1 | #include "molecules.hpp"
|
---|
2 | #include "boundary.hpp"
|
---|
3 |
|
---|
4 | // ======================================== Points on Boundary =================================
|
---|
5 |
|
---|
6 | BoundaryPointSet::BoundaryPointSet()
|
---|
7 | {
|
---|
8 | LinesCount = 0;
|
---|
9 | Nr = -1;
|
---|
10 | };
|
---|
11 |
|
---|
12 | BoundaryPointSet::BoundaryPointSet(atom *Walker)
|
---|
13 | {
|
---|
14 | node = Walker;
|
---|
15 | LinesCount = 0;
|
---|
16 | Nr = Walker->nr;
|
---|
17 | };
|
---|
18 |
|
---|
19 | BoundaryPointSet::~BoundaryPointSet()
|
---|
20 | {
|
---|
21 | cout << Verbose(5) << "Erasing point nr. " << Nr << "." << endl;
|
---|
22 | node = NULL;
|
---|
23 | };
|
---|
24 |
|
---|
25 | void BoundaryPointSet::AddLine(class BoundaryLineSet *line)
|
---|
26 | {
|
---|
27 | cout << Verbose(6) << "Adding line " << *line << " to " << *this << "." << endl;
|
---|
28 | if (line->endpoints[0] == this) {
|
---|
29 | lines.insert ( LinePair( line->endpoints[1]->Nr, line) );
|
---|
30 | } else {
|
---|
31 | lines.insert ( LinePair( line->endpoints[0]->Nr, line) );
|
---|
32 | }
|
---|
33 | LinesCount++;
|
---|
34 | };
|
---|
35 |
|
---|
36 | ostream & operator << (ostream &ost, BoundaryPointSet &a)
|
---|
37 | {
|
---|
38 | ost << "[" << a.Nr << "|" << a.node->Name << "]";
|
---|
39 | return ost;
|
---|
40 | };
|
---|
41 |
|
---|
42 | // ======================================== Lines on Boundary =================================
|
---|
43 |
|
---|
44 | BoundaryLineSet::BoundaryLineSet()
|
---|
45 | {
|
---|
46 | for (int i=0;i<2;i++)
|
---|
47 | endpoints[i] = NULL;
|
---|
48 | TrianglesCount = 0;
|
---|
49 | Nr = -1;
|
---|
50 | };
|
---|
51 |
|
---|
52 | BoundaryLineSet::BoundaryLineSet(class BoundaryPointSet *Point[2], int number)
|
---|
53 | {
|
---|
54 | // set number
|
---|
55 | Nr = number;
|
---|
56 | // set endpoints in ascending order
|
---|
57 | SetEndpointsOrdered(endpoints, Point[0], Point[1]);
|
---|
58 | // add this line to the hash maps of both endpoints
|
---|
59 | Point[0]->AddLine(this);
|
---|
60 | Point[1]->AddLine(this);
|
---|
61 | // clear triangles list
|
---|
62 | TrianglesCount = 0;
|
---|
63 | cout << Verbose(5) << "New Line with endpoints " << *this << "." << endl;
|
---|
64 | };
|
---|
65 |
|
---|
66 | BoundaryLineSet::~BoundaryLineSet()
|
---|
67 | {
|
---|
68 | for (int i=0;i<2;i++) {
|
---|
69 | cout << Verbose(5) << "Erasing Line Nr. " << Nr << " in boundary point " << *endpoints[i] << "." << endl;
|
---|
70 | endpoints[i]->lines.erase(Nr);
|
---|
71 | LineMap::iterator tester = endpoints[i]->lines.begin();
|
---|
72 | tester++;
|
---|
73 | if (tester == endpoints[i]->lines.end()) {
|
---|
74 | cout << Verbose(5) << *endpoints[i] << " has no more lines it's attached to, erasing." << endl;
|
---|
75 | delete(endpoints[i]);
|
---|
76 | } else
|
---|
77 | cout << Verbose(5) << *endpoints[i] << " has still lines it's attached to." << endl;
|
---|
78 | }
|
---|
79 | };
|
---|
80 |
|
---|
81 | void BoundaryLineSet::AddTriangle(class BoundaryTriangleSet *triangle)
|
---|
82 | {
|
---|
83 | cout << Verbose(6) << "Add " << triangle->Nr << " to line " << *this << "." << endl;
|
---|
84 | triangles.insert ( TrianglePair( TrianglesCount, triangle) );
|
---|
85 | TrianglesCount++;
|
---|
86 | };
|
---|
87 |
|
---|
88 | ostream & operator << (ostream &ost, BoundaryLineSet &a)
|
---|
89 | {
|
---|
90 | ost << "[" << a.Nr << "|" << a.endpoints[0]->node->Name << "," << a.endpoints[1]->node->Name << "]";
|
---|
91 | return ost;
|
---|
92 | };
|
---|
93 |
|
---|
94 | // ======================================== Triangles on Boundary =================================
|
---|
95 |
|
---|
96 |
|
---|
97 | BoundaryTriangleSet::BoundaryTriangleSet()
|
---|
98 | {
|
---|
99 | for (int i=0;i<3;i++) {
|
---|
100 | endpoints[i] = NULL;
|
---|
101 | lines[i] = NULL;
|
---|
102 | }
|
---|
103 | Nr = -1;
|
---|
104 | };
|
---|
105 |
|
---|
106 | BoundaryTriangleSet::BoundaryTriangleSet(class BoundaryLineSet *line[3], int number)
|
---|
107 | {
|
---|
108 | // set number
|
---|
109 | Nr = number;
|
---|
110 | // set lines
|
---|
111 | cout << Verbose(5) << "New triangle " << Nr << ":" << endl;
|
---|
112 | for (int i=0;i<3;i++) {
|
---|
113 | lines[i] = line[i];
|
---|
114 | lines[i]->AddTriangle(this);
|
---|
115 | }
|
---|
116 | // get ascending order of endpoints
|
---|
117 | map <int, class BoundaryPointSet * > OrderMap;
|
---|
118 | for(int i=0;i<3;i++) // for all three lines
|
---|
119 | for (int j=0;j<2;j++) { // for both endpoints
|
---|
120 | OrderMap.insert ( pair <int, class BoundaryPointSet * >( line[i]->endpoints[j]->Nr, line[i]->endpoints[j]) );
|
---|
121 | // and we don't care whether insertion fails
|
---|
122 | }
|
---|
123 | // set endpoints
|
---|
124 | int Counter = 0;
|
---|
125 | cout << Verbose(6) << " with end points ";
|
---|
126 | for (map <int, class BoundaryPointSet * >::iterator runner = OrderMap.begin(); runner != OrderMap.end(); runner++) {
|
---|
127 | endpoints[Counter] = runner->second;
|
---|
128 | cout << " " << *endpoints[Counter];
|
---|
129 | Counter++;
|
---|
130 | }
|
---|
131 | if (Counter < 3) {
|
---|
132 | cerr << "ERROR! We have a triangle with only two distinct endpoints!" << endl;
|
---|
133 | //exit(1);
|
---|
134 | }
|
---|
135 | cout << "." << endl;
|
---|
136 | };
|
---|
137 |
|
---|
138 | BoundaryTriangleSet::~BoundaryTriangleSet()
|
---|
139 | {
|
---|
140 | for (int i=0;i<3;i++) {
|
---|
141 | cout << Verbose(5) << "Erasing triangle Nr." << Nr << endl;
|
---|
142 | lines[i]->triangles.erase(Nr);
|
---|
143 | TriangleMap::iterator tester = lines[i]->triangles.begin();
|
---|
144 | tester++;
|
---|
145 | if (tester == lines[i]->triangles.end()) {
|
---|
146 | cout << Verbose(5) << *lines[i] << " is no more attached to any triangle, erasing." << endl;
|
---|
147 | delete(lines[i]);
|
---|
148 | } else
|
---|
149 | cout << Verbose(5) << *lines[i] << " is still attached to a triangle." << endl;
|
---|
150 | }
|
---|
151 | };
|
---|
152 |
|
---|
153 | void BoundaryTriangleSet::GetNormalVector(vector &NormalVector)
|
---|
154 | {
|
---|
155 | // get normal vector
|
---|
156 | NormalVector.MakeNormalVector(&endpoints[0]->node->x, &endpoints[1]->node->x, &endpoints[2]->node->x);
|
---|
157 |
|
---|
158 | // make it always point inward (any offset vector onto plane projected onto normal vector suffices)
|
---|
159 | if (endpoints[0]->node->x.Projection(&NormalVector) > 0)
|
---|
160 | NormalVector.Scale(-1.);
|
---|
161 | };
|
---|
162 |
|
---|
163 | ostream & operator << (ostream &ost, BoundaryTriangleSet &a)
|
---|
164 | {
|
---|
165 | ost << "[" << a.Nr << "|" << a.endpoints[0]->node->Name << "," << a.endpoints[1]->node->Name << "," << a.endpoints[2]->node->Name << "]";
|
---|
166 | return ost;
|
---|
167 | };
|
---|
168 |
|
---|
169 | // ========================================== F U N C T I O N S =================================
|
---|
170 |
|
---|
171 | /** Finds the endpoint two lines are sharing.
|
---|
172 | * \param *line1 first line
|
---|
173 | * \param *line2 second line
|
---|
174 | * \return point which is shared or NULL if none
|
---|
175 | */
|
---|
176 | class BoundaryPointSet * GetCommonEndpoint(class BoundaryLineSet * line1, class BoundaryLineSet * line2)
|
---|
177 | {
|
---|
178 | class BoundaryLineSet * lines[2] = {line1, line2};
|
---|
179 | class BoundaryPointSet *node = NULL;
|
---|
180 | map <int, class BoundaryPointSet * > OrderMap;
|
---|
181 | pair < map <int, class BoundaryPointSet * >::iterator, bool > OrderTest;
|
---|
182 | for(int i=0;i<2;i++) // for both lines
|
---|
183 | for (int j=0;j<2;j++) { // for both endpoints
|
---|
184 | OrderTest = OrderMap.insert ( pair <int, class BoundaryPointSet * >( lines[i]->endpoints[j]->Nr, lines[i]->endpoints[j]) );
|
---|
185 | if (!OrderTest.second) { // if insertion fails, we have common endpoint
|
---|
186 | node = OrderTest.first->second;
|
---|
187 | cout << Verbose(5) << "Common endpoint of lines " << *line1 << " and " << *line2 << " is: " << *node << "." << endl;
|
---|
188 | j=2;
|
---|
189 | i=2;
|
---|
190 | break;
|
---|
191 | }
|
---|
192 | }
|
---|
193 | return node;
|
---|
194 | };
|
---|
195 |
|
---|
196 | /** Determines the boundary points of a cluster.
|
---|
197 | * Does a projection per axis onto the orthogonal plane, transforms into spherical coordinates, sorts them by the angle
|
---|
198 | * and looks at triples: if the middle has less a distance than the allowed maximum height of the triangle formed by the plane's
|
---|
199 | * center and first and last point in the triple, it is thrown out.
|
---|
200 | * \param *out output stream for debugging
|
---|
201 | * \param *mol molecule structure representing the cluster
|
---|
202 | */
|
---|
203 | Boundaries * GetBoundaryPoints(ofstream *out, molecule *mol)
|
---|
204 | {
|
---|
205 | atom *Walker = NULL;
|
---|
206 | PointMap PointsOnBoundary;
|
---|
207 | LineMap LinesOnBoundary;
|
---|
208 | TriangleMap TrianglesOnBoundary;
|
---|
209 |
|
---|
210 | *out << Verbose(1) << "Finding all boundary points." << endl;
|
---|
211 | Boundaries *BoundaryPoints = new Boundaries [NDIM]; // first is alpha, second is (r, nr)
|
---|
212 | BoundariesTestPair BoundaryTestPair;
|
---|
213 | vector AxisVector, AngleReferenceVector, AngleReferenceNormalVector;
|
---|
214 | double radius, angle;
|
---|
215 | // 3a. Go through every axis
|
---|
216 | for (int axis=0; axis<NDIM; axis++) {
|
---|
217 | AxisVector.Zero();
|
---|
218 | AngleReferenceVector.Zero();
|
---|
219 | AngleReferenceNormalVector.Zero();
|
---|
220 | AxisVector.x[axis] = 1.;
|
---|
221 | AngleReferenceVector.x[(axis+1)%NDIM] = 1.;
|
---|
222 | AngleReferenceNormalVector.x[(axis+2)%NDIM] = 1.;
|
---|
223 | // *out << Verbose(1) << "Axisvector is ";
|
---|
224 | // AxisVector.Output(out);
|
---|
225 | // *out << " and AngleReferenceVector is ";
|
---|
226 | // AngleReferenceVector.Output(out);
|
---|
227 | // *out << "." << endl;
|
---|
228 | // *out << " and AngleReferenceNormalVector is ";
|
---|
229 | // AngleReferenceNormalVector.Output(out);
|
---|
230 | // *out << "." << endl;
|
---|
231 | // 3b. construct set of all points, transformed into cylindrical system and with left and right neighbours
|
---|
232 | Walker = mol->start;
|
---|
233 | while (Walker->next != mol->end) {
|
---|
234 | Walker = Walker->next;
|
---|
235 | vector ProjectedVector;
|
---|
236 | ProjectedVector.CopyVector(&Walker->x);
|
---|
237 | ProjectedVector.ProjectOntoPlane(&AxisVector);
|
---|
238 | // correct for negative side
|
---|
239 | //if (Projection(y) < 0)
|
---|
240 | //angle = 2.*M_PI - angle;
|
---|
241 | radius = ProjectedVector.Norm();
|
---|
242 | if (fabs(radius) > MYEPSILON)
|
---|
243 | angle = ProjectedVector.Angle(&AngleReferenceVector);
|
---|
244 | else
|
---|
245 | angle = 0.; // otherwise it's a vector in Axis Direction and unimportant for boundary issues
|
---|
246 |
|
---|
247 | //*out << "Checking sign in quadrant : " << ProjectedVector.Projection(&AngleReferenceNormalVector) << "." << endl;
|
---|
248 | if (ProjectedVector.Projection(&AngleReferenceNormalVector) > 0) {
|
---|
249 | angle = 2.*M_PI - angle;
|
---|
250 | }
|
---|
251 | //*out << Verbose(2) << "Inserting " << *Walker << ": (r, alpha) = (" << radius << "," << angle << "): ";
|
---|
252 | //ProjectedVector.Output(out);
|
---|
253 | //*out << endl;
|
---|
254 | BoundaryTestPair = BoundaryPoints[axis].insert( BoundariesPair (angle, DistanceNrPair (radius, Walker) ) );
|
---|
255 | if (BoundaryTestPair.second) { // successfully inserted
|
---|
256 | } else { // same point exists, check first r, then distance of original vectors to center of gravity
|
---|
257 | *out << Verbose(2) << "Encountered two vectors whose projection onto axis " << axis << " is equal: " << endl;
|
---|
258 | *out << Verbose(2) << "Present vector: ";
|
---|
259 | BoundaryTestPair.first->second.second->x.Output(out);
|
---|
260 | *out << endl;
|
---|
261 | *out << Verbose(2) << "New vector: ";
|
---|
262 | Walker->x.Output(out);
|
---|
263 | *out << endl;
|
---|
264 | double tmp = ProjectedVector.Norm();
|
---|
265 | if (tmp > BoundaryTestPair.first->second.first) {
|
---|
266 | BoundaryTestPair.first->second.first = tmp;
|
---|
267 | BoundaryTestPair.first->second.second = Walker;
|
---|
268 | *out << Verbose(2) << "Keeping new vector." << endl;
|
---|
269 | } else if (tmp == BoundaryTestPair.first->second.first) {
|
---|
270 | if (BoundaryTestPair.first->second.second->x.ScalarProduct(&BoundaryTestPair.first->second.second->x) < Walker->x.ScalarProduct(&Walker->x)) { // Norm() does a sqrt, which makes it a lot slower
|
---|
271 | BoundaryTestPair.first->second.second = Walker;
|
---|
272 | *out << Verbose(2) << "Keeping new vector." << endl;
|
---|
273 | } else {
|
---|
274 | *out << Verbose(2) << "Keeping present vector." << endl;
|
---|
275 | }
|
---|
276 | } else {
|
---|
277 | *out << Verbose(2) << "Keeping present vector." << endl;
|
---|
278 | }
|
---|
279 | }
|
---|
280 | }
|
---|
281 | // printing all inserted for debugging
|
---|
282 | // {
|
---|
283 | // *out << Verbose(2) << "Printing list of candidates for axis " << axis << " which we have inserted so far." << endl;
|
---|
284 | // int i=0;
|
---|
285 | // for(Boundaries::iterator runner = BoundaryPoints[axis].begin(); runner != BoundaryPoints[axis].end(); runner++) {
|
---|
286 | // if (runner != BoundaryPoints[axis].begin())
|
---|
287 | // *out << ", " << i << ": " << *runner->second.second;
|
---|
288 | // else
|
---|
289 | // *out << i << ": " << *runner->second.second;
|
---|
290 | // i++;
|
---|
291 | // }
|
---|
292 | // *out << endl;
|
---|
293 | // }
|
---|
294 | // 3c. throw out points whose distance is less than the mean of left and right neighbours
|
---|
295 | bool flag = false;
|
---|
296 | do { // do as long as we still throw one out per round
|
---|
297 | *out << Verbose(1) << "Looking for candidates to kick out by convex condition ... " << endl;
|
---|
298 | flag = false;
|
---|
299 | Boundaries::iterator left = BoundaryPoints[axis].end();
|
---|
300 | Boundaries::iterator right = BoundaryPoints[axis].end();
|
---|
301 | for(Boundaries::iterator runner = BoundaryPoints[axis].begin(); runner != BoundaryPoints[axis].end(); runner++) {
|
---|
302 | // set neighbours correctly
|
---|
303 | if (runner == BoundaryPoints[axis].begin()) {
|
---|
304 | left = BoundaryPoints[axis].end();
|
---|
305 | } else {
|
---|
306 | left = runner;
|
---|
307 | }
|
---|
308 | left--;
|
---|
309 | right = runner;
|
---|
310 | right++;
|
---|
311 | if (right == BoundaryPoints[axis].end()) {
|
---|
312 | right = BoundaryPoints[axis].begin();
|
---|
313 | }
|
---|
314 | // check distance
|
---|
315 |
|
---|
316 | // construct the vector of each side of the triangle on the projected plane (defined by normal vector AxisVector)
|
---|
317 | {
|
---|
318 | vector SideA, SideB, SideC, SideH;
|
---|
319 | SideA.CopyVector(&left->second.second->x);
|
---|
320 | SideA.ProjectOntoPlane(&AxisVector);
|
---|
321 | // *out << "SideA: ";
|
---|
322 | // SideA.Output(out);
|
---|
323 | // *out << endl;
|
---|
324 |
|
---|
325 | SideB.CopyVector(&right->second.second->x);
|
---|
326 | SideB.ProjectOntoPlane(&AxisVector);
|
---|
327 | // *out << "SideB: ";
|
---|
328 | // SideB.Output(out);
|
---|
329 | // *out << endl;
|
---|
330 |
|
---|
331 | SideC.CopyVector(&left->second.second->x);
|
---|
332 | SideC.SubtractVector(&right->second.second->x);
|
---|
333 | SideC.ProjectOntoPlane(&AxisVector);
|
---|
334 | // *out << "SideC: ";
|
---|
335 | // SideC.Output(out);
|
---|
336 | // *out << endl;
|
---|
337 |
|
---|
338 | SideH.CopyVector(&runner->second.second->x);
|
---|
339 | SideH.ProjectOntoPlane(&AxisVector);
|
---|
340 | // *out << "SideH: ";
|
---|
341 | // SideH.Output(out);
|
---|
342 | // *out << endl;
|
---|
343 |
|
---|
344 | // calculate each length
|
---|
345 | double a = SideA.Norm();
|
---|
346 | //double b = SideB.Norm();
|
---|
347 | //double c = SideC.Norm();
|
---|
348 | double h = SideH.Norm();
|
---|
349 | // calculate the angles
|
---|
350 | double alpha = SideA.Angle(&SideH);
|
---|
351 | double beta = SideA.Angle(&SideC);
|
---|
352 | double gamma = SideB.Angle(&SideH);
|
---|
353 | double delta = SideC.Angle(&SideH);
|
---|
354 | double MinDistance = a * sin(beta)/(sin(delta)) * (((alpha < M_PI/2.) || (gamma < M_PI/2.)) ? 1. : -1.);
|
---|
355 | // *out << Verbose(2) << " I calculated: a = " << a << ", h = " << h << ", beta(" << left->second.second->Name << "," << left->second.second->Name << "-" << right->second.second->Name << ") = " << beta << ", delta(" << left->second.second->Name << "," << runner->second.second->Name << ") = " << delta << ", Min = " << MinDistance << "." << endl;
|
---|
356 | //*out << Verbose(1) << "Checking CoG distance of runner " << *runner->second.second << " " << h << " against triangle's side length spanned by (" << *left->second.second << "," << *right->second.second << ") of " << MinDistance << "." << endl;
|
---|
357 | if ((fabs(h/fabs(h) - MinDistance/fabs(MinDistance)) < MYEPSILON) && (h < MinDistance)) {
|
---|
358 | // throw out point
|
---|
359 | //*out << Verbose(1) << "Throwing out " << *runner->second.second << "." << endl;
|
---|
360 | BoundaryPoints[axis].erase(runner);
|
---|
361 | flag = true;
|
---|
362 | }
|
---|
363 | }
|
---|
364 | }
|
---|
365 | } while (flag);
|
---|
366 | }
|
---|
367 | return BoundaryPoints;
|
---|
368 | };
|
---|
369 |
|
---|
370 | /** Determines greatest diameters of a cluster defined by its convex envelope.
|
---|
371 | * Looks at lines parallel to one axis and where they intersect on the projected planes
|
---|
372 | * \param *out output stream for debugging
|
---|
373 | * \param *BoundaryPoints NDIM set of boundary points defining the convex envelope on each projected plane
|
---|
374 | * \param IsAngstroem whether we have angstroem or atomic units
|
---|
375 | * \return NDIM array of the diameters
|
---|
376 | */
|
---|
377 | double * GetDiametersOfCluster(ofstream *out, Boundaries *BoundaryPoints, bool IsAngstroem)
|
---|
378 | {
|
---|
379 | // determine biggest "diameter" of cluster for each axis
|
---|
380 | Boundaries::iterator Neighbour, OtherNeighbour;
|
---|
381 | double *GreatestDiameter = new double[NDIM];
|
---|
382 | for(int i=0;i<NDIM;i++)
|
---|
383 | GreatestDiameter[i] = 0.;
|
---|
384 | double OldComponent, tmp, w1, w2;
|
---|
385 | vector DistanceVector, OtherVector;
|
---|
386 | int component, Othercomponent;
|
---|
387 | for(int axis=0;axis<NDIM;axis++) { // regard each projected plane
|
---|
388 | //*out << Verbose(1) << "Current axis is " << axis << "." << endl;
|
---|
389 | for (int j=0;j<2;j++) { // and for both axis on the current plane
|
---|
390 | component = (axis+j+1)%NDIM;
|
---|
391 | Othercomponent = (axis+1+((j+1) & 1))%NDIM;
|
---|
392 | //*out << Verbose(1) << "Current component is " << component << ", Othercomponent is " << Othercomponent << "." << endl;
|
---|
393 | for(Boundaries::iterator runner = BoundaryPoints[axis].begin(); runner != BoundaryPoints[axis].end(); runner++) {
|
---|
394 | //*out << Verbose(2) << "Current runner is " << *(runner->second.second) << "." << endl;
|
---|
395 | // seek for the neighbours pair where the Othercomponent sign flips
|
---|
396 | Neighbour = runner;
|
---|
397 | Neighbour++;
|
---|
398 | if (Neighbour == BoundaryPoints[axis].end()) // make it wrap around
|
---|
399 | Neighbour = BoundaryPoints[axis].begin();
|
---|
400 | DistanceVector.CopyVector(&runner->second.second->x);
|
---|
401 | DistanceVector.SubtractVector(&Neighbour->second.second->x);
|
---|
402 | do { // seek for neighbour pair where it flips
|
---|
403 | OldComponent = DistanceVector.x[Othercomponent];
|
---|
404 | Neighbour++;
|
---|
405 | if (Neighbour == BoundaryPoints[axis].end()) // make it wrap around
|
---|
406 | Neighbour = BoundaryPoints[axis].begin();
|
---|
407 | DistanceVector.CopyVector(&runner->second.second->x);
|
---|
408 | DistanceVector.SubtractVector(&Neighbour->second.second->x);
|
---|
409 | //*out << Verbose(3) << "OldComponent is " << OldComponent << ", new one is " << DistanceVector.x[Othercomponent] << "." << endl;
|
---|
410 | } while ((runner != Neighbour) && ( fabs( OldComponent/fabs(OldComponent) - DistanceVector.x[Othercomponent]/fabs(DistanceVector.x[Othercomponent]) ) < MYEPSILON)); // as long as sign does not flip
|
---|
411 | if (runner != Neighbour) {
|
---|
412 | OtherNeighbour = Neighbour;
|
---|
413 | if (OtherNeighbour == BoundaryPoints[axis].begin()) // make it wrap around
|
---|
414 | OtherNeighbour = BoundaryPoints[axis].end();
|
---|
415 | OtherNeighbour--;
|
---|
416 | //*out << Verbose(2) << "The pair, where the sign of OtherComponent flips, is: " << *(Neighbour->second.second) << " and " << *(OtherNeighbour->second.second) << "." << endl;
|
---|
417 | // now we have found the pair: Neighbour and OtherNeighbour
|
---|
418 | OtherVector.CopyVector(&runner->second.second->x);
|
---|
419 | OtherVector.SubtractVector(&OtherNeighbour->second.second->x);
|
---|
420 | //*out << Verbose(2) << "Distances to Neighbour and OtherNeighbour are " << DistanceVector.x[component] << " and " << OtherVector.x[component] << "." << endl;
|
---|
421 | //*out << Verbose(2) << "OtherComponents to Neighbour and OtherNeighbour are " << DistanceVector.x[Othercomponent] << " and " << OtherVector.x[Othercomponent] << "." << endl;
|
---|
422 | // do linear interpolation between points (is exact) to extract exact intersection between Neighbour and OtherNeighbour
|
---|
423 | w1 = fabs(OtherVector.x[Othercomponent]);
|
---|
424 | w2 = fabs(DistanceVector.x[Othercomponent]);
|
---|
425 | tmp = fabs((w1*DistanceVector.x[component] + w2*OtherVector.x[component])/(w1+w2));
|
---|
426 | // mark if it has greater diameter
|
---|
427 | //*out << Verbose(2) << "Comparing current greatest " << GreatestDiameter[component] << " to new " << tmp << "." << endl;
|
---|
428 | GreatestDiameter[component] = (GreatestDiameter[component] > tmp) ? GreatestDiameter[component] : tmp;
|
---|
429 | } //else
|
---|
430 | //*out << Verbose(2) << "Saw no sign flip, probably top or bottom node." << endl;
|
---|
431 | }
|
---|
432 | }
|
---|
433 | }
|
---|
434 | *out << Verbose(0) << "RESULT: The biggest diameters are " << GreatestDiameter[0] << " and " << GreatestDiameter[1] << " and " << GreatestDiameter[2] << " " << (IsAngstroem ? "angstrom" : "atomiclength") << "." << endl;
|
---|
435 |
|
---|
436 | return GreatestDiameter;
|
---|
437 | };
|
---|
438 |
|
---|
439 |
|
---|
440 | /** Determines the volume of a cluster.
|
---|
441 | * Determines first the convex envelope, then tesselates it and calculates its volume.
|
---|
442 | * \param *out output stream for debugging
|
---|
443 | * \param *configuration needed for path to store convex envelope file
|
---|
444 | * \param *BoundaryPoints NDIM set of boundary points on the projected plane per axis, on return if desired
|
---|
445 | * \param *mol molecule structure representing the cluster
|
---|
446 | */
|
---|
447 | double VolumeOfConvexEnvelope(ofstream *out, config *configuration, Boundaries *BoundaryPtr, molecule *mol)
|
---|
448 | {
|
---|
449 | bool IsAngstroem = configuration->GetIsAngstroem();
|
---|
450 | atom *Walker = NULL;
|
---|
451 | struct Tesselation *TesselStruct = new Tesselation;
|
---|
452 | bool BoundaryFreeFlag = false;
|
---|
453 | Boundaries *BoundaryPoints = BoundaryPtr;
|
---|
454 |
|
---|
455 | // 1. calculate center of gravity
|
---|
456 | *out << endl;
|
---|
457 | vector *CenterOfGravity = mol->DetermineCenterOfGravity(out);
|
---|
458 |
|
---|
459 | // 2. translate all points into CoG
|
---|
460 | *out << Verbose(1) << "Translating system to Center of Gravity." << endl;
|
---|
461 | Walker = mol->start;
|
---|
462 | while (Walker->next != mol->end) {
|
---|
463 | Walker = Walker->next;
|
---|
464 | Walker->x.Translate(CenterOfGravity);
|
---|
465 | }
|
---|
466 |
|
---|
467 | // 3. Find all points on the boundary
|
---|
468 | if (BoundaryPoints == NULL) {
|
---|
469 | BoundaryFreeFlag = true;
|
---|
470 | BoundaryPoints = GetBoundaryPoints(out, mol);
|
---|
471 | } else {
|
---|
472 | *out << Verbose(1) << "Using given boundary points set." << endl;
|
---|
473 | }
|
---|
474 |
|
---|
475 | // 3d. put into boundary set only those points appearing in each of the NDIM sets
|
---|
476 | int *AtomList = new int[mol->AtomCount];
|
---|
477 | for (int j=0; j<mol->AtomCount; j++) // reset list
|
---|
478 | AtomList[j] = 0;
|
---|
479 | for (int axis=0; axis<NDIM; axis++) { // fill list when it's on the boundary
|
---|
480 | for(Boundaries::iterator runner = BoundaryPoints[axis].begin(); runner != BoundaryPoints[axis].end(); runner++) {
|
---|
481 | AtomList[runner->second.second->nr]++;
|
---|
482 | }
|
---|
483 | }
|
---|
484 | for (int axis=0; axis<NDIM; axis++) {
|
---|
485 | for(Boundaries::iterator runner = BoundaryPoints[axis].begin(); runner != BoundaryPoints[axis].end(); runner++) {
|
---|
486 | if (AtomList[runner->second.second->nr] < 1) {
|
---|
487 | *out << Verbose(1) << "Throwing especially out " << *runner->second.second << " in axial projection of axis " << axis << "." << endl;
|
---|
488 | BoundaryPoints[axis].erase(runner);
|
---|
489 | }
|
---|
490 | }
|
---|
491 | }
|
---|
492 | delete[](AtomList);
|
---|
493 |
|
---|
494 | // 4a. fill the boundary point list
|
---|
495 | Walker = mol->start;
|
---|
496 | while (Walker->next != mol->end) {
|
---|
497 | Walker = Walker->next;
|
---|
498 | if (AtomList[Walker->nr] > 0) {
|
---|
499 | TesselStruct->AddPoint(Walker);
|
---|
500 | }
|
---|
501 | }
|
---|
502 |
|
---|
503 | *out << Verbose(2) << "I found " << TesselStruct->PointsOnBoundaryCount << " points on the convex boundary." << endl;
|
---|
504 | // now we have the whole set of edge points in the BoundaryList
|
---|
505 |
|
---|
506 |
|
---|
507 | // listing for debugging
|
---|
508 | // *out << Verbose(1) << "Listing PointsOnBoundary:";
|
---|
509 | // for(PointMap::iterator runner = PointsOnBoundary.begin(); runner != PointsOnBoundary.end(); runner++) {
|
---|
510 | // *out << " " << *runner->second;
|
---|
511 | // }
|
---|
512 | // *out << endl;
|
---|
513 |
|
---|
514 | // 4b. guess starting triangle
|
---|
515 | TesselStruct->GuessStartingTriangle(out);
|
---|
516 |
|
---|
517 | // 5. go through all lines, that are not yet part of two triangles (only of one so far)
|
---|
518 | TesselStruct->TesselateOnBoundary(out, configuration, mol);
|
---|
519 |
|
---|
520 | *out << Verbose(2) << "I created " << TesselStruct->TrianglesOnBoundaryCount << " triangles with " << TesselStruct->LinesOnBoundaryCount << " lines and " << TesselStruct->PointsOnBoundaryCount << " points." << endl;
|
---|
521 |
|
---|
522 | // 6a. Every triangle forms a pyramid with the center of gravity as its peak, sum up the volumes
|
---|
523 | *out << Verbose(1) << "Calculating the volume of the pyramids formed out of triangles and center of gravity." << endl;
|
---|
524 | double volume = 0.;
|
---|
525 | double PyramidVolume = 0.;
|
---|
526 | double G,h;
|
---|
527 | vector x,y;
|
---|
528 | double a,b,c;
|
---|
529 | for (TriangleMap::iterator runner = TesselStruct->TrianglesOnBoundary.begin(); runner != TesselStruct->TrianglesOnBoundary.end(); runner++) { // go through every triangle, calculate volume of its pyramid with CoG as peak
|
---|
530 | x.CopyVector(&runner->second->endpoints[0]->node->x);
|
---|
531 | x.SubtractVector(&runner->second->endpoints[1]->node->x);
|
---|
532 | y.CopyVector(&runner->second->endpoints[0]->node->x);
|
---|
533 | y.SubtractVector(&runner->second->endpoints[2]->node->x);
|
---|
534 | a = sqrt(runner->second->endpoints[0]->node->x.Distance(&runner->second->endpoints[1]->node->x));
|
---|
535 | b = sqrt(runner->second->endpoints[0]->node->x.Distance(&runner->second->endpoints[2]->node->x));
|
---|
536 | c = sqrt(runner->second->endpoints[2]->node->x.Distance(&runner->second->endpoints[1]->node->x));
|
---|
537 | G = sqrt( ( (a*a+b*b+c*c)*(a*a+b*b+c*c) - 2*(a*a*a*a + b*b*b*b + c*c*c*c) )/16.); // area of tesselated triangle
|
---|
538 | x.MakeNormalVector(&runner->second->endpoints[0]->node->x, &runner->second->endpoints[1]->node->x, &runner->second->endpoints[2]->node->x);
|
---|
539 | x.Scale(runner->second->endpoints[1]->node->x.Projection(&x));
|
---|
540 | h = x.Norm(); // distance of CoG to triangle
|
---|
541 | PyramidVolume = (1./3.) * G * h; // this formula holds for _all_ pyramids (independent of n-edge base or (not) centered peak)
|
---|
542 | *out << Verbose(2) << "Area of triangle is " << G << " " << (IsAngstroem ? "angstrom" : "atomiclength") << "^2, height is " << h << " and the volume is " << PyramidVolume << " " << (IsAngstroem ? "angstrom" : "atomiclength") << "^3." << endl;
|
---|
543 | volume += PyramidVolume;
|
---|
544 | }
|
---|
545 | *out << Verbose(0) << "RESULT: The summed volume is " << setprecision(10) << volume << " " << (IsAngstroem ? "angstrom" : "atomiclength") << "^3." << endl;
|
---|
546 |
|
---|
547 |
|
---|
548 | // 7. translate all points back from CoG
|
---|
549 | *out << Verbose(1) << "Translating system back from Center of Gravity." << endl;
|
---|
550 | CenterOfGravity->Scale(-1);
|
---|
551 | Walker = mol->start;
|
---|
552 | while (Walker->next != mol->end) {
|
---|
553 | Walker = Walker->next;
|
---|
554 | Walker->x.Translate(CenterOfGravity);
|
---|
555 | }
|
---|
556 |
|
---|
557 | // free reference lists
|
---|
558 | if (BoundaryFreeFlag)
|
---|
559 | delete[](BoundaryPoints);
|
---|
560 |
|
---|
561 | return volume;
|
---|
562 | };
|
---|
563 |
|
---|
564 |
|
---|
565 | /** Creates multiples of the by \a *mol given cluster and suspends them in water with a given final density.
|
---|
566 | * We get cluster volume by VolumeOfConvexEnvelope() and its diameters by GetDiametersOfCluster()
|
---|
567 | * \param *out output stream for debugging
|
---|
568 | * \param *configuration needed for path to store convex envelope file
|
---|
569 | * \param *mol molecule structure representing the cluster
|
---|
570 | * \param repetition[] number of repeated cluster per axis
|
---|
571 | * \param celldensity desired average density in final cell
|
---|
572 | */
|
---|
573 | void PrepareClustersinWater(ofstream *out, config *configuration, molecule *mol, int repetition[NDIM], double celldensity)
|
---|
574 | {
|
---|
575 | // some preparations beforehand
|
---|
576 | bool IsAngstroem = configuration->GetIsAngstroem();
|
---|
577 | Boundaries *BoundaryPoints = GetBoundaryPoints(out, mol);
|
---|
578 | double clustervolume = VolumeOfConvexEnvelope(out, configuration, BoundaryPoints, mol);
|
---|
579 | double *GreatestDiameter = GetDiametersOfCluster(out, BoundaryPoints, IsAngstroem);
|
---|
580 | double coeffs[NDIM];
|
---|
581 | int TotalNoClusters = 1;
|
---|
582 | for (int i=0;i<NDIM;i++)
|
---|
583 | TotalNoClusters *= repetition[i];
|
---|
584 |
|
---|
585 | // sum up the atomic masses
|
---|
586 | double totalmass = 0.;
|
---|
587 | atom *Walker = mol->start;
|
---|
588 | while (Walker->next != mol->end) {
|
---|
589 | Walker = Walker->next;
|
---|
590 | totalmass += Walker->type->mass;
|
---|
591 | }
|
---|
592 | *out << Verbose(0) << "RESULT: The summed mass is " << setprecision(10) << totalmass << " atomicmassunit." << endl;
|
---|
593 |
|
---|
594 | *out << Verbose(0) << "RESULT: The average density is " << setprecision(10) << totalmass/clustervolume << " atomicmassunit/" << (IsAngstroem ? "angstrom" : "atomiclength") << "^3." << endl;
|
---|
595 |
|
---|
596 | // solve cubic polynomial
|
---|
597 | *out << Verbose(1) << "Solving equidistant suspension in water problem ..." << endl;
|
---|
598 | double cellvolume;
|
---|
599 | if (IsAngstroem)
|
---|
600 | cellvolume = (TotalNoClusters*totalmass/SOLVENTDENSITY_A - (totalmass/clustervolume))/(celldensity-1);
|
---|
601 | else
|
---|
602 | cellvolume = (TotalNoClusters*totalmass/SOLVENTDENSITY_a0 - (totalmass/clustervolume))/(celldensity-1);
|
---|
603 | *out << Verbose(1) << "Cellvolume needed for a density of " << celldensity << " g/cm^3 is " << cellvolume << " " << (IsAngstroem ? "angstrom" : "atomiclength") << "^3." << endl;
|
---|
604 | double minimumvolume = TotalNoClusters*(GreatestDiameter[0]*GreatestDiameter[1]*GreatestDiameter[2]);
|
---|
605 | *out << Verbose(1) << "Minimum volume of the convex envelope contained in a rectangular box is " << minimumvolume << " atomicmassunit/" << (IsAngstroem ? "angstrom" : "atomiclength") << "^3." << endl;
|
---|
606 | if (minimumvolume < cellvolume)
|
---|
607 | cerr << Verbose(0) << "ERROR: the containing box already has a greater volume than the envisaged cell volume!" << endl;
|
---|
608 |
|
---|
609 | coeffs[0] = (repetition[0]*GreatestDiameter[0] + repetition[1]*GreatestDiameter[1] + repetition[2]*GreatestDiameter[2]);
|
---|
610 | coeffs[1] = (repetition[0]*repetition[1]*GreatestDiameter[0]*GreatestDiameter[1]
|
---|
611 | + repetition[0]*repetition[2]*GreatestDiameter[0]*GreatestDiameter[2]
|
---|
612 | + repetition[1]*repetition[2]*GreatestDiameter[1]*GreatestDiameter[2]);
|
---|
613 | coeffs[2] = minimumvolume - cellvolume;
|
---|
614 | double x0 = 0.,x1 = 0.,x2 = 0.;
|
---|
615 | if (gsl_poly_solve_cubic(coeffs[0],coeffs[1],coeffs[2],&x0,&x1,&x2) == 1) // either 1 or 3 on return
|
---|
616 | *out << Verbose(0) << "RESULT: The resulting spacing is: " << x0 << " ." << endl;
|
---|
617 | else {
|
---|
618 | *out << Verbose(0) << "RESULT: The resulting spacings are: " << x0 << " and " << x1 << " and " << x2 << " ." << endl;
|
---|
619 | x0 = x2; // sorted in ascending order
|
---|
620 | }
|
---|
621 |
|
---|
622 | cellvolume = 1;
|
---|
623 | for(int i=0;i<NDIM;i++) {
|
---|
624 | coeffs[i] = repetition[0] * (x0 + GreatestDiameter[0]);
|
---|
625 | cellvolume *= coeffs[i];
|
---|
626 | }
|
---|
627 | *out << Verbose(0) << "RESULT: The resulting cell dimensions are: " << coeffs[0] << " and " << coeffs[1] << " and " << coeffs[2] << " with total volume of " << cellvolume << " " << (IsAngstroem ? "angstrom" : "atomiclength") << "^3." << endl;
|
---|
628 | };
|
---|
629 |
|
---|
630 |
|
---|
631 | // =========================================================== class TESSELATION ===========================================
|
---|
632 |
|
---|
633 | /** Constructor of class Tesselation.
|
---|
634 | */
|
---|
635 | Tesselation::Tesselation()
|
---|
636 | {
|
---|
637 | PointsOnBoundaryCount = 0;
|
---|
638 | LinesOnBoundaryCount = 0;
|
---|
639 | TrianglesOnBoundaryCount = 0;
|
---|
640 | };
|
---|
641 |
|
---|
642 | /** Constructor of class Tesselation.
|
---|
643 | * We have to free all points, lines and triangles.
|
---|
644 | */
|
---|
645 | Tesselation::~Tesselation()
|
---|
646 | {
|
---|
647 | for (TriangleMap::iterator runner = TrianglesOnBoundary.begin(); runner != TrianglesOnBoundary.end(); runner++) {
|
---|
648 | delete(runner->second);
|
---|
649 | }
|
---|
650 | };
|
---|
651 |
|
---|
652 | /** Gueses first starting triangle of the convex envelope.
|
---|
653 | * We guess the starting triangle by taking the smallest distance between two points and looking for a fitting third.
|
---|
654 | * \param *out output stream for debugging
|
---|
655 | * \param PointsOnBoundary set of boundary points defining the convex envelope of the cluster
|
---|
656 | */
|
---|
657 | void Tesselation::GuessStartingTriangle(ofstream *out)
|
---|
658 | {
|
---|
659 | // 4b. create a starting triangle
|
---|
660 | // 4b1. create all distances
|
---|
661 | DistanceMultiMap DistanceMMap;
|
---|
662 | double distance;
|
---|
663 | for (PointMap::iterator runner = PointsOnBoundary.begin(); runner != PointsOnBoundary.end(); runner++) {
|
---|
664 | for(PointMap::iterator sprinter = PointsOnBoundary.begin(); sprinter != PointsOnBoundary.end(); sprinter++) {
|
---|
665 | if (runner->first < sprinter->first) {
|
---|
666 | distance = runner->second->node->x.Distance(&sprinter->second->node->x);
|
---|
667 | DistanceMMap.insert( DistanceMultiMapPair(distance, pair<PointMap::iterator, PointMap::iterator>(runner,sprinter) ) );
|
---|
668 | }
|
---|
669 | }
|
---|
670 | }
|
---|
671 |
|
---|
672 | // // listing distances
|
---|
673 | // *out << Verbose(1) << "Listing DistanceMMap:";
|
---|
674 | // for(DistanceMultiMap::iterator runner = DistanceMMap.begin(); runner != DistanceMMap.end(); runner++) {
|
---|
675 | // *out << " " << runner->first << "(" << *runner->second.first->second << ", " << *runner->second.second->second << ")";
|
---|
676 | // }
|
---|
677 | // *out << endl;
|
---|
678 |
|
---|
679 | // 4b2. take three smallest distance that form a triangle
|
---|
680 | // we take the smallest distance as the base line
|
---|
681 | DistanceMultiMap::iterator baseline = DistanceMMap.begin();
|
---|
682 | BPS[0] = baseline->second.first->second;
|
---|
683 | BPS[1] = baseline->second.second->second;
|
---|
684 | BLS[0] = new class BoundaryLineSet(BPS , LinesOnBoundaryCount);
|
---|
685 |
|
---|
686 | // take the second smallest as the second base line
|
---|
687 | DistanceMultiMap::iterator secondline = DistanceMMap.begin();
|
---|
688 | do {
|
---|
689 | secondline++;
|
---|
690 | } while (!(
|
---|
691 | (BPS[0] == secondline->second.first->second) && (BPS[1] != secondline->second.second->second) ||
|
---|
692 | (BPS[0] == secondline->second.second->second) && (BPS[1] != secondline->second.first->second) ||
|
---|
693 | (BPS[1] == secondline->second.first->second) && (BPS[0] != secondline->second.second->second) ||
|
---|
694 | (BPS[1] == secondline->second.second->second) && (BPS[0] != secondline->second.first->second)
|
---|
695 | ));
|
---|
696 | BPS[0] = secondline->second.first->second;
|
---|
697 | BPS[1] = secondline->second.second->second;
|
---|
698 | BLS[1] = new class BoundaryLineSet(BPS , LinesOnBoundaryCount);
|
---|
699 |
|
---|
700 | // connection yields the third line (note: first and second endpoint are sorted!)
|
---|
701 | if (baseline->second.first->second == secondline->second.first->second) {
|
---|
702 | SetEndpointsOrdered(BPS, baseline->second.second->second, secondline->second.second->second);
|
---|
703 | } else if (baseline->second.first->second == secondline->second.second->second) {
|
---|
704 | SetEndpointsOrdered(BPS, baseline->second.second->second, secondline->second.first->second);
|
---|
705 | } else if (baseline->second.second->second == secondline->second.first->second) {
|
---|
706 | SetEndpointsOrdered(BPS, baseline->second.first->second, baseline->second.second->second);
|
---|
707 | } else if (baseline->second.second->second == secondline->second.second->second) {
|
---|
708 | SetEndpointsOrdered(BPS, baseline->second.first->second, baseline->second.first->second);
|
---|
709 | }
|
---|
710 | BLS[2] = new class BoundaryLineSet(BPS, LinesOnBoundaryCount);
|
---|
711 |
|
---|
712 | // 4b3. insert created triangle
|
---|
713 | BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount);
|
---|
714 | TrianglesOnBoundary.insert( TrianglePair(TrianglesOnBoundaryCount, BTS) );
|
---|
715 | TrianglesOnBoundaryCount++;
|
---|
716 | for(int i=0;i<NDIM;i++) {
|
---|
717 | LinesOnBoundary.insert( LinePair(LinesOnBoundaryCount, BTS->lines[i]) );
|
---|
718 | LinesOnBoundaryCount++;
|
---|
719 | }
|
---|
720 |
|
---|
721 | *out << Verbose(1) << "Starting triangle is " << *BTS << "." << endl;
|
---|
722 | };
|
---|
723 |
|
---|
724 |
|
---|
725 | /** Tesselates the convex envelope of a cluster from a single starting triangle.
|
---|
726 | * The starting triangle is made out of three baselines. Each line in the final tesselated cluster may belong to at most
|
---|
727 | * 2 triangles. Hence, we go through all current lines:
|
---|
728 | * -# if the lines contains to only one triangle
|
---|
729 | * -# We search all points in the boundary
|
---|
730 | * -# if the triangle with the baseline and the current point has the smallest of angles (comparison between normal vectors
|
---|
731 | * -# if the triangle is in forward direction of the baseline (at most 90 degrees angle between vector orthogonal to
|
---|
732 | * baseline in triangle plane pointing out of the triangle and normal vector of new triangle)
|
---|
733 | * -# then we have a new triangle, whose baselines we again add (or increase their TriangleCount)
|
---|
734 | * \param *out output stream for debugging
|
---|
735 | * \param *configuration for IsAngstroem
|
---|
736 | * \param *mol the cluster as a molecule structure
|
---|
737 | */
|
---|
738 | void Tesselation::TesselateOnBoundary(ofstream *out, config *configuration, molecule *mol)
|
---|
739 | {
|
---|
740 | bool flag;
|
---|
741 | PointMap::iterator winner;
|
---|
742 | class BoundaryPointSet *peak = NULL;
|
---|
743 | double SmallestAngle, TempAngle;
|
---|
744 | vector NormalVector, VirtualNormalVector, CenterVector, TempVector, PropagationVector;
|
---|
745 | LineMap::iterator LineChecker[2];
|
---|
746 | do {
|
---|
747 | flag = false;
|
---|
748 | for (LineMap::iterator baseline = LinesOnBoundary.begin(); baseline != LinesOnBoundary.end(); baseline++)
|
---|
749 | if (baseline->second->TrianglesCount == 1) {
|
---|
750 | *out << Verbose(2) << "Current baseline is between " << *(baseline->second) << "." << endl;
|
---|
751 | // 5a. go through each boundary point if not _both_ edges between either endpoint of the current line and this point exist (and belong to 2 triangles)
|
---|
752 | SmallestAngle = M_PI;
|
---|
753 | BTS = baseline->second->triangles.begin()->second; // there is only one triangle so far
|
---|
754 | // get peak point with respect to this base line's only triangle
|
---|
755 | for(int i=0;i<3;i++)
|
---|
756 | if ((BTS->endpoints[i] != baseline->second->endpoints[0]) && (BTS->endpoints[i] != baseline->second->endpoints[1]))
|
---|
757 | peak = BTS->endpoints[i];
|
---|
758 | *out << Verbose(3) << " and has peak " << *peak << "." << endl;
|
---|
759 | // normal vector of triangle
|
---|
760 | BTS->GetNormalVector(NormalVector);
|
---|
761 | *out << Verbose(4) << "NormalVector of base triangle is ";
|
---|
762 | NormalVector.Output(out);
|
---|
763 | *out << endl;
|
---|
764 | // offset to center of triangle
|
---|
765 | CenterVector.Zero();
|
---|
766 | for(int i=0;i<3;i++)
|
---|
767 | CenterVector.AddVector(&BTS->endpoints[i]->node->x);
|
---|
768 | CenterVector.Scale(1./3.);
|
---|
769 | *out << Verbose(4) << "CenterVector of base triangle is ";
|
---|
770 | CenterVector.Output(out);
|
---|
771 | *out << endl;
|
---|
772 | // vector in propagation direction (out of triangle)
|
---|
773 | // project center vector onto triangle plane (points from intersection plane-NormalVector to plane-CenterVector intersection)
|
---|
774 | TempVector.CopyVector(&baseline->second->endpoints[0]->node->x);
|
---|
775 | TempVector.SubtractVector(&baseline->second->endpoints[1]->node->x);
|
---|
776 | PropagationVector.MakeNormalVector(&TempVector, &NormalVector);
|
---|
777 | TempVector.CopyVector(&CenterVector);
|
---|
778 | TempVector.SubtractVector(&baseline->second->endpoints[0]->node->x); // TempVector is vector on triangle plane pointing from one baseline egde towards center!
|
---|
779 | //*out << Verbose(2) << "Projection of propagation onto temp: " << PropagationVector.Projection(&TempVector) << "." << endl;
|
---|
780 | if (PropagationVector.Projection(&TempVector) > 0) // make sure normal propagation vector points outward from baseline
|
---|
781 | PropagationVector.Scale(-1.);
|
---|
782 | *out << Verbose(4) << "PropagationVector of base triangle is ";
|
---|
783 | PropagationVector.Output(out);
|
---|
784 | *out << endl;
|
---|
785 | winner = PointsOnBoundary.end();
|
---|
786 | for (PointMap::iterator target = PointsOnBoundary.begin(); target != PointsOnBoundary.end(); target++)
|
---|
787 | if ((target->second != baseline->second->endpoints[0]) && (target->second != baseline->second->endpoints[1])) { // don't take the same endpoints
|
---|
788 | *out << Verbose(3) << "Target point is " << *(target->second) << ":";
|
---|
789 | bool continueflag = true;
|
---|
790 |
|
---|
791 | VirtualNormalVector.CopyVector(&baseline->second->endpoints[0]->node->x);
|
---|
792 | VirtualNormalVector.AddVector(&baseline->second->endpoints[0]->node->x);
|
---|
793 | VirtualNormalVector.Scale(-1./2.); // points now to center of base line
|
---|
794 | VirtualNormalVector.AddVector(&target->second->node->x); // points from center of base line to target
|
---|
795 | TempAngle = VirtualNormalVector.Angle(&PropagationVector);
|
---|
796 | continueflag = continueflag && (TempAngle < (M_PI/2.)); // no bends bigger than Pi/2 (90 degrees)
|
---|
797 | if (!continueflag) {
|
---|
798 | *out << Verbose(4) << "Angle between propagation direction and base line to " << *(target->second) << " is " << TempAngle << ", bad direction!" << endl;
|
---|
799 | continue;
|
---|
800 | } else
|
---|
801 | *out << Verbose(4) << "Angle between propagation direction and base line to " << *(target->second) << " is " << TempAngle << ", good direction!" << endl;
|
---|
802 | LineChecker[0] = baseline->second->endpoints[0]->lines.find(target->first);
|
---|
803 | LineChecker[1] = baseline->second->endpoints[1]->lines.find(target->first);
|
---|
804 | // if (LineChecker[0] != baseline->second->endpoints[0]->lines.end())
|
---|
805 | // *out << Verbose(4) << *(baseline->second->endpoints[0]) << " has line " << *(LineChecker[0]->second) << " to " << *(target->second) << " as endpoint with " << LineChecker[0]->second->TrianglesCount << " triangles." << endl;
|
---|
806 | // else
|
---|
807 | // *out << Verbose(4) << *(baseline->second->endpoints[0]) << " has no line to " << *(target->second) << " as endpoint." << endl;
|
---|
808 | // if (LineChecker[1] != baseline->second->endpoints[1]->lines.end())
|
---|
809 | // *out << Verbose(4) << *(baseline->second->endpoints[1]) << " has line " << *(LineChecker[1]->second) << " to " << *(target->second) << " as endpoint with " << LineChecker[1]->second->TrianglesCount << " triangles." << endl;
|
---|
810 | // else
|
---|
811 | // *out << Verbose(4) << *(baseline->second->endpoints[1]) << " has no line to " << *(target->second) << " as endpoint." << endl;
|
---|
812 | // check first endpoint (if any connecting line goes to target or at least not more than 1)
|
---|
813 | continueflag = continueflag && (( (LineChecker[0] == baseline->second->endpoints[0]->lines.end()) || (LineChecker[0]->second->TrianglesCount == 1)));
|
---|
814 | if (!continueflag) {
|
---|
815 | *out << Verbose(4) << *(baseline->second->endpoints[0]) << " has line " << *(LineChecker[0]->second) << " to " << *(target->second) << " as endpoint with " << LineChecker[0]->second->TrianglesCount << " triangles." << endl;
|
---|
816 | continue;
|
---|
817 | }
|
---|
818 | // check second endpoint (if any connecting line goes to target or at least not more than 1)
|
---|
819 | continueflag = continueflag && (( (LineChecker[1] == baseline->second->endpoints[1]->lines.end()) || (LineChecker[1]->second->TrianglesCount == 1)));
|
---|
820 | if (!continueflag) {
|
---|
821 | *out << Verbose(4) << *(baseline->second->endpoints[1]) << " has line " << *(LineChecker[1]->second) << " to " << *(target->second) << " as endpoint with " << LineChecker[1]->second->TrianglesCount << " triangles." << endl;
|
---|
822 | continue;
|
---|
823 | }
|
---|
824 | // check whether the envisaged triangle does not already exist (if both lines exist and have same endpoint)
|
---|
825 | continueflag = continueflag && (!(
|
---|
826 | ((LineChecker[0] != baseline->second->endpoints[0]->lines.end()) && (LineChecker[1] != baseline->second->endpoints[1]->lines.end())
|
---|
827 | && (GetCommonEndpoint(LineChecker[0]->second, LineChecker[1]->second) == peak))
|
---|
828 | ));
|
---|
829 | if (!continueflag) {
|
---|
830 | *out << Verbose(4) << "Current target is peak!" << endl;
|
---|
831 | continue;
|
---|
832 | }
|
---|
833 | // in case NOT both were found
|
---|
834 | if (continueflag) { // create virtually this triangle, get its normal vector, calculate angle
|
---|
835 | flag = true;
|
---|
836 | VirtualNormalVector.MakeNormalVector(&baseline->second->endpoints[0]->node->x, &baseline->second->endpoints[1]->node->x, &target->second->node->x);
|
---|
837 | // make it always point inward
|
---|
838 | if (baseline->second->endpoints[0]->node->x.Projection(&VirtualNormalVector) > 0)
|
---|
839 | VirtualNormalVector.Scale(-1.);
|
---|
840 | // calculate angle
|
---|
841 | TempAngle = NormalVector.Angle(&VirtualNormalVector);
|
---|
842 | *out << Verbose(4) << "NormalVector is ";
|
---|
843 | VirtualNormalVector.Output(out);
|
---|
844 | *out << " and the angle is " << TempAngle << "." << endl;
|
---|
845 | if (SmallestAngle > TempAngle) { // set to new possible winner
|
---|
846 | SmallestAngle = TempAngle;
|
---|
847 | winner = target;
|
---|
848 | }
|
---|
849 | }
|
---|
850 | }
|
---|
851 | // 5b. The point of the above whose triangle has the greatest angle with the triangle the current line belongs to (it only belongs to one, remember!): New triangle
|
---|
852 | if (winner != PointsOnBoundary.end()) {
|
---|
853 | *out << Verbose(2) << "Winning target point is " << *(winner->second) << " with angle " << SmallestAngle << "." << endl;
|
---|
854 | // create the lins of not yet present
|
---|
855 | BLS[0] = baseline->second;
|
---|
856 | // 5c. add lines to the line set if those were new (not yet part of a triangle), delete lines that belong to two triangles)
|
---|
857 | LineChecker[0] = baseline->second->endpoints[0]->lines.find(winner->first);
|
---|
858 | LineChecker[1] = baseline->second->endpoints[1]->lines.find(winner->first);
|
---|
859 | if (LineChecker[0] == baseline->second->endpoints[0]->lines.end()) { // create
|
---|
860 | BPS[0] = baseline->second->endpoints[0];
|
---|
861 | BPS[1] = winner->second;
|
---|
862 | BLS[1] = new class BoundaryLineSet(BPS , LinesOnBoundaryCount);
|
---|
863 | LinesOnBoundary.insert( LinePair(LinesOnBoundaryCount, BLS[1]) );
|
---|
864 | LinesOnBoundaryCount++;
|
---|
865 | } else
|
---|
866 | BLS[1] = LineChecker[0]->second;
|
---|
867 | if (LineChecker[1] == baseline->second->endpoints[1]->lines.end()) { // create
|
---|
868 | BPS[0] = baseline->second->endpoints[1];
|
---|
869 | BPS[1] = winner->second;
|
---|
870 | BLS[2] = new class BoundaryLineSet(BPS, LinesOnBoundaryCount);
|
---|
871 | LinesOnBoundary.insert( LinePair(LinesOnBoundaryCount, BLS[2]) );
|
---|
872 | LinesOnBoundaryCount++;
|
---|
873 | } else
|
---|
874 | BLS[2] = LineChecker[1]->second;
|
---|
875 | BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount);
|
---|
876 | TrianglesOnBoundary.insert( TrianglePair(TrianglesOnBoundaryCount, BTS) );
|
---|
877 | TrianglesOnBoundaryCount++;
|
---|
878 | } else {
|
---|
879 | *out << Verbose(1) << "I could not determine a winner for this baseline " << *(baseline->second) << "." << endl;
|
---|
880 | }
|
---|
881 |
|
---|
882 | // 5d. If the set of lines is not yet empty, go to 5. and continue
|
---|
883 | } else
|
---|
884 | *out << Verbose(2) << "Baseline candidate " << *(baseline->second) << " has a triangle count of " << baseline->second->TrianglesCount << "." << endl;
|
---|
885 | } while (flag);
|
---|
886 |
|
---|
887 | stringstream line;
|
---|
888 | line << configuration->configpath << "/" << CONVEXENVELOPE;
|
---|
889 | *out << Verbose(1) << "Storing convex envelope in tecplot data file " << line.str() << "." << endl;
|
---|
890 | ofstream output(line.str().c_str());
|
---|
891 | output << "TITLE = \"3D CONVEX SHELL\"" << endl;
|
---|
892 | output << "VARIABLES = \"X\" \"Y\" \"Z\"" << endl;
|
---|
893 | output << "ZONE T=\"TRIANGLES\", N=" << PointsOnBoundaryCount << ", E=" << TrianglesOnBoundaryCount << ", DATAPACKING=POINT, ZONETYPE=FETRIANGLE" << endl;
|
---|
894 | int *LookupList = new int[mol->AtomCount];
|
---|
895 | for (int i=0;i<mol->AtomCount;i++)
|
---|
896 | LookupList[i] = -1;
|
---|
897 |
|
---|
898 | // print atom coordinates
|
---|
899 | *out << Verbose(2) << "The following triangles were created:";
|
---|
900 | int Counter = 1;
|
---|
901 | atom *Walker = NULL;
|
---|
902 | for (PointMap::iterator target = PointsOnBoundary.begin(); target != PointsOnBoundary.end(); target++) {
|
---|
903 | Walker = target->second->node;
|
---|
904 | LookupList[Walker->nr] = Counter++;
|
---|
905 | output << Walker->x.x[0] << " " << Walker->x.x[1] << " " << Walker->x.x[2] << " " << endl;
|
---|
906 | }
|
---|
907 | output << endl;
|
---|
908 | // print connectivity
|
---|
909 | for (TriangleMap::iterator runner = TrianglesOnBoundary.begin(); runner != TrianglesOnBoundary.end(); runner++) {
|
---|
910 | *out << " " << runner->second->endpoints[0]->node->Name << "<->" << runner->second->endpoints[1]->node->Name << "<->" << runner->second->endpoints[2]->node->Name;
|
---|
911 | output << LookupList[runner->second->endpoints[0]->node->nr] << " " << LookupList[runner->second->endpoints[1]->node->nr] << " " << LookupList[runner->second->endpoints[2]->node->nr] << endl;
|
---|
912 | }
|
---|
913 | output.close();
|
---|
914 | delete[](LookupList);
|
---|
915 | *out << endl;
|
---|
916 | };
|
---|
917 |
|
---|
918 | /** Adds an atom to the tesselation::PointsOnBoundary list.
|
---|
919 | * \param *Walker atom to add
|
---|
920 | */
|
---|
921 | void Tesselation::AddPoint(atom *Walker)
|
---|
922 | {
|
---|
923 | BPS[0] = new class BoundaryPointSet(Walker);
|
---|
924 | PointsOnBoundary.insert( PointPair(Walker->nr, BPS[0]) );
|
---|
925 | PointsOnBoundaryCount++;
|
---|
926 | };
|
---|