source: src/molecule_dynamics.cpp@ 5f8660a

Action_Thermostats Add_AtomRandomPerturbation Add_FitFragmentPartialChargesAction Add_RotateAroundBondAction Add_SelectAtomByNameAction Added_ParseSaveFragmentResults AddingActions_SaveParseParticleParameters Adding_Graph_to_ChangeBondActions Adding_MD_integration_tests Adding_ParticleName_to_Atom Adding_StructOpt_integration_tests AtomFragments Automaking_mpqc_open AutomationFragmentation_failures Candidate_v1.5.4 Candidate_v1.6.0 Candidate_v1.6.1 ChangeBugEmailaddress ChangingTestPorts ChemicalSpaceEvaluator CombiningParticlePotentialParsing Combining_Subpackages Debian_Package_split Debian_package_split_molecuildergui_only Disabling_MemDebug Docu_Python_wait EmpiricalPotential_contain_HomologyGraph EmpiricalPotential_contain_HomologyGraph_documentation Enable_parallel_make_install Enhance_userguide Enhanced_StructuralOptimization Enhanced_StructuralOptimization_continued Example_ManyWaysToTranslateAtom Exclude_Hydrogens_annealWithBondGraph FitPartialCharges_GlobalError Fix_BoundInBox_CenterInBox_MoleculeActions Fix_ChargeSampling_PBC Fix_ChronosMutex Fix_FitPartialCharges Fix_FitPotential_needs_atomicnumbers Fix_ForceAnnealing Fix_IndependentFragmentGrids Fix_ParseParticles Fix_ParseParticles_split_forward_backward_Actions Fix_PopActions Fix_QtFragmentList_sorted_selection Fix_Restrictedkeyset_FragmentMolecule Fix_StatusMsg Fix_StepWorldTime_single_argument Fix_Verbose_Codepatterns Fix_fitting_potentials Fixes ForceAnnealing_goodresults ForceAnnealing_oldresults ForceAnnealing_tocheck ForceAnnealing_with_BondGraph ForceAnnealing_with_BondGraph_continued ForceAnnealing_with_BondGraph_continued_betteresults ForceAnnealing_with_BondGraph_contraction-expansion FragmentAction_writes_AtomFragments FragmentMolecule_checks_bonddegrees GeometryObjects Gui_Fixes Gui_displays_atomic_force_velocity ImplicitCharges IndependentFragmentGrids IndependentFragmentGrids_IndividualZeroInstances IndependentFragmentGrids_IntegrationTest IndependentFragmentGrids_Sole_NN_Calculation JobMarket_RobustOnKillsSegFaults JobMarket_StableWorkerPool JobMarket_unresolvable_hostname_fix MoreRobust_FragmentAutomation ODR_violation_mpqc_open PartialCharges_OrthogonalSummation PdbParser_setsAtomName PythonUI_with_named_parameters QtGui_reactivate_TimeChanged_changes Recreated_GuiChecks Rewrite_FitPartialCharges RotateToPrincipalAxisSystem_UndoRedo SaturateAtoms_findBestMatching SaturateAtoms_singleDegree StoppableMakroAction Subpackage_CodePatterns Subpackage_JobMarket Subpackage_LinearAlgebra Subpackage_levmar Subpackage_mpqc_open Subpackage_vmg Switchable_LogView ThirdParty_MPQC_rebuilt_buildsystem TrajectoryDependenant_MaxOrder TremoloParser_IncreasedPrecision TremoloParser_MultipleTimesteps TremoloParser_setsAtomName Ubuntu_1604_changes stable
Last change on this file since 5f8660a was bcf653, checked in by Frederik Heber <heber@…>, 14 years ago

Added copyright note to each .cpp file and an extensive one to builder.cpp.

  • Property mode set to 100644
File size: 34.9 KB
Line 
1/*
2 * Project: MoleCuilder
3 * Description: creates and alters molecular systems
4 * Copyright (C) 2010 University of Bonn. All rights reserved.
5 * Please see the LICENSE file or "Copyright notice" in builder.cpp for details.
6 */
7
8/*
9 * molecule_dynamics.cpp
10 *
11 * Created on: Oct 5, 2009
12 * Author: heber
13 */
14
15// include config.h
16#ifdef HAVE_CONFIG_H
17#include <config.h>
18#endif
19
20#include "Helpers/MemDebug.hpp"
21
22#include "World.hpp"
23#include "atom.hpp"
24#include "config.hpp"
25#include "element.hpp"
26#include "Helpers/Info.hpp"
27#include "Helpers/Verbose.hpp"
28#include "Helpers/Log.hpp"
29#include "molecule.hpp"
30#include "parser.hpp"
31#include "LinearAlgebra/Plane.hpp"
32#include "ThermoStatContainer.hpp"
33
34#include <gsl/gsl_matrix.h>
35#include <gsl/gsl_vector.h>
36#include <gsl/gsl_linalg.h>
37
38/************************************* Functions for class molecule *********************************/
39
40/** Penalizes long trajectories.
41 * \param *Walker atom to check against others
42 * \param *mol molecule with other atoms
43 * \param &Params constraint potential parameters
44 * \return penalty times each distance
45 */
46double SumDistanceOfTrajectories(atom *Walker, molecule *mol, struct EvaluatePotential &Params)
47{
48 gsl_matrix *A = gsl_matrix_alloc(NDIM,NDIM);
49 gsl_vector *x = gsl_vector_alloc(NDIM);
50 atom *Sprinter = NULL;
51 Vector trajectory1, trajectory2, normal, TestVector;
52 double Norm1, Norm2, tmp, result = 0.;
53
54 for (molecule::const_iterator iter = mol->begin(); iter != mol->end(); ++iter) {
55 if ((*iter) == Walker) // hence, we only go up to the Walker, not beyond (similar to i=0; i<j; i++)
56 break;
57 // determine normalized trajectories direction vector (n1, n2)
58 Sprinter = Params.PermutationMap[Walker->nr]; // find first target point
59 trajectory1 = Sprinter->Trajectory.R.at(Params.endstep) - Walker->Trajectory.R.at(Params.startstep);
60 trajectory1.Normalize();
61 Norm1 = trajectory1.Norm();
62 Sprinter = Params.PermutationMap[(*iter)->nr]; // find second target point
63 trajectory2 = Sprinter->Trajectory.R.at(Params.endstep) - (*iter)->Trajectory.R.at(Params.startstep);
64 trajectory2.Normalize();
65 Norm2 = trajectory1.Norm();
66 // check whether either is zero()
67 if ((Norm1 < MYEPSILON) && (Norm2 < MYEPSILON)) {
68 tmp = Walker->Trajectory.R.at(Params.startstep).distance((*iter)->Trajectory.R.at(Params.startstep));
69 } else if (Norm1 < MYEPSILON) {
70 Sprinter = Params.PermutationMap[Walker->nr]; // find first target point
71 trajectory1 = Sprinter->Trajectory.R.at(Params.endstep) - (*iter)->Trajectory.R.at(Params.startstep);
72 trajectory2 *= trajectory1.ScalarProduct(trajectory2); // trajectory2 is scaled to unity, hence we don't need to divide by anything
73 trajectory1 -= trajectory2; // project the part in norm direction away
74 tmp = trajectory1.Norm(); // remaining norm is distance
75 } else if (Norm2 < MYEPSILON) {
76 Sprinter = Params.PermutationMap[(*iter)->nr]; // find second target point
77 trajectory2 = Sprinter->Trajectory.R.at(Params.endstep) - Walker->Trajectory.R.at(Params.startstep); // copy second offset
78 trajectory1 *= trajectory2.ScalarProduct(trajectory1); // trajectory1 is scaled to unity, hence we don't need to divide by anything
79 trajectory2 -= trajectory1; // project the part in norm direction away
80 tmp = trajectory2.Norm(); // remaining norm is distance
81 } else if ((fabs(trajectory1.ScalarProduct(trajectory2)/Norm1/Norm2) - 1.) < MYEPSILON) { // check whether they're linear dependent
82 // Log() << Verbose(3) << "Both trajectories of " << *Walker << " and " << *Runner << " are linear dependent: ";
83 // Log() << Verbose(0) << trajectory1;
84 // Log() << Verbose(0) << " and ";
85 // Log() << Verbose(0) << trajectory2;
86 tmp = Walker->Trajectory.R.at(Params.startstep).distance((*iter)->Trajectory.R.at(Params.startstep));
87 // Log() << Verbose(0) << " with distance " << tmp << "." << endl;
88 } else { // determine distance by finding minimum distance
89 // Log() << Verbose(3) << "Both trajectories of " << *Walker << " and " << *(*iter) << " are linear independent ";
90 // Log() << Verbose(0) << endl;
91 // Log() << Verbose(0) << "First Trajectory: ";
92 // Log() << Verbose(0) << trajectory1 << endl;
93 // Log() << Verbose(0) << "Second Trajectory: ";
94 // Log() << Verbose(0) << trajectory2 << endl;
95 // determine normal vector for both
96 normal = Plane(trajectory1, trajectory2,0).getNormal();
97 // print all vectors for debugging
98 // Log() << Verbose(0) << "Normal vector in between: ";
99 // Log() << Verbose(0) << normal << endl;
100 // setup matrix
101 for (int i=NDIM;i--;) {
102 gsl_matrix_set(A, 0, i, trajectory1[i]);
103 gsl_matrix_set(A, 1, i, trajectory2[i]);
104 gsl_matrix_set(A, 2, i, normal[i]);
105 gsl_vector_set(x,i, (Walker->Trajectory.R.at(Params.startstep)[i] - (*iter)->Trajectory.R.at(Params.startstep)[i]));
106 }
107 // solve the linear system by Householder transformations
108 gsl_linalg_HH_svx(A, x);
109 // distance from last component
110 tmp = gsl_vector_get(x,2);
111 // Log() << Verbose(0) << " with distance " << tmp << "." << endl;
112 // test whether we really have the intersection (by checking on c_1 and c_2)
113 trajectory1.Scale(gsl_vector_get(x,0));
114 trajectory2.Scale(gsl_vector_get(x,1));
115 normal.Scale(gsl_vector_get(x,2));
116 TestVector = (*iter)->Trajectory.R.at(Params.startstep) + trajectory2 + normal
117 - (Walker->Trajectory.R.at(Params.startstep) + trajectory1);
118 if (TestVector.Norm() < MYEPSILON) {
119 // Log() << Verbose(2) << "Test: ok.\tDistance of " << tmp << " is correct." << endl;
120 } else {
121 // Log() << Verbose(2) << "Test: failed.\tIntersection is off by ";
122 // Log() << Verbose(0) << TestVector;
123 // Log() << Verbose(0) << "." << endl;
124 }
125 }
126 // add up
127 tmp *= Params.IsAngstroem ? 1. : 1./AtomicLengthToAngstroem;
128 if (fabs(tmp) > MYEPSILON) {
129 result += Params.PenaltyConstants[1] * 1./tmp;
130 //Log() << Verbose(4) << "Adding " << 1./tmp*constants[1] << "." << endl;
131 }
132 }
133 return result;
134};
135
136/** Penalizes atoms heading to same target.
137 * \param *Walker atom to check against others
138 * \param *mol molecule with other atoms
139 * \param &Params constrained potential parameters
140 * \return \a penalty times the number of equal targets
141 */
142double PenalizeEqualTargets(atom *Walker, molecule *mol, struct EvaluatePotential &Params)
143{
144 double result = 0.;
145 for (molecule::const_iterator iter = mol->begin(); iter != mol->end(); ++iter) {
146 if ((Params.PermutationMap[Walker->nr] == Params.PermutationMap[(*iter)->nr]) && (Walker->nr < (*iter)->nr)) {
147 // atom *Sprinter = PermutationMap[Walker->nr];
148 // Log() << Verbose(0) << *Walker << " and " << *(*iter) << " are heading to the same target at ";
149 // Log() << Verbose(0) << Sprinter->Trajectory.R.at(endstep);
150 // Log() << Verbose(0) << ", penalting." << endl;
151 result += Params.PenaltyConstants[2];
152 //Log() << Verbose(4) << "Adding " << constants[2] << "." << endl;
153 }
154 }
155 return result;
156};
157
158/** Evaluates the potential energy used for constrained molecular dynamics.
159 * \f$V_i^{con} = c^{bond} \cdot | r_{P(i)} - R_i | + sum_{i \neq j} C^{min} \cdot \frac{1}{C_{ij}} + C^{inj} \Bigl (1 - \theta \bigl (\prod_{i \neq j} (P(i) - P(j)) \bigr ) \Bigr )\f$
160 * where the first term points to the target in minimum distance, the second is a penalty for trajectories lying too close to each other (\f$C_{ij}\f$ is minimum distance between
161 * trajectories i and j) and the third term is a penalty for two atoms trying to each the same target point.
162 * Note that for the second term we have to solve the following linear system:
163 * \f$-c_1 \cdot n_1 + c_2 \cdot n_2 + C \cdot n_3 = - p_2 + p_1\f$, where \f$c_1\f$, \f$c_2\f$ and \f$C\f$ are constants,
164 * offset vector \f$p_1\f$ in direction \f$n_1\f$, offset vector \f$p_2\f$ in direction \f$n_2\f$,
165 * \f$n_3\f$ is the normal vector to both directions. \f$C\f$ would be the minimum distance between the two lines.
166 * \sa molecule::MinimiseConstrainedPotential(), molecule::VerletForceIntegration()
167 * \param *out output stream for debugging
168 * \param &Params constrained potential parameters
169 * \return potential energy
170 * \note This routine is scaling quadratically which is not optimal.
171 * \todo There's a bit double counting going on for the first time, bu nothing to worry really about.
172 */
173double molecule::ConstrainedPotential(struct EvaluatePotential &Params)
174{
175 double tmp = 0.;
176 double result = 0.;
177 // go through every atom
178 atom *Runner = NULL;
179 for (molecule::const_iterator iter = begin(); iter != end(); ++iter) {
180 // first term: distance to target
181 Runner = Params.PermutationMap[(*iter)->nr]; // find target point
182 tmp = ((*iter)->Trajectory.R.at(Params.startstep).distance(Runner->Trajectory.R.at(Params.endstep)));
183 tmp *= Params.IsAngstroem ? 1. : 1./AtomicLengthToAngstroem;
184 result += Params.PenaltyConstants[0] * tmp;
185 //Log() << Verbose(4) << "Adding " << tmp*constants[0] << "." << endl;
186
187 // second term: sum of distances to other trajectories
188 result += SumDistanceOfTrajectories((*iter), this, Params);
189
190 // third term: penalty for equal targets
191 result += PenalizeEqualTargets((*iter), this, Params);
192 }
193
194 return result;
195};
196
197/** print the current permutation map.
198 * \param *out output stream for debugging
199 * \param &Params constrained potential parameters
200 * \param AtomCount number of atoms
201 */
202void PrintPermutationMap(int AtomCount, struct EvaluatePotential &Params)
203{
204 stringstream zeile1, zeile2;
205 int *DoubleList = new int[AtomCount];
206 for(int i=0;i<AtomCount;i++)
207 DoubleList[i] = 0;
208 int doubles = 0;
209 zeile1 << "PermutationMap: ";
210 zeile2 << " ";
211 for (int i=0;i<AtomCount;i++) {
212 Params.DoubleList[Params.PermutationMap[i]->nr]++;
213 zeile1 << i << " ";
214 zeile2 << Params.PermutationMap[i]->nr << " ";
215 }
216 for (int i=0;i<AtomCount;i++)
217 if (Params.DoubleList[i] > 1)
218 doubles++;
219 if (doubles >0)
220 DoLog(2) && (Log() << Verbose(2) << "Found " << doubles << " Doubles." << endl);
221 delete[](DoubleList);
222// Log() << Verbose(2) << zeile1.str() << endl << zeile2.str() << endl;
223};
224
225/** \f$O(N^2)\f$ operation of calculation distance between each atom pair and putting into DistanceList.
226 * \param *mol molecule to scan distances in
227 * \param &Params constrained potential parameters
228 */
229void FillDistanceList(molecule *mol, struct EvaluatePotential &Params)
230{
231 for (int i=mol->getAtomCount(); i--;) {
232 Params.DistanceList[i] = new DistanceMap; // is the distance sorted target list per atom
233 Params.DistanceList[i]->clear();
234 }
235
236 for (molecule::const_iterator iter = mol->begin(); iter != mol->end(); ++iter) {
237 for (molecule::const_iterator runner = mol->begin(); runner != mol->end(); ++runner) {
238 Params.DistanceList[(*iter)->nr]->insert( DistancePair((*iter)->Trajectory.R.at(Params.startstep).distance((*runner)->Trajectory.R.at(Params.endstep)), (*runner)) );
239 }
240 }
241};
242
243/** initialize lists.
244 * \param *out output stream for debugging
245 * \param *mol molecule to scan distances in
246 * \param &Params constrained potential parameters
247 */
248void CreateInitialLists(molecule *mol, struct EvaluatePotential &Params)
249{
250 for (molecule::const_iterator iter = mol->begin(); iter != mol->end(); ++iter) {
251 Params.StepList[(*iter)->nr] = Params.DistanceList[(*iter)->nr]->begin(); // stores the step to the next iterator that could be a possible next target
252 Params.PermutationMap[(*iter)->nr] = Params.DistanceList[(*iter)->nr]->begin()->second; // always pick target with the smallest distance
253 Params.DoubleList[Params.DistanceList[(*iter)->nr]->begin()->second->nr]++; // increase this target's source count (>1? not injective)
254 Params.DistanceIterators[(*iter)->nr] = Params.DistanceList[(*iter)->nr]->begin(); // and remember which one we picked
255 DoLog(2) && (Log() << Verbose(2) << **iter << " starts with distance " << Params.DistanceList[(*iter)->nr]->begin()->first << "." << endl);
256 }
257};
258
259/** Try the next nearest neighbour in order to make the permutation map injective.
260 * \param *out output stream for debugging
261 * \param *mol molecule
262 * \param *Walker atom to change its target
263 * \param &OldPotential old value of constraint potential to see if we do better with new target
264 * \param &Params constrained potential parameters
265 */
266double TryNextNearestNeighbourForInjectivePermutation(molecule *mol, atom *Walker, double &OldPotential, struct EvaluatePotential &Params)
267{
268 double Potential = 0;
269 DistanceMap::iterator NewBase = Params.DistanceIterators[Walker->nr]; // store old base
270 do {
271 NewBase++; // take next further distance in distance to targets list that's a target of no one
272 } while ((Params.DoubleList[NewBase->second->nr] != 0) && (NewBase != Params.DistanceList[Walker->nr]->end()));
273 if (NewBase != Params.DistanceList[Walker->nr]->end()) {
274 Params.PermutationMap[Walker->nr] = NewBase->second;
275 Potential = fabs(mol->ConstrainedPotential(Params));
276 if (Potential > OldPotential) { // undo
277 Params.PermutationMap[Walker->nr] = Params.DistanceIterators[Walker->nr]->second;
278 } else { // do
279 Params.DoubleList[Params.DistanceIterators[Walker->nr]->second->nr]--; // decrease the old entry in the doubles list
280 Params.DoubleList[NewBase->second->nr]++; // increase the old entry in the doubles list
281 Params.DistanceIterators[Walker->nr] = NewBase;
282 OldPotential = Potential;
283 DoLog(3) && (Log() << Verbose(3) << "Found a new permutation, new potential is " << OldPotential << "." << endl);
284 }
285 }
286 return Potential;
287};
288
289/** Permutes \a **&PermutationMap until the penalty is below constants[2].
290 * \param *out output stream for debugging
291 * \param *mol molecule to scan distances in
292 * \param &Params constrained potential parameters
293 */
294void MakeInjectivePermutation(molecule *mol, struct EvaluatePotential &Params)
295{
296 molecule::const_iterator iter = mol->begin();
297 DistanceMap::iterator NewBase;
298 double Potential = fabs(mol->ConstrainedPotential(Params));
299
300 if (mol->empty()) {
301 eLog() << Verbose(1) << "Molecule is empty." << endl;
302 return;
303 }
304 while ((Potential) > Params.PenaltyConstants[2]) {
305 PrintPermutationMap(mol->getAtomCount(), Params);
306 iter++;
307 if (iter == mol->end()) // round-robin at the end
308 iter = mol->begin();
309 if (Params.DoubleList[Params.DistanceIterators[(*iter)->nr]->second->nr] <= 1) // no need to make those injective that aren't
310 continue;
311 // now, try finding a new one
312 Potential = TryNextNearestNeighbourForInjectivePermutation(mol, (*iter), Potential, Params);
313 }
314 for (int i=mol->getAtomCount(); i--;) // now each single entry in the DoubleList should be <=1
315 if (Params.DoubleList[i] > 1) {
316 DoeLog(0) && (eLog()<< Verbose(0) << "Failed to create an injective PermutationMap!" << endl);
317 performCriticalExit();
318 }
319 DoLog(1) && (Log() << Verbose(1) << "done." << endl);
320};
321
322/** Minimises the extra potential for constrained molecular dynamics and gives forces and the constrained potential energy.
323 * We do the following:
324 * -# Generate a distance list from all source to all target points
325 * -# Sort this per source point
326 * -# Take for each source point the target point with minimum distance, use this as initial permutation
327 * -# check whether molecule::ConstrainedPotential() is greater than injective penalty
328 * -# If so, we go through each source point, stepping down in the sorted target point distance list and re-checking potential.
329 * -# Next, we only apply transformations that keep the injectivity of the permutations list.
330 * -# Hence, for one source point we step down the ladder and seek the corresponding owner of this new target
331 * point and try to change it for one with lesser distance, or for the next one with greater distance, but only
332 * if this decreases the conditional potential.
333 * -# finished.
334 * -# Then, we calculate the forces by taking the spatial derivative, where we scale the potential to such a degree,
335 * that the total force is always pointing in direction of the constraint force (ensuring that we move in the
336 * right direction).
337 * -# Finally, we calculate the potential energy and return.
338 * \param *out output stream for debugging
339 * \param **PermutationMap on return: mapping between the atom label of the initial and the final configuration
340 * \param startstep current MD step giving initial position between which and \a endstep we perform the constrained MD (as further steps are always concatenated)
341 * \param endstep step giving final position in constrained MD
342 * \param IsAngstroem whether coordinates are in angstroem (true) or bohrradius (false)
343 * \sa molecule::VerletForceIntegration()
344 * \return potential energy (and allocated **PermutationMap (array of molecule::AtomCount ^2)
345 * \todo The constrained potential's constants are set to fixed values right now, but they should scale based on checks of the system in order
346 * to ensure they're properties (e.g. constants[2] always greater than the energy of the system).
347 * \bug this all is not O(N log N) but O(N^2)
348 */
349double molecule::MinimiseConstrainedPotential(atom **&PermutationMap, int startstep, int endstep, bool IsAngstroem)
350{
351 double Potential, OldPotential, OlderPotential;
352 struct EvaluatePotential Params;
353 Params.PermutationMap = new atom *[getAtomCount()];
354 Params.DistanceList = new DistanceMap *[getAtomCount()];
355 Params.DistanceIterators = new DistanceMap::iterator[getAtomCount()];
356 Params.DoubleList = new int[getAtomCount()];
357 Params.StepList = new DistanceMap::iterator[getAtomCount()];
358 int round;
359 atom *Sprinter = NULL;
360 DistanceMap::iterator Rider, Strider;
361
362 // set to zero
363 for (int i=0;i<getAtomCount();i++) {
364 Params.PermutationMap[i] = NULL;
365 Params.DoubleList[i] = 0;
366 }
367
368 /// Minimise the potential
369 // set Lagrange multiplier constants
370 Params.PenaltyConstants[0] = 10.;
371 Params.PenaltyConstants[1] = 1.;
372 Params.PenaltyConstants[2] = 1e+7; // just a huge penalty
373 // generate the distance list
374 DoLog(1) && (Log() << Verbose(1) << "Allocating, initializting and filling the distance list ... " << endl);
375 FillDistanceList(this, Params);
376
377 // create the initial PermutationMap (source -> target)
378 CreateInitialLists(this, Params);
379
380 // make the PermutationMap injective by checking whether we have a non-zero constants[2] term in it
381 DoLog(1) && (Log() << Verbose(1) << "Making the PermutationMap injective ... " << endl);
382 MakeInjectivePermutation(this, Params);
383 delete[](Params.DoubleList);
384
385 // argument minimise the constrained potential in this injective PermutationMap
386 DoLog(1) && (Log() << Verbose(1) << "Argument minimising the PermutationMap." << endl);
387 OldPotential = 1e+10;
388 round = 0;
389 do {
390 DoLog(2) && (Log() << Verbose(2) << "Starting round " << ++round << ", at current potential " << OldPotential << " ... " << endl);
391 OlderPotential = OldPotential;
392 molecule::const_iterator iter;
393 do {
394 iter = begin();
395 for (; iter != end(); ++iter) {
396 PrintPermutationMap(getAtomCount(), Params);
397 Sprinter = Params.DistanceIterators[(*iter)->nr]->second; // store initial partner
398 Strider = Params.DistanceIterators[(*iter)->nr]; //remember old iterator
399 Params.DistanceIterators[(*iter)->nr] = Params.StepList[(*iter)->nr];
400 if (Params.DistanceIterators[(*iter)->nr] == Params.DistanceList[(*iter)->nr]->end()) {// stop, before we run through the list and still on
401 Params.DistanceIterators[(*iter)->nr] == Params.DistanceList[(*iter)->nr]->begin();
402 break;
403 }
404 //Log() << Verbose(2) << "Current Walker: " << *(*iter) << " with old/next candidate " << *Sprinter << "/" << *DistanceIterators[(*iter)->nr]->second << "." << endl;
405 // find source of the new target
406 molecule::const_iterator runner = begin();
407 for (; runner != end(); ++runner) { // find the source whose toes we might be stepping on (Walker's new target should be in use by another already)
408 if (Params.PermutationMap[(*runner)->nr] == Params.DistanceIterators[(*iter)->nr]->second) {
409 //Log() << Verbose(2) << "Found the corresponding owner " << *(*runner) << " to " << *PermutationMap[(*runner)->nr] << "." << endl;
410 break;
411 }
412 }
413 if (runner != end()) { // we found the other source
414 // then look in its distance list for Sprinter
415 Rider = Params.DistanceList[(*runner)->nr]->begin();
416 for (; Rider != Params.DistanceList[(*runner)->nr]->end(); Rider++)
417 if (Rider->second == Sprinter)
418 break;
419 if (Rider != Params.DistanceList[(*runner)->nr]->end()) { // if we have found one
420 //Log() << Verbose(2) << "Current Other: " << *(*runner) << " with old/next candidate " << *PermutationMap[(*runner)->nr] << "/" << *Rider->second << "." << endl;
421 // exchange both
422 Params.PermutationMap[(*iter)->nr] = Params.DistanceIterators[(*iter)->nr]->second; // put next farther distance into PermutationMap
423 Params.PermutationMap[(*runner)->nr] = Sprinter; // and hand the old target to its respective owner
424 PrintPermutationMap(getAtomCount(), Params);
425 // calculate the new potential
426 //Log() << Verbose(2) << "Checking new potential ..." << endl;
427 Potential = ConstrainedPotential(Params);
428 if (Potential > OldPotential) { // we made everything worse! Undo ...
429 //Log() << Verbose(3) << "Nay, made the potential worse: " << Potential << " vs. " << OldPotential << "!" << endl;
430 //Log() << Verbose(3) << "Setting " << *(*runner) << "'s source to " << *Params.DistanceIterators[(*runner)->nr]->second << "." << endl;
431 // Undo for Runner (note, we haven't moved the iteration yet, we may use this)
432 Params.PermutationMap[(*runner)->nr] = Params.DistanceIterators[(*runner)->nr]->second;
433 // Undo for Walker
434 Params.DistanceIterators[(*iter)->nr] = Strider; // take next farther distance target
435 //Log() << Verbose(3) << "Setting " << *(*iter) << "'s source to " << *Params.DistanceIterators[(*iter)->nr]->second << "." << endl;
436 Params.PermutationMap[(*iter)->nr] = Params.DistanceIterators[(*iter)->nr]->second;
437 } else {
438 Params.DistanceIterators[(*runner)->nr] = Rider; // if successful also move the pointer in the iterator list
439 DoLog(3) && (Log() << Verbose(3) << "Found a better permutation, new potential is " << Potential << " vs." << OldPotential << "." << endl);
440 OldPotential = Potential;
441 }
442 if (Potential > Params.PenaltyConstants[2]) {
443 DoeLog(1) && (eLog()<< Verbose(1) << "The two-step permutation procedure did not maintain injectivity!" << endl);
444 exit(255);
445 }
446 //Log() << Verbose(0) << endl;
447 } else {
448 DoeLog(1) && (eLog()<< Verbose(1) << **runner << " was not the owner of " << *Sprinter << "!" << endl);
449 exit(255);
450 }
451 } else {
452 Params.PermutationMap[(*iter)->nr] = Params.DistanceIterators[(*iter)->nr]->second; // new target has no source!
453 }
454 Params.StepList[(*iter)->nr]++; // take next farther distance target
455 }
456 } while (++iter != end());
457 } while ((OlderPotential - OldPotential) > 1e-3);
458 DoLog(1) && (Log() << Verbose(1) << "done." << endl);
459
460
461 /// free memory and return with evaluated potential
462 for (int i=getAtomCount(); i--;)
463 Params.DistanceList[i]->clear();
464 delete[](Params.DistanceList);
465 delete[](Params.DistanceIterators);
466 return ConstrainedPotential(Params);
467};
468
469
470/** Evaluates the (distance-related part) of the constrained potential for the constrained forces.
471 * \param *out output stream for debugging
472 * \param startstep current MD step giving initial position between which and \a endstep we perform the constrained MD (as further steps are always concatenated)
473 * \param endstep step giving final position in constrained MD
474 * \param **PermutationMap mapping between the atom label of the initial and the final configuration
475 * \param *Force ForceMatrix containing force vectors from the external energy functional minimisation.
476 * \todo the constant for the constrained potential distance part is hard-coded independently of the hard-coded value in MinimiseConstrainedPotential()
477 */
478void molecule::EvaluateConstrainedForces(int startstep, int endstep, atom **PermutationMap, ForceMatrix *Force)
479{
480 /// evaluate forces (only the distance to target dependent part) with the final PermutationMap
481 DoLog(1) && (Log() << Verbose(1) << "Calculating forces and adding onto ForceMatrix ... " << endl);
482 ActOnAllAtoms( &atom::EvaluateConstrainedForce, startstep, endstep, PermutationMap, Force );
483 DoLog(1) && (Log() << Verbose(1) << "done." << endl);
484};
485
486/** Performs a linear interpolation between two desired atomic configurations with a given number of steps.
487 * Note, step number is config::MaxOuterStep
488 * \param *out output stream for debugging
489 * \param startstep stating initial configuration in molecule::Trajectories
490 * \param endstep stating final configuration in molecule::Trajectories
491 * \param &prefix path and prefix
492 * \param &config configuration structure
493 * \param MapByIdentity if true we just use the identity to map atoms in start config to end config, if not we find mapping by \sa MinimiseConstrainedPotential()
494 * \return true - success in writing step files, false - error writing files or only one step in molecule::Trajectories
495 */
496bool molecule::LinearInterpolationBetweenConfiguration(int startstep, int endstep, std::string &prefix, config &configuration, bool MapByIdentity)
497{
498 molecule *mol = NULL;
499 bool status = true;
500 int MaxSteps = configuration.MaxOuterStep;
501 MoleculeListClass *MoleculePerStep = new MoleculeListClass(World::getPointer());
502 // Get the Permutation Map by MinimiseConstrainedPotential
503 atom **PermutationMap = NULL;
504 atom *Sprinter = NULL;
505 if (!MapByIdentity)
506 MinimiseConstrainedPotential(PermutationMap, startstep, endstep, configuration.GetIsAngstroem());
507 else {
508 PermutationMap = new atom *[getAtomCount()];
509 SetIndexedArrayForEachAtomTo( PermutationMap, &atom::nr );
510 }
511
512 // check whether we have sufficient space in Trajectories for each atom
513 ActOnAllAtoms( &atom::ResizeTrajectory, MaxSteps );
514 // push endstep to last one
515 ActOnAllAtoms( &atom::CopyStepOnStep, MaxSteps, endstep );
516 endstep = MaxSteps;
517
518 // go through all steps and add the molecular configuration to the list and to the Trajectories of \a this molecule
519 DoLog(1) && (Log() << Verbose(1) << "Filling intermediate " << MaxSteps << " steps with MDSteps of " << MDSteps << "." << endl);
520 for (int step = 0; step <= MaxSteps; step++) {
521 mol = World::getInstance().createMolecule();
522 MoleculePerStep->insert(mol);
523 for (molecule::const_iterator iter = begin(); iter != end(); ++iter) {
524 // add to molecule list
525 Sprinter = mol->AddCopyAtom((*iter));
526 for (int n=NDIM;n--;) {
527 Sprinter->set(n, (*iter)->Trajectory.R.at(startstep)[n] + (PermutationMap[(*iter)->nr]->Trajectory.R.at(endstep)[n] - (*iter)->Trajectory.R.at(startstep)[n])*((double)step/(double)MaxSteps));
528 // add to Trajectories
529 //Log() << Verbose(3) << step << ">=" << MDSteps-1 << endl;
530 if (step < MaxSteps) {
531 (*iter)->Trajectory.R.at(step)[n] = (*iter)->Trajectory.R.at(startstep)[n] + (PermutationMap[(*iter)->nr]->Trajectory.R.at(endstep)[n] - (*iter)->Trajectory.R.at(startstep)[n])*((double)step/(double)MaxSteps);
532 (*iter)->Trajectory.U.at(step)[n] = 0.;
533 (*iter)->Trajectory.F.at(step)[n] = 0.;
534 }
535 }
536 }
537 }
538 MDSteps = MaxSteps+1; // otherwise new Trajectories' points aren't stored on save&exit
539
540 // store the list to single step files
541 int *SortIndex = new int[getAtomCount()];
542 for (int i=getAtomCount(); i--; )
543 SortIndex[i] = i;
544
545 status = MoleculePerStep->OutputConfigForListOfFragments(prefix, SortIndex);
546 delete[](SortIndex);
547
548 // free and return
549 delete[](PermutationMap);
550 delete(MoleculePerStep);
551 return status;
552};
553
554/** Parses nuclear forces from file and performs Verlet integration.
555 * Note that we assume the parsed forces to be in atomic units (hence, if coordinates are in angstroem, we
556 * have to transform them).
557 * This adds a new MD step to the config file.
558 * \param *file filename
559 * \param config structure with config::Deltat, config::IsAngstroem, config::DoConstrained
560 * \param offset offset in matrix file to the first force component
561 * \return true - file found and parsed, false - file not found or imparsable
562 * \todo This is not yet checked if it is correctly working with DoConstrained set to true.
563 */
564bool molecule::VerletForceIntegration(char *file, config &configuration, const size_t offset)
565{
566 Info FunctionInfo(__func__);
567 ifstream input(file);
568 string token;
569 stringstream item;
570 double IonMass, ConstrainedPotentialEnergy, ActualTemp;
571 Vector Velocity;
572 ForceMatrix Force;
573
574 const int AtomCount = getAtomCount();
575 // check file
576 if (input == NULL) {
577 return false;
578 } else {
579 // parse file into ForceMatrix
580 if (!Force.ParseMatrix(file, 0,0,0)) {
581 DoeLog(0) && (eLog()<< Verbose(0) << "Could not parse Force Matrix file " << file << "." << endl);
582 performCriticalExit();
583 return false;
584 }
585 if (Force.RowCounter[0] != AtomCount) {
586 DoeLog(0) && (eLog()<< Verbose(0) << "Mismatch between number of atoms in file " << Force.RowCounter[0] << " and in molecule " << getAtomCount() << "." << endl);
587 performCriticalExit();
588 return false;
589 }
590 // correct Forces
591 Velocity.Zero();
592 for(int i=0;i<AtomCount;i++)
593 for(int d=0;d<NDIM;d++) {
594 Velocity[d] += Force.Matrix[0][i][d+offset];
595 }
596 for(int i=0;i<AtomCount;i++)
597 for(int d=0;d<NDIM;d++) {
598 Force.Matrix[0][i][d+offset] -= Velocity[d]/static_cast<double>(AtomCount);
599 }
600 // solve a constrained potential if we are meant to
601 if (configuration.DoConstrainedMD) {
602 // calculate forces and potential
603 atom **PermutationMap = NULL;
604 ConstrainedPotentialEnergy = MinimiseConstrainedPotential(PermutationMap,configuration.DoConstrainedMD, 0, configuration.GetIsAngstroem());
605 EvaluateConstrainedForces(configuration.DoConstrainedMD, 0, PermutationMap, &Force);
606 delete[](PermutationMap);
607 }
608
609 // and perform Verlet integration for each atom with position, velocity and force vector
610 // check size of vectors
611 //ActOnAllAtoms( &atom::ResizeTrajectory, MDSteps+10 );
612
613 ActOnAllAtoms( &atom::VelocityVerletUpdate, MDSteps+1, &configuration, &Force, (const size_t) 0);
614 }
615 // correct velocities (rather momenta) so that center of mass remains motionless
616 Velocity.Zero();
617 IonMass = 0.;
618 ActOnAllAtoms ( &atom::SumUpKineticEnergy, MDSteps+1, &IonMass, &Velocity );
619
620 // correct velocities (rather momenta) so that center of mass remains motionless
621 Velocity.Scale(1./IonMass);
622 ActualTemp = 0.;
623 ActOnAllAtoms ( &atom::CorrectVelocity, &ActualTemp, MDSteps+1, &Velocity );
624 Thermostats(configuration, ActualTemp, Berendsen);
625 MDSteps++;
626
627 // exit
628 return true;
629};
630
631/** Implementation of various thermostats.
632 * All these thermostats apply an additional force which has the following forms:
633 * -# Woodcock
634 * \f$p_i \rightarrow \sqrt{\frac{T_0}{T}} \cdot p_i\f$
635 * -# Gaussian
636 * \f$ \frac{ \sum_i \frac{p_i}{m_i} \frac{\partial V}{\partial q_i}} {\sum_i \frac{p^2_i}{m_i}} \cdot p_i\f$
637 * -# Langevin
638 * \f$p_{i,n} \rightarrow \sqrt{1-\alpha^2} p_{i,0} + \alpha p_r\f$
639 * -# Berendsen
640 * \f$p_i \rightarrow \left [ 1+ \frac{\delta t}{\tau_T} \left ( \frac{T_0}{T} \right ) \right ]^{\frac{1}{2}} \cdot p_i\f$
641 * -# Nose-Hoover
642 * \f$\zeta p_i \f$ with \f$\frac{\partial \zeta}{\partial t} = \frac{1}{M_s} \left ( \sum^N_{i=1} \frac{p_i^2}{m_i} - g k_B T \right )\f$
643 * These Thermostats either simply rescale the velocities, thus this function should be called after ion velocities have been updated, and/or
644 * have a constraint force acting additionally on the ions. In the latter case, the ion speeds have to be modified
645 * belatedly and the constraint force set.
646 * \param *P Problem at hand
647 * \param i which of the thermostats to take: 0 - none, 1 - Woodcock, 2 - Gaussian, 3 - Langevin, 4 - Berendsen, 5 - Nose-Hoover
648 * \sa InitThermostat()
649 */
650void molecule::Thermostats(config &configuration, double ActualTemp, int Thermostat)
651{
652 double ekin = 0.;
653 double E = 0., G = 0.;
654 double delta_alpha = 0.;
655 double ScaleTempFactor;
656 gsl_rng * r;
657 const gsl_rng_type * T;
658
659 // calculate scale configuration
660 ScaleTempFactor = configuration.Thermostats->TargetTemp/ActualTemp;
661
662 // differentating between the various thermostats
663 switch(Thermostat) {
664 case None:
665 DoLog(2) && (Log() << Verbose(2) << "Applying no thermostat..." << endl);
666 break;
667 case Woodcock:
668 if ((configuration.Thermostats->ScaleTempStep > 0) && ((MDSteps-1) % configuration.Thermostats->ScaleTempStep == 0)) {
669 DoLog(2) && (Log() << Verbose(2) << "Applying Woodcock thermostat..." << endl);
670 ActOnAllAtoms( &atom::Thermostat_Woodcock, sqrt(ScaleTempFactor), MDSteps, &ekin );
671 }
672 break;
673 case Gaussian:
674 DoLog(2) && (Log() << Verbose(2) << "Applying Gaussian thermostat..." << endl);
675 ActOnAllAtoms( &atom::Thermostat_Gaussian_init, MDSteps, &G, &E );
676
677 DoLog(1) && (Log() << Verbose(1) << "Gaussian Least Constraint constant is " << G/E << "." << endl);
678 ActOnAllAtoms( &atom::Thermostat_Gaussian_least_constraint, MDSteps, G/E, &ekin, &configuration);
679
680 break;
681 case Langevin:
682 DoLog(2) && (Log() << Verbose(2) << "Applying Langevin thermostat..." << endl);
683 // init random number generator
684 gsl_rng_env_setup();
685 T = gsl_rng_default;
686 r = gsl_rng_alloc (T);
687 // Go through each ion
688 ActOnAllAtoms( &atom::Thermostat_Langevin, MDSteps, r, &ekin, &configuration );
689 break;
690
691 case Berendsen:
692 DoLog(2) && (Log() << Verbose(2) << "Applying Berendsen-VanGunsteren thermostat..." << endl);
693 ActOnAllAtoms( &atom::Thermostat_Berendsen, MDSteps, ScaleTempFactor, &ekin, &configuration );
694 break;
695
696 case NoseHoover:
697 DoLog(2) && (Log() << Verbose(2) << "Applying Nose-Hoover thermostat..." << endl);
698 // dynamically evolve alpha (the additional degree of freedom)
699 delta_alpha = 0.;
700 ActOnAllAtoms( &atom::Thermostat_NoseHoover_init, MDSteps, &delta_alpha );
701 delta_alpha = (delta_alpha - (3.*getAtomCount()+1.) * configuration.Thermostats->TargetTemp)/(configuration.Thermostats->HooverMass*Units2Electronmass);
702 configuration.Thermostats->alpha += delta_alpha*configuration.Deltat;
703 DoLog(3) && (Log() << Verbose(3) << "alpha = " << delta_alpha << " * " << configuration.Deltat << " = " << configuration.Thermostats->alpha << "." << endl);
704 // apply updated alpha as additional force
705 ActOnAllAtoms( &atom::Thermostat_NoseHoover_scale, MDSteps, &ekin, &configuration );
706 break;
707 }
708 DoLog(1) && (Log() << Verbose(1) << "Kinetic energy is " << ekin << "." << endl);
709};
Note: See TracBrowser for help on using the repository browser.