Changes between Version 1 and Version 2 of CreateMicelle
- Timestamp:
- Feb 9, 2011, 5:49:53 PM (14 years ago)
Legend:
- Unmodified
- Added
- Removed
- Modified
-
CreateMicelle
v1 v2 5 5 6 6 === First Micelle === 7 First, we will specify an empty '''TREMOLO''' data file (''-i test.data''), we give '''PDB''' and '''TREMOLO''' as output formats (''-o pdb tremolo''). Then we load the tenside molecule (''-l tensid.data''). We select itby its name, which is automatically set to from the filename (''--select-molecule-by-name tensid''). And then we call the !CreateMicelleAction with the following parameters (''--create-micelle 200 --position "0,0,0" --radius 10''):7 First, we will specify an empty '''TREMOLO''' data file (''-i test.data''), we give '''PDB''' and '''TREMOLO''' as output formats (''-o pdb tremolo''). Then we first parse the potentials file (''--parse-tremolo-potentials tensid.potentials''), then load the tenside molecule (''-l tensid.data''). ^(Note: The potentials file gives us information about which type represents which element, e.g. HLA2 actually means hydrogen or H. So, this part of the command is only necessary if your Type column in tensid.data does not contain valid element symbols.)^ We select the tensid molecule by its name, which is automatically set to from the filename (''--select-molecule-by-name tensid''). And then we call the !CreateMicelleAction with the following parameters (''--create-micelle 200 --position "0,0,0" --radius 10''): 8 8 * 200 points on the surface of the sphere equals 200 resulting tenside molecules (MoleCuilder will state 400 because the ionic compound is regarded as a distinct molecule) 9 9 * The sphere is centered at (0,0,0) … … 11 11 12 12 {{{ 13 ~/workspace_C/molecuilder/debug64/src/molecuilder -v 3 -i test.data -o pdb tremolo - l tensid.data --select-molecule-by-name tensid --create-micelle 200 --position "0,0,0" --radius 1013 ~/workspace_C/molecuilder/debug64/src/molecuilder -v 3 -i test.data -o pdb tremolo --parse-tremolo-potentials tensid.potentials -l tensid.data --select-molecule-by-name tensid --create-micelle 200 --position "0,0,0" --radius 10 14 14 }}} 15 15 … … 17 17 The second call is as follows: 18 18 {{{ 19 ~/workspace_C/molecuilder/debug64/src/molecuilder -v 3 -i test.data -o pdb tremolo - l tensid.data --select-molecule-by-name tensid --create-micelle 200 --position "100,0,0" --radius 1019 ~/workspace_C/molecuilder/debug64/src/molecuilder -v 3 -i test.data -o pdb tremolo --parse-tremolo-potentials -l tensid.data --select-molecule-by-name tensid --create-micelle 200 --position "100,0,0" --radius 10 20 20 }}} 21 21 … … 23 23 24 24 === Filling empty space with water molecules === 25 Now, we run into a basic problem of the '''PDB''' format. The atomic ids only go up to 99999, i.e. 5 digits. Filling the void space with water however will result in roughly 400.000 atoms. Hence, we set the output format to '''XYZ''' (''-o xyz'') instead. First, we have to specify a domain that we fill. Therefore, we call only wenow call !AddEmptyBoundaryAction (''--boundary "20,20,20"'') which causes every atom to be last 20 Angstroem away from the boundary. Then, all is set for calling !FillVoidWithMoleculeAction (''--fill-void water.xyz --!MaxDistance -1 --distances "3.1, 3.1, 3.1" --lengths "2.1, 0., 0." --!DoRotate 0'') with the following parameters:25 Now, we run into a basic problem of the '''PDB''' format. The atomic ids only go up to 99999, i.e. 5 digits. Filling the void space with water however will result in roughly 400.000 atoms. Hence, we set the output format to '''XYZ''' (''-o xyz'') instead. First, we have to specify a domain that we fill. Therefore, we now call !AddEmptyBoundaryAction (''--boundary "20,20,20"'') which causes every atom to be last 20 Angstroem away from the boundary. Then, all is set for calling !FillVoidWithMoleculeAction (''--fill-void water.xyz --!MaxDistance -1 --distances "3.1, 3.1, 3.1" --lengths "2.1, 0., 0." --!DoRotate 0'') with the following parameters: 26 26 * The water molecule (the ''filler'') is obtained from parsing ''water.xyz'' 27 27 * There is no maximum distance given (e.g. to some surface) 28 * The distances in between the water molecules is 3.1 Angstroem, relating to a density of 1g/cm^3 (try to calculate with '''units''' yourself).28 * The distances in between the water molecules is 3.1 Angstroem, relating to a density of 1g/cm^3^ (try to calculate with '''units''' yourself). 29 29 * The lengths here are: 2.1 Angstroem distance to every other already present atom found. The two remaining numbers are for randomizing atomic and molecule's central position. 30 30 * Finally, we do not rotate randomly the water molecule. 31 31 32 32 {{{ 33 ~/workspace_C/molecuilder/debug64/src/molecuilder -v 1 - i test.data -o xyz --boundary "20,20,20" --fill-void water.xyz --MaxDistance -1 --distances "3.1, 3.1, 3.1" --lengths "2.1, 0., 0." --DoRotate 033 ~/workspace_C/molecuilder/debug64/src/molecuilder -v 1 --parse-tremolo-potentials -i test.data -o xyz --boundary "20,20,20" --fill-void water.xyz --MaxDistance -1 --distances "3.1, 3.1, 3.1" --lengths "2.1, 0., 0." --DoRotate 0 34 34 }}} 35 35