[6b919f8] | 1 | /*
|
---|
| 2 | * atom_trajectoryparticle.cpp
|
---|
| 3 | *
|
---|
| 4 | * Created on: Oct 19, 2009
|
---|
| 5 | * Author: heber
|
---|
| 6 | */
|
---|
| 7 |
|
---|
| 8 | #include "atom.hpp"
|
---|
| 9 | #include "atom_trajectoryparticle.hpp"
|
---|
| 10 | #include "config.hpp"
|
---|
| 11 | #include "element.hpp"
|
---|
[e138de] | 12 | #include "log.hpp"
|
---|
[6b919f8] | 13 | #include "parser.hpp"
|
---|
| 14 | #include "verbose.hpp"
|
---|
| 15 |
|
---|
| 16 | /** Constructor of class TrajectoryParticle.
|
---|
| 17 | */
|
---|
| 18 | TrajectoryParticle::TrajectoryParticle()
|
---|
| 19 | {
|
---|
| 20 | };
|
---|
| 21 |
|
---|
| 22 | /** Destructor of class TrajectoryParticle.
|
---|
| 23 | */
|
---|
| 24 | TrajectoryParticle::~TrajectoryParticle()
|
---|
| 25 | {
|
---|
| 26 | };
|
---|
| 27 |
|
---|
| 28 |
|
---|
| 29 | /** Adds kinetic energy of this atom to given temperature value.
|
---|
| 30 | * \param *temperature add on this value
|
---|
| 31 | * \param step given step of trajectory to add
|
---|
| 32 | */
|
---|
| 33 | void TrajectoryParticle::AddKineticToTemperature(double *temperature, int step) const
|
---|
| 34 | {
|
---|
| 35 | for (int i=NDIM;i--;)
|
---|
| 36 | *temperature += type->mass * Trajectory.U.at(step).x[i]* Trajectory.U.at(step).x[i];
|
---|
| 37 | };
|
---|
| 38 |
|
---|
| 39 | /** Evaluates some constraint potential if atom moves from \a startstep at once to \endstep in trajectory.
|
---|
| 40 | * \param startstep trajectory begins at
|
---|
| 41 | * \param endstep trajectory ends at
|
---|
| 42 | * \param **PermutationMap if atom switches places with some other atom, there is no translation but a permutaton noted here (not in the trajectories of ea
|
---|
| 43 | * \param *Force Force matrix to store result in
|
---|
| 44 | */
|
---|
[b453f9] | 45 | void TrajectoryParticle::EvaluateConstrainedForce(int startstep, int endstep, atom **PermutationMap, ForceMatrix *Force) const
|
---|
[6b919f8] | 46 | {
|
---|
| 47 | double constant = 10.;
|
---|
| 48 | TrajectoryParticle *Sprinter = PermutationMap[nr];
|
---|
| 49 | // set forces
|
---|
| 50 | for (int i=NDIM;i++;)
|
---|
| 51 | Force->Matrix[0][nr][5+i] += 2.*constant*sqrt(Trajectory.R.at(startstep).Distance(&Sprinter->Trajectory.R.at(endstep)));
|
---|
| 52 | };
|
---|
| 53 |
|
---|
| 54 | /** Correct velocity against the summed \a CoGVelocity for \a step.
|
---|
| 55 | * \param *ActualTemp sum up actual temperature meanwhile
|
---|
| 56 | * \param Step MD step in atom::Tracjetory
|
---|
| 57 | * \param *CoGVelocity remnant velocity (i.e. vector sum of all atom velocities)
|
---|
| 58 | */
|
---|
| 59 | void TrajectoryParticle::CorrectVelocity(double *ActualTemp, int Step, Vector *CoGVelocity)
|
---|
| 60 | {
|
---|
| 61 | for(int d=0;d<NDIM;d++) {
|
---|
| 62 | Trajectory.U.at(Step).x[d] -= CoGVelocity->x[d];
|
---|
| 63 | *ActualTemp += 0.5 * type->mass * Trajectory.U.at(Step).x[d] * Trajectory.U.at(Step).x[d];
|
---|
| 64 | }
|
---|
| 65 | };
|
---|
| 66 |
|
---|
| 67 | /** Extends the trajectory STL vector to the new size.
|
---|
| 68 | * Does nothing if \a MaxSteps is smaller than current size.
|
---|
| 69 | * \param MaxSteps
|
---|
| 70 | */
|
---|
| 71 | void TrajectoryParticle::ResizeTrajectory(int MaxSteps)
|
---|
| 72 | {
|
---|
| 73 | if (Trajectory.R.size() <= (unsigned int)(MaxSteps)) {
|
---|
[e138de] | 74 | //Log() << Verbose(0) << "Increasing size for trajectory array of " << keyword << " to " << (MaxSteps+1) << "." << endl;
|
---|
[6b919f8] | 75 | Trajectory.R.resize(MaxSteps+1);
|
---|
| 76 | Trajectory.U.resize(MaxSteps+1);
|
---|
| 77 | Trajectory.F.resize(MaxSteps+1);
|
---|
| 78 | }
|
---|
| 79 | };
|
---|
| 80 |
|
---|
| 81 | /** Copies a given trajectory step \a src onto another \a dest
|
---|
| 82 | * \param dest index of destination step
|
---|
| 83 | * \param src index of source step
|
---|
| 84 | */
|
---|
| 85 | void TrajectoryParticle::CopyStepOnStep(int dest, int src)
|
---|
| 86 | {
|
---|
| 87 | if (dest == src) // self assignment check
|
---|
| 88 | return;
|
---|
| 89 |
|
---|
| 90 | for (int n=NDIM;n--;) {
|
---|
| 91 | Trajectory.R.at(dest).x[n] = Trajectory.R.at(src).x[n];
|
---|
| 92 | Trajectory.U.at(dest).x[n] = Trajectory.U.at(src).x[n];
|
---|
| 93 | Trajectory.F.at(dest).x[n] = Trajectory.F.at(src).x[n];
|
---|
| 94 | }
|
---|
| 95 | };
|
---|
| 96 |
|
---|
| 97 | /** Performs a velocity verlet update of the trajectory.
|
---|
| 98 | * Parameters are according to those in configuration class.
|
---|
| 99 | * \param NextStep index of sequential step to set
|
---|
| 100 | * \param *configuration pointer to configuration with parameters
|
---|
| 101 | * \param *Force matrix with forces
|
---|
| 102 | */
|
---|
| 103 | void TrajectoryParticle::VelocityVerletUpdate(int NextStep, config *configuration, ForceMatrix *Force)
|
---|
| 104 | {
|
---|
| 105 | //a = configuration.Deltat*0.5/walker->type->mass; // (F+F_old)/2m = a and thus: v = (F+F_old)/2m * t = (F + F_old) * a
|
---|
| 106 | for (int d=0; d<NDIM; d++) {
|
---|
| 107 | Trajectory.F.at(NextStep).x[d] = -Force->Matrix[0][nr][d+5]*(configuration->GetIsAngstroem() ? AtomicLengthToAngstroem : 1.);
|
---|
| 108 | Trajectory.R.at(NextStep).x[d] = Trajectory.R.at(NextStep-1).x[d];
|
---|
| 109 | Trajectory.R.at(NextStep).x[d] += configuration->Deltat*(Trajectory.U.at(NextStep-1).x[d]); // s(t) = s(0) + v * deltat + 1/2 a * deltat^2
|
---|
| 110 | Trajectory.R.at(NextStep).x[d] += 0.5*configuration->Deltat*configuration->Deltat*(Trajectory.F.at(NextStep).x[d]/type->mass); // F = m * a and s =
|
---|
| 111 | }
|
---|
| 112 | // Update U
|
---|
| 113 | for (int d=0; d<NDIM; d++) {
|
---|
| 114 | Trajectory.U.at(NextStep).x[d] = Trajectory.U.at(NextStep-1).x[d];
|
---|
| 115 | Trajectory.U.at(NextStep).x[d] += configuration->Deltat * (Trajectory.F.at(NextStep).x[d]+Trajectory.F.at(NextStep-1).x[d]/type->mass); // v = F/m * t
|
---|
| 116 | }
|
---|
| 117 | // Update R (and F)
|
---|
| 118 | // out << "Integrated position&velocity of step " << (NextStep) << ": (";
|
---|
| 119 | // for (int d=0;d<NDIM;d++)
|
---|
| 120 | // out << Trajectory.R.at(NextStep).x[d] << " "; // next step
|
---|
| 121 | // out << ")\t(";
|
---|
| 122 | // for (int d=0;d<NDIM;d++)
|
---|
[e138de] | 123 | // Log() << Verbose(0) << Trajectory.U.at(NextStep).x[d] << " "; // next step
|
---|
[6b919f8] | 124 | // out << ")" << endl;
|
---|
| 125 | };
|
---|
| 126 |
|
---|
| 127 | /** Sums up mass and kinetics.
|
---|
| 128 | * \param Step step to sum for
|
---|
| 129 | * \param *TotalMass pointer to total mass sum
|
---|
| 130 | * \param *TotalVelocity pointer to tota velocity sum
|
---|
| 131 | */
|
---|
[b453f9] | 132 | void TrajectoryParticle::SumUpKineticEnergy( int Step, double *TotalMass, Vector *TotalVelocity ) const
|
---|
[6b919f8] | 133 | {
|
---|
| 134 | *TotalMass += type->mass; // sum up total mass
|
---|
| 135 | for(int d=0;d<NDIM;d++) {
|
---|
| 136 | TotalVelocity->x[d] += Trajectory.U.at(Step).x[d]*type->mass;
|
---|
| 137 | }
|
---|
| 138 | };
|
---|
| 139 |
|
---|
| 140 | /** Scales velocity of atom according to Woodcock thermostat.
|
---|
| 141 | * \param ScaleTempFactor factor to scale the velocities with (i.e. sqrt of energy scale factor)
|
---|
| 142 | * \param Step MD step to scale
|
---|
| 143 | * \param *ekin sum of kinetic energy
|
---|
| 144 | */
|
---|
| 145 | void TrajectoryParticle::Thermostat_Woodcock(double ScaleTempFactor, int Step, double *ekin)
|
---|
| 146 | {
|
---|
| 147 | double *U = Trajectory.U.at(Step).x;
|
---|
| 148 | if (FixedIon == 0) // even FixedIon moves, only not by other's forces
|
---|
| 149 | for (int d=0; d<NDIM; d++) {
|
---|
| 150 | U[d] *= ScaleTempFactor;
|
---|
| 151 | *ekin += 0.5*type->mass * U[d]*U[d];
|
---|
| 152 | }
|
---|
| 153 | };
|
---|
| 154 |
|
---|
| 155 | /** Scales velocity of atom according to Gaussian thermostat.
|
---|
| 156 | * \param Step MD step to scale
|
---|
| 157 | * \param *G
|
---|
| 158 | * \param *E
|
---|
| 159 | */
|
---|
| 160 | void TrajectoryParticle::Thermostat_Gaussian_init(int Step, double *G, double *E)
|
---|
| 161 | {
|
---|
| 162 | double *U = Trajectory.U.at(Step).x;
|
---|
| 163 | double *F = Trajectory.F.at(Step).x;
|
---|
| 164 | if (FixedIon == 0) // even FixedIon moves, only not by other's forces
|
---|
| 165 | for (int d=0; d<NDIM; d++) {
|
---|
| 166 | *G += U[d] * F[d];
|
---|
| 167 | *E += U[d]*U[d]*type->mass;
|
---|
| 168 | }
|
---|
| 169 | };
|
---|
| 170 |
|
---|
| 171 | /** Determines scale factors according to Gaussian thermostat.
|
---|
| 172 | * \param Step MD step to scale
|
---|
| 173 | * \param GE G over E ratio
|
---|
| 174 | * \param *ekin sum of kinetic energy
|
---|
| 175 | * \param *configuration configuration class with TempFrequency and TargetTemp
|
---|
| 176 | */
|
---|
| 177 | void TrajectoryParticle::Thermostat_Gaussian_least_constraint(int Step, double G_over_E, double *ekin, config *configuration)
|
---|
| 178 | {
|
---|
| 179 | double *U = Trajectory.U.at(Step).x;
|
---|
| 180 | if (FixedIon == 0) // even FixedIon moves, only not by other's forces
|
---|
| 181 | for (int d=0; d<NDIM; d++) {
|
---|
| 182 | U[d] += configuration->Deltat/type->mass * ( (G_over_E) * (U[d]*type->mass) );
|
---|
| 183 | *ekin += type->mass * U[d]*U[d];
|
---|
| 184 | }
|
---|
| 185 | };
|
---|
| 186 |
|
---|
| 187 | /** Scales velocity of atom according to Langevin thermostat.
|
---|
| 188 | * \param Step MD step to scale
|
---|
| 189 | * \param *r random number generator
|
---|
| 190 | * \param *ekin sum of kinetic energy
|
---|
| 191 | * \param *configuration configuration class with TempFrequency and TargetTemp
|
---|
| 192 | */
|
---|
| 193 | void TrajectoryParticle::Thermostat_Langevin(int Step, gsl_rng * r, double *ekin, config *configuration)
|
---|
| 194 | {
|
---|
| 195 | double sigma = sqrt(configuration->TargetTemp/type->mass); // sigma = (k_b T)/m (Hartree/atomicmass = atomiclength/atomictime)
|
---|
| 196 | double *U = Trajectory.U.at(Step).x;
|
---|
| 197 | if (FixedIon == 0) { // even FixedIon moves, only not by other's forces
|
---|
| 198 | // throw a dice to determine whether it gets hit by a heat bath particle
|
---|
| 199 | if (((((rand()/(double)RAND_MAX))*configuration->TempFrequency) < 1.)) {
|
---|
[e138de] | 200 | Log() << Verbose(3) << "Particle " << *this << " was hit (sigma " << sigma << "): " << sqrt(U[0]*U[0]+U[1]*U[1]+U[2]*U[2]) << " -> ";
|
---|
[6b919f8] | 201 | // pick three random numbers from a Boltzmann distribution around the desired temperature T for each momenta axis
|
---|
| 202 | for (int d=0; d<NDIM; d++) {
|
---|
| 203 | U[d] = gsl_ran_gaussian (r, sigma);
|
---|
| 204 | }
|
---|
[717e0c] | 205 | Log() << Verbose(2) << sqrt(U[0]*U[0]+U[1]*U[1]+U[2]*U[2]) << endl;
|
---|
[6b919f8] | 206 | }
|
---|
| 207 | for (int d=0; d<NDIM; d++)
|
---|
| 208 | *ekin += 0.5*type->mass * U[d]*U[d];
|
---|
| 209 | }
|
---|
| 210 | };
|
---|
| 211 |
|
---|
| 212 | /** Scales velocity of atom according to Berendsen thermostat.
|
---|
| 213 | * \param Step MD step to scale
|
---|
| 214 | * \param ScaleTempFactor factor to scale energy (not velocity!) with
|
---|
| 215 | * \param *ekin sum of kinetic energy
|
---|
| 216 | * \param *configuration configuration class with TempFrequency and Deltat
|
---|
| 217 | */
|
---|
| 218 | void TrajectoryParticle::Thermostat_Berendsen(int Step, double ScaleTempFactor, double *ekin, config *configuration)
|
---|
| 219 | {
|
---|
| 220 | double *U = Trajectory.U.at(Step).x;
|
---|
| 221 | if (FixedIon == 0) { // even FixedIon moves, only not by other's forces
|
---|
| 222 | for (int d=0; d<NDIM; d++) {
|
---|
| 223 | U[d] *= sqrt(1+(configuration->Deltat/configuration->TempFrequency)*(ScaleTempFactor-1));
|
---|
| 224 | *ekin += 0.5*type->mass * U[d]*U[d];
|
---|
| 225 | }
|
---|
| 226 | }
|
---|
| 227 | };
|
---|
| 228 |
|
---|
| 229 | /** Initializes current run of NoseHoover thermostat.
|
---|
| 230 | * \param Step MD step to scale
|
---|
| 231 | * \param *delta_alpha additional sum of kinetic energy on return
|
---|
| 232 | */
|
---|
| 233 | void TrajectoryParticle::Thermostat_NoseHoover_init(int Step, double *delta_alpha)
|
---|
| 234 | {
|
---|
| 235 | double *U = Trajectory.U.at(Step).x;
|
---|
| 236 | if (FixedIon == 0) { // even FixedIon moves, only not by other's forces
|
---|
| 237 | for (int d=0; d<NDIM; d++) {
|
---|
| 238 | *delta_alpha += U[d]*U[d]*type->mass;
|
---|
| 239 | }
|
---|
| 240 | }
|
---|
| 241 | };
|
---|
| 242 |
|
---|
| 243 | /** Initializes current run of NoseHoover thermostat.
|
---|
| 244 | * \param Step MD step to scale
|
---|
| 245 | * \param *ekin sum of kinetic energy
|
---|
| 246 | * \param *configuration configuration class with TempFrequency and Deltat
|
---|
| 247 | */
|
---|
| 248 | void TrajectoryParticle::Thermostat_NoseHoover_scale(int Step, double *ekin, config *configuration)
|
---|
| 249 | {
|
---|
| 250 | double *U = Trajectory.U.at(Step).x;
|
---|
| 251 | if (FixedIon == 0) { // even FixedIon moves, only not by other's forces
|
---|
| 252 | for (int d=0; d<NDIM; d++) {
|
---|
| 253 | U[d] += configuration->Deltat/type->mass * (configuration->alpha * (U[d] * type->mass));
|
---|
| 254 | *ekin += (0.5*type->mass) * U[d]*U[d];
|
---|
| 255 | }
|
---|
| 256 | }
|
---|
| 257 | };
|
---|