1 | /*
|
---|
2 | * Project: MoleCuilder
|
---|
3 | * Description: creates and alters molecular systems
|
---|
4 | * Copyright (C) 2010 University of Bonn. All rights reserved.
|
---|
5 | * Please see the LICENSE file or "Copyright notice" in builder.cpp for details.
|
---|
6 | */
|
---|
7 |
|
---|
8 | /*
|
---|
9 | * Line.cpp
|
---|
10 | *
|
---|
11 | * Created on: Apr 30, 2010
|
---|
12 | * Author: crueger
|
---|
13 | */
|
---|
14 |
|
---|
15 | // include config.h
|
---|
16 | #ifdef HAVE_CONFIG_H
|
---|
17 | #include <config.h>
|
---|
18 | #endif
|
---|
19 |
|
---|
20 | #include "Helpers/MemDebug.hpp"
|
---|
21 |
|
---|
22 | #include "LinearAlgebra/Line.hpp"
|
---|
23 |
|
---|
24 | #include <cmath>
|
---|
25 | #include <iostream>
|
---|
26 |
|
---|
27 | #include "LinearAlgebra/Vector.hpp"
|
---|
28 | #include "Helpers/Log.hpp"
|
---|
29 | #include "Helpers/Verbose.hpp"
|
---|
30 | #include "LinearAlgebra/gslmatrix.hpp"
|
---|
31 | #include "Helpers/Info.hpp"
|
---|
32 | #include "Exceptions/LinearDependenceException.hpp"
|
---|
33 | #include "Exceptions/SkewException.hpp"
|
---|
34 | #include "LinearAlgebra/Plane.hpp"
|
---|
35 |
|
---|
36 | using namespace std;
|
---|
37 |
|
---|
38 | Line::Line(const Vector &_origin, const Vector &_direction) :
|
---|
39 | direction(new Vector(_direction))
|
---|
40 | {
|
---|
41 | direction->Normalize();
|
---|
42 | origin.reset(new Vector(_origin.partition(*direction).second));
|
---|
43 | }
|
---|
44 |
|
---|
45 | Line::Line(const Line &src) :
|
---|
46 | origin(new Vector(*src.origin)),
|
---|
47 | direction(new Vector(*src.direction))
|
---|
48 | {}
|
---|
49 |
|
---|
50 | Line::~Line()
|
---|
51 | {}
|
---|
52 |
|
---|
53 | Line &Line::operator=(const Line& rhs){
|
---|
54 | if(this!=&rhs){
|
---|
55 | origin.reset(new Vector(*rhs.origin));
|
---|
56 | direction.reset(new Vector(*rhs.direction));
|
---|
57 | }
|
---|
58 | return *this;
|
---|
59 | }
|
---|
60 |
|
---|
61 |
|
---|
62 | double Line::distance(const Vector &point) const{
|
---|
63 | // get any vector from line to point
|
---|
64 | Vector helper = point - *origin;
|
---|
65 | // partition this vector along direction
|
---|
66 | // the residue points from the line to the point
|
---|
67 | return helper.partition(*direction).second.Norm();
|
---|
68 | }
|
---|
69 |
|
---|
70 | Vector Line::getClosestPoint(const Vector &point) const{
|
---|
71 | // get any vector from line to point
|
---|
72 | Vector helper = point - *origin;
|
---|
73 | // partition this vector along direction
|
---|
74 | // add only the part along the direction
|
---|
75 | return *origin + helper.partition(*direction).first;
|
---|
76 | }
|
---|
77 |
|
---|
78 | Vector Line::getDirection() const{
|
---|
79 | return *direction;
|
---|
80 | }
|
---|
81 |
|
---|
82 | Vector Line::getOrigin() const{
|
---|
83 | return *origin;
|
---|
84 | }
|
---|
85 |
|
---|
86 | vector<Vector> Line::getPointsOnLine() const{
|
---|
87 | vector<Vector> res;
|
---|
88 | res.reserve(2);
|
---|
89 | res.push_back(*origin);
|
---|
90 | res.push_back(*origin+*direction);
|
---|
91 | return res;
|
---|
92 | }
|
---|
93 |
|
---|
94 | /** Calculates the intersection of the two lines that are both on the same plane.
|
---|
95 | * This is taken from Weisstein, Eric W. "Line-Line Intersection." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/Line-LineIntersection.html
|
---|
96 | * \param *out output stream for debugging
|
---|
97 | * \param *Line1a first vector of first line
|
---|
98 | * \param *Line1b second vector of first line
|
---|
99 | * \param *Line2a first vector of second line
|
---|
100 | * \param *Line2b second vector of second line
|
---|
101 | * \return true - \a this will contain the intersection on return, false - lines are parallel
|
---|
102 | */
|
---|
103 | Vector Line::getIntersection(const Line& otherLine) const{
|
---|
104 | Info FunctionInfo(__func__);
|
---|
105 |
|
---|
106 | pointset line1Points = getPointsOnLine();
|
---|
107 |
|
---|
108 | Vector Line1a = line1Points[0];
|
---|
109 | Vector Line1b = line1Points[1];
|
---|
110 |
|
---|
111 | pointset line2Points = otherLine.getPointsOnLine();
|
---|
112 |
|
---|
113 | Vector Line2a = line2Points[0];
|
---|
114 | Vector Line2b = line2Points[1];
|
---|
115 |
|
---|
116 | Vector res;
|
---|
117 |
|
---|
118 | auto_ptr<GSLMatrix> M = auto_ptr<GSLMatrix>(new GSLMatrix(4,4));
|
---|
119 |
|
---|
120 | M->SetAll(1.);
|
---|
121 | for (int i=0;i<3;i++) {
|
---|
122 | M->Set(0, i, Line1a[i]);
|
---|
123 | M->Set(1, i, Line1b[i]);
|
---|
124 | M->Set(2, i, Line2a[i]);
|
---|
125 | M->Set(3, i, Line2b[i]);
|
---|
126 | }
|
---|
127 |
|
---|
128 | //Log() << Verbose(1) << "Coefficent matrix is:" << endl;
|
---|
129 | //for (int i=0;i<4;i++) {
|
---|
130 | // for (int j=0;j<4;j++)
|
---|
131 | // cout << "\t" << M->Get(i,j);
|
---|
132 | // cout << endl;
|
---|
133 | //}
|
---|
134 | if (fabs(M->Determinant()) > MYEPSILON) {
|
---|
135 | Log() << Verbose(1) << "Determinant of coefficient matrix is NOT zero." << endl;
|
---|
136 | throw SkewException(__FILE__,__LINE__);
|
---|
137 | }
|
---|
138 |
|
---|
139 | Log() << Verbose(1) << "INFO: Line1a = " << Line1a << ", Line1b = " << Line1b << ", Line2a = " << Line2a << ", Line2b = " << Line2b << "." << endl;
|
---|
140 |
|
---|
141 |
|
---|
142 | // constuct a,b,c
|
---|
143 | Vector a = Line1b - Line1a;
|
---|
144 | Vector b = Line2b - Line2a;
|
---|
145 | Vector c = Line2a - Line1a;
|
---|
146 | Vector d = Line2b - Line1b;
|
---|
147 | Log() << Verbose(1) << "INFO: a = " << a << ", b = " << b << ", c = " << c << "." << endl;
|
---|
148 | if ((a.NormSquared() < MYEPSILON) || (b.NormSquared() < MYEPSILON)) {
|
---|
149 | res.Zero();
|
---|
150 | Log() << Verbose(1) << "At least one of the lines is ill-defined, i.e. offset equals second vector." << endl;
|
---|
151 | throw LinearDependenceException(__FILE__,__LINE__);
|
---|
152 | }
|
---|
153 |
|
---|
154 | // check for parallelity
|
---|
155 | Vector parallel;
|
---|
156 | double factor = 0.;
|
---|
157 | if (fabs(a.ScalarProduct(b)*a.ScalarProduct(b)/a.NormSquared()/b.NormSquared() - 1.) < MYEPSILON) {
|
---|
158 | parallel = Line1a - Line2a;
|
---|
159 | factor = parallel.ScalarProduct(a)/a.Norm();
|
---|
160 | if ((factor >= -MYEPSILON) && (factor - 1. < MYEPSILON)) {
|
---|
161 | res = Line2a;
|
---|
162 | Log() << Verbose(1) << "Lines conincide." << endl;
|
---|
163 | return res;
|
---|
164 | } else {
|
---|
165 | parallel = Line1a - Line2b;
|
---|
166 | factor = parallel.ScalarProduct(a)/a.Norm();
|
---|
167 | if ((factor >= -MYEPSILON) && (factor - 1. < MYEPSILON)) {
|
---|
168 | res = Line2b;
|
---|
169 | Log() << Verbose(1) << "Lines conincide." << endl;
|
---|
170 | return res;
|
---|
171 | }
|
---|
172 | }
|
---|
173 | Log() << Verbose(1) << "Lines are parallel." << endl;
|
---|
174 | res.Zero();
|
---|
175 | throw LinearDependenceException(__FILE__,__LINE__);
|
---|
176 | }
|
---|
177 |
|
---|
178 | // obtain s
|
---|
179 | double s;
|
---|
180 | Vector temp1, temp2;
|
---|
181 | temp1 = c;
|
---|
182 | temp1.VectorProduct(b);
|
---|
183 | temp2 = a;
|
---|
184 | temp2.VectorProduct(b);
|
---|
185 | Log() << Verbose(1) << "INFO: temp1 = " << temp1 << ", temp2 = " << temp2 << "." << endl;
|
---|
186 | if (fabs(temp2.NormSquared()) > MYEPSILON)
|
---|
187 | s = temp1.ScalarProduct(temp2)/temp2.NormSquared();
|
---|
188 | else
|
---|
189 | s = 0.;
|
---|
190 | Log() << Verbose(1) << "Factor s is " << temp1.ScalarProduct(temp2) << "/" << temp2.NormSquared() << " = " << s << "." << endl;
|
---|
191 |
|
---|
192 | // construct intersection
|
---|
193 | res = a;
|
---|
194 | res.Scale(s);
|
---|
195 | res += Line1a;
|
---|
196 | Log() << Verbose(1) << "Intersection is at " << res << "." << endl;
|
---|
197 |
|
---|
198 | return res;
|
---|
199 | }
|
---|
200 |
|
---|
201 | /** Rotates the vector by an angle of \a alpha around this line.
|
---|
202 | * \param rhs Vector to rotate
|
---|
203 | * \param alpha rotation angle in radian
|
---|
204 | */
|
---|
205 | Vector Line::rotateVector(const Vector &rhs, double alpha) const{
|
---|
206 | Vector helper = rhs;
|
---|
207 |
|
---|
208 | // translate the coordinate system so that the line goes through (0,0,0)
|
---|
209 | helper -= *origin;
|
---|
210 |
|
---|
211 | // partition the vector into a part that gets rotated and a part that lies along the line
|
---|
212 | pair<Vector,Vector> parts = helper.partition(*direction);
|
---|
213 |
|
---|
214 | // we just keep anything that is along the axis
|
---|
215 | Vector res = parts.first;
|
---|
216 |
|
---|
217 | // the rest has to be rotated
|
---|
218 | Vector a = parts.second;
|
---|
219 | // we only have to do the rest, if we actually could partition the vector
|
---|
220 | if(!a.IsZero()){
|
---|
221 | // construct a vector that is orthogonal to a and direction and has length |a|
|
---|
222 | Vector y = a;
|
---|
223 | // direction is normalized, so the result has length |a|
|
---|
224 | y.VectorProduct(*direction);
|
---|
225 |
|
---|
226 | res += cos(alpha) * a + sin(alpha) * y;
|
---|
227 | }
|
---|
228 |
|
---|
229 | // translate the coordinate system back
|
---|
230 | res += *origin;
|
---|
231 | return res;
|
---|
232 | }
|
---|
233 |
|
---|
234 | Line Line::rotateLine(const Line &rhs, double alpha) const{
|
---|
235 | Vector lineOrigin = rotateVector(rhs.getOrigin(),alpha);
|
---|
236 | Vector helper = rhs.getDirection();
|
---|
237 | // rotate the direction without considering the ofset
|
---|
238 | pair<Vector,Vector> parts = helper.partition(*direction);
|
---|
239 | Vector lineDirection = parts.first;
|
---|
240 | Vector a = parts.second;
|
---|
241 | if(!a.IsZero()){
|
---|
242 | // construct a vector that is orthogonal to a and direction and has length |a|
|
---|
243 | Vector y = a;
|
---|
244 | // direction is normalized, so the result has length |a|
|
---|
245 | y.VectorProduct(*direction);
|
---|
246 |
|
---|
247 | lineDirection += cos(alpha) * a + sin(alpha) * y;
|
---|
248 | }
|
---|
249 | return Line(lineOrigin,lineDirection);
|
---|
250 | }
|
---|
251 |
|
---|
252 | Plane Line::rotatePlane(const Plane &rhs, double alpha) const{
|
---|
253 | vector<Vector> points = rhs.getPointsOnPlane();
|
---|
254 | transform(points.begin(),
|
---|
255 | points.end(),
|
---|
256 | points.begin(),
|
---|
257 | boost::bind(&Line::rotateVector,this,_1,alpha));
|
---|
258 | return Plane(points[0],points[1],points[2]);
|
---|
259 | }
|
---|
260 |
|
---|
261 | Plane Line::getOrthogonalPlane(const Vector &origin) const{
|
---|
262 | return Plane(getDirection(),origin);
|
---|
263 | }
|
---|
264 |
|
---|
265 | std::vector<Vector> Line::getSphereIntersections() const{
|
---|
266 | std::vector<Vector> res;
|
---|
267 |
|
---|
268 | // line is kept in normalized form, so we can skip a lot of calculations
|
---|
269 | double discriminant = 1-origin->NormSquared();
|
---|
270 | // we might have 2, 1 or 0 solutions, depending on discriminant
|
---|
271 | if(discriminant>=0){
|
---|
272 | if(discriminant==0){
|
---|
273 | res.push_back(*origin);
|
---|
274 | }
|
---|
275 | else{
|
---|
276 | Vector helper = sqrt(discriminant)*(*direction);
|
---|
277 | res.push_back(*origin+helper);
|
---|
278 | res.push_back(*origin-helper);
|
---|
279 | }
|
---|
280 | }
|
---|
281 | return res;
|
---|
282 | }
|
---|
283 |
|
---|
284 | LinePoint Line::getLinePoint(const Vector &point) const{
|
---|
285 | ASSERT(isContained(point),"Line point queried for point not on line");
|
---|
286 | Vector helper = point - (*origin);
|
---|
287 | double param = helper.ScalarProduct(*direction);
|
---|
288 | return LinePoint(*this,param);
|
---|
289 | }
|
---|
290 |
|
---|
291 | LinePoint Line::posEndpoint() const{
|
---|
292 | return LinePoint(*this, numeric_limits<double>::infinity());
|
---|
293 | }
|
---|
294 | LinePoint Line::negEndpoint() const{
|
---|
295 | return LinePoint(*this,-numeric_limits<double>::infinity());
|
---|
296 | }
|
---|
297 |
|
---|
298 | bool operator==(const Line &x,const Line &y){
|
---|
299 | return *x.origin == *y.origin && *x.direction == *y.direction;
|
---|
300 | }
|
---|
301 |
|
---|
302 | Line makeLineThrough(const Vector &x1, const Vector &x2){
|
---|
303 | if(x1==x2){
|
---|
304 | throw LinearDependenceException(__FILE__,__LINE__);
|
---|
305 | }
|
---|
306 | return Line(x1,x1-x2);
|
---|
307 | }
|
---|
308 |
|
---|
309 | /******************************** Points on the line ********************/
|
---|
310 |
|
---|
311 | LinePoint::LinePoint(const LinePoint &src) :
|
---|
312 | line(src.line),param(src.param)
|
---|
313 | {}
|
---|
314 |
|
---|
315 | LinePoint::LinePoint(const Line &_line, double _param) :
|
---|
316 | line(_line),param(_param)
|
---|
317 | {}
|
---|
318 |
|
---|
319 | LinePoint& LinePoint::operator=(const LinePoint &src){
|
---|
320 | line=src.line;
|
---|
321 | param=src.param;
|
---|
322 | return *this;
|
---|
323 | }
|
---|
324 |
|
---|
325 | Vector LinePoint::getPoint() const{
|
---|
326 | ASSERT(!isInfinite(),"getPoint() on infinite LinePoint called");
|
---|
327 | return (*line.origin)+param*(*line.direction);
|
---|
328 | }
|
---|
329 |
|
---|
330 | Line LinePoint::getLine() const{
|
---|
331 | return line;
|
---|
332 | }
|
---|
333 |
|
---|
334 | bool LinePoint::isInfinite() const{
|
---|
335 | return isPosInfinity() || isNegInfinity();
|
---|
336 | }
|
---|
337 | bool LinePoint::isPosInfinity() const{
|
---|
338 | return param == numeric_limits<double>::infinity();
|
---|
339 | }
|
---|
340 | bool LinePoint::isNegInfinity() const{
|
---|
341 | return param ==-numeric_limits<double>::infinity();
|
---|
342 | }
|
---|
343 |
|
---|
344 | bool operator==(const LinePoint &x, const LinePoint &y){
|
---|
345 | ASSERT(x.line==y.line,"Operation on two points of different lines");
|
---|
346 | return x.param == y.param;
|
---|
347 |
|
---|
348 | }
|
---|
349 | bool operator<(const LinePoint &x, const LinePoint &y){
|
---|
350 | ASSERT(x.line==y.line,"Operation on two points of different lines");
|
---|
351 | return x.param<y.param;
|
---|
352 | }
|
---|
353 |
|
---|
354 | ostream& operator<<(ostream& ost, const Line& m)
|
---|
355 | {
|
---|
356 | const Vector origin = m.getOrigin();
|
---|
357 | const Vector direction = m.getDirection();
|
---|
358 | ost << "(";
|
---|
359 | for (int i=0;i<NDIM;i++) {
|
---|
360 | ost << origin[i];
|
---|
361 | if (i != 2)
|
---|
362 | ost << ",";
|
---|
363 | }
|
---|
364 | ost << ") -> (";
|
---|
365 | for (int i=0;i<NDIM;i++) {
|
---|
366 | ost << direction[i];
|
---|
367 | if (i != 2)
|
---|
368 | ost << ",";
|
---|
369 | }
|
---|
370 | ost << ")";
|
---|
371 | return ost;
|
---|
372 | };
|
---|
373 |
|
---|