[bcf653] | 1 | /*
|
---|
| 2 | * Project: MoleCuilder
|
---|
| 3 | * Description: creates and alters molecular systems
|
---|
| 4 | * Copyright (C) 2010 University of Bonn. All rights reserved.
|
---|
| 5 | * Please see the LICENSE file or "Copyright notice" in builder.cpp for details.
|
---|
| 6 | */
|
---|
| 7 |
|
---|
[6f646d] | 8 | /*
|
---|
| 9 | * Line.cpp
|
---|
| 10 | *
|
---|
| 11 | * Created on: Apr 30, 2010
|
---|
| 12 | * Author: crueger
|
---|
| 13 | */
|
---|
| 14 |
|
---|
[bf3817] | 15 | // include config.h
|
---|
| 16 | #ifdef HAVE_CONFIG_H
|
---|
| 17 | #include <config.h>
|
---|
| 18 | #endif
|
---|
| 19 |
|
---|
[112b09] | 20 | #include "Helpers/MemDebug.hpp"
|
---|
| 21 |
|
---|
[57f243] | 22 | #include "LinearAlgebra/Line.hpp"
|
---|
[6f646d] | 23 |
|
---|
| 24 | #include <cmath>
|
---|
[a439e5] | 25 | #include <iostream>
|
---|
[6f646d] | 26 |
|
---|
[57f243] | 27 | #include "LinearAlgebra/Vector.hpp"
|
---|
[952f38] | 28 | #include "Helpers/Log.hpp"
|
---|
| 29 | #include "Helpers/Verbose.hpp"
|
---|
[57f243] | 30 | #include "LinearAlgebra/gslmatrix.hpp"
|
---|
[952f38] | 31 | #include "Helpers/Info.hpp"
|
---|
[45ef76] | 32 | #include "Exceptions/LinearDependenceException.hpp"
|
---|
| 33 | #include "Exceptions/SkewException.hpp"
|
---|
[57f243] | 34 | #include "LinearAlgebra/Plane.hpp"
|
---|
[6f646d] | 35 |
|
---|
[45ef76] | 36 | using namespace std;
|
---|
| 37 |
|
---|
| 38 | Line::Line(const Vector &_origin, const Vector &_direction) :
|
---|
[6f646d] | 39 | direction(new Vector(_direction))
|
---|
| 40 | {
|
---|
| 41 | direction->Normalize();
|
---|
[45ef76] | 42 | origin.reset(new Vector(_origin.partition(*direction).second));
|
---|
[6f646d] | 43 | }
|
---|
| 44 |
|
---|
[45ef76] | 45 | Line::Line(const Line &src) :
|
---|
| 46 | origin(new Vector(*src.origin)),
|
---|
| 47 | direction(new Vector(*src.direction))
|
---|
| 48 | {}
|
---|
| 49 |
|
---|
[6f646d] | 50 | Line::~Line()
|
---|
| 51 | {}
|
---|
| 52 |
|
---|
[41da13] | 53 | Line &Line::operator=(const Line& rhs){
|
---|
| 54 | if(this!=&rhs){
|
---|
| 55 | origin.reset(new Vector(*rhs.origin));
|
---|
| 56 | direction.reset(new Vector(*rhs.direction));
|
---|
| 57 | }
|
---|
| 58 | return *this;
|
---|
| 59 | }
|
---|
| 60 |
|
---|
[6f646d] | 61 |
|
---|
| 62 | double Line::distance(const Vector &point) const{
|
---|
[45ef76] | 63 | // get any vector from line to point
|
---|
| 64 | Vector helper = point - *origin;
|
---|
| 65 | // partition this vector along direction
|
---|
| 66 | // the residue points from the line to the point
|
---|
| 67 | return helper.partition(*direction).second.Norm();
|
---|
[6f646d] | 68 | }
|
---|
| 69 |
|
---|
| 70 | Vector Line::getClosestPoint(const Vector &point) const{
|
---|
[45ef76] | 71 | // get any vector from line to point
|
---|
| 72 | Vector helper = point - *origin;
|
---|
| 73 | // partition this vector along direction
|
---|
| 74 | // add only the part along the direction
|
---|
| 75 | return *origin + helper.partition(*direction).first;
|
---|
| 76 | }
|
---|
| 77 |
|
---|
| 78 | Vector Line::getDirection() const{
|
---|
| 79 | return *direction;
|
---|
| 80 | }
|
---|
| 81 |
|
---|
| 82 | Vector Line::getOrigin() const{
|
---|
| 83 | return *origin;
|
---|
| 84 | }
|
---|
| 85 |
|
---|
| 86 | vector<Vector> Line::getPointsOnLine() const{
|
---|
| 87 | vector<Vector> res;
|
---|
| 88 | res.reserve(2);
|
---|
| 89 | res.push_back(*origin);
|
---|
| 90 | res.push_back(*origin+*direction);
|
---|
| 91 | return res;
|
---|
| 92 | }
|
---|
| 93 |
|
---|
[643e76] | 94 | /** Calculates the intersection of the two lines that are both on the same plane.
|
---|
| 95 | * This is taken from Weisstein, Eric W. "Line-Line Intersection." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/Line-LineIntersection.html
|
---|
| 96 | * \param *out output stream for debugging
|
---|
| 97 | * \param *Line1a first vector of first line
|
---|
| 98 | * \param *Line1b second vector of first line
|
---|
| 99 | * \param *Line2a first vector of second line
|
---|
| 100 | * \param *Line2b second vector of second line
|
---|
| 101 | * \return true - \a this will contain the intersection on return, false - lines are parallel
|
---|
| 102 | */
|
---|
[45ef76] | 103 | Vector Line::getIntersection(const Line& otherLine) const{
|
---|
| 104 | Info FunctionInfo(__func__);
|
---|
| 105 |
|
---|
| 106 | pointset line1Points = getPointsOnLine();
|
---|
| 107 |
|
---|
| 108 | Vector Line1a = line1Points[0];
|
---|
| 109 | Vector Line1b = line1Points[1];
|
---|
| 110 |
|
---|
| 111 | pointset line2Points = otherLine.getPointsOnLine();
|
---|
| 112 |
|
---|
| 113 | Vector Line2a = line2Points[0];
|
---|
| 114 | Vector Line2b = line2Points[1];
|
---|
| 115 |
|
---|
| 116 | Vector res;
|
---|
| 117 |
|
---|
| 118 | auto_ptr<GSLMatrix> M = auto_ptr<GSLMatrix>(new GSLMatrix(4,4));
|
---|
| 119 |
|
---|
| 120 | M->SetAll(1.);
|
---|
| 121 | for (int i=0;i<3;i++) {
|
---|
| 122 | M->Set(0, i, Line1a[i]);
|
---|
| 123 | M->Set(1, i, Line1b[i]);
|
---|
| 124 | M->Set(2, i, Line2a[i]);
|
---|
| 125 | M->Set(3, i, Line2b[i]);
|
---|
| 126 | }
|
---|
| 127 |
|
---|
| 128 | //Log() << Verbose(1) << "Coefficent matrix is:" << endl;
|
---|
| 129 | //for (int i=0;i<4;i++) {
|
---|
| 130 | // for (int j=0;j<4;j++)
|
---|
| 131 | // cout << "\t" << M->Get(i,j);
|
---|
| 132 | // cout << endl;
|
---|
| 133 | //}
|
---|
| 134 | if (fabs(M->Determinant()) > MYEPSILON) {
|
---|
| 135 | Log() << Verbose(1) << "Determinant of coefficient matrix is NOT zero." << endl;
|
---|
| 136 | throw SkewException(__FILE__,__LINE__);
|
---|
| 137 | }
|
---|
| 138 |
|
---|
| 139 | Log() << Verbose(1) << "INFO: Line1a = " << Line1a << ", Line1b = " << Line1b << ", Line2a = " << Line2a << ", Line2b = " << Line2b << "." << endl;
|
---|
| 140 |
|
---|
| 141 |
|
---|
| 142 | // constuct a,b,c
|
---|
| 143 | Vector a = Line1b - Line1a;
|
---|
| 144 | Vector b = Line2b - Line2a;
|
---|
| 145 | Vector c = Line2a - Line1a;
|
---|
| 146 | Vector d = Line2b - Line1b;
|
---|
| 147 | Log() << Verbose(1) << "INFO: a = " << a << ", b = " << b << ", c = " << c << "." << endl;
|
---|
| 148 | if ((a.NormSquared() < MYEPSILON) || (b.NormSquared() < MYEPSILON)) {
|
---|
| 149 | res.Zero();
|
---|
| 150 | Log() << Verbose(1) << "At least one of the lines is ill-defined, i.e. offset equals second vector." << endl;
|
---|
| 151 | throw LinearDependenceException(__FILE__,__LINE__);
|
---|
| 152 | }
|
---|
| 153 |
|
---|
| 154 | // check for parallelity
|
---|
| 155 | Vector parallel;
|
---|
| 156 | double factor = 0.;
|
---|
| 157 | if (fabs(a.ScalarProduct(b)*a.ScalarProduct(b)/a.NormSquared()/b.NormSquared() - 1.) < MYEPSILON) {
|
---|
| 158 | parallel = Line1a - Line2a;
|
---|
| 159 | factor = parallel.ScalarProduct(a)/a.Norm();
|
---|
| 160 | if ((factor >= -MYEPSILON) && (factor - 1. < MYEPSILON)) {
|
---|
| 161 | res = Line2a;
|
---|
| 162 | Log() << Verbose(1) << "Lines conincide." << endl;
|
---|
| 163 | return res;
|
---|
| 164 | } else {
|
---|
| 165 | parallel = Line1a - Line2b;
|
---|
| 166 | factor = parallel.ScalarProduct(a)/a.Norm();
|
---|
| 167 | if ((factor >= -MYEPSILON) && (factor - 1. < MYEPSILON)) {
|
---|
| 168 | res = Line2b;
|
---|
| 169 | Log() << Verbose(1) << "Lines conincide." << endl;
|
---|
| 170 | return res;
|
---|
| 171 | }
|
---|
| 172 | }
|
---|
| 173 | Log() << Verbose(1) << "Lines are parallel." << endl;
|
---|
| 174 | res.Zero();
|
---|
| 175 | throw LinearDependenceException(__FILE__,__LINE__);
|
---|
| 176 | }
|
---|
| 177 |
|
---|
| 178 | // obtain s
|
---|
| 179 | double s;
|
---|
| 180 | Vector temp1, temp2;
|
---|
| 181 | temp1 = c;
|
---|
| 182 | temp1.VectorProduct(b);
|
---|
| 183 | temp2 = a;
|
---|
| 184 | temp2.VectorProduct(b);
|
---|
| 185 | Log() << Verbose(1) << "INFO: temp1 = " << temp1 << ", temp2 = " << temp2 << "." << endl;
|
---|
| 186 | if (fabs(temp2.NormSquared()) > MYEPSILON)
|
---|
| 187 | s = temp1.ScalarProduct(temp2)/temp2.NormSquared();
|
---|
| 188 | else
|
---|
| 189 | s = 0.;
|
---|
| 190 | Log() << Verbose(1) << "Factor s is " << temp1.ScalarProduct(temp2) << "/" << temp2.NormSquared() << " = " << s << "." << endl;
|
---|
| 191 |
|
---|
| 192 | // construct intersection
|
---|
| 193 | res = a;
|
---|
| 194 | res.Scale(s);
|
---|
| 195 | res += Line1a;
|
---|
| 196 | Log() << Verbose(1) << "Intersection is at " << res << "." << endl;
|
---|
| 197 |
|
---|
| 198 | return res;
|
---|
| 199 | }
|
---|
| 200 |
|
---|
[42a101] | 201 | /** Rotates the vector by an angle of \a alpha around this line.
|
---|
| 202 | * \param rhs Vector to rotate
|
---|
| 203 | * \param alpha rotation angle in radian
|
---|
| 204 | */
|
---|
| 205 | Vector Line::rotateVector(const Vector &rhs, double alpha) const{
|
---|
| 206 | Vector helper = rhs;
|
---|
| 207 |
|
---|
| 208 | // translate the coordinate system so that the line goes through (0,0,0)
|
---|
| 209 | helper -= *origin;
|
---|
| 210 |
|
---|
| 211 | // partition the vector into a part that gets rotated and a part that lies along the line
|
---|
| 212 | pair<Vector,Vector> parts = helper.partition(*direction);
|
---|
| 213 |
|
---|
| 214 | // we just keep anything that is along the axis
|
---|
| 215 | Vector res = parts.first;
|
---|
| 216 |
|
---|
| 217 | // the rest has to be rotated
|
---|
| 218 | Vector a = parts.second;
|
---|
| 219 | // we only have to do the rest, if we actually could partition the vector
|
---|
| 220 | if(!a.IsZero()){
|
---|
| 221 | // construct a vector that is orthogonal to a and direction and has length |a|
|
---|
| 222 | Vector y = a;
|
---|
| 223 | // direction is normalized, so the result has length |a|
|
---|
| 224 | y.VectorProduct(*direction);
|
---|
| 225 |
|
---|
| 226 | res += cos(alpha) * a + sin(alpha) * y;
|
---|
| 227 | }
|
---|
| 228 |
|
---|
| 229 | // translate the coordinate system back
|
---|
| 230 | res += *origin;
|
---|
| 231 | return res;
|
---|
| 232 | }
|
---|
| 233 |
|
---|
[b59648] | 234 | Line Line::rotateLine(const Line &rhs, double alpha) const{
|
---|
| 235 | Vector lineOrigin = rotateVector(rhs.getOrigin(),alpha);
|
---|
| 236 | Vector helper = rhs.getDirection();
|
---|
| 237 | // rotate the direction without considering the ofset
|
---|
| 238 | pair<Vector,Vector> parts = helper.partition(*direction);
|
---|
| 239 | Vector lineDirection = parts.first;
|
---|
| 240 | Vector a = parts.second;
|
---|
| 241 | if(!a.IsZero()){
|
---|
| 242 | // construct a vector that is orthogonal to a and direction and has length |a|
|
---|
| 243 | Vector y = a;
|
---|
| 244 | // direction is normalized, so the result has length |a|
|
---|
| 245 | y.VectorProduct(*direction);
|
---|
| 246 |
|
---|
| 247 | lineDirection += cos(alpha) * a + sin(alpha) * y;
|
---|
| 248 | }
|
---|
| 249 | return Line(lineOrigin,lineDirection);
|
---|
| 250 | }
|
---|
| 251 |
|
---|
[69baa4] | 252 | Plane Line::rotatePlane(const Plane &rhs, double alpha) const{
|
---|
| 253 | vector<Vector> points = rhs.getPointsOnPlane();
|
---|
| 254 | transform(points.begin(),
|
---|
| 255 | points.end(),
|
---|
| 256 | points.begin(),
|
---|
| 257 | boost::bind(&Line::rotateVector,this,_1,alpha));
|
---|
| 258 | return Plane(points[0],points[1],points[2]);
|
---|
| 259 | }
|
---|
| 260 |
|
---|
[5589858] | 261 | Plane Line::getOrthogonalPlane(const Vector &origin) const{
|
---|
| 262 | return Plane(getDirection(),origin);
|
---|
| 263 | }
|
---|
| 264 |
|
---|
[f932b7] | 265 | std::vector<Vector> Line::getSphereIntersections() const{
|
---|
| 266 | std::vector<Vector> res;
|
---|
| 267 |
|
---|
| 268 | // line is kept in normalized form, so we can skip a lot of calculations
|
---|
| 269 | double discriminant = 1-origin->NormSquared();
|
---|
| 270 | // we might have 2, 1 or 0 solutions, depending on discriminant
|
---|
| 271 | if(discriminant>=0){
|
---|
| 272 | if(discriminant==0){
|
---|
| 273 | res.push_back(*origin);
|
---|
| 274 | }
|
---|
| 275 | else{
|
---|
| 276 | Vector helper = sqrt(discriminant)*(*direction);
|
---|
| 277 | res.push_back(*origin+helper);
|
---|
| 278 | res.push_back(*origin-helper);
|
---|
| 279 | }
|
---|
| 280 | }
|
---|
| 281 | return res;
|
---|
| 282 | }
|
---|
| 283 |
|
---|
[6256f5] | 284 | LinePoint Line::getLinePoint(const Vector &point) const{
|
---|
| 285 | ASSERT(isContained(point),"Line point queried for point not on line");
|
---|
| 286 | Vector helper = point - (*origin);
|
---|
| 287 | double param = helper.ScalarProduct(*direction);
|
---|
| 288 | return LinePoint(*this,param);
|
---|
| 289 | }
|
---|
| 290 |
|
---|
| 291 | LinePoint Line::posEndpoint() const{
|
---|
| 292 | return LinePoint(*this, numeric_limits<double>::infinity());
|
---|
| 293 | }
|
---|
| 294 | LinePoint Line::negEndpoint() const{
|
---|
| 295 | return LinePoint(*this,-numeric_limits<double>::infinity());
|
---|
| 296 | }
|
---|
| 297 |
|
---|
[82cf79] | 298 | bool operator==(const Line &x,const Line &y){
|
---|
| 299 | return *x.origin == *y.origin && *x.direction == *y.direction;
|
---|
| 300 | }
|
---|
| 301 |
|
---|
[45ef76] | 302 | Line makeLineThrough(const Vector &x1, const Vector &x2){
|
---|
| 303 | if(x1==x2){
|
---|
| 304 | throw LinearDependenceException(__FILE__,__LINE__);
|
---|
| 305 | }
|
---|
| 306 | return Line(x1,x1-x2);
|
---|
[6f646d] | 307 | }
|
---|
[6256f5] | 308 |
|
---|
| 309 | /******************************** Points on the line ********************/
|
---|
| 310 |
|
---|
| 311 | LinePoint::LinePoint(const LinePoint &src) :
|
---|
| 312 | line(src.line),param(src.param)
|
---|
| 313 | {}
|
---|
| 314 |
|
---|
| 315 | LinePoint::LinePoint(const Line &_line, double _param) :
|
---|
| 316 | line(_line),param(_param)
|
---|
| 317 | {}
|
---|
| 318 |
|
---|
| 319 | LinePoint& LinePoint::operator=(const LinePoint &src){
|
---|
[40196a] | 320 | line=src.line;
|
---|
[6256f5] | 321 | param=src.param;
|
---|
| 322 | return *this;
|
---|
| 323 | }
|
---|
| 324 |
|
---|
| 325 | Vector LinePoint::getPoint() const{
|
---|
| 326 | ASSERT(!isInfinite(),"getPoint() on infinite LinePoint called");
|
---|
| 327 | return (*line.origin)+param*(*line.direction);
|
---|
| 328 | }
|
---|
| 329 |
|
---|
| 330 | Line LinePoint::getLine() const{
|
---|
| 331 | return line;
|
---|
| 332 | }
|
---|
| 333 |
|
---|
| 334 | bool LinePoint::isInfinite() const{
|
---|
| 335 | return isPosInfinity() || isNegInfinity();
|
---|
| 336 | }
|
---|
| 337 | bool LinePoint::isPosInfinity() const{
|
---|
| 338 | return param == numeric_limits<double>::infinity();
|
---|
| 339 | }
|
---|
| 340 | bool LinePoint::isNegInfinity() const{
|
---|
| 341 | return param ==-numeric_limits<double>::infinity();
|
---|
| 342 | }
|
---|
| 343 |
|
---|
| 344 | bool operator==(const LinePoint &x, const LinePoint &y){
|
---|
| 345 | ASSERT(x.line==y.line,"Operation on two points of different lines");
|
---|
| 346 | return x.param == y.param;
|
---|
| 347 |
|
---|
| 348 | }
|
---|
| 349 | bool operator<(const LinePoint &x, const LinePoint &y){
|
---|
| 350 | ASSERT(x.line==y.line,"Operation on two points of different lines");
|
---|
| 351 | return x.param<y.param;
|
---|
| 352 | }
|
---|
[6c438f] | 353 |
|
---|
[e0ba10] | 354 | ostream& operator<<(ostream& ost, const Line& m)
|
---|
| 355 | {
|
---|
| 356 | const Vector origin = m.getOrigin();
|
---|
| 357 | const Vector direction = m.getDirection();
|
---|
| 358 | ost << "(";
|
---|
| 359 | for (int i=0;i<NDIM;i++) {
|
---|
| 360 | ost << origin[i];
|
---|
| 361 | if (i != 2)
|
---|
| 362 | ost << ",";
|
---|
| 363 | }
|
---|
| 364 | ost << ") -> (";
|
---|
| 365 | for (int i=0;i<NDIM;i++) {
|
---|
| 366 | ost << direction[i];
|
---|
| 367 | if (i != 2)
|
---|
| 368 | ost << ",";
|
---|
| 369 | }
|
---|
| 370 | ost << ")";
|
---|
| 371 | return ost;
|
---|
| 372 | };
|
---|
| 373 |
|
---|