source: molecuilder/src/boundary.cpp@ 41c2f1

Last change on this file since 41c2f1 was 7fcea6, checked in by Frederik Heber <heber@…>, 17 years ago

Smaller fixes

CreateClustersinWater is now PrepareClustersinWater (as actual suspension is done in VMD still)
BoundaryPoints can be returned or not in VolumeOfConvexEnvelope

  • Property mode set to 100644
File size: 45.0 KB
Line 
1#include "molecules.hpp"
2#include "boundary.hpp"
3
4// ======================================== Points on Boundary =================================
5
6BoundaryPointSet::BoundaryPointSet()
7{
8 LinesCount = 0;
9 Nr = -1;
10};
11
12BoundaryPointSet::BoundaryPointSet(atom *Walker)
13{
14 node = Walker;
15 LinesCount = 0;
16 Nr = Walker->nr;
17};
18
19BoundaryPointSet::~BoundaryPointSet()
20{
21 cout << Verbose(5) << "Erasing point nr. " << Nr << "." << endl;
22 node = NULL;
23};
24
25void BoundaryPointSet::AddLine(class BoundaryLineSet *line)
26{
27 cout << Verbose(6) << "Adding line " << *line << " to " << *this << "." << endl;
28 if (line->endpoints[0] == this) {
29 lines.insert ( LinePair( line->endpoints[1]->Nr, line) );
30 } else {
31 lines.insert ( LinePair( line->endpoints[0]->Nr, line) );
32 }
33 LinesCount++;
34};
35
36ostream & operator << (ostream &ost, BoundaryPointSet &a)
37{
38 ost << "[" << a.Nr << "|" << a.node->Name << "]";
39 return ost;
40};
41
42// ======================================== Lines on Boundary =================================
43
44BoundaryLineSet::BoundaryLineSet()
45{
46 for (int i=0;i<2;i++)
47 endpoints[i] = NULL;
48 TrianglesCount = 0;
49 Nr = -1;
50};
51
52BoundaryLineSet::BoundaryLineSet(class BoundaryPointSet *Point[2], int number)
53{
54 // set number
55 Nr = number;
56 // set endpoints in ascending order
57 SetEndpointsOrdered(endpoints, Point[0], Point[1]);
58 // add this line to the hash maps of both endpoints
59 Point[0]->AddLine(this);
60 Point[1]->AddLine(this);
61 // clear triangles list
62 TrianglesCount = 0;
63 cout << Verbose(5) << "New Line with endpoints " << *this << "." << endl;
64};
65
66BoundaryLineSet::~BoundaryLineSet()
67{
68 for (int i=0;i<2;i++) {
69 cout << Verbose(5) << "Erasing Line Nr. " << Nr << " in boundary point " << *endpoints[i] << "." << endl;
70 endpoints[i]->lines.erase(Nr);
71 LineMap::iterator tester = endpoints[i]->lines.begin();
72 tester++;
73 if (tester == endpoints[i]->lines.end()) {
74 cout << Verbose(5) << *endpoints[i] << " has no more lines it's attached to, erasing." << endl;
75 delete(endpoints[i]);
76 } else
77 cout << Verbose(5) << *endpoints[i] << " has still lines it's attached to." << endl;
78 }
79};
80
81void BoundaryLineSet::AddTriangle(class BoundaryTriangleSet *triangle)
82{
83 cout << Verbose(6) << "Add " << triangle->Nr << " to line " << *this << "." << endl;
84 triangles.insert ( TrianglePair( TrianglesCount, triangle) );
85 TrianglesCount++;
86};
87
88ostream & operator << (ostream &ost, BoundaryLineSet &a)
89{
90 ost << "[" << a.Nr << "|" << a.endpoints[0]->node->Name << "," << a.endpoints[1]->node->Name << "]";
91 return ost;
92};
93
94// ======================================== Triangles on Boundary =================================
95
96
97BoundaryTriangleSet::BoundaryTriangleSet()
98{
99 for (int i=0;i<3;i++) {
100 endpoints[i] = NULL;
101 lines[i] = NULL;
102 }
103 Nr = -1;
104};
105
106BoundaryTriangleSet::BoundaryTriangleSet(class BoundaryLineSet *line[3], int number)
107{
108 // set number
109 Nr = number;
110 // set lines
111 cout << Verbose(5) << "New triangle " << Nr << ":" << endl;
112 for (int i=0;i<3;i++) {
113 lines[i] = line[i];
114 lines[i]->AddTriangle(this);
115 }
116 // get ascending order of endpoints
117 map <int, class BoundaryPointSet * > OrderMap;
118 for(int i=0;i<3;i++) // for all three lines
119 for (int j=0;j<2;j++) { // for both endpoints
120 OrderMap.insert ( pair <int, class BoundaryPointSet * >( line[i]->endpoints[j]->Nr, line[i]->endpoints[j]) );
121 // and we don't care whether insertion fails
122 }
123 // set endpoints
124 int Counter = 0;
125 cout << Verbose(6) << " with end points ";
126 for (map <int, class BoundaryPointSet * >::iterator runner = OrderMap.begin(); runner != OrderMap.end(); runner++) {
127 endpoints[Counter] = runner->second;
128 cout << " " << *endpoints[Counter];
129 Counter++;
130 }
131 if (Counter < 3) {
132 cerr << "ERROR! We have a triangle with only two distinct endpoints!" << endl;
133 //exit(1);
134 }
135 cout << "." << endl;
136};
137
138BoundaryTriangleSet::~BoundaryTriangleSet()
139{
140 for (int i=0;i<3;i++) {
141 cout << Verbose(5) << "Erasing triangle Nr." << Nr << endl;
142 lines[i]->triangles.erase(Nr);
143 TriangleMap::iterator tester = lines[i]->triangles.begin();
144 tester++;
145 if (tester == lines[i]->triangles.end()) {
146 cout << Verbose(5) << *lines[i] << " is no more attached to any triangle, erasing." << endl;
147 delete(lines[i]);
148 } else
149 cout << Verbose(5) << *lines[i] << " is still attached to a triangle." << endl;
150 }
151};
152
153void BoundaryTriangleSet::GetNormalVector(vector &NormalVector)
154{
155 // get normal vector
156 NormalVector.MakeNormalVector(&endpoints[0]->node->x, &endpoints[1]->node->x, &endpoints[2]->node->x);
157
158 // make it always point inward (any offset vector onto plane projected onto normal vector suffices)
159 if (endpoints[0]->node->x.Projection(&NormalVector) > 0)
160 NormalVector.Scale(-1.);
161};
162
163ostream & operator << (ostream &ost, BoundaryTriangleSet &a)
164{
165 ost << "[" << a.Nr << "|" << a.endpoints[0]->node->Name << "," << a.endpoints[1]->node->Name << "," << a.endpoints[2]->node->Name << "]";
166 return ost;
167};
168
169// ========================================== F U N C T I O N S =================================
170
171/** Finds the endpoint two lines are sharing.
172 * \param *line1 first line
173 * \param *line2 second line
174 * \return point which is shared or NULL if none
175 */
176class BoundaryPointSet * GetCommonEndpoint(class BoundaryLineSet * line1, class BoundaryLineSet * line2)
177{
178 class BoundaryLineSet * lines[2] = {line1, line2};
179 class BoundaryPointSet *node = NULL;
180 map <int, class BoundaryPointSet * > OrderMap;
181 pair < map <int, class BoundaryPointSet * >::iterator, bool > OrderTest;
182 for(int i=0;i<2;i++) // for both lines
183 for (int j=0;j<2;j++) { // for both endpoints
184 OrderTest = OrderMap.insert ( pair <int, class BoundaryPointSet * >( lines[i]->endpoints[j]->Nr, lines[i]->endpoints[j]) );
185 if (!OrderTest.second) { // if insertion fails, we have common endpoint
186 node = OrderTest.first->second;
187 cout << Verbose(5) << "Common endpoint of lines " << *line1 << " and " << *line2 << " is: " << *node << "." << endl;
188 j=2;
189 i=2;
190 break;
191 }
192 }
193 return node;
194};
195
196/** Determines the boundary points of a cluster.
197 * Does a projection per axis onto the orthogonal plane, transforms into spherical coordinates, sorts them by the angle
198 * and looks at triples: if the middle has less a distance than the allowed maximum height of the triangle formed by the plane's
199 * center and first and last point in the triple, it is thrown out.
200 * \param *out output stream for debugging
201 * \param *mol molecule structure representing the cluster
202 */
203Boundaries * GetBoundaryPoints(ofstream *out, molecule *mol)
204{
205 atom *Walker = NULL;
206 PointMap PointsOnBoundary;
207 LineMap LinesOnBoundary;
208 TriangleMap TrianglesOnBoundary;
209
210 *out << Verbose(1) << "Finding all boundary points." << endl;
211 Boundaries *BoundaryPoints = new Boundaries [NDIM]; // first is alpha, second is (r, nr)
212 BoundariesTestPair BoundaryTestPair;
213 vector AxisVector, AngleReferenceVector, AngleReferenceNormalVector;
214 double radius, angle;
215 // 3a. Go through every axis
216 for (int axis=0; axis<NDIM; axis++) {
217 AxisVector.Zero();
218 AngleReferenceVector.Zero();
219 AngleReferenceNormalVector.Zero();
220 AxisVector.x[axis] = 1.;
221 AngleReferenceVector.x[(axis+1)%NDIM] = 1.;
222 AngleReferenceNormalVector.x[(axis+2)%NDIM] = 1.;
223 // *out << Verbose(1) << "Axisvector is ";
224 // AxisVector.Output(out);
225 // *out << " and AngleReferenceVector is ";
226 // AngleReferenceVector.Output(out);
227 // *out << "." << endl;
228 // *out << " and AngleReferenceNormalVector is ";
229 // AngleReferenceNormalVector.Output(out);
230 // *out << "." << endl;
231 // 3b. construct set of all points, transformed into cylindrical system and with left and right neighbours
232 Walker = mol->start;
233 while (Walker->next != mol->end) {
234 Walker = Walker->next;
235 vector ProjectedVector;
236 ProjectedVector.CopyVector(&Walker->x);
237 ProjectedVector.ProjectOntoPlane(&AxisVector);
238 // correct for negative side
239 //if (Projection(y) < 0)
240 //angle = 2.*M_PI - angle;
241 radius = ProjectedVector.Norm();
242 if (fabs(radius) > MYEPSILON)
243 angle = ProjectedVector.Angle(&AngleReferenceVector);
244 else
245 angle = 0.; // otherwise it's a vector in Axis Direction and unimportant for boundary issues
246
247 //*out << "Checking sign in quadrant : " << ProjectedVector.Projection(&AngleReferenceNormalVector) << "." << endl;
248 if (ProjectedVector.Projection(&AngleReferenceNormalVector) > 0) {
249 angle = 2.*M_PI - angle;
250 }
251 //*out << Verbose(2) << "Inserting " << *Walker << ": (r, alpha) = (" << radius << "," << angle << "): ";
252 //ProjectedVector.Output(out);
253 //*out << endl;
254 BoundaryTestPair = BoundaryPoints[axis].insert( BoundariesPair (angle, DistanceNrPair (radius, Walker) ) );
255 if (BoundaryTestPair.second) { // successfully inserted
256 } else { // same point exists, check first r, then distance of original vectors to center of gravity
257 *out << Verbose(2) << "Encountered two vectors whose projection onto axis " << axis << " is equal: " << endl;
258 *out << Verbose(2) << "Present vector: ";
259 BoundaryTestPair.first->second.second->x.Output(out);
260 *out << endl;
261 *out << Verbose(2) << "New vector: ";
262 Walker->x.Output(out);
263 *out << endl;
264 double tmp = ProjectedVector.Norm();
265 if (tmp > BoundaryTestPair.first->second.first) {
266 BoundaryTestPair.first->second.first = tmp;
267 BoundaryTestPair.first->second.second = Walker;
268 *out << Verbose(2) << "Keeping new vector." << endl;
269 } else if (tmp == BoundaryTestPair.first->second.first) {
270 if (BoundaryTestPair.first->second.second->x.ScalarProduct(&BoundaryTestPair.first->second.second->x) < Walker->x.ScalarProduct(&Walker->x)) { // Norm() does a sqrt, which makes it a lot slower
271 BoundaryTestPair.first->second.second = Walker;
272 *out << Verbose(2) << "Keeping new vector." << endl;
273 } else {
274 *out << Verbose(2) << "Keeping present vector." << endl;
275 }
276 } else {
277 *out << Verbose(2) << "Keeping present vector." << endl;
278 }
279 }
280 }
281 // printing all inserted for debugging
282 // {
283 // *out << Verbose(2) << "Printing list of candidates for axis " << axis << " which we have inserted so far." << endl;
284 // int i=0;
285 // for(Boundaries::iterator runner = BoundaryPoints[axis].begin(); runner != BoundaryPoints[axis].end(); runner++) {
286 // if (runner != BoundaryPoints[axis].begin())
287 // *out << ", " << i << ": " << *runner->second.second;
288 // else
289 // *out << i << ": " << *runner->second.second;
290 // i++;
291 // }
292 // *out << endl;
293 // }
294 // 3c. throw out points whose distance is less than the mean of left and right neighbours
295 bool flag = false;
296 do { // do as long as we still throw one out per round
297 *out << Verbose(1) << "Looking for candidates to kick out by convex condition ... " << endl;
298 flag = false;
299 Boundaries::iterator left = BoundaryPoints[axis].end();
300 Boundaries::iterator right = BoundaryPoints[axis].end();
301 for(Boundaries::iterator runner = BoundaryPoints[axis].begin(); runner != BoundaryPoints[axis].end(); runner++) {
302 // set neighbours correctly
303 if (runner == BoundaryPoints[axis].begin()) {
304 left = BoundaryPoints[axis].end();
305 } else {
306 left = runner;
307 }
308 left--;
309 right = runner;
310 right++;
311 if (right == BoundaryPoints[axis].end()) {
312 right = BoundaryPoints[axis].begin();
313 }
314 // check distance
315
316 // construct the vector of each side of the triangle on the projected plane (defined by normal vector AxisVector)
317 {
318 vector SideA, SideB, SideC, SideH;
319 SideA.CopyVector(&left->second.second->x);
320 SideA.ProjectOntoPlane(&AxisVector);
321 // *out << "SideA: ";
322 // SideA.Output(out);
323 // *out << endl;
324
325 SideB.CopyVector(&right->second.second->x);
326 SideB.ProjectOntoPlane(&AxisVector);
327 // *out << "SideB: ";
328 // SideB.Output(out);
329 // *out << endl;
330
331 SideC.CopyVector(&left->second.second->x);
332 SideC.SubtractVector(&right->second.second->x);
333 SideC.ProjectOntoPlane(&AxisVector);
334 // *out << "SideC: ";
335 // SideC.Output(out);
336 // *out << endl;
337
338 SideH.CopyVector(&runner->second.second->x);
339 SideH.ProjectOntoPlane(&AxisVector);
340 // *out << "SideH: ";
341 // SideH.Output(out);
342 // *out << endl;
343
344 // calculate each length
345 double a = SideA.Norm();
346 //double b = SideB.Norm();
347 //double c = SideC.Norm();
348 double h = SideH.Norm();
349 // calculate the angles
350 double alpha = SideA.Angle(&SideH);
351 double beta = SideA.Angle(&SideC);
352 double gamma = SideB.Angle(&SideH);
353 double delta = SideC.Angle(&SideH);
354 double MinDistance = a * sin(beta)/(sin(delta)) * (((alpha < M_PI/2.) || (gamma < M_PI/2.)) ? 1. : -1.);
355 // *out << Verbose(2) << " I calculated: a = " << a << ", h = " << h << ", beta(" << left->second.second->Name << "," << left->second.second->Name << "-" << right->second.second->Name << ") = " << beta << ", delta(" << left->second.second->Name << "," << runner->second.second->Name << ") = " << delta << ", Min = " << MinDistance << "." << endl;
356 //*out << Verbose(1) << "Checking CoG distance of runner " << *runner->second.second << " " << h << " against triangle's side length spanned by (" << *left->second.second << "," << *right->second.second << ") of " << MinDistance << "." << endl;
357 if ((fabs(h/fabs(h) - MinDistance/fabs(MinDistance)) < MYEPSILON) && (h < MinDistance)) {
358 // throw out point
359 //*out << Verbose(1) << "Throwing out " << *runner->second.second << "." << endl;
360 BoundaryPoints[axis].erase(runner);
361 flag = true;
362 }
363 }
364 }
365 } while (flag);
366 }
367 return BoundaryPoints;
368};
369
370/** Determines greatest diameters of a cluster defined by its convex envelope.
371 * Looks at lines parallel to one axis and where they intersect on the projected planes
372 * \param *out output stream for debugging
373 * \param *BoundaryPoints NDIM set of boundary points defining the convex envelope on each projected plane
374 * \param IsAngstroem whether we have angstroem or atomic units
375 * \return NDIM array of the diameters
376 */
377double * GetDiametersOfCluster(ofstream *out, Boundaries *BoundaryPoints, bool IsAngstroem)
378{
379 // determine biggest "diameter" of cluster for each axis
380 Boundaries::iterator Neighbour, OtherNeighbour;
381 double *GreatestDiameter = new double[NDIM];
382 for(int i=0;i<NDIM;i++)
383 GreatestDiameter[i] = 0.;
384 double OldComponent, tmp, w1, w2;
385 vector DistanceVector, OtherVector;
386 int component, Othercomponent;
387 for(int axis=0;axis<NDIM;axis++) { // regard each projected plane
388 //*out << Verbose(1) << "Current axis is " << axis << "." << endl;
389 for (int j=0;j<2;j++) { // and for both axis on the current plane
390 component = (axis+j+1)%NDIM;
391 Othercomponent = (axis+1+((j+1) & 1))%NDIM;
392 //*out << Verbose(1) << "Current component is " << component << ", Othercomponent is " << Othercomponent << "." << endl;
393 for(Boundaries::iterator runner = BoundaryPoints[axis].begin(); runner != BoundaryPoints[axis].end(); runner++) {
394 //*out << Verbose(2) << "Current runner is " << *(runner->second.second) << "." << endl;
395 // seek for the neighbours pair where the Othercomponent sign flips
396 Neighbour = runner;
397 Neighbour++;
398 if (Neighbour == BoundaryPoints[axis].end()) // make it wrap around
399 Neighbour = BoundaryPoints[axis].begin();
400 DistanceVector.CopyVector(&runner->second.second->x);
401 DistanceVector.SubtractVector(&Neighbour->second.second->x);
402 do { // seek for neighbour pair where it flips
403 OldComponent = DistanceVector.x[Othercomponent];
404 Neighbour++;
405 if (Neighbour == BoundaryPoints[axis].end()) // make it wrap around
406 Neighbour = BoundaryPoints[axis].begin();
407 DistanceVector.CopyVector(&runner->second.second->x);
408 DistanceVector.SubtractVector(&Neighbour->second.second->x);
409 //*out << Verbose(3) << "OldComponent is " << OldComponent << ", new one is " << DistanceVector.x[Othercomponent] << "." << endl;
410 } while ((runner != Neighbour) && ( fabs( OldComponent/fabs(OldComponent) - DistanceVector.x[Othercomponent]/fabs(DistanceVector.x[Othercomponent]) ) < MYEPSILON)); // as long as sign does not flip
411 if (runner != Neighbour) {
412 OtherNeighbour = Neighbour;
413 if (OtherNeighbour == BoundaryPoints[axis].begin()) // make it wrap around
414 OtherNeighbour = BoundaryPoints[axis].end();
415 OtherNeighbour--;
416 //*out << Verbose(2) << "The pair, where the sign of OtherComponent flips, is: " << *(Neighbour->second.second) << " and " << *(OtherNeighbour->second.second) << "." << endl;
417 // now we have found the pair: Neighbour and OtherNeighbour
418 OtherVector.CopyVector(&runner->second.second->x);
419 OtherVector.SubtractVector(&OtherNeighbour->second.second->x);
420 //*out << Verbose(2) << "Distances to Neighbour and OtherNeighbour are " << DistanceVector.x[component] << " and " << OtherVector.x[component] << "." << endl;
421 //*out << Verbose(2) << "OtherComponents to Neighbour and OtherNeighbour are " << DistanceVector.x[Othercomponent] << " and " << OtherVector.x[Othercomponent] << "." << endl;
422 // do linear interpolation between points (is exact) to extract exact intersection between Neighbour and OtherNeighbour
423 w1 = fabs(OtherVector.x[Othercomponent]);
424 w2 = fabs(DistanceVector.x[Othercomponent]);
425 tmp = fabs((w1*DistanceVector.x[component] + w2*OtherVector.x[component])/(w1+w2));
426 // mark if it has greater diameter
427 //*out << Verbose(2) << "Comparing current greatest " << GreatestDiameter[component] << " to new " << tmp << "." << endl;
428 GreatestDiameter[component] = (GreatestDiameter[component] > tmp) ? GreatestDiameter[component] : tmp;
429 } //else
430 //*out << Verbose(2) << "Saw no sign flip, probably top or bottom node." << endl;
431 }
432 }
433 }
434 *out << Verbose(0) << "RESULT: The biggest diameters are " << GreatestDiameter[0] << " and " << GreatestDiameter[1] << " and " << GreatestDiameter[2] << " " << (IsAngstroem ? "angstrom" : "atomiclength") << "." << endl;
435
436 return GreatestDiameter;
437};
438
439
440/** Determines the volume of a cluster.
441 * Determines first the convex envelope, then tesselates it and calculates its volume.
442 * \param *out output stream for debugging
443 * \param *configuration needed for path to store convex envelope file
444 * \param *BoundaryPoints NDIM set of boundary points on the projected plane per axis, on return if desired
445 * \param *mol molecule structure representing the cluster
446 */
447double VolumeOfConvexEnvelope(ofstream *out, config *configuration, Boundaries *BoundaryPtr, molecule *mol)
448{
449 bool IsAngstroem = configuration->GetIsAngstroem();
450 atom *Walker = NULL;
451 struct Tesselation *TesselStruct = new Tesselation;
452 bool BoundaryFreeFlag = false;
453 Boundaries *BoundaryPoints = BoundaryPtr;
454
455 // 1. calculate center of gravity
456 *out << endl;
457 vector *CenterOfGravity = mol->DetermineCenterOfGravity(out);
458
459 // 2. translate all points into CoG
460 *out << Verbose(1) << "Translating system to Center of Gravity." << endl;
461 Walker = mol->start;
462 while (Walker->next != mol->end) {
463 Walker = Walker->next;
464 Walker->x.Translate(CenterOfGravity);
465 }
466
467 // 3. Find all points on the boundary
468 if (BoundaryPoints == NULL) {
469 BoundaryFreeFlag = true;
470 BoundaryPoints = GetBoundaryPoints(out, mol);
471 } else {
472 *out << Verbose(1) << "Using given boundary points set." << endl;
473 }
474
475 // 3d. put into boundary set only those points appearing in each of the NDIM sets
476 int *AtomList = new int[mol->AtomCount];
477 for (int j=0; j<mol->AtomCount; j++) // reset list
478 AtomList[j] = 0;
479 for (int axis=0; axis<NDIM; axis++) { // fill list when it's on the boundary
480 for(Boundaries::iterator runner = BoundaryPoints[axis].begin(); runner != BoundaryPoints[axis].end(); runner++) {
481 AtomList[runner->second.second->nr]++;
482 }
483 }
484 for (int axis=0; axis<NDIM; axis++) {
485 for(Boundaries::iterator runner = BoundaryPoints[axis].begin(); runner != BoundaryPoints[axis].end(); runner++) {
486 if (AtomList[runner->second.second->nr] < 1) {
487 *out << Verbose(1) << "Throwing especially out " << *runner->second.second << " in axial projection of axis " << axis << "." << endl;
488 BoundaryPoints[axis].erase(runner);
489 }
490 }
491 }
492 delete[](AtomList);
493
494 // 4a. fill the boundary point list
495 Walker = mol->start;
496 while (Walker->next != mol->end) {
497 Walker = Walker->next;
498 if (AtomList[Walker->nr] > 0) {
499 TesselStruct->AddPoint(Walker);
500 }
501 }
502
503 *out << Verbose(2) << "I found " << TesselStruct->PointsOnBoundaryCount << " points on the convex boundary." << endl;
504 // now we have the whole set of edge points in the BoundaryList
505
506
507 // listing for debugging
508// *out << Verbose(1) << "Listing PointsOnBoundary:";
509// for(PointMap::iterator runner = PointsOnBoundary.begin(); runner != PointsOnBoundary.end(); runner++) {
510// *out << " " << *runner->second;
511// }
512// *out << endl;
513
514 // 4b. guess starting triangle
515 TesselStruct->GuessStartingTriangle(out);
516
517 // 5. go through all lines, that are not yet part of two triangles (only of one so far)
518 TesselStruct->TesselateOnBoundary(out, configuration, mol);
519
520 *out << Verbose(2) << "I created " << TesselStruct->TrianglesOnBoundaryCount << " triangles with " << TesselStruct->LinesOnBoundaryCount << " lines and " << TesselStruct->PointsOnBoundaryCount << " points." << endl;
521
522 // 6a. Every triangle forms a pyramid with the center of gravity as its peak, sum up the volumes
523 *out << Verbose(1) << "Calculating the volume of the pyramids formed out of triangles and center of gravity." << endl;
524 double volume = 0.;
525 double PyramidVolume = 0.;
526 double G,h;
527 vector x,y;
528 double a,b,c;
529 for (TriangleMap::iterator runner = TesselStruct->TrianglesOnBoundary.begin(); runner != TesselStruct->TrianglesOnBoundary.end(); runner++) { // go through every triangle, calculate volume of its pyramid with CoG as peak
530 x.CopyVector(&runner->second->endpoints[0]->node->x);
531 x.SubtractVector(&runner->second->endpoints[1]->node->x);
532 y.CopyVector(&runner->second->endpoints[0]->node->x);
533 y.SubtractVector(&runner->second->endpoints[2]->node->x);
534 a = sqrt(runner->second->endpoints[0]->node->x.Distance(&runner->second->endpoints[1]->node->x));
535 b = sqrt(runner->second->endpoints[0]->node->x.Distance(&runner->second->endpoints[2]->node->x));
536 c = sqrt(runner->second->endpoints[2]->node->x.Distance(&runner->second->endpoints[1]->node->x));
537 G = sqrt( ( (a*a+b*b+c*c)*(a*a+b*b+c*c) - 2*(a*a*a*a + b*b*b*b + c*c*c*c) )/16.); // area of tesselated triangle
538 x.MakeNormalVector(&runner->second->endpoints[0]->node->x, &runner->second->endpoints[1]->node->x, &runner->second->endpoints[2]->node->x);
539 x.Scale(runner->second->endpoints[1]->node->x.Projection(&x));
540 h = x.Norm(); // distance of CoG to triangle
541 PyramidVolume = (1./3.) * G * h; // this formula holds for _all_ pyramids (independent of n-edge base or (not) centered peak)
542 *out << Verbose(2) << "Area of triangle is " << G << " " << (IsAngstroem ? "angstrom" : "atomiclength") << "^2, height is " << h << " and the volume is " << PyramidVolume << " " << (IsAngstroem ? "angstrom" : "atomiclength") << "^3." << endl;
543 volume += PyramidVolume;
544 }
545 *out << Verbose(0) << "RESULT: The summed volume is " << setprecision(10) << volume << " " << (IsAngstroem ? "angstrom" : "atomiclength") << "^3." << endl;
546
547
548 // 7. translate all points back from CoG
549 *out << Verbose(1) << "Translating system back from Center of Gravity." << endl;
550 CenterOfGravity->Scale(-1);
551 Walker = mol->start;
552 while (Walker->next != mol->end) {
553 Walker = Walker->next;
554 Walker->x.Translate(CenterOfGravity);
555 }
556
557 // free reference lists
558 if (BoundaryFreeFlag)
559 delete[](BoundaryPoints);
560
561 return volume;
562};
563
564
565/** Creates multiples of the by \a *mol given cluster and suspends them in water with a given final density.
566 * We get cluster volume by VolumeOfConvexEnvelope() and its diameters by GetDiametersOfCluster()
567 * \param *out output stream for debugging
568 * \param *configuration needed for path to store convex envelope file
569 * \param *mol molecule structure representing the cluster
570 * \param repetition[] number of repeated cluster per axis
571 * \param celldensity desired average density in final cell
572 */
573void PrepareClustersinWater(ofstream *out, config *configuration, molecule *mol, int repetition[NDIM], double celldensity)
574{
575 // some preparations beforehand
576 bool IsAngstroem = configuration->GetIsAngstroem();
577 Boundaries *BoundaryPoints = GetBoundaryPoints(out, mol);
578 double clustervolume = VolumeOfConvexEnvelope(out, configuration, BoundaryPoints, mol);
579 double *GreatestDiameter = GetDiametersOfCluster(out, BoundaryPoints, IsAngstroem);
580 double coeffs[NDIM];
581 int TotalNoClusters = 1;
582 for (int i=0;i<NDIM;i++)
583 TotalNoClusters *= repetition[i];
584
585 // sum up the atomic masses
586 double totalmass = 0.;
587 atom *Walker = mol->start;
588 while (Walker->next != mol->end) {
589 Walker = Walker->next;
590 totalmass += Walker->type->mass;
591 }
592 *out << Verbose(0) << "RESULT: The summed mass is " << setprecision(10) << totalmass << " atomicmassunit." << endl;
593
594 *out << Verbose(0) << "RESULT: The average density is " << setprecision(10) << totalmass/clustervolume << " atomicmassunit/" << (IsAngstroem ? "angstrom" : "atomiclength") << "^3." << endl;
595
596 // solve cubic polynomial
597 *out << Verbose(1) << "Solving equidistant suspension in water problem ..." << endl;
598 double cellvolume;
599 if (IsAngstroem)
600 cellvolume = (TotalNoClusters*totalmass/SOLVENTDENSITY_A - (totalmass/clustervolume))/(celldensity-1);
601 else
602 cellvolume = (TotalNoClusters*totalmass/SOLVENTDENSITY_a0 - (totalmass/clustervolume))/(celldensity-1);
603 *out << Verbose(1) << "Cellvolume needed for a density of " << celldensity << " g/cm^3 is " << cellvolume << " " << (IsAngstroem ? "angstrom" : "atomiclength") << "^3." << endl;
604 double minimumvolume = TotalNoClusters*(GreatestDiameter[0]*GreatestDiameter[1]*GreatestDiameter[2]);
605 *out << Verbose(1) << "Minimum volume of the convex envelope contained in a rectangular box is " << minimumvolume << " atomicmassunit/" << (IsAngstroem ? "angstrom" : "atomiclength") << "^3." << endl;
606 if (minimumvolume < cellvolume)
607 cerr << Verbose(0) << "ERROR: the containing box already has a greater volume than the envisaged cell volume!" << endl;
608
609 coeffs[0] = (repetition[0]*GreatestDiameter[0] + repetition[1]*GreatestDiameter[1] + repetition[2]*GreatestDiameter[2]);
610 coeffs[1] = (repetition[0]*repetition[1]*GreatestDiameter[0]*GreatestDiameter[1]
611 + repetition[0]*repetition[2]*GreatestDiameter[0]*GreatestDiameter[2]
612 + repetition[1]*repetition[2]*GreatestDiameter[1]*GreatestDiameter[2]);
613 coeffs[2] = minimumvolume - cellvolume;
614 double x0 = 0.,x1 = 0.,x2 = 0.;
615 if (gsl_poly_solve_cubic(coeffs[0],coeffs[1],coeffs[2],&x0,&x1,&x2) == 1) // either 1 or 3 on return
616 *out << Verbose(0) << "RESULT: The resulting spacing is: " << x0 << " ." << endl;
617 else {
618 *out << Verbose(0) << "RESULT: The resulting spacings are: " << x0 << " and " << x1 << " and " << x2 << " ." << endl;
619 x0 = x2; // sorted in ascending order
620 }
621
622 cellvolume = 1;
623 for(int i=0;i<NDIM;i++) {
624 coeffs[i] = repetition[0] * (x0 + GreatestDiameter[0]);
625 cellvolume *= coeffs[i];
626 }
627 *out << Verbose(0) << "RESULT: The resulting cell dimensions are: " << coeffs[0] << " and " << coeffs[1] << " and " << coeffs[2] << " with total volume of " << cellvolume << " " << (IsAngstroem ? "angstrom" : "atomiclength") << "^3." << endl;
628};
629
630
631// =========================================================== class TESSELATION ===========================================
632
633/** Constructor of class Tesselation.
634 */
635Tesselation::Tesselation()
636{
637 PointsOnBoundaryCount = 0;
638 LinesOnBoundaryCount = 0;
639 TrianglesOnBoundaryCount = 0;
640};
641
642/** Constructor of class Tesselation.
643 * We have to free all points, lines and triangles.
644 */
645Tesselation::~Tesselation()
646{
647 for (TriangleMap::iterator runner = TrianglesOnBoundary.begin(); runner != TrianglesOnBoundary.end(); runner++) {
648 delete(runner->second);
649 }
650};
651
652/** Gueses first starting triangle of the convex envelope.
653 * We guess the starting triangle by taking the smallest distance between two points and looking for a fitting third.
654 * \param *out output stream for debugging
655 * \param PointsOnBoundary set of boundary points defining the convex envelope of the cluster
656 */
657void Tesselation::GuessStartingTriangle(ofstream *out)
658{
659 // 4b. create a starting triangle
660 // 4b1. create all distances
661 DistanceMultiMap DistanceMMap;
662 double distance;
663 for (PointMap::iterator runner = PointsOnBoundary.begin(); runner != PointsOnBoundary.end(); runner++) {
664 for(PointMap::iterator sprinter = PointsOnBoundary.begin(); sprinter != PointsOnBoundary.end(); sprinter++) {
665 if (runner->first < sprinter->first) {
666 distance = runner->second->node->x.Distance(&sprinter->second->node->x);
667 DistanceMMap.insert( DistanceMultiMapPair(distance, pair<PointMap::iterator, PointMap::iterator>(runner,sprinter) ) );
668 }
669 }
670 }
671
672// // listing distances
673// *out << Verbose(1) << "Listing DistanceMMap:";
674// for(DistanceMultiMap::iterator runner = DistanceMMap.begin(); runner != DistanceMMap.end(); runner++) {
675// *out << " " << runner->first << "(" << *runner->second.first->second << ", " << *runner->second.second->second << ")";
676// }
677// *out << endl;
678
679 // 4b2. take three smallest distance that form a triangle
680 // we take the smallest distance as the base line
681 DistanceMultiMap::iterator baseline = DistanceMMap.begin();
682 BPS[0] = baseline->second.first->second;
683 BPS[1] = baseline->second.second->second;
684 BLS[0] = new class BoundaryLineSet(BPS , LinesOnBoundaryCount);
685
686 // take the second smallest as the second base line
687 DistanceMultiMap::iterator secondline = DistanceMMap.begin();
688 do {
689 secondline++;
690 } while (!(
691 (BPS[0] == secondline->second.first->second) && (BPS[1] != secondline->second.second->second) ||
692 (BPS[0] == secondline->second.second->second) && (BPS[1] != secondline->second.first->second) ||
693 (BPS[1] == secondline->second.first->second) && (BPS[0] != secondline->second.second->second) ||
694 (BPS[1] == secondline->second.second->second) && (BPS[0] != secondline->second.first->second)
695 ));
696 BPS[0] = secondline->second.first->second;
697 BPS[1] = secondline->second.second->second;
698 BLS[1] = new class BoundaryLineSet(BPS , LinesOnBoundaryCount);
699
700 // connection yields the third line (note: first and second endpoint are sorted!)
701 if (baseline->second.first->second == secondline->second.first->second) {
702 SetEndpointsOrdered(BPS, baseline->second.second->second, secondline->second.second->second);
703 } else if (baseline->second.first->second == secondline->second.second->second) {
704 SetEndpointsOrdered(BPS, baseline->second.second->second, secondline->second.first->second);
705 } else if (baseline->second.second->second == secondline->second.first->second) {
706 SetEndpointsOrdered(BPS, baseline->second.first->second, baseline->second.second->second);
707 } else if (baseline->second.second->second == secondline->second.second->second) {
708 SetEndpointsOrdered(BPS, baseline->second.first->second, baseline->second.first->second);
709 }
710 BLS[2] = new class BoundaryLineSet(BPS, LinesOnBoundaryCount);
711
712 // 4b3. insert created triangle
713 BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount);
714 TrianglesOnBoundary.insert( TrianglePair(TrianglesOnBoundaryCount, BTS) );
715 TrianglesOnBoundaryCount++;
716 for(int i=0;i<NDIM;i++) {
717 LinesOnBoundary.insert( LinePair(LinesOnBoundaryCount, BTS->lines[i]) );
718 LinesOnBoundaryCount++;
719 }
720
721 *out << Verbose(1) << "Starting triangle is " << *BTS << "." << endl;
722};
723
724
725/** Tesselates the convex envelope of a cluster from a single starting triangle.
726 * The starting triangle is made out of three baselines. Each line in the final tesselated cluster may belong to at most
727 * 2 triangles. Hence, we go through all current lines:
728 * -# if the lines contains to only one triangle
729 * -# We search all points in the boundary
730 * -# if the triangle with the baseline and the current point has the smallest of angles (comparison between normal vectors
731 * -# if the triangle is in forward direction of the baseline (at most 90 degrees angle between vector orthogonal to
732 * baseline in triangle plane pointing out of the triangle and normal vector of new triangle)
733 * -# then we have a new triangle, whose baselines we again add (or increase their TriangleCount)
734 * \param *out output stream for debugging
735 * \param *configuration for IsAngstroem
736 * \param *mol the cluster as a molecule structure
737 */
738void Tesselation::TesselateOnBoundary(ofstream *out, config *configuration, molecule *mol)
739{
740 bool flag;
741 PointMap::iterator winner;
742 class BoundaryPointSet *peak = NULL;
743 double SmallestAngle, TempAngle;
744 vector NormalVector, VirtualNormalVector, CenterVector, TempVector, PropagationVector;
745 LineMap::iterator LineChecker[2];
746 do {
747 flag = false;
748 for (LineMap::iterator baseline = LinesOnBoundary.begin(); baseline != LinesOnBoundary.end(); baseline++)
749 if (baseline->second->TrianglesCount == 1) {
750 *out << Verbose(2) << "Current baseline is between " << *(baseline->second) << "." << endl;
751 // 5a. go through each boundary point if not _both_ edges between either endpoint of the current line and this point exist (and belong to 2 triangles)
752 SmallestAngle = M_PI;
753 BTS = baseline->second->triangles.begin()->second; // there is only one triangle so far
754 // get peak point with respect to this base line's only triangle
755 for(int i=0;i<3;i++)
756 if ((BTS->endpoints[i] != baseline->second->endpoints[0]) && (BTS->endpoints[i] != baseline->second->endpoints[1]))
757 peak = BTS->endpoints[i];
758 *out << Verbose(3) << " and has peak " << *peak << "." << endl;
759 // normal vector of triangle
760 BTS->GetNormalVector(NormalVector);
761 *out << Verbose(4) << "NormalVector of base triangle is ";
762 NormalVector.Output(out);
763 *out << endl;
764 // offset to center of triangle
765 CenterVector.Zero();
766 for(int i=0;i<3;i++)
767 CenterVector.AddVector(&BTS->endpoints[i]->node->x);
768 CenterVector.Scale(1./3.);
769 *out << Verbose(4) << "CenterVector of base triangle is ";
770 CenterVector.Output(out);
771 *out << endl;
772 // vector in propagation direction (out of triangle)
773 // project center vector onto triangle plane (points from intersection plane-NormalVector to plane-CenterVector intersection)
774 TempVector.CopyVector(&baseline->second->endpoints[0]->node->x);
775 TempVector.SubtractVector(&baseline->second->endpoints[1]->node->x);
776 PropagationVector.MakeNormalVector(&TempVector, &NormalVector);
777 TempVector.CopyVector(&CenterVector);
778 TempVector.SubtractVector(&baseline->second->endpoints[0]->node->x); // TempVector is vector on triangle plane pointing from one baseline egde towards center!
779 //*out << Verbose(2) << "Projection of propagation onto temp: " << PropagationVector.Projection(&TempVector) << "." << endl;
780 if (PropagationVector.Projection(&TempVector) > 0) // make sure normal propagation vector points outward from baseline
781 PropagationVector.Scale(-1.);
782 *out << Verbose(4) << "PropagationVector of base triangle is ";
783 PropagationVector.Output(out);
784 *out << endl;
785 winner = PointsOnBoundary.end();
786 for (PointMap::iterator target = PointsOnBoundary.begin(); target != PointsOnBoundary.end(); target++)
787 if ((target->second != baseline->second->endpoints[0]) && (target->second != baseline->second->endpoints[1])) { // don't take the same endpoints
788 *out << Verbose(3) << "Target point is " << *(target->second) << ":";
789 bool continueflag = true;
790
791 VirtualNormalVector.CopyVector(&baseline->second->endpoints[0]->node->x);
792 VirtualNormalVector.AddVector(&baseline->second->endpoints[0]->node->x);
793 VirtualNormalVector.Scale(-1./2.); // points now to center of base line
794 VirtualNormalVector.AddVector(&target->second->node->x); // points from center of base line to target
795 TempAngle = VirtualNormalVector.Angle(&PropagationVector);
796 continueflag = continueflag && (TempAngle < (M_PI/2.)); // no bends bigger than Pi/2 (90 degrees)
797 if (!continueflag) {
798 *out << Verbose(4) << "Angle between propagation direction and base line to " << *(target->second) << " is " << TempAngle << ", bad direction!" << endl;
799 continue;
800 } else
801 *out << Verbose(4) << "Angle between propagation direction and base line to " << *(target->second) << " is " << TempAngle << ", good direction!" << endl;
802 LineChecker[0] = baseline->second->endpoints[0]->lines.find(target->first);
803 LineChecker[1] = baseline->second->endpoints[1]->lines.find(target->first);
804 // if (LineChecker[0] != baseline->second->endpoints[0]->lines.end())
805 // *out << Verbose(4) << *(baseline->second->endpoints[0]) << " has line " << *(LineChecker[0]->second) << " to " << *(target->second) << " as endpoint with " << LineChecker[0]->second->TrianglesCount << " triangles." << endl;
806 // else
807 // *out << Verbose(4) << *(baseline->second->endpoints[0]) << " has no line to " << *(target->second) << " as endpoint." << endl;
808 // if (LineChecker[1] != baseline->second->endpoints[1]->lines.end())
809 // *out << Verbose(4) << *(baseline->second->endpoints[1]) << " has line " << *(LineChecker[1]->second) << " to " << *(target->second) << " as endpoint with " << LineChecker[1]->second->TrianglesCount << " triangles." << endl;
810 // else
811 // *out << Verbose(4) << *(baseline->second->endpoints[1]) << " has no line to " << *(target->second) << " as endpoint." << endl;
812 // check first endpoint (if any connecting line goes to target or at least not more than 1)
813 continueflag = continueflag && (( (LineChecker[0] == baseline->second->endpoints[0]->lines.end()) || (LineChecker[0]->second->TrianglesCount == 1)));
814 if (!continueflag) {
815 *out << Verbose(4) << *(baseline->second->endpoints[0]) << " has line " << *(LineChecker[0]->second) << " to " << *(target->second) << " as endpoint with " << LineChecker[0]->second->TrianglesCount << " triangles." << endl;
816 continue;
817 }
818 // check second endpoint (if any connecting line goes to target or at least not more than 1)
819 continueflag = continueflag && (( (LineChecker[1] == baseline->second->endpoints[1]->lines.end()) || (LineChecker[1]->second->TrianglesCount == 1)));
820 if (!continueflag) {
821 *out << Verbose(4) << *(baseline->second->endpoints[1]) << " has line " << *(LineChecker[1]->second) << " to " << *(target->second) << " as endpoint with " << LineChecker[1]->second->TrianglesCount << " triangles." << endl;
822 continue;
823 }
824 // check whether the envisaged triangle does not already exist (if both lines exist and have same endpoint)
825 continueflag = continueflag && (!(
826 ((LineChecker[0] != baseline->second->endpoints[0]->lines.end()) && (LineChecker[1] != baseline->second->endpoints[1]->lines.end())
827 && (GetCommonEndpoint(LineChecker[0]->second, LineChecker[1]->second) == peak))
828 ));
829 if (!continueflag) {
830 *out << Verbose(4) << "Current target is peak!" << endl;
831 continue;
832 }
833 // in case NOT both were found
834 if (continueflag) { // create virtually this triangle, get its normal vector, calculate angle
835 flag = true;
836 VirtualNormalVector.MakeNormalVector(&baseline->second->endpoints[0]->node->x, &baseline->second->endpoints[1]->node->x, &target->second->node->x);
837 // make it always point inward
838 if (baseline->second->endpoints[0]->node->x.Projection(&VirtualNormalVector) > 0)
839 VirtualNormalVector.Scale(-1.);
840 // calculate angle
841 TempAngle = NormalVector.Angle(&VirtualNormalVector);
842 *out << Verbose(4) << "NormalVector is ";
843 VirtualNormalVector.Output(out);
844 *out << " and the angle is " << TempAngle << "." << endl;
845 if (SmallestAngle > TempAngle) { // set to new possible winner
846 SmallestAngle = TempAngle;
847 winner = target;
848 }
849 }
850 }
851 // 5b. The point of the above whose triangle has the greatest angle with the triangle the current line belongs to (it only belongs to one, remember!): New triangle
852 if (winner != PointsOnBoundary.end()) {
853 *out << Verbose(2) << "Winning target point is " << *(winner->second) << " with angle " << SmallestAngle << "." << endl;
854 // create the lins of not yet present
855 BLS[0] = baseline->second;
856 // 5c. add lines to the line set if those were new (not yet part of a triangle), delete lines that belong to two triangles)
857 LineChecker[0] = baseline->second->endpoints[0]->lines.find(winner->first);
858 LineChecker[1] = baseline->second->endpoints[1]->lines.find(winner->first);
859 if (LineChecker[0] == baseline->second->endpoints[0]->lines.end()) { // create
860 BPS[0] = baseline->second->endpoints[0];
861 BPS[1] = winner->second;
862 BLS[1] = new class BoundaryLineSet(BPS , LinesOnBoundaryCount);
863 LinesOnBoundary.insert( LinePair(LinesOnBoundaryCount, BLS[1]) );
864 LinesOnBoundaryCount++;
865 } else
866 BLS[1] = LineChecker[0]->second;
867 if (LineChecker[1] == baseline->second->endpoints[1]->lines.end()) { // create
868 BPS[0] = baseline->second->endpoints[1];
869 BPS[1] = winner->second;
870 BLS[2] = new class BoundaryLineSet(BPS, LinesOnBoundaryCount);
871 LinesOnBoundary.insert( LinePair(LinesOnBoundaryCount, BLS[2]) );
872 LinesOnBoundaryCount++;
873 } else
874 BLS[2] = LineChecker[1]->second;
875 BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount);
876 TrianglesOnBoundary.insert( TrianglePair(TrianglesOnBoundaryCount, BTS) );
877 TrianglesOnBoundaryCount++;
878 } else {
879 *out << Verbose(1) << "I could not determine a winner for this baseline " << *(baseline->second) << "." << endl;
880 }
881
882 // 5d. If the set of lines is not yet empty, go to 5. and continue
883 } else
884 *out << Verbose(2) << "Baseline candidate " << *(baseline->second) << " has a triangle count of " << baseline->second->TrianglesCount << "." << endl;
885 } while (flag);
886
887 stringstream line;
888 line << configuration->configpath << "/" << CONVEXENVELOPE;
889 *out << Verbose(1) << "Storing convex envelope in tecplot data file " << line.str() << "." << endl;
890 ofstream output(line.str().c_str());
891 output << "TITLE = \"3D CONVEX SHELL\"" << endl;
892 output << "VARIABLES = \"X\" \"Y\" \"Z\"" << endl;
893 output << "ZONE T=\"TRIANGLES\", N=" << PointsOnBoundaryCount << ", E=" << TrianglesOnBoundaryCount << ", DATAPACKING=POINT, ZONETYPE=FETRIANGLE" << endl;
894 int *LookupList = new int[mol->AtomCount];
895 for (int i=0;i<mol->AtomCount;i++)
896 LookupList[i] = -1;
897
898 // print atom coordinates
899 *out << Verbose(2) << "The following triangles were created:";
900 int Counter = 1;
901 atom *Walker = NULL;
902 for (PointMap::iterator target = PointsOnBoundary.begin(); target != PointsOnBoundary.end(); target++) {
903 Walker = target->second->node;
904 LookupList[Walker->nr] = Counter++;
905 output << Walker->x.x[0] << " " << Walker->x.x[1] << " " << Walker->x.x[2] << " " << endl;
906 }
907 output << endl;
908 // print connectivity
909 for (TriangleMap::iterator runner = TrianglesOnBoundary.begin(); runner != TrianglesOnBoundary.end(); runner++) {
910 *out << " " << runner->second->endpoints[0]->node->Name << "<->" << runner->second->endpoints[1]->node->Name << "<->" << runner->second->endpoints[2]->node->Name;
911 output << LookupList[runner->second->endpoints[0]->node->nr] << " " << LookupList[runner->second->endpoints[1]->node->nr] << " " << LookupList[runner->second->endpoints[2]->node->nr] << endl;
912 }
913 output.close();
914 delete[](LookupList);
915 *out << endl;
916};
917
918/** Adds an atom to the tesselation::PointsOnBoundary list.
919 * \param *Walker atom to add
920 */
921void Tesselation::AddPoint(atom *Walker)
922{
923 BPS[0] = new class BoundaryPointSet(Walker);
924 PointsOnBoundary.insert( PointPair(Walker->nr, BPS[0]) );
925 PointsOnBoundaryCount++;
926};
Note: See TracBrowser for help on using the repository browser.