source: src/boundary.cpp@ d6f886

Action_Thermostats Add_AtomRandomPerturbation Add_FitFragmentPartialChargesAction Add_RotateAroundBondAction Add_SelectAtomByNameAction Added_ParseSaveFragmentResults AddingActions_SaveParseParticleParameters Adding_Graph_to_ChangeBondActions Adding_MD_integration_tests Adding_ParticleName_to_Atom Adding_StructOpt_integration_tests AtomFragments Automaking_mpqc_open AutomationFragmentation_failures Candidate_v1.5.4 Candidate_v1.6.0 Candidate_v1.6.1 ChangeBugEmailaddress ChangingTestPorts ChemicalSpaceEvaluator CombiningParticlePotentialParsing Combining_Subpackages Debian_Package_split Debian_package_split_molecuildergui_only Disabling_MemDebug Docu_Python_wait EmpiricalPotential_contain_HomologyGraph EmpiricalPotential_contain_HomologyGraph_documentation Enable_parallel_make_install Enhance_userguide Enhanced_StructuralOptimization Enhanced_StructuralOptimization_continued Example_ManyWaysToTranslateAtom Exclude_Hydrogens_annealWithBondGraph FitPartialCharges_GlobalError Fix_BoundInBox_CenterInBox_MoleculeActions Fix_ChargeSampling_PBC Fix_ChronosMutex Fix_FitPartialCharges Fix_FitPotential_needs_atomicnumbers Fix_ForceAnnealing Fix_IndependentFragmentGrids Fix_ParseParticles Fix_ParseParticles_split_forward_backward_Actions Fix_PopActions Fix_QtFragmentList_sorted_selection Fix_Restrictedkeyset_FragmentMolecule Fix_StatusMsg Fix_StepWorldTime_single_argument Fix_Verbose_Codepatterns Fix_fitting_potentials Fixes ForceAnnealing_goodresults ForceAnnealing_oldresults ForceAnnealing_tocheck ForceAnnealing_with_BondGraph ForceAnnealing_with_BondGraph_continued ForceAnnealing_with_BondGraph_continued_betteresults ForceAnnealing_with_BondGraph_contraction-expansion FragmentAction_writes_AtomFragments FragmentMolecule_checks_bonddegrees GeometryObjects Gui_Fixes Gui_displays_atomic_force_velocity ImplicitCharges IndependentFragmentGrids IndependentFragmentGrids_IndividualZeroInstances IndependentFragmentGrids_IntegrationTest IndependentFragmentGrids_Sole_NN_Calculation JobMarket_RobustOnKillsSegFaults JobMarket_StableWorkerPool JobMarket_unresolvable_hostname_fix MoreRobust_FragmentAutomation ODR_violation_mpqc_open PartialCharges_OrthogonalSummation PdbParser_setsAtomName PythonUI_with_named_parameters QtGui_reactivate_TimeChanged_changes Recreated_GuiChecks Rewrite_FitPartialCharges RotateToPrincipalAxisSystem_UndoRedo SaturateAtoms_findBestMatching SaturateAtoms_singleDegree StoppableMakroAction Subpackage_CodePatterns Subpackage_JobMarket Subpackage_LinearAlgebra Subpackage_levmar Subpackage_mpqc_open Subpackage_vmg Switchable_LogView ThirdParty_MPQC_rebuilt_buildsystem TrajectoryDependenant_MaxOrder TremoloParser_IncreasedPrecision TremoloParser_MultipleTimesteps TremoloParser_setsAtomName Ubuntu_1604_changes stable
Last change on this file since d6f886 was 66fd49, checked in by Frederik Heber <heber@…>, 14 years ago

Rewrite of FillVoidWithMoleculeAction.

FillVoidWithMoleculeAction:

  • new parameter MinDistance and default value of 0.
  • BUGFIX: filler is already created when parsing file, removed useless creation of it initially (also caused lots of confusion due to an "extra" molecule).
  • Undo implemented, regression test inserted.
  • Redo is somewhat hard to implement, as one would use performCall() if it only it would not retrieve its values from ValueStorage ...

FillVoidWithMolecule():

  • filler is now the zeroth not the last molecule, marked by firstInsertion and firstInserter. Filler is removed if no molecules are filled.
  • outsourced stuff into smaller functions
  • removed FillIt to through every atom despite only CurrentPosition, indepedent of atom position, is checked.

TESTFIXES:

  • Analysis/3: test.xyz changed because boundary is now 1.5 instead of 2.1 as 2.1 is not enough of molecules get filled in (and the filler already is).
  • Analysis/3: tensid.data was actually lacking water at (0,0,0) which is after the rewrite present.
  • Property mode set to 100644
File size: 60.9 KB
Line 
1/*
2 * Project: MoleCuilder
3 * Description: creates and alters molecular systems
4 * Copyright (C) 2010 University of Bonn. All rights reserved.
5 * Please see the LICENSE file or "Copyright notice" in builder.cpp for details.
6 */
7
8/** \file boundary.cpp
9 *
10 * Implementations and super-function for envelopes
11 */
12
13// include config.h
14#ifdef HAVE_CONFIG_H
15#include <config.h>
16#endif
17
18#include "CodePatterns/MemDebug.hpp"
19
20#include "Actions/MoleculeAction/RotateToPrincipalAxisSystemAction.hpp"
21#include "BoundaryPointSet.hpp"
22#include "BoundaryLineSet.hpp"
23#include "BoundaryTriangleSet.hpp"
24#include "CandidateForTesselation.hpp"
25//#include "TesselPoint.hpp"
26#include "World.hpp"
27#include "atom.hpp"
28#include "bond.hpp"
29#include "boundary.hpp"
30#include "config.hpp"
31#include "element.hpp"
32#include "Helpers/helpers.hpp"
33#include "CodePatterns/Info.hpp"
34#include "linkedcell.hpp"
35#include "CodePatterns/Verbose.hpp"
36#include "CodePatterns/Log.hpp"
37#include "molecule.hpp"
38#include "tesselation.hpp"
39#include "tesselationhelpers.hpp"
40#include "World.hpp"
41#include "LinearAlgebra/Plane.hpp"
42#include "LinearAlgebra/RealSpaceMatrix.hpp"
43#include "Box.hpp"
44
45#include <iostream>
46#include <iomanip>
47
48#include<gsl/gsl_poly.h>
49#include<time.h>
50
51// ========================================== F U N C T I O N S =================================
52
53
54/** Determines greatest diameters of a cluster defined by its convex envelope.
55 * Looks at lines parallel to one axis and where they intersect on the projected planes
56 * \param *out output stream for debugging
57 * \param *BoundaryPoints NDIM set of boundary points defining the convex envelope on each projected plane
58 * \param *mol molecule structure representing the cluster
59 * \param *&TesselStruct Tesselation structure with triangles
60 * \param IsAngstroem whether we have angstroem or atomic units
61 * \return NDIM array of the diameters
62 */
63double *GetDiametersOfCluster(const Boundaries *BoundaryPtr, const molecule *mol, Tesselation *&TesselStruct, const bool IsAngstroem)
64{
65 Info FunctionInfo(__func__);
66 // get points on boundary of NULL was given as parameter
67 bool BoundaryFreeFlag = false;
68 double OldComponent = 0.;
69 double tmp = 0.;
70 double w1 = 0.;
71 double w2 = 0.;
72 Vector DistanceVector;
73 Vector OtherVector;
74 int component = 0;
75 int Othercomponent = 0;
76 Boundaries::const_iterator Neighbour;
77 Boundaries::const_iterator OtherNeighbour;
78 double *GreatestDiameter = new double[NDIM];
79
80 const Boundaries *BoundaryPoints;
81 if (BoundaryPtr == NULL) {
82 BoundaryFreeFlag = true;
83 BoundaryPoints = GetBoundaryPoints(mol, TesselStruct);
84 } else {
85 BoundaryPoints = BoundaryPtr;
86 DoLog(0) && (Log() << Verbose(0) << "Using given boundary points set." << endl);
87 }
88 // determine biggest "diameter" of cluster for each axis
89 for (int i = 0; i < NDIM; i++)
90 GreatestDiameter[i] = 0.;
91 for (int axis = 0; axis < NDIM; axis++)
92 { // regard each projected plane
93 //Log() << Verbose(1) << "Current axis is " << axis << "." << endl;
94 for (int j = 0; j < 2; j++)
95 { // and for both axis on the current plane
96 component = (axis + j + 1) % NDIM;
97 Othercomponent = (axis + 1 + ((j + 1) & 1)) % NDIM;
98 //Log() << Verbose(1) << "Current component is " << component << ", Othercomponent is " << Othercomponent << "." << endl;
99 for (Boundaries::const_iterator runner = BoundaryPoints[axis].begin(); runner != BoundaryPoints[axis].end(); runner++) {
100 //Log() << Verbose(1) << "Current runner is " << *(runner->second.second) << "." << endl;
101 // seek for the neighbours pair where the Othercomponent sign flips
102 Neighbour = runner;
103 Neighbour++;
104 if (Neighbour == BoundaryPoints[axis].end()) // make it wrap around
105 Neighbour = BoundaryPoints[axis].begin();
106 DistanceVector = (runner->second.second->getPosition()) - (Neighbour->second.second->getPosition());
107 do { // seek for neighbour pair where it flips
108 OldComponent = DistanceVector[Othercomponent];
109 Neighbour++;
110 if (Neighbour == BoundaryPoints[axis].end()) // make it wrap around
111 Neighbour = BoundaryPoints[axis].begin();
112 DistanceVector = (runner->second.second->getPosition()) - (Neighbour->second.second->getPosition());
113 //Log() << Verbose(2) << "OldComponent is " << OldComponent << ", new one is " << DistanceVector.x[Othercomponent] << "." << endl;
114 } while ((runner != Neighbour) && (fabs(OldComponent / fabs(
115 OldComponent) - DistanceVector[Othercomponent] / fabs(
116 DistanceVector[Othercomponent])) < MYEPSILON)); // as long as sign does not flip
117 if (runner != Neighbour) {
118 OtherNeighbour = Neighbour;
119 if (OtherNeighbour == BoundaryPoints[axis].begin()) // make it wrap around
120 OtherNeighbour = BoundaryPoints[axis].end();
121 OtherNeighbour--;
122 //Log() << Verbose(1) << "The pair, where the sign of OtherComponent flips, is: " << *(Neighbour->second.second) << " and " << *(OtherNeighbour->second.second) << "." << endl;
123 // now we have found the pair: Neighbour and OtherNeighbour
124 OtherVector = (runner->second.second->getPosition()) - (OtherNeighbour->second.second->getPosition());
125 //Log() << Verbose(1) << "Distances to Neighbour and OtherNeighbour are " << DistanceVector.x[component] << " and " << OtherVector.x[component] << "." << endl;
126 //Log() << Verbose(1) << "OtherComponents to Neighbour and OtherNeighbour are " << DistanceVector.x[Othercomponent] << " and " << OtherVector.x[Othercomponent] << "." << endl;
127 // do linear interpolation between points (is exact) to extract exact intersection between Neighbour and OtherNeighbour
128 w1 = fabs(OtherVector[Othercomponent]);
129 w2 = fabs(DistanceVector[Othercomponent]);
130 tmp = fabs((w1 * DistanceVector[component] + w2
131 * OtherVector[component]) / (w1 + w2));
132 // mark if it has greater diameter
133 //Log() << Verbose(1) << "Comparing current greatest " << GreatestDiameter[component] << " to new " << tmp << "." << endl;
134 GreatestDiameter[component] = (GreatestDiameter[component]
135 > tmp) ? GreatestDiameter[component] : tmp;
136 } //else
137 //Log() << Verbose(1) << "Saw no sign flip, probably top or bottom node." << endl;
138 }
139 }
140 }
141 Log() << Verbose(0) << "RESULT: The biggest diameters are "
142 << GreatestDiameter[0] << " and " << GreatestDiameter[1] << " and "
143 << GreatestDiameter[2] << " " << (IsAngstroem ? "angstrom"
144 : "atomiclength") << "." << endl;
145
146 // free reference lists
147 if (BoundaryFreeFlag)
148 delete[] (BoundaryPoints);
149
150 return GreatestDiameter;
151}
152;
153
154
155/** Determines the boundary points of a cluster.
156 * Does a projection per axis onto the orthogonal plane, transforms into spherical coordinates, sorts them by the angle
157 * and looks at triples: if the middle has less a distance than the allowed maximum height of the triangle formed by the plane's
158 * center and first and last point in the triple, it is thrown out.
159 * \param *out output stream for debugging
160 * \param *mol molecule structure representing the cluster
161 * \param *&TesselStruct pointer to Tesselation structure
162 */
163Boundaries *GetBoundaryPoints(const molecule *mol, Tesselation *&TesselStruct)
164{
165 Info FunctionInfo(__func__);
166 PointMap PointsOnBoundary;
167 LineMap LinesOnBoundary;
168 TriangleMap TrianglesOnBoundary;
169 Vector *MolCenter = mol->DetermineCenterOfAll();
170 Vector helper;
171 BoundariesTestPair BoundaryTestPair;
172 Vector AxisVector;
173 Vector AngleReferenceVector;
174 Vector AngleReferenceNormalVector;
175 Vector ProjectedVector;
176 Boundaries *BoundaryPoints = new Boundaries[NDIM]; // first is alpha, second is (r, nr)
177 double angle = 0.;
178
179 // 3a. Go through every axis
180 for (int axis = 0; axis < NDIM; axis++) {
181 AxisVector.Zero();
182 AngleReferenceVector.Zero();
183 AngleReferenceNormalVector.Zero();
184 AxisVector[axis] = 1.;
185 AngleReferenceVector[(axis + 1) % NDIM] = 1.;
186 AngleReferenceNormalVector[(axis + 2) % NDIM] = 1.;
187
188 DoLog(1) && (Log() << Verbose(1) << "Axisvector is " << AxisVector << " and AngleReferenceVector is " << AngleReferenceVector << ", and AngleReferenceNormalVector is " << AngleReferenceNormalVector << "." << endl);
189
190 // 3b. construct set of all points, transformed into cylindrical system and with left and right neighbours
191 for (molecule::const_iterator iter = mol->begin(); iter != mol->end(); ++iter) {
192 ProjectedVector = (*iter)->getPosition() - (*MolCenter);
193 ProjectedVector.ProjectOntoPlane(AxisVector);
194
195 // correct for negative side
196 const double radius = ProjectedVector.NormSquared();
197 if (fabs(radius) > MYEPSILON)
198 angle = ProjectedVector.Angle(AngleReferenceVector);
199 else
200 angle = 0.; // otherwise it's a vector in Axis Direction and unimportant for boundary issues
201
202 //Log() << Verbose(1) << "Checking sign in quadrant : " << ProjectedVector.Projection(&AngleReferenceNormalVector) << "." << endl;
203 if (ProjectedVector.ScalarProduct(AngleReferenceNormalVector) > 0) {
204 angle = 2. * M_PI - angle;
205 }
206 DoLog(1) && (Log() << Verbose(1) << "Inserting " << **iter << ": (r, alpha) = (" << radius << "," << angle << "): " << ProjectedVector << endl);
207 BoundaryTestPair = BoundaryPoints[axis].insert(BoundariesPair(angle, TesselPointDistancePair (radius, (*iter))));
208 if (!BoundaryTestPair.second) { // same point exists, check first r, then distance of original vectors to center of gravity
209 DoLog(2) && (Log() << Verbose(2) << "Encountered two vectors whose projection onto axis " << axis << " is equal: " << endl);
210 DoLog(2) && (Log() << Verbose(2) << "Present vector: " << *BoundaryTestPair.first->second.second << endl);
211 DoLog(2) && (Log() << Verbose(2) << "New vector: " << **iter << endl);
212 const double ProjectedVectorNorm = ProjectedVector.NormSquared();
213 if ((ProjectedVectorNorm - BoundaryTestPair.first->second.first) > MYEPSILON) {
214 BoundaryTestPair.first->second.first = ProjectedVectorNorm;
215 BoundaryTestPair.first->second.second = (*iter);
216 DoLog(2) && (Log() << Verbose(2) << "Keeping new vector due to larger projected distance " << ProjectedVectorNorm << "." << endl);
217 } else if (fabs(ProjectedVectorNorm - BoundaryTestPair.first->second.first) < MYEPSILON) {
218 helper = (*iter)->getPosition() - (*MolCenter);
219 const double oldhelperNorm = helper.NormSquared();
220 helper = BoundaryTestPair.first->second.second->getPosition() - (*MolCenter);
221 if (helper.NormSquared() < oldhelperNorm) {
222 BoundaryTestPair.first->second.second = (*iter);
223 DoLog(2) && (Log() << Verbose(2) << "Keeping new vector due to larger distance to molecule center " << helper.NormSquared() << "." << endl);
224 } else {
225 DoLog(2) && (Log() << Verbose(2) << "Keeping present vector due to larger distance to molecule center " << oldhelperNorm << "." << endl);
226 }
227 } else {
228 DoLog(2) && (Log() << Verbose(2) << "Keeping present vector due to larger projected distance " << ProjectedVectorNorm << "." << endl);
229 }
230 }
231 }
232 // printing all inserted for debugging
233 // {
234 // Log() << Verbose(1) << "Printing list of candidates for axis " << axis << " which we have inserted so far." << endl;
235 // int i=0;
236 // for(Boundaries::iterator runner = BoundaryPoints[axis].begin(); runner != BoundaryPoints[axis].end(); runner++) {
237 // if (runner != BoundaryPoints[axis].begin())
238 // Log() << Verbose(0) << ", " << i << ": " << *runner->second.second;
239 // else
240 // Log() << Verbose(0) << i << ": " << *runner->second.second;
241 // i++;
242 // }
243 // Log() << Verbose(0) << endl;
244 // }
245 // 3c. throw out points whose distance is less than the mean of left and right neighbours
246 bool flag = false;
247 DoLog(1) && (Log() << Verbose(1) << "Looking for candidates to kick out by convex condition ... " << endl);
248 do { // do as long as we still throw one out per round
249 flag = false;
250 Boundaries::iterator left = BoundaryPoints[axis].begin();
251 Boundaries::iterator right = BoundaryPoints[axis].begin();
252 Boundaries::iterator runner = BoundaryPoints[axis].begin();
253 bool LoopOnceDone = false;
254 while (!LoopOnceDone) {
255 runner = right;
256 right++;
257 // set neighbours correctly
258 if (runner == BoundaryPoints[axis].begin()) {
259 left = BoundaryPoints[axis].end();
260 } else {
261 left = runner;
262 }
263 left--;
264 if (right == BoundaryPoints[axis].end()) {
265 right = BoundaryPoints[axis].begin();
266 LoopOnceDone = true;
267 }
268 // check distance
269
270 // construct the vector of each side of the triangle on the projected plane (defined by normal vector AxisVector)
271 {
272 Vector SideA, SideB, SideC, SideH;
273 SideA = left->second.second->getPosition() - (*MolCenter);
274 SideA.ProjectOntoPlane(AxisVector);
275 // Log() << Verbose(1) << "SideA: " << SideA << endl;
276
277 SideB = right->second.second->getPosition() -(*MolCenter);
278 SideB.ProjectOntoPlane(AxisVector);
279 // Log() << Verbose(1) << "SideB: " << SideB << endl;
280
281 SideC = left->second.second->getPosition() - right->second.second->getPosition();
282 SideC.ProjectOntoPlane(AxisVector);
283 // Log() << Verbose(1) << "SideC: " << SideC << endl;
284
285 SideH = runner->second.second->getPosition() -(*MolCenter);
286 SideH.ProjectOntoPlane(AxisVector);
287 // Log() << Verbose(1) << "SideH: " << SideH << endl;
288
289 // calculate each length
290 const double a = SideA.Norm();
291 //const double b = SideB.Norm();
292 //const double c = SideC.Norm();
293 const double h = SideH.Norm();
294 // calculate the angles
295 const double alpha = SideA.Angle(SideH);
296 const double beta = SideA.Angle(SideC);
297 const double gamma = SideB.Angle(SideH);
298 const double delta = SideC.Angle(SideH);
299 const double MinDistance = a * sin(beta) / (sin(delta)) * (((alpha < M_PI / 2.) || (gamma < M_PI / 2.)) ? 1. : -1.);
300 //Log() << Verbose(1) << " I calculated: a = " << a << ", h = " << h << ", beta(" << left->second.second->Name << "," << left->second.second->Name << "-" << right->second.second->Name << ") = " << beta << ", delta(" << left->second.second->Name << "," << runner->second.second->Name << ") = " << delta << ", Min = " << MinDistance << "." << endl;
301 DoLog(1) && (Log() << Verbose(1) << "Checking CoG distance of runner " << *runner->second.second << " " << h << " against triangle's side length spanned by (" << *left->second.second << "," << *right->second.second << ") of " << MinDistance << "." << endl);
302 if ((fabs(h / fabs(h) - MinDistance / fabs(MinDistance)) < MYEPSILON) && ((h - MinDistance)) < -MYEPSILON) {
303 // throw out point
304 DoLog(1) && (Log() << Verbose(1) << "Throwing out " << *runner->second.second << "." << endl);
305 BoundaryPoints[axis].erase(runner);
306 runner = right;
307 flag = true;
308 }
309 }
310 }
311 } while (flag);
312 }
313 delete(MolCenter);
314 return BoundaryPoints;
315};
316
317/** Tesselates the convex boundary by finding all boundary points.
318 * \param *out output stream for debugging
319 * \param *mol molecule structure with Atom's and Bond's.
320 * \param *BoundaryPts set of boundary points to use or NULL
321 * \param *TesselStruct Tesselation filled with points, lines and triangles on boundary on return
322 * \param *LCList atoms in LinkedCell list
323 * \param *filename filename prefix for output of vertex data
324 * \return *TesselStruct is filled with convex boundary and tesselation is stored under \a *filename.
325 */
326void FindConvexBorder(const molecule* mol, Boundaries *BoundaryPts, Tesselation *&TesselStruct, const LinkedCell *LCList, const char *filename)
327{
328 Info FunctionInfo(__func__);
329 bool BoundaryFreeFlag = false;
330 Boundaries *BoundaryPoints = NULL;
331
332 if (TesselStruct != NULL) // free if allocated
333 delete(TesselStruct);
334 TesselStruct = new class Tesselation;
335
336 // 1. Find all points on the boundary
337 if (BoundaryPts == NULL) {
338 BoundaryFreeFlag = true;
339 BoundaryPoints = GetBoundaryPoints(mol, TesselStruct);
340 } else {
341 BoundaryPoints = BoundaryPts;
342 DoLog(0) && (Log() << Verbose(0) << "Using given boundary points set." << endl);
343 }
344
345// printing all inserted for debugging
346 for (int axis=0; axis < NDIM; axis++) {
347 DoLog(1) && (Log() << Verbose(1) << "Printing list of candidates for axis " << axis << " which we have inserted so far." << endl);
348 int i=0;
349 for(Boundaries::iterator runner = BoundaryPoints[axis].begin(); runner != BoundaryPoints[axis].end(); runner++) {
350 if (runner != BoundaryPoints[axis].begin())
351 DoLog(0) && (Log() << Verbose(0) << ", " << i << ": " << *runner->second.second);
352 else
353 DoLog(0) && (Log() << Verbose(0) << i << ": " << *runner->second.second);
354 i++;
355 }
356 DoLog(0) && (Log() << Verbose(0) << endl);
357 }
358
359 // 2. fill the boundary point list
360 for (int axis = 0; axis < NDIM; axis++)
361 for (Boundaries::iterator runner = BoundaryPoints[axis].begin(); runner != BoundaryPoints[axis].end(); runner++)
362 if (!TesselStruct->AddBoundaryPoint(runner->second.second, 0))
363 DoLog(2) && (Log()<< Verbose(2) << "Point " << *(runner->second.second) << " is already present." << endl);
364
365 DoLog(0) && (Log() << Verbose(0) << "I found " << TesselStruct->PointsOnBoundaryCount << " points on the convex boundary." << endl);
366 // now we have the whole set of edge points in the BoundaryList
367
368 // listing for debugging
369 // Log() << Verbose(1) << "Listing PointsOnBoundary:";
370 // for(PointMap::iterator runner = PointsOnBoundary.begin(); runner != PointsOnBoundary.end(); runner++) {
371 // Log() << Verbose(0) << " " << *runner->second;
372 // }
373 // Log() << Verbose(0) << endl;
374
375 // 3a. guess starting triangle
376 TesselStruct->GuessStartingTriangle();
377
378 // 3b. go through all lines, that are not yet part of two triangles (only of one so far)
379 TesselStruct->TesselateOnBoundary(mol);
380
381 // 3c. check whether all atoms lay inside the boundary, if not, add to boundary points, segment triangle into three with the new point
382 if (!TesselStruct->InsertStraddlingPoints(mol, LCList))
383 DoeLog(1) && (eLog()<< Verbose(1) << "Insertion of straddling points failed!" << endl);
384
385 DoLog(0) && (Log() << Verbose(0) << "I created " << TesselStruct->TrianglesOnBoundary.size() << " intermediate triangles with " << TesselStruct->LinesOnBoundary.size() << " lines and " << TesselStruct->PointsOnBoundary.size() << " points." << endl);
386
387 // 4. Store triangles in tecplot file
388 StoreTrianglesinFile(mol, TesselStruct, filename, "_intermed");
389
390 // 3d. check all baselines whether the peaks of the two adjacent triangles with respect to center of baseline are convex, if not, make the baseline between the two peaks and baseline endpoints become the new peaks
391 bool AllConvex = true;
392 class BoundaryLineSet *line = NULL;
393 do {
394 AllConvex = true;
395 for (LineMap::iterator LineRunner = TesselStruct->LinesOnBoundary.begin(); LineRunner != TesselStruct->LinesOnBoundary.end(); LineRunner++) {
396 line = LineRunner->second;
397 DoLog(1) && (Log() << Verbose(1) << "INFO: Current line is " << *line << "." << endl);
398 if (!line->CheckConvexityCriterion()) {
399 DoLog(1) && (Log() << Verbose(1) << "... line " << *line << " is concave, flipping it." << endl);
400
401 // flip the line
402 if (TesselStruct->PickFarthestofTwoBaselines(line) == 0.)
403 DoeLog(1) && (eLog()<< Verbose(1) << "Correction of concave baselines failed!" << endl);
404 else {
405 TesselStruct->FlipBaseline(line);
406 DoLog(1) && (Log() << Verbose(1) << "INFO: Correction of concave baselines worked." << endl);
407 LineRunner = TesselStruct->LinesOnBoundary.begin(); // LineRunner may have been erase if line was deleted from LinesOnBoundary
408 }
409 }
410 }
411 } while (!AllConvex);
412
413 // 3e. we need another correction here, for TesselPoints that are below the surface (i.e. have an odd number of concave triangles surrounding it)
414// if (!TesselStruct->CorrectConcaveTesselPoints(out))
415// Log() << Verbose(1) << "Correction of concave tesselpoints failed!" << endl;
416
417 DoLog(0) && (Log() << Verbose(0) << "I created " << TesselStruct->TrianglesOnBoundary.size() << " triangles with " << TesselStruct->LinesOnBoundary.size() << " lines and " << TesselStruct->PointsOnBoundary.size() << " points." << endl);
418
419 // 4. Store triangles in tecplot file
420 StoreTrianglesinFile(mol, TesselStruct, filename, "");
421
422 // free reference lists
423 if (BoundaryFreeFlag)
424 delete[] (BoundaryPoints);
425};
426
427/** For testing removes one boundary point after another to check for leaks.
428 * \param *out output stream for debugging
429 * \param *TesselStruct Tesselation containing envelope with boundary points
430 * \param *mol molecule
431 * \param *filename name of file
432 * \return true - all removed, false - something went wrong
433 */
434bool RemoveAllBoundaryPoints(class Tesselation *&TesselStruct, const molecule * const mol, const char * const filename)
435{
436 Info FunctionInfo(__func__);
437 int i=0;
438 char number[MAXSTRINGSIZE];
439
440 if ((TesselStruct == NULL) || (TesselStruct->PointsOnBoundary.empty())) {
441 DoeLog(1) && (eLog()<< Verbose(1) << "TesselStruct is empty." << endl);
442 return false;
443 }
444
445 PointMap::iterator PointRunner;
446 while (!TesselStruct->PointsOnBoundary.empty()) {
447 DoLog(1) && (Log() << Verbose(1) << "Remaining points are: ");
448 for (PointMap::iterator PointSprinter = TesselStruct->PointsOnBoundary.begin(); PointSprinter != TesselStruct->PointsOnBoundary.end(); PointSprinter++)
449 DoLog(0) && (Log() << Verbose(0) << *(PointSprinter->second) << "\t");
450 DoLog(0) && (Log() << Verbose(0) << endl);
451
452 PointRunner = TesselStruct->PointsOnBoundary.begin();
453 // remove point
454 TesselStruct->RemovePointFromTesselatedSurface(PointRunner->second);
455
456 // store envelope
457 sprintf(number, "-%04d", i++);
458 StoreTrianglesinFile(mol, (const Tesselation *&)TesselStruct, filename, number);
459 }
460
461 return true;
462};
463
464/** Creates a convex envelope from a given non-convex one.
465 * -# First step, remove concave spots, i.e. singular "dents"
466 * -# We go through all PointsOnBoundary.
467 * -# We CheckConvexityCriterion() for all its lines.
468 * -# If all its lines are concave, it cannot be on the convex envelope.
469 * -# Hence, we remove it and re-create all its triangles from its getCircleOfConnectedPoints()
470 * -# We calculate the additional volume.
471 * -# We go over all lines until none yields a concavity anymore.
472 * -# Second step, remove concave lines, i.e. line-shape "dents"
473 * -# We go through all LinesOnBoundary
474 * -# We CheckConvexityCriterion()
475 * -# If it returns concave, we flip the line in this quadrupel of points (abusing the degeneracy of the tesselation)
476 * -# We CheckConvexityCriterion(),
477 * -# if it's concave, we continue
478 * -# if not, we mark an error and stop
479 * Note: This routine - for free - calculates the difference in volume between convex and
480 * non-convex envelope, as the former is easy to calculate - VolumeOfConvexEnvelope() - it
481 * can be used to compute volumes of arbitrary shapes.
482 * \param *out output stream for debugging
483 * \param *TesselStruct non-convex envelope, is changed in return!
484 * \param *mol molecule
485 * \param *filename name of file
486 * \return volume difference between the non- and the created convex envelope
487 */
488double ConvexizeNonconvexEnvelope(class Tesselation *&TesselStruct, const molecule * const mol, const char * const filename)
489{
490 Info FunctionInfo(__func__);
491 double volume = 0;
492 class BoundaryPointSet *point = NULL;
493 class BoundaryLineSet *line = NULL;
494 bool Concavity = false;
495 char dummy[MAXSTRINGSIZE];
496 PointMap::iterator PointRunner;
497 PointMap::iterator PointAdvance;
498 LineMap::iterator LineRunner;
499 LineMap::iterator LineAdvance;
500 TriangleMap::iterator TriangleRunner;
501 TriangleMap::iterator TriangleAdvance;
502 int run = 0;
503
504 // check whether there is something to work on
505 if (TesselStruct == NULL) {
506 DoeLog(1) && (eLog()<< Verbose(1) << "TesselStruct is empty!" << endl);
507 return volume;
508 }
509
510 // First step: RemovePointFromTesselatedSurface
511 do {
512 Concavity = false;
513 sprintf(dummy, "-first-%d", run);
514 //CalculateConcavityPerBoundaryPoint(TesselStruct);
515 StoreTrianglesinFile(mol, (const Tesselation *&)TesselStruct, filename, dummy);
516
517 PointRunner = TesselStruct->PointsOnBoundary.begin();
518 PointAdvance = PointRunner; // we need an advanced point, as the PointRunner might get removed
519 while (PointRunner != TesselStruct->PointsOnBoundary.end()) {
520 PointAdvance++;
521 point = PointRunner->second;
522 DoLog(1) && (Log() << Verbose(1) << "INFO: Current point is " << *point << "." << endl);
523 for (LineMap::iterator LineRunner = point->lines.begin(); LineRunner != point->lines.end(); LineRunner++) {
524 line = LineRunner->second;
525 DoLog(1) && (Log() << Verbose(1) << "INFO: Current line of point " << *point << " is " << *line << "." << endl);
526 if (!line->CheckConvexityCriterion()) {
527 // remove the point if needed
528 DoLog(1) && (Log() << Verbose(1) << "... point " << *point << " cannot be on convex envelope." << endl);
529 volume += TesselStruct->RemovePointFromTesselatedSurface(point);
530 sprintf(dummy, "-first-%d", ++run);
531 StoreTrianglesinFile(mol, (const Tesselation *&)TesselStruct, filename, dummy);
532 Concavity = true;
533 break;
534 }
535 }
536 PointRunner = PointAdvance;
537 }
538
539 sprintf(dummy, "-second-%d", run);
540 //CalculateConcavityPerBoundaryPoint(TesselStruct);
541 StoreTrianglesinFile(mol, (const Tesselation *&)TesselStruct, filename, dummy);
542
543 // second step: PickFarthestofTwoBaselines
544 LineRunner = TesselStruct->LinesOnBoundary.begin();
545 LineAdvance = LineRunner; // we need an advanced line, as the LineRunner might get removed
546 while (LineRunner != TesselStruct->LinesOnBoundary.end()) {
547 LineAdvance++;
548 line = LineRunner->second;
549 DoLog(1) && (Log() << Verbose(1) << "INFO: Picking farthest baseline for line is " << *line << "." << endl);
550 // take highest of both lines
551 if (TesselStruct->IsConvexRectangle(line) == NULL) {
552 const double tmp = TesselStruct->PickFarthestofTwoBaselines(line);
553 volume += tmp;
554 if (tmp != 0.) {
555 TesselStruct->FlipBaseline(line);
556 Concavity = true;
557 }
558 }
559 LineRunner = LineAdvance;
560 }
561 run++;
562 } while (Concavity);
563 //CalculateConcavityPerBoundaryPoint(TesselStruct);
564 //StoreTrianglesinFile(mol, filename, "-third");
565
566 // third step: IsConvexRectangle
567// LineRunner = TesselStruct->LinesOnBoundary.begin();
568// LineAdvance = LineRunner; // we need an advanced line, as the LineRunner might get removed
569// while (LineRunner != TesselStruct->LinesOnBoundary.end()) {
570// LineAdvance++;
571// line = LineRunner->second;
572// Log() << Verbose(1) << "INFO: Current line is " << *line << "." << endl;
573// //if (LineAdvance != TesselStruct->LinesOnBoundary.end())
574// //Log() << Verbose(1) << "INFO: Next line will be " << *(LineAdvance->second) << "." << endl;
575// if (!line->CheckConvexityCriterion(out)) {
576// Log() << Verbose(1) << "... line " << *line << " is concave, flipping it." << endl;
577//
578// // take highest of both lines
579// point = TesselStruct->IsConvexRectangle(line);
580// if (point != NULL)
581// volume += TesselStruct->RemovePointFromTesselatedSurface(point);
582// }
583// LineRunner = LineAdvance;
584// }
585
586 CalculateConcavityPerBoundaryPoint(TesselStruct);
587 StoreTrianglesinFile(mol, (const Tesselation *&)TesselStruct, filename, "");
588
589 // end
590 DoLog(0) && (Log() << Verbose(0) << "Volume is " << volume << "." << endl);
591 return volume;
592};
593
594
595/** Determines the volume of a cluster.
596 * Determines first the convex envelope, then tesselates it and calculates its volume.
597 * \param *out output stream for debugging
598 * \param *TesselStruct Tesselation filled with points, lines and triangles on boundary on return
599 * \param *configuration needed for path to store convex envelope file
600 * \return determined volume of the cluster in cubed config:GetIsAngstroem()
601 */
602double VolumeOfConvexEnvelope(class Tesselation *TesselStruct, class config *configuration)
603{
604 Info FunctionInfo(__func__);
605 bool IsAngstroem = configuration->GetIsAngstroem();
606 double volume = 0.;
607 Vector x;
608 Vector y;
609
610 // 6a. Every triangle forms a pyramid with the center of gravity as its peak, sum up the volumes
611 for (TriangleMap::iterator runner = TesselStruct->TrianglesOnBoundary.begin(); runner != TesselStruct->TrianglesOnBoundary.end(); runner++)
612 { // go through every triangle, calculate volume of its pyramid with CoG as peak
613 x = runner->second->getEndpoint(0) - runner->second->getEndpoint(1);
614 y = runner->second->getEndpoint(0) - runner->second->getEndpoint(2);
615 const double a = x.Norm();
616 const double b = y.Norm();
617 const double c = runner->second->getEndpoint(2).distance(runner->second->getEndpoint(1));
618 const double G = sqrt(((a + b + c) * (a + b + c) - 2 * (a * a + b * b + c * c)) / 16.); // area of tesselated triangle
619 x = runner->second->getPlane().getNormal();
620 x.Scale(runner->second->getEndpoint(1).ScalarProduct(x));
621 const double h = x.Norm(); // distance of CoG to triangle
622 const double PyramidVolume = (1. / 3.) * G * h; // this formula holds for _all_ pyramids (independent of n-edge base or (not) centered peak)
623 Log() << Verbose(1) << "Area of triangle is " << setprecision(10) << G << " "
624 << (IsAngstroem ? "angstrom" : "atomiclength") << "^2, height is "
625 << h << " and the volume is " << PyramidVolume << " "
626 << (IsAngstroem ? "angstrom" : "atomiclength") << "^3." << endl;
627 volume += PyramidVolume;
628 }
629 Log() << Verbose(0) << "RESULT: The summed volume is " << setprecision(6)
630 << volume << " " << (IsAngstroem ? "angstrom" : "atomiclength") << "^3."
631 << endl;
632
633 return volume;
634};
635
636/** Stores triangles to file.
637 * \param *out output stream for debugging
638 * \param *mol molecule with atoms and bonds
639 * \param *TesselStruct Tesselation with boundary triangles
640 * \param *filename prefix of filename
641 * \param *extraSuffix intermediate suffix
642 */
643void StoreTrianglesinFile(const molecule * const mol, const Tesselation * const TesselStruct, const char *filename, const char *extraSuffix)
644{
645 Info FunctionInfo(__func__);
646 // 4. Store triangles in tecplot file
647 if (filename != NULL) {
648 if (DoTecplotOutput) {
649 string OutputName(filename);
650 OutputName.append(extraSuffix);
651 OutputName.append(TecplotSuffix);
652 ofstream *tecplot = new ofstream(OutputName.c_str());
653 WriteTecplotFile(tecplot, TesselStruct, mol, -1);
654 tecplot->close();
655 delete(tecplot);
656 }
657 if (DoRaster3DOutput) {
658 string OutputName(filename);
659 OutputName.append(extraSuffix);
660 OutputName.append(Raster3DSuffix);
661 ofstream *rasterplot = new ofstream(OutputName.c_str());
662 WriteRaster3dFile(rasterplot, TesselStruct, mol);
663 rasterplot->close();
664 delete(rasterplot);
665 }
666 }
667};
668
669/** Creates multiples of the by \a *mol given cluster and suspends them in water with a given final density.
670 * We get cluster volume by VolumeOfConvexEnvelope() and its diameters by GetDiametersOfCluster()
671 * TODO: Here, we need a VolumeOfGeneralEnvelope (i.e. non-convex one)
672 * \param *out output stream for debugging
673 * \param *configuration needed for path to store convex envelope file
674 * \param *mol molecule structure representing the cluster
675 * \param *&TesselStruct Tesselation structure with triangles on return
676 * \param ClusterVolume guesstimated cluster volume, if equal 0 we used VolumeOfConvexEnvelope() instead.
677 * \param celldensity desired average density in final cell
678 */
679void PrepareClustersinWater(config *configuration, molecule *mol, double ClusterVolume, double celldensity)
680{
681 Info FunctionInfo(__func__);
682 bool IsAngstroem = true;
683 double *GreatestDiameter = NULL;
684 Boundaries *BoundaryPoints = NULL;
685 class Tesselation *TesselStruct = NULL;
686 Vector BoxLengths;
687 int repetition[NDIM] = { 1, 1, 1 };
688 int TotalNoClusters = 1;
689 double totalmass = 0.;
690 double clustervolume = 0.;
691 double cellvolume = 0.;
692
693 // transform to PAS by Action
694 Vector MainAxis(0.,0.,1.);
695 MoleculeRotateToPrincipalAxisSystem(MainAxis);
696
697 IsAngstroem = configuration->GetIsAngstroem();
698 BoundaryPoints = GetBoundaryPoints(mol, TesselStruct);
699 GreatestDiameter = GetDiametersOfCluster(BoundaryPoints, mol, TesselStruct, IsAngstroem);
700 LinkedCell *LCList = new LinkedCell(*mol, 10.);
701 FindConvexBorder(mol, BoundaryPoints, TesselStruct, (const LinkedCell *&)LCList, NULL);
702 delete (LCList);
703 delete[] BoundaryPoints;
704
705
706 // some preparations beforehand
707 if (ClusterVolume == 0)
708 clustervolume = VolumeOfConvexEnvelope(TesselStruct, configuration);
709 else
710 clustervolume = ClusterVolume;
711
712 delete TesselStruct;
713
714 for (int i = 0; i < NDIM; i++)
715 TotalNoClusters *= repetition[i];
716
717 // sum up the atomic masses
718 for (molecule::const_iterator iter = mol->begin(); iter != mol->end(); ++iter) {
719 totalmass += (*iter)->getType()->getMass();
720 }
721 DoLog(0) && (Log() << Verbose(0) << "RESULT: The summed mass is " << setprecision(10) << totalmass << " atomicmassunit." << endl);
722 DoLog(0) && (Log() << Verbose(0) << "RESULT: The average density is " << setprecision(10) << totalmass / clustervolume << " atomicmassunit/" << (IsAngstroem ? "angstrom" : "atomiclength") << "^3." << endl);
723
724 // solve cubic polynomial
725 DoLog(1) && (Log() << Verbose(1) << "Solving equidistant suspension in water problem ..." << endl);
726 if (IsAngstroem)
727 cellvolume = (TotalNoClusters * totalmass / SOLVENTDENSITY_A - (totalmass / clustervolume)) / (celldensity - 1);
728 else
729 cellvolume = (TotalNoClusters * totalmass / SOLVENTDENSITY_a0 - (totalmass / clustervolume)) / (celldensity - 1);
730 DoLog(1) && (Log() << Verbose(1) << "Cellvolume needed for a density of " << celldensity << " g/cm^3 is " << cellvolume << " " << (IsAngstroem ? "angstrom" : "atomiclength") << "^3." << endl);
731
732 double minimumvolume = TotalNoClusters * (GreatestDiameter[0] * GreatestDiameter[1] * GreatestDiameter[2]);
733 DoLog(1) && (Log() << Verbose(1) << "Minimum volume of the convex envelope contained in a rectangular box is " << minimumvolume << " atomicmassunit/" << (IsAngstroem ? "angstrom" : "atomiclength") << "^3." << endl);
734 if (minimumvolume > cellvolume) {
735 DoeLog(1) && (eLog()<< Verbose(1) << "the containing box already has a greater volume than the envisaged cell volume!" << endl);
736 DoLog(0) && (Log() << Verbose(0) << "Setting Box dimensions to minimum possible, the greatest diameters." << endl);
737 for (int i = 0; i < NDIM; i++)
738 BoxLengths[i] = GreatestDiameter[i];
739 mol->CenterEdge(&BoxLengths);
740 } else {
741 BoxLengths[0] = (repetition[0] * GreatestDiameter[0] + repetition[1] * GreatestDiameter[1] + repetition[2] * GreatestDiameter[2]);
742 BoxLengths[1] = (repetition[0] * repetition[1] * GreatestDiameter[0] * GreatestDiameter[1] + repetition[0] * repetition[2] * GreatestDiameter[0] * GreatestDiameter[2] + repetition[1] * repetition[2] * GreatestDiameter[1] * GreatestDiameter[2]);
743 BoxLengths[2] = minimumvolume - cellvolume;
744 double x0 = 0.;
745 double x1 = 0.;
746 double x2 = 0.;
747 if (gsl_poly_solve_cubic(BoxLengths[0], BoxLengths[1], BoxLengths[2], &x0, &x1, &x2) == 1) // either 1 or 3 on return
748 DoLog(0) && (Log() << Verbose(0) << "RESULT: The resulting spacing is: " << x0 << " ." << endl);
749 else {
750 DoLog(0) && (Log() << Verbose(0) << "RESULT: The resulting spacings are: " << x0 << " and " << x1 << " and " << x2 << " ." << endl);
751 x0 = x2; // sorted in ascending order
752 }
753
754 cellvolume = 1.;
755 for (int i = 0; i < NDIM; i++) {
756 BoxLengths[i] = repetition[i] * (x0 + GreatestDiameter[i]);
757 cellvolume *= BoxLengths[i];
758 }
759
760 // set new box dimensions
761 DoLog(0) && (Log() << Verbose(0) << "Translating to box with these boundaries." << endl);
762 mol->SetBoxDimension(&BoxLengths);
763 mol->CenterInBox();
764 }
765 delete GreatestDiameter;
766 // update Box of atoms by boundary
767 mol->SetBoxDimension(&BoxLengths);
768 DoLog(0) && (Log() << Verbose(0) << "RESULT: The resulting cell dimensions are: " << BoxLengths[0] << " and " << BoxLengths[1] << " and " << BoxLengths[2] << " with total volume of " << cellvolume << " " << (IsAngstroem ? "angstrom" : "atomiclength") << "^3." << endl);
769};
770
771
772/** Fills the empty space around other molecules' surface of the simulation box with a filler.
773 * \param *out output stream for debugging
774 * \param *List list of molecules already present in box
775 * \param *TesselStruct contains tesselated surface
776 * \param *filler molecule which the box is to be filled with
777 * \param configuration contains box dimensions
778 * \param MaxDistance fills in molecules only up to this distance (set to -1 if whole of the domain)
779 * \param distance[NDIM] distance between filling molecules in each direction
780 * \param boundary length of boundary zone between molecule and filling mollecules
781 * \param epsilon distance to surface which is not filled
782 * \param RandAtomDisplacement maximum distance for random displacement per atom
783 * \param RandMolDisplacement maximum distance for random displacement per filler molecule
784 * \param DoRandomRotation true - do random rotiations, false - don't
785 * \return *mol pointer to new molecule with filled atoms
786 */
787molecule * FillBoxWithMolecule(MoleculeListClass *List, molecule *filler, config &configuration, const double MaxDistance, const double distance[NDIM], const double boundary, const double RandomAtomDisplacement, const double RandomMolDisplacement, const bool DoRandomRotation)
788{
789 Info FunctionInfo(__func__);
790 molecule *Filling = World::getInstance().createMolecule();
791 Vector CurrentPosition;
792 int N[NDIM];
793 int n[NDIM];
794 const RealSpaceMatrix &M = World::getInstance().getDomain().getM();
795 RealSpaceMatrix Rotations;
796 const RealSpaceMatrix &MInverse = World::getInstance().getDomain().getMinv();
797 Vector AtomTranslations;
798 Vector FillerTranslations;
799 Vector FillerDistance;
800 Vector Inserter;
801 double FillIt = false;
802 bond *Binder = NULL;
803 double phi[NDIM];
804 map<molecule *, Tesselation *> TesselStruct;
805 map<molecule *, LinkedCell *> LCList;
806
807 for (MoleculeList::iterator ListRunner = List->ListOfMolecules.begin(); ListRunner != List->ListOfMolecules.end(); ListRunner++)
808 if ((*ListRunner)->getAtomCount() > 0) {
809 DoLog(1) && (Log() << Verbose(1) << "Pre-creating linked cell lists for molecule " << *ListRunner << "." << endl);
810 LCList[(*ListRunner)] = new LinkedCell(*(*ListRunner), 10.); // get linked cell list
811 DoLog(1) && (Log() << Verbose(1) << "Pre-creating tesselation for molecule " << *ListRunner << "." << endl);
812 TesselStruct[(*ListRunner)] = NULL;
813 FindNonConvexBorder((*ListRunner), TesselStruct[(*ListRunner)], (const LinkedCell *&)LCList[(*ListRunner)], 5., NULL);
814 }
815
816 // Center filler at origin
817 filler->CenterEdge(&Inserter);
818 const int FillerCount = filler->getAtomCount();
819 DoLog(2) && (Log() << Verbose(2) << "INFO: Filler molecule has the following bonds:" << endl);
820 for(molecule::iterator AtomRunner = filler->begin(); AtomRunner != filler->end(); ++AtomRunner)
821 for(BondList::iterator BondRunner = (*AtomRunner)->ListOfBonds.begin(); BondRunner != (*AtomRunner)->ListOfBonds.end(); ++BondRunner)
822 if ((*BondRunner)->leftatom == *AtomRunner)
823 DoLog(2) && (Log() << Verbose(2) << " " << *(*BondRunner) << endl);
824
825 atom * CopyAtoms[FillerCount];
826
827 // calculate filler grid in [0,1]^3
828 FillerDistance = MInverse * Vector(distance[0], distance[1], distance[2]);
829 for(int i=0;i<NDIM;i++)
830 N[i] = (int) ceil(1./FillerDistance[i]);
831 DoLog(1) && (Log() << Verbose(1) << "INFO: Grid steps are " << N[0] << ", " << N[1] << ", " << N[2] << "." << endl);
832
833 // initialize seed of random number generator to current time
834 srand ( time(NULL) );
835
836 // go over [0,1]^3 filler grid
837 for (n[0] = 0; n[0] < N[0]; n[0]++)
838 for (n[1] = 0; n[1] < N[1]; n[1]++)
839 for (n[2] = 0; n[2] < N[2]; n[2]++) {
840 // calculate position of current grid vector in untransformed box
841 CurrentPosition = M * Vector((double)n[0]/(double)N[0], (double)n[1]/(double)N[1], (double)n[2]/(double)N[2]);
842 // create molecule random translation vector ...
843 for (int i=0;i<NDIM;i++)
844 FillerTranslations[i] = RandomMolDisplacement*(rand()/(RAND_MAX/2.) - 1.);
845 DoLog(2) && (Log() << Verbose(2) << "INFO: Current Position is " << CurrentPosition << "+" << FillerTranslations << "." << endl);
846
847 // go through all atoms
848 for (int i=0;i<FillerCount;i++)
849 CopyAtoms[i] = NULL;
850
851 // have same rotation angles for all molecule's atoms
852 if (DoRandomRotation)
853 for (int i=0;i<NDIM;i++)
854 phi[i] = rand()/(RAND_MAX/(2.*M_PI));
855
856 for(molecule::const_iterator iter = filler->begin(); iter !=filler->end();++iter){
857
858 // create atomic random translation vector ...
859 for (int i=0;i<NDIM;i++)
860 AtomTranslations[i] = RandomAtomDisplacement*(rand()/(RAND_MAX/2.) - 1.);
861
862 // ... and rotation matrix
863 if (DoRandomRotation) {
864 Rotations.set(0,0, cos(phi[0]) *cos(phi[2]) + (sin(phi[0])*sin(phi[1])*sin(phi[2])));
865 Rotations.set(0,1, sin(phi[0]) *cos(phi[2]) - (cos(phi[0])*sin(phi[1])*sin(phi[2])));
866 Rotations.set(0,2, cos(phi[1])*sin(phi[2]) );
867 Rotations.set(1,0, -sin(phi[0])*cos(phi[1]) );
868 Rotations.set(1,1, cos(phi[0])*cos(phi[1]) );
869 Rotations.set(1,2, sin(phi[1]) );
870 Rotations.set(2,0, -cos(phi[0]) *sin(phi[2]) + (sin(phi[0])*sin(phi[1])*cos(phi[2])));
871 Rotations.set(2,1, -sin(phi[0]) *sin(phi[2]) - (cos(phi[0])*sin(phi[1])*cos(phi[2])));
872 Rotations.set(2,2, cos(phi[1])*cos(phi[2]) );
873 }
874
875 // ... and put at new position
876 Inserter = (*iter)->getPosition();
877 if (DoRandomRotation)
878 Inserter *= Rotations;
879 Inserter += AtomTranslations + FillerTranslations + CurrentPosition;
880
881 // check whether inserter is inside box
882 Inserter *= MInverse;
883 FillIt = true;
884 for (int i=0;i<NDIM;i++)
885 FillIt = FillIt && (Inserter[i] >= -MYEPSILON) && ((Inserter[i]-1.) <= MYEPSILON);
886 Inserter *= M;
887
888 // Check whether point is in- or outside
889 for (MoleculeList::iterator ListRunner = List->ListOfMolecules.begin(); ListRunner != List->ListOfMolecules.end(); ListRunner++) {
890 // get linked cell list
891 if (TesselStruct[(*ListRunner)] != NULL) {
892 const double distance = (TesselStruct[(*ListRunner)]->GetDistanceToSurface(Inserter, LCList[(*ListRunner)]));
893 FillIt = FillIt && (distance > boundary) && ((MaxDistance < 0) || (MaxDistance > distance));
894 }
895 }
896 // insert into Filling
897 if (FillIt) {
898 DoLog(1) && (Log() << Verbose(1) << "INFO: Position at " << Inserter << " is outer point." << endl);
899 // copy atom ...
900 CopyAtoms[(*iter)->nr] = (*iter)->clone();
901 (*CopyAtoms[(*iter)->nr]).setPosition(Inserter);
902 Filling->AddAtom(CopyAtoms[(*iter)->nr]);
903 DoLog(1) && (Log() << Verbose(1) << "Filling atom " << **iter << ", translated to " << AtomTranslations << ", at final position is " << (CopyAtoms[(*iter)->nr]->getPosition()) << "." << endl);
904 } else {
905 DoLog(1) && (Log() << Verbose(1) << "INFO: Position at " << Inserter << " is inner point, within boundary or outside of MaxDistance." << endl);
906 CopyAtoms[(*iter)->nr] = NULL;
907 continue;
908 }
909 }
910 // go through all bonds and add as well
911 for(molecule::iterator AtomRunner = filler->begin(); AtomRunner != filler->end(); ++AtomRunner)
912 for(BondList::iterator BondRunner = (*AtomRunner)->ListOfBonds.begin(); BondRunner != (*AtomRunner)->ListOfBonds.end(); ++BondRunner)
913 if ((*BondRunner)->leftatom == *AtomRunner) {
914 Binder = (*BondRunner);
915 if ((CopyAtoms[Binder->leftatom->nr] != NULL) && (CopyAtoms[Binder->rightatom->nr] != NULL)) {
916 Log() << Verbose(3) << "Adding Bond between " << *CopyAtoms[Binder->leftatom->nr] << " and " << *CopyAtoms[Binder->rightatom->nr]<< "." << endl;
917 Filling->AddBond(CopyAtoms[Binder->leftatom->nr], CopyAtoms[Binder->rightatom->nr], Binder->BondDegree);
918 }
919 }
920 }
921 for (MoleculeList::iterator ListRunner = List->ListOfMolecules.begin(); ListRunner != List->ListOfMolecules.end(); ListRunner++) {
922 delete LCList[*ListRunner];
923 delete TesselStruct[(*ListRunner)];
924 }
925
926 return Filling;
927};
928
929/** Rotates given molecule \a Filling and moves its atoms according to given
930 * \a RandomAtomDisplacement.
931 *
932 * Note that for rotation to be sensible, the molecule should be centered at
933 * the origin. This is not done here!
934 *
935 * \param &Filling molecule whose atoms to displace
936 * \param RandomAtomDisplacement magnitude of random displacement
937 * \param &Rotations 3D rotation matrix (or unity if no rotation desired)
938 */
939void RandomizeMoleculePositions(
940 molecule *&Filling,
941 double RandomAtomDisplacement,
942 RealSpaceMatrix &Rotations
943 )
944{
945 Vector AtomTranslations;
946 for(molecule::iterator miter = Filling->begin(); miter != Filling->end(); ++miter) {
947 Vector temp = (*miter)->getPosition();
948 temp *= Rotations;
949 (*miter)->setPosition(temp);
950 // create atomic random translation vector ...
951 for (int i=0;i<NDIM;i++)
952 AtomTranslations[i] = RandomAtomDisplacement*(rand()/(RAND_MAX/2.) - 1.);
953 (*miter)->setPosition((*miter)->getPosition() + AtomTranslations);
954 }
955}
956
957/** Removes all atoms of a molecule outside.
958 *
959 * If the molecule is empty, it is removed as well.
960 *
961 * @param Filling molecule whose atoms to check, removed if eventually left
962 * empty.
963 */
964void RemoveAtomsOutsideDomain(molecule *&Filling)
965{
966 Box &Domain = World::getInstance().getDomain();
967 // check if all is still inside domain
968 for(molecule::iterator miter = Filling->begin(); miter != Filling->end(); ) {
969 // check whether each atom is inside box
970 if (!Domain.isInside((*miter)->getPosition())) {
971 atom *Walker = *miter;
972 ++miter;
973 World::getInstance().destroyAtom(Walker);
974 } else {
975 ++miter;
976 }
977 }
978 if (Filling->empty()) {
979 DoLog(0) && (Log() << Verbose(0) << "Removing molecule " << Filling->getName() << ", all atoms have been removed." << std::endl);
980 World::getInstance().destroyMolecule(Filling);
981 }
982}
983
984/** Checks whether there are no atoms inside a sphere around \a CurrentPosition
985 * except those atoms present in \a *filler.
986 * If filler is NULL, then we just call LinkedCell::GetPointsInsideSphere() and
987 * check whether the return list is empty.
988 * @param *filler
989 * @param boundary
990 * @param CurrentPosition
991 */
992bool isSpaceAroundPointVoid(
993 LinkedCell *LC,
994 molecule *filler,
995 const double boundary,
996 Vector &CurrentPosition)
997{
998 size_t compareTo = 0;
999 LinkedCell::LinkedNodes* liste = LC->GetPointsInsideSphere(boundary == 0. ? MYEPSILON : boundary, &CurrentPosition);
1000 if (filler != NULL) {
1001 for (LinkedCell::LinkedNodes::const_iterator iter = liste->begin();
1002 iter != liste->end();
1003 ++iter) {
1004 for (molecule::iterator miter = filler->begin();
1005 miter != filler->end();
1006 ++miter) {
1007 if (*iter == *miter)
1008 ++compareTo;
1009 }
1010 }
1011 }
1012 const bool result = (liste->size() == compareTo);
1013 if (!result) {
1014 DoLog(0) && (Log() << Verbose(0) << "Skipping because of the following atoms:" << std::endl);
1015 for (LinkedCell::LinkedNodes::const_iterator iter = liste->begin();
1016 iter != liste->end();
1017 ++iter) {
1018 DoLog(0) && (Log() << Verbose(0) << **iter << std::endl);
1019 }
1020 }
1021 delete(liste);
1022 return result;
1023}
1024
1025/** Fills the empty space of the simulation box with water.
1026 * \param *filler molecule which the box is to be filled with
1027 * \param configuration contains box dimensions
1028 * \param distance[NDIM] distance between filling molecules in each direction
1029 * \param boundary length of boundary zone between molecule and filling molecules
1030 * \param RandAtomDisplacement maximum distance for random displacement per atom
1031 * \param RandMolDisplacement maximum distance for random displacement per filler molecule
1032 * \param MinDistance minimum distance to boundary of domain and present molecules
1033 * \param DoRandomRotation true - do random rotations, false - don't
1034 */
1035void FillVoidWithMolecule(
1036 molecule *&filler,
1037 config &configuration,
1038 const double distance[NDIM],
1039 const double boundary,
1040 const double RandomAtomDisplacement,
1041 const double RandomMolDisplacement,
1042 const double MinDistance,
1043 const bool DoRandomRotation
1044 )
1045{
1046 Info FunctionInfo(__func__);
1047 molecule *Filling = NULL;
1048 Vector CurrentPosition;
1049 int N[NDIM];
1050 int n[NDIM];
1051 const RealSpaceMatrix &M = World::getInstance().getDomain().getM();
1052 RealSpaceMatrix Rotations;
1053 const RealSpaceMatrix &MInverse = World::getInstance().getDomain().getMinv();
1054 Vector FillerTranslations;
1055 Vector FillerDistance;
1056 Vector Inserter;
1057 double FillIt = false;
1058 Vector firstInserter;
1059 bool firstInsertion = true;
1060 const Box &Domain = World::getInstance().getDomain();
1061 map<molecule *, LinkedCell *> LCList;
1062 std::vector<molecule *> List = World::getInstance().getAllMolecules();
1063 MoleculeListClass *MolList = World::getInstance().getMolecules();
1064
1065 for (std::vector<molecule *>::iterator ListRunner = List.begin(); ListRunner != List.end(); ListRunner++)
1066 if ((*ListRunner)->getAtomCount() > 0) {
1067 DoLog(1) && (Log() << Verbose(1) << "Pre-creating linked cell lists for molecule " << *ListRunner << "." << endl);
1068 LCList[(*ListRunner)] = new LinkedCell(*(*ListRunner), 10.); // get linked cell list
1069 }
1070
1071 // Center filler at origin
1072 filler->CenterEdge(&Inserter);
1073 //const int FillerCount = filler->getAtomCount();
1074 DoLog(2) && (Log() << Verbose(2) << "INFO: Filler molecule has the following bonds:" << endl);
1075 for(molecule::iterator AtomRunner = filler->begin(); AtomRunner != filler->end(); ++AtomRunner)
1076 for(BondList::iterator BondRunner = (*AtomRunner)->ListOfBonds.begin(); BondRunner != (*AtomRunner)->ListOfBonds.end(); ++BondRunner)
1077 if ((*BondRunner)->leftatom == *AtomRunner)
1078 DoLog(2) && (Log() << Verbose(2) << " " << *(*BondRunner) << endl);
1079
1080 // calculate filler grid in [0,1]^3
1081 FillerDistance = MInverse * Vector(distance[0], distance[1], distance[2]);
1082 for(int i=0;i<NDIM;i++)
1083 N[i] = (int) ceil(1./FillerDistance[i]);
1084 DoLog(1) && (Log() << Verbose(1) << "INFO: Grid steps are " << N[0] << ", " << N[1] << ", " << N[2] << "." << endl);
1085
1086 // initialize seed of random number generator to current time
1087 srand ( time(NULL) );
1088
1089 // go over [0,1]^3 filler grid
1090 for (n[0] = 0; n[0] < N[0]; n[0]++)
1091 for (n[1] = 0; n[1] < N[1]; n[1]++)
1092 for (n[2] = 0; n[2] < N[2]; n[2]++) {
1093 // calculate position of current grid vector in untransformed box
1094 CurrentPosition = M * Vector((double)n[0]/(double)N[0], (double)n[1]/(double)N[1], (double)n[2]/(double)N[2]);
1095 // create molecule random translation vector ...
1096 for (int i=0;i<NDIM;i++)
1097 FillerTranslations[i] = RandomMolDisplacement*(rand()/(RAND_MAX/2.) - 1.);
1098 DoLog(2) && (Log() << Verbose(2) << "INFO: Current Position is " << CurrentPosition << "+" << FillerTranslations << "." << endl);
1099
1100 // ... and rotation matrix
1101 if (DoRandomRotation)
1102 Rotations.setRandomRotation();
1103 else
1104 Rotations.setIdentity();
1105
1106
1107 // Check whether there is anything too close by and whether atom is outside of domain
1108 FillIt = true;
1109 for (std::map<molecule *, LinkedCell *>::iterator ListRunner = LCList.begin(); ListRunner != LCList.end(); ++ListRunner) {
1110 FillIt = FillIt && isSpaceAroundPointVoid(
1111 ListRunner->second,
1112 (firstInsertion ? filler : NULL),
1113 boundary,
1114 CurrentPosition);
1115 FillIt = FillIt && (Domain.isInside(CurrentPosition))
1116 && ((Domain.DistanceToBoundary(CurrentPosition) - MinDistance) > -MYEPSILON);
1117 if (!FillIt)
1118 break;
1119 }
1120
1121 // insert into Filling
1122 if (FillIt) {
1123 Inserter = CurrentPosition + FillerTranslations;
1124 DoLog(1) && (Log() << Verbose(1) << "INFO: Position at " << Inserter << " is void point." << endl);
1125 // fill!
1126 if (firstInsertion) { // use filler as first molecule
1127 Filling = filler;
1128 firstInsertion = false;
1129 firstInserter = Inserter;
1130 } else { // copy from filler molecule
1131 Filling = filler->CopyMolecule();
1132 RandomizeMoleculePositions(Filling, RandomAtomDisplacement, Rotations);
1133 // translation
1134 Filling->Translate(&Inserter);
1135 // remove out-of-bounds atoms
1136 RemoveAtomsOutsideDomain(Filling);
1137 // TODO: Remove when World has no MoleculeListClass anymore
1138 MolList->insert(Filling);
1139 }
1140 } else {
1141 DoLog(1) && (Log() << Verbose(1) << "INFO: Position at " << Inserter << " is non-void point, within boundary or outside of MaxDistance." << endl);
1142 continue;
1143 }
1144 }
1145
1146 // have we inserted any molecules?
1147 if (firstInsertion) {
1148 // If not remove filler
1149 for(molecule::iterator miter = filler->begin(); !filler->empty(); miter = filler->begin()) {
1150 atom *Walker = *miter;
1151 filler->erase(Walker);
1152 World::getInstance().destroyAtom(Walker);
1153 }
1154 World::getInstance().destroyMolecule(filler);
1155 } else {
1156 // otherwise translate and randomize to final position
1157 if (DoRandomRotation)
1158 Rotations.setRandomRotation();
1159 else
1160 Rotations.setIdentity();
1161 RandomizeMoleculePositions(filler, RandomAtomDisplacement, Rotations);
1162 // translation
1163 filler->Translate(&firstInserter);
1164 // remove out-of-bounds atoms
1165 RemoveAtomsOutsideDomain(filler);
1166 }
1167
1168 DoLog(0) && (Log() << Verbose(0) << MolList->ListOfMolecules.size() << " molecules have been inserted." << std::endl);
1169
1170 for (std::map<molecule *, LinkedCell *>::iterator ListRunner = LCList.begin(); !LCList.empty(); ListRunner = LCList.begin()) {
1171 delete ListRunner->second;
1172 LCList.erase(ListRunner);
1173 }
1174};
1175
1176/** Tesselates the non convex boundary by rolling a virtual sphere along the surface of the molecule.
1177 * \param *out output stream for debugging
1178 * \param *mol molecule structure with Atom's and Bond's
1179 * \param *&TesselStruct Tesselation filled with points, lines and triangles on boundary on return
1180 * \param *&LCList atoms in LinkedCell list
1181 * \param RADIUS radius of the virtual sphere
1182 * \param *filename filename prefix for output of vertex data
1183 * \return true - tesselation successful, false - tesselation failed
1184 */
1185bool FindNonConvexBorder(const molecule* const mol, Tesselation *&TesselStruct, const LinkedCell *&LCList, const double RADIUS, const char *filename = NULL)
1186{
1187 Info FunctionInfo(__func__);
1188 bool freeLC = false;
1189 bool status = false;
1190 CandidateForTesselation *baseline = NULL;
1191 bool OneLoopWithoutSuccessFlag = true; // marks whether we went once through all baselines without finding any without two triangles
1192 bool TesselationFailFlag = false;
1193
1194 mol->getAtomCount();
1195
1196 if (TesselStruct == NULL) {
1197 DoLog(1) && (Log() << Verbose(1) << "Allocating Tesselation struct ..." << endl);
1198 TesselStruct= new Tesselation;
1199 } else {
1200 delete(TesselStruct);
1201 DoLog(1) && (Log() << Verbose(1) << "Re-Allocating Tesselation struct ..." << endl);
1202 TesselStruct = new Tesselation;
1203 }
1204
1205 // initialise Linked Cell
1206 if (LCList == NULL) {
1207 LCList = new LinkedCell(*mol, 2.*RADIUS);
1208 freeLC = true;
1209 }
1210
1211 // 1. get starting triangle
1212 if (!TesselStruct->FindStartingTriangle(RADIUS, LCList)) {
1213 DoeLog(0) && (eLog() << Verbose(0) << "No valid starting triangle found." << endl);
1214 //performCriticalExit();
1215 }
1216 if (filename != NULL) {
1217 if ((DoSingleStepOutput && ((TesselStruct->TrianglesOnBoundary.size() % SingleStepWidth == 0)))) { // if we have a new triangle and want to output each new triangle configuration
1218 TesselStruct->Output(filename, mol);
1219 }
1220 }
1221
1222 // 2. expand from there
1223 while ((!TesselStruct->OpenLines.empty()) && (OneLoopWithoutSuccessFlag)) {
1224 (cerr << "There are " << TesselStruct->TrianglesOnBoundary.size() << " triangles and " << TesselStruct->OpenLines.size() << " open lines to scan for candidates." << endl);
1225 // 2a. print OpenLines without candidates
1226 DoLog(1) && (Log() << Verbose(1) << "There are the following open lines to scan for a candidates:" << endl);
1227 for (CandidateMap::iterator Runner = TesselStruct->OpenLines.begin(); Runner != TesselStruct->OpenLines.end(); Runner++)
1228 if (Runner->second->pointlist.empty())
1229 DoLog(1) && (Log() << Verbose(1) << " " << *(Runner->second) << endl);
1230
1231 // 2b. find best candidate for each OpenLine
1232 TesselationFailFlag = TesselStruct->FindCandidatesforOpenLines(RADIUS, LCList);
1233
1234 // 2c. print OpenLines with candidates again
1235 DoLog(1) && (Log() << Verbose(1) << "There are " << TesselStruct->OpenLines.size() << " open lines to scan for the best candidates:" << endl);
1236 for (CandidateMap::iterator Runner = TesselStruct->OpenLines.begin(); Runner != TesselStruct->OpenLines.end(); Runner++)
1237 DoLog(1) && (Log() << Verbose(1) << " " << *(Runner->second) << endl);
1238
1239 // 2d. search for smallest ShortestAngle among all candidates
1240 double ShortestAngle = 4.*M_PI;
1241 for (CandidateMap::iterator Runner = TesselStruct->OpenLines.begin(); Runner != TesselStruct->OpenLines.end(); Runner++) {
1242 if (Runner->second->ShortestAngle < ShortestAngle) {
1243 baseline = Runner->second;
1244 ShortestAngle = baseline->ShortestAngle;
1245 DoLog(1) && (Log() << Verbose(1) << "New best candidate is " << *baseline->BaseLine << " with point " << *(*baseline->pointlist.begin()) << " and angle " << baseline->ShortestAngle << endl);
1246 }
1247 }
1248 // 2e. if we found one, add candidate
1249 if ((ShortestAngle == 4.*M_PI) || (baseline->pointlist.empty()))
1250 OneLoopWithoutSuccessFlag = false;
1251 else {
1252 TesselStruct->AddCandidatePolygon(*baseline, RADIUS, LCList);
1253 }
1254
1255 // 2f. write temporary envelope
1256 if (filename != NULL) {
1257 if ((DoSingleStepOutput && ((TesselStruct->TrianglesOnBoundary.size() % SingleStepWidth == 0)))) { // if we have a new triangle and want to output each new triangle configuration
1258 TesselStruct->Output(filename, mol);
1259 }
1260 }
1261 }
1262// // check envelope for consistency
1263// status = CheckListOfBaselines(TesselStruct);
1264//
1265// // look whether all points are inside of the convex envelope, otherwise add them via degenerated triangles
1266// //->InsertStraddlingPoints(mol, LCList);
1267// for (molecule::const_iterator iter = mol->begin(); iter != mol->end(); ++iter) {
1268// class TesselPoint *Runner = NULL;
1269// Runner = *iter;
1270// Log() << Verbose(1) << "Checking on " << Runner->Name << " ... " << endl;
1271// if (!->IsInnerPoint(Runner, LCList)) {
1272// Log() << Verbose(2) << Runner->Name << " is outside of envelope, adding via degenerated triangles." << endl;
1273// ->AddBoundaryPointByDegeneratedTriangle(Runner, LCList);
1274// } else {
1275// Log() << Verbose(2) << Runner->Name << " is inside of or on envelope." << endl;
1276// }
1277// }
1278
1279// // Purges surplus triangles.
1280// TesselStruct->RemoveDegeneratedTriangles();
1281//
1282// // check envelope for consistency
1283// status = CheckListOfBaselines(TesselStruct);
1284
1285 cout << "before correction" << endl;
1286
1287 // store before correction
1288 StoreTrianglesinFile(mol, TesselStruct, filename, "");
1289
1290// // correct degenerated polygons
1291// TesselStruct->CorrectAllDegeneratedPolygons();
1292//
1293// // check envelope for consistency
1294// status = CheckListOfBaselines(TesselStruct);
1295
1296 // write final envelope
1297 CalculateConcavityPerBoundaryPoint(TesselStruct);
1298 cout << "after correction" << endl;
1299 StoreTrianglesinFile(mol, TesselStruct, filename, "");
1300
1301 if (freeLC)
1302 delete(LCList);
1303
1304 return status;
1305};
1306
1307
1308/** Finds a hole of sufficient size in \a *mols to embed \a *srcmol into it.
1309 * \param *out output stream for debugging
1310 * \param *mols molecules in the domain to embed in between
1311 * \param *srcmol embedding molecule
1312 * \return *Vector new center of \a *srcmol for embedding relative to \a this
1313 */
1314Vector* FindEmbeddingHole(MoleculeListClass *mols, molecule *srcmol)
1315{
1316 Info FunctionInfo(__func__);
1317 Vector *Center = new Vector;
1318 Center->Zero();
1319 // calculate volume/shape of \a *srcmol
1320
1321 // find embedding holes
1322
1323 // if more than one, let user choose
1324
1325 // return embedding center
1326 return Center;
1327};
1328
Note: See TracBrowser for help on using the repository browser.