 /// free memory
3762 Free((void **)&Distances, "molecule::IsEqualToWithinThreshold: Distances");
3763 Free((void **)&OtherDistances, "molecule::IsEqualToWithinThreshold: OtherDistances");
3764 if (flag) { // if not equal
3765 Free((void **)&PermutationMap, "molecule::IsEqualToWithinThreshold: *PermutationMap");
3766 result = false;
3767 }
3768 }
3769 /// return pointer to map if all distances were below \a threshold
3770 *out << Verbose(3) << "End of IsEqualToWithinThreshold." << endl;
3771 if (result) {
3772 *out << Verbose(3) << "Result: Equal." << endl;
3773 return PermutationMap;
3774 } else {
3775 *out << Verbose(3) << "Result: Not equal." << endl;
3776 return NULL;
3777 }
3778};
3779
3780/** Returns an index map for two father-son-molecules.
3781 * The map tells which atom in this molecule corresponds to which one in the other molecul with their fathers.
3782 * \param *out output stream for debugging
3783 * \param *OtherMolecule corresponding molecule with fathers
3784 * \return allocated map of size molecule::AtomCount with map
3785 * \todo make this with a good sort O(n), not O(n^2)
3786 */
3787int * molecule::GetFatherSonAtomicMap(ofstream *out, molecule *OtherMolecule)
3788{
3789 atom *Walker = NULL, *OtherWalker = NULL;
3790 *out << Verbose(3) << "Begin of GetFatherAtomicMap." << endl;
3791 int *AtomicMap = (int *) Malloc(sizeof(int)*AtomCount, "molecule::GetAtomicMap: *AtomicMap"); //Calloc
3792 for (int i=0;i<AtomCount;i++)
3793 AtomicMap[i] = -1;
3794 if (OtherMolecule == this) { // same molecule
3795 for (int i=0;i<AtomCount;i++) // no need as -1 means already that there is trivial correspondence
3796 AtomicMap[i] = i;
3797 *out << Verbose(4) << "Map is trivial." << endl;
3798 } else {
3799 *out << Verbose(4) << "Map is ";
3800 Walker = start;
3801 while (Walker->next != end) {
3802 Walker = Walker->next;
3803 if (Walker->father == NULL) {
3804 AtomicMap[Walker->nr] = -2;
3805 } else {
3806 OtherWalker = OtherMolecule->start;
3807 while (OtherWalker->next != OtherMolecule->end) {
3808 OtherWalker = OtherWalker->next;
3809 //for (int i=0;i<AtomCount;i++) { // search atom
3810 //for (int j=0;j<OtherMolecule->AtomCount;j++) {
3811 //*out << Verbose(4) << "Comparing father " << Walker->father << " with the other one " << OtherWalker->father << "." << endl;
3812 if (Walker->father == OtherWalker)
3813 AtomicMap[Walker->nr] = OtherWalker->nr;
3814 }
3815 }
3816 *out << AtomicMap[Walker->nr] << "\t";
3817 }
3818 *out << endl;
3819 }
3820 *out << Verbose(3) << "End of GetFatherAtomicMap." << endl;
3821 return AtomicMap;
3822};
3823
Note: See TracBrowser for help on using the repository browser.