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Abstract

In Germany there is a very famous and long-running TV show for kids
called "Die Sendung mit der Maus" (the show with the mouse1). I must
admit that I still watch it frequently because you learn a lot, e. g. how a
stu� is produced in factories, how walnut oil is made, and much, much
more. I have even got a "Maus"-style tear-o� calendar with a question
and an answer on the �ipside for every day of the year!

One of these questions (from 19th of June 2014) was: Why do noodles
become soft during cooking?

My �rst guess was that cooking breaks up the starch chains to some
extent and that's why the noodles are softer afterwards. The tear-o�
page's �ipside however taught me a di�erent answer: They consist of
milled durum and come dry out of the package. Thus, they are hard but
also last for a long time. They get soaked with water during cooking and
that's why they are soft.

I immediately had a ball-and-stick model in my head of starch chains
with and without water and thought of how cool it would be to make
a molecular dynamics simulation to check whether the answer could be
validated this way. So this is me performing this virtual experiment. And
the best thing of all: As there is no bond breaking involved, I can use the
BOSSANOVA scheme, detailed in my thesis[Heber(2014)].

1 Introduction

So, let's start with the fun stu�: We want to perform a molecular dynamics
simulation. That is we want to have atoms with electrons sitting in a certain
domain (coined the "simulation box") and have a quantum chemistry code cal-
culate the interactions between the atoms and electrons. These calculated forces
are integrated over time in discrete, but very small steps. Imagine it like a sim-
ulation of planets orbiting the sun. The attractive force of the sun accelerates
the planets in very small time steps and thus pulls the planets into a circular
motion. However, in our case every planet is sort of a sun by itself pulling at
all other suns . . .

1.1 Coordinates and abundances

For this simulation to begin with, we need to know about the coordinates of
every atom in this box. Sadly, we do not have some kind of "molecular scanner"

1. . . and not to forget: and the elephant
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that would produce this kind of information. There are mass spectrometers and
alikes but they only give you the abundances of the di�erent molecules found in
spaghetti, for example. For dry pasta2, this is mostly Semolina �our. Semolina
�our is actually durum, and it consists to the greatest part of carbohydrates
72.83% and second water(!) 12.67%3.

How much water then does contain a cooked noodle, e. g. a single spaghetti?
I wanted to do some measurement on my own � being tired of looking stu� up
via google. So, here it comes.

1.1.1 Approximate determination of contents of dry and cooked

spaghetti

First of all, let us simplify things a bit right from the start: we assume that
spaghetti consist only of durum and it in turn only of starch and water. To this
end, we normalize the above abundances to sum up to unity.

Then, knowing their renormalized abundances in the dry noodle � Ad
H2O

=

0.15 and Ad
starch

= 0.85 � and knowing the atomic weight of amylose µstarch
and water µH2O we need to determine the average weight of a dry md

noodle
and

a cooked mc
noodle

noodle and also their average volumes V d
noodle

and V c
noodle

,
respectively, to determine the missing values.

So, let's measure: ten cooked spaghetti noodles replace 40 ± 5ml of water,
i. e.V c

noodle
= 4ml. Their mass is 24 ± 2 g, i. e. mc

noodle
= 2.4 g. The �rst

uncertainty is guessing and the second is the uncertainty of the kitchen scale.
Furthermore, 50 dry spaghetti noodles replace 30±5ml of water, i. e.V d

noodle
=

0.6ml. Their mass is 44±2 g, i. e. md
noodle

= 0.88 g, where the uncertainties are
obtained in the same manner.

Thereby, we have the densities of the dry noodle 1.47 g
cm3 and the cooked

noodle 0.6 g
cm3 , respectively. That's quite a saving in terms of packing!

1.1.2 Length and coordinates of starch chains

From a patent speci�cation (No. DE60007798 T2) I get that Semolina consists
of starch chains between 180-350 micron in length. This is far too long for a
simple molecular dynamics simulation, but we get to this point later.

Starch chains come in branched and unbranched varieties. Unbranched the
molecule is called amylose, branched it is referred to as amylopectin4. Thanks
to some googling I was able to get a hold of �les with coordinates for either
type, see Figure 1 and they are much shorter. On a sidenote: I even found a
reference for starch being the major constituent of durum, see [Abecassis(2000),
page 41]

Note that the atomic weight of the amylose molecule O56C66H112 in the �le
is µa = 1,801.57 u, which we calculate from knowing all contained atoms, their
atomic weights and summing up.

2See http://en.wikipedia.org/wiki/Pasta on Wikipedia
3See http://en.wikipedia.org/wiki/Semolina on Wikipedia
4So far I am only aware that potato starch and not durum consists of amylose, but let's

keep it simple here
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Figure 1: Ball-and-stick model of amylose: hydrogen is in white, carbon in grey,
and oxygen in red.

1.1.3 Putting it all together: The question to be answered

So, now we have a lot of numbers to begin with. All that remains is to put it all
together, i. e. to put amylose (and water) in the right amounts in a simulation
box.

But what do we want to do afterwards? What do we want to measure?
What is the number that validates or invalidates the �ipside's answer? We need
to know this beforehand as it has a signi�cant impact on the setup!

For this we need a model; an abstraction of what's happening in the real
world in such a way as to leave in all that's important and leave out all that's
not.

This is what the computer can never do for you: To formulate the right
questions. And science is all about asking the right questions eventually.

In our case our question was: Why are cooked noodles soft while dry ones

are not.

Now this is a good question to a human being but not to a computer program,
that can only measure certain quantities. We have to reformulate the question
for it.

Soft refers to a reaction to an external force: it means it gives way more
easily. Giving way in the case of starch chains then does not mean that the starch
chains themselves give way and break eventually but that they may slide along
one another. So, we are interested in the strength of intermolecular interactions,
the forces between the starch chains.

Hence, the question we will ask the computer is: How strong are the inter-

molecular forces between starch chains in the dry and the cooked noodle?

2 Setting up the model

Having now our question at hand, we build the model around it. As we are
looking at the interactions between two starch chains, we need at least two of
them. More would be plenty, so let's just keep it down to two amylose molecules.
The less atoms we have in the domain the quicker the simulation will run.

Next, what else do we need? Water is the second ingredient of Semolina
�our. However, as a �rst step we will leave it out of the model. (Maybe to
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come up later with a follow-up experiment to investigate the validity of this
simpli�cation.)

So, we go about as follows:

1. Create a simulation box of a certain size.

2. Place two amylose molecules into the simulation box in a certain distance
to one another.

3. Calculate a single molecular dynamics step to have the atomic forces.

4. Add up the forces for each amylose molecule and divide by the number of
atoms to obtain the average molecular force.

5. Check the relation between the distance between the amylose molecules,
the water contents (i. e. from cooked to dry state) against the di�erence
in force magnitude acting between the molecules.

And hopefully we'll then have our answer!
Now, we have been very unspeci�c at some points, namely those marked in

above list by the appearance of the word "certain". We need to precisely specify
these values and will do so in the following section.

2.1 Some prior calculations

To this end, now we need to do some calculations: The thing we will do most
often is converting mass into number of molecules and vice versa. We need the
Avogadro constant NA ≈ 6.02e+23 and molecular masses expressed in gram
over a certain number of molecules, e. g. water's atomic mass is 18 u or atomic

mass units. Then, 18 g of water contain 18g
18u = NA water molecules, i. e. as

many as the Avogadro constant, also referred to a 1 mol.

2.1.1 Number of molecules

Given now a single noodle, how many water moleculesNw and amylose molecules
Na does it contain?

Nw :=
Aw ·mn

µw

Na :=
Aa ·mn

µa
,

respectively, where the index w and a refer to water and amylose and mn is the
mass of the noodle.

For the dry state we have the abundances and therefore we obtain the follow-
ing number of water molecules Nd

w = 7.25e−3 mol. For the number of amylose
molecules we get Na = 4.16e−4 mol.

Next, we assume that the cooked noodle's abundances change only by the
uptake of water. We neglect the bit of starch leaking out into the boiling water.
This is what makes the noodle water milky in appeareance if you cook the
noodles for too long.

Hence, the di�erence in mass between dry and cooked noodle is solely due
to the uptake of water molecules. Therefore, we get that the relative mass
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abundance of water has increased to 0.69. The absolute abundance of amylose
was assumed to remain the same, but the relative abundance naturally dropped
to 0.31.

In the cooked state we then obtain for the number of water molecules
N c

w = 9.17e−2 mol, while the number of amylose molecules remains the same
by assumption.

Thereby, we also have how many water molecules we need to add per amylose
molecule: Nw

NA
, namely Nd

w

NA
= 17.41 in the dry state and Nc

w

NA
= 220.37 in the

cooked state.
Already we notice the huge di�erence and how much drier noodles in their

wrapping are.

2.2 Size of the simulation domain

The size of the simulation domain would actually be a trivial matter. As we use
open boundary conditions (hence, two amylose molecules in vacuum) and not
periodic ones (two amylose molecules in an endless sea of other ones) and as we
neither add water, the simulation box just has to be large enough to contain
the two completely.

However, later we want to know the typical distance between amylose molecules
for the dry state and the cooked state. Therefore, we need to know about the
volumes a single water molecule and a single amylose molecule occupy on aver-
age. This is just the volume of the noodle times the speci�c relative abundance
over the total number of molecules of the speci�c type, i. e. amylose or water.
So, how much volume do two amylose molecules and the associated number
2 · Nw

NA
of water molecules require?

D := 2 · Vn
Na

where Vn is the volume of the noodle and D the volume of the simulation
domain. Note that this automatically includes the volume of the associated
water molecules.

We obtain Dd = 4,789.3 Å3 for the dry noodle and Dc = 31,929 Å3 for the
cooked noodle.

2.3 Typical distance of amylose molecules in durum

The last missing number is the typical distance between the amylose molecules.
We consider amylose as roughly cylindrical. Therefore, we ask: By how much

do we need to extend both length and radius of this cylinder, starting from the
volume of a single amylose molecule, in order to match a cuboid domain of
V d
n

Na
= 2,394.6 Å3 and V c

n

Na
= 15,964.5 Å3, respectively? That is the average

volume of one amylose molecule including the surrounding water molecules.
Hence, we need to know the length and volume of the amylose molecule as

a cylinder to obtain its radius in the same way as with the whole noodle. This
can be done with MoleCuilder.

First, we calculate the principal axis system which will give use the length
of the longest axis in the molecule.
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$ . / mo l e cu i lde r − l amylose_straightened_more_opt . pdb \
−−select−a l l−molecu le s \
−−rotate−to−pr i n c i pa l−axis−system 1 ,0 ,0 \
−−add−empty−boundary 1e−10 ,1e−10 ,1e−10

The length of the box in the x direction is then the length of the cylinder,
namely 50.68.

Next, we envelope the amylose chain molecule with a tesselation surface and
calculate its volume. However, the obtained volume depends on the size of the
rolling sphere by which we obtain the tesselation. We obtained some values by
the following command:

$ for rad iu s in ` seq 2 1 50 ` ; do

$ echo −e " rad iu s \ tvolume" >volumina . dat
$ echo −n −e " $rad ius \ t " >>volumina . dat
$ . / mo l e cu i lde r − l amylose_straightened_more_opt . pdb \

−−select−a l l−molecu le s \
−−verbose 1 \
−−convex−enve lope $rad ius \

−−convex− f i l e convex \
−−nonconvex− f i l e nonconvex \
−−DoOutputEveryStep 0 \

2&>1 >convex ize . l og
$ grep "non−convex t e s s e l a t e d  volume area " \
convex ize . l og | awk '{ p r i n t $7 } ' >>volumina . dat
$ done

This creates a �le volumina.dat, which is plotted in Figure 2.
So, what sphere radius is the right one? This depends on the interaction

radius of the water molecule. A typical value would be 2 Å.
We then get 501.53 Å3 as the volume of the amylose molecule and therefore

ra = 1.77 Å as the radius of the cylinder.
Now, we have the volume of the domain, but what we need to know is its

extent in every direction. We imagine that the cylindrical amylose is sitting
in the center of the domain and that the distance to the domain's boundary
is equal in any direction. Hence, we are looking for a distance d to extend the
minimal rectangular bounding box of the amylose's cylinder to match in volume
with the known values for the dry and cooked state.

To solve then for this unknown extra distance d, we need to solve a third
order polynomial of the volume with the length l and the radius d, namely

d3 + (l + 2r)d2 + (2lr + r2)d+
4lr2 − Vn

Na

4
= 0

d3 + a2d
2 + a2d+ a0 = 0

for the unknown d. This is done via the Cubic Formula (from Wolfram Math-
World), see Table 1 for the intermediate values.

We have D < 0 in both cases and therefore obtain three real roots d1, d2,
d3 for the dry and cooked state.

We obtain the following average distance between amylose molecules, dda =
1.63 and dca = 6.58
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Figure 2: Dependence of the volume contained under the non-convex tesselated
surface area with respect to the radius of the rolling sphere that creates it.

Table 1: Initial, intermediate, and �nal numbers in solving the third order
polynomial.

quantity dry cooked
a2 54.23 54.23
a1 183.05 183.05
a0 −439.01 −3,831.5
Q −265.78 −265.78
R −4,033.8 −2,337.5
D −2.5e+6 −1.33e+7
d1 1.63 6.58
d2 −50.43 −48.88
d3 −5.44 −11.93
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Let us check the resulting volume 2,424.89 against the known one V d
n

Na
=

2,394.6 for the dry state and 15,974.42 against the known one V c
n

Na
= 15,964.5,

which is close enough apart from some rounding issues5. All in all, we will have
a distance between the two amylose molecules ranging from 1.63 Å to 6.58 Å.
And that's what this whole calculation has been about.

3 Experimentation

Now, we can �nally start the experimentation and perform it in the three general
steps: We begin with the setup, let then the simulation run and �nally analyse

the values obtained to �nd our answer.

3.1 Setup

Let's again have a look at the amylose molecule as we obtained it from the web
in Figure 1.

We notice that it features quite some bends and it is not as straight a cylinder
as we imagined it to be in the calculations above. This also makes it complicated
to properly assess the distance between two amylose molecules and its relation
to the intermolecular forces.

Let's try to measure the volume in encompasses in a minimal rectangular
bounding box:

$ . / mo l e cu i lde r \
−−load amylose . pdb \
−−add−empty−boundary "1e−10 ,1e−10 ,1e−10"

The new box is then 44.97 0 0
0 17.03 0
0 0 18.19


and has a volume of 13,930.56 Å3. Comparing this value to Dd

2 , we immediately
notice that its larger.

This makes �lling in the two amylose molecules and the required 34 water
molecules a lot harder. We would need to place them in an interwoven fashion
in some way to not require too large a box.

It is much simpler if we just straighten the molecule a bit:6

$ . / mo l e cu i lde r \
−−input amylose_stra ightened . pdb \
−−load amylose . pdb \
−−select−atom−by−id 90 \
−−t r an s l a t e−to−o r i g i n \
−−create−shape " cuboid " \

−−shape−type cube
−−t r a n s l a t i o n "0,−10,−15" \

5The calculation is done via pgfmath inside the LATEX document
6Naturally, we picked the atom to use as point of rotation in the GUI (we just give here

its id). Also, we picked the rotation angle (and axis) in a try&error fashion but this required
just a few attempts and undo/redo a step is just the click on a button.
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−−s t r e t c h " 20 ,20 ,20 " \
−−select−shape−by−name " cuboid " \
−−select−a l l−atoms−i n s i d e−shape \
−−unse l e c t−atom−by−id 90 \
−−rotate−around−o r i g i n "50" \

−−po s i t i o n " 0 ,1 ,−0.3 " \
−−select−a l l−molecu le s \
−−rotate−to−pr i n c i pa l−axis−system " 0 ,0 ,1 "

Note that the last action automatically aligned the longest prinicipal component
of the molecule with the z-axis.

We did a two more unbending moves with the following parameters before
the actual rotation to the PAS:

• Atom id #20 with axis (0.8, 0.2,−0.1) and α = −40.

• Atom id #79 axis with (1, 0., 0.) and α = 20.

Figure 3: Ball-and-stick model of the �nally straightened amylose molecule:
hydrogen is in white, carbon in grey, and oxygen in red. Also, the minimal
bounding box is shown.

The molecule looks �nally like displayed in Figure 3, you notice that a few
bends are gone, and also the volume of the bounding box is now just 2,987.89 Å3.

Note that it's still larger than half of Dd = 4,789.3 Å3, but we'll leave it at
that. The dry state is only achievable if we compress the box and perform some
heavier optimization. Eventually, we are just interested in the general tendency
from dry to cooked state of the intermolecular force. However, instead of worry-
ing about it, we rather calculate to which distance this value corresponds. It's
again a cubic polynomial to solve but instead of V d

n

NA
we have the above volume.

We obtain dinitial = 2.01 Å. This is not too far away from 1.63 Å.
We now have a straight molecule but also a strained structure. We need to

relax it, especially around the points of rotation. To this end, we perform at
least a brief structure optimization right now.

$ . / mo l e cu i lde r \
−−input \

amylose_straightened_more_opt . pdb \
−−load amylose_straightened_more . pdb \
−−add−empty−boundary 1 ,1 ,1 \
−−select−a l l−atoms \
−−optimize−s t r u c tu r e \

−−order 4 \
−−d i s t ance 3 . \
−−fragment−executab l e mpqc \
−−keep−bondgraph 1 \
−−s t ep s 30
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(a) 4(r + d) = 12.744

(b) 4(r + d) = 14.304

(c) 4(r + d) = 20.704

Figure 4: Ball-and-stick model of two straightened, optimized amylose
molecules: hydrogen is in white, carbon in grey, and oxygen in red. The bound-
ing box is shown. The given value 4(r + d) is basically the extension in the y
direction.
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The last step is then to replicate the box on the z-axis.
And then we are done, the �nal setup is depicted in Figure 4.

3.1.1 Scripting

Naturally, we need to do this with more than just one distance. We need
several ones in the interval I = [2.01, 6.58] Å with an increasing number of
water molecules, too.

What we need is a script that does it all for us for a given set of chosen points
in the above interval I. For example, let's pick N = 11 equidistant points. This
is not quite as easy, as we need to adjust the �ll-in mesh in integral values.
Hence, we obtain a few more values, where we go from 2× 2 to 3× 3 and so on.

This script is given in 1. What I have done so far, was all in the GUI of
MoleCuilder. I then obtained this script by simply saving the session and some
further, small modi�cations, e. g. adding loops.

3.2 Running

Now, we need to run the molecular dynamics simulation, or rather just the force
calculation.

This is done by the script 2 as follows:

$ for i in ` seq 0 10 ` ; do

$ . / c a l c u l a t e i t . sh amy lo se_st ra i ghtened_f i l l i n−${ i } . data
$ done

Note that we do not use the right bounding box to prevent (in a very simple
fashion) the fragmentation "interfragmenter" from combining fragments over
the boundary walls (i. e. no periodic boundary conditions apply).

Furthermore, we use "3-21G" as basis set and "MBPT2" as level of theory
as we must include non-covalent bonding.

3.3 Analysis

And �nally, we may analyse the forces per (amylose) molecule per time step,
done by the script 3.

In Figure 5 we give the resulting force with respect to the distance vector
between the two amylose molecules for two di�erent basis sets, 3-21G and 4-

31G.
We see what we expected: The forces are strongest close to the dry state and

they get weaker the further apart the amylose molecules are and also the closer
we get to the cooked state. However, we also notice that we are still quite a bit
away from the true cooked intermolecular distance of dc = 6.58 Å. However, the
force has already reached a plateau at d ≈ 3 Å, half the distance of the cooked
state.

Hence, we conclude that noodles indeed become softer during cooking be-
cause they take up water, decrease thereby their density and especially increase
the distance between the amylose molecules. Thus, the noodle looses its brittle
nature.

What we did not expect is that the maximum force between the amylose
molecules is acting at a distance of between d = 1.6 Å and d = 1.8 Å depending
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(a) 3-21G (b) 4-31G

Figure 5: Average force acting between the two amylose molecules for each
component over the distance between the two molecules considered as cylinders
as described in the text.

on the basis set. This is really close to dd = 1.63 Å. This comes at a nice surprise
that we basically recover here the intermolecular distance dd for the dry state
from the force-distance pro�le.

Also, we notice that the larger basis set 4-31G sees signi�cant interactions
beyond d = 2.5 Å, while they end before that with the other basis set 3-21G.

4 Conclusions

In this experiment we looked at starch chains, the main ingredient of most
noodles such as spaghetti, and asked why they become soft during cooking.
We translated this question into something the computer can give an answer
to, essentially a number; the intermolecular force acting between two (short)
amylose molecules, representing the starch chains. We calculated the pro�le of
each intermolecular force component with respect to the distance between the
two molecules. The pro�le showed that the amylose molecules in spaghetti are
at a distance to one another where the force acting between them is strongest.
Furthermore, the force becomes weaker with greater distance and reaches a
plateau some good way before reaching the typical intermolecular distance for
the cooked state. Here, water inclusion would probably shift this trend a bit.

Eventually, we realize that sometimes (actually even often) a lot of juggling
of numbers is required prior to performing the simulation. Not so much for the
simulation itself but rather to allow interpretation of its results.
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Listing 1: Script for creating initial setup with just two amylose molecules in a
speci�c distance: �lling.py

import pyMoleCuilder

de f f i l l i n ( boundary , f ) :
"This func t i on encapsu l a t e s the f i l l i n g o f the water molecu le s "
# c l e a r the World
pyMoleCuilder . r e i n i t ( )
pyMoleCuilder . CommandVerbose ("1")
# load amylose , prepare boundary , load water , and f i l l domain
pyMoleCuilder . MoleculeLoad (" amylose_opt . pdb")
pyMoleCuilder .WorldAddEmptyBoundary("%f ,%f ,% f "

% ( boundary , boundary , boundary ) )
# repeat box
pyMoleCuilder . WorldRepeatBox ("1 2 1")
domain = pyMoleCuilder . getBoundingBox ( )
domx=domain [ 1 ]
domy=domain [ 3 ]
domz=domain [ 5 ]
pyMoleCuilder . ParserSetTremoloAtomdata (

"F ne ighbors u x" , "0")
pyMoleCuilder . WorldOutputAs (" amy lo se_st ra i ghtened_f i l l i n−%d . data"

% ( nr ) )
pyMoleCuilder . WorldOutputAs (" amy lo se_st ra i ghtened_f i l l i n−%d . pdb"

% ( nr ) )
f . wr i t e ("%d\ t%f \ t%f \ t%f \ t%f \n"

% ( nr , boundary , domx , domy , domz ) )

f = open (" f i l l i n g . dat " , "w")
f . wr i t e (" nr\ tboundary\tdomainx\tdomainy\tdomainz\n")
nr=0
f o r i in range ( 0 , 1 1 ) :

boundary=2.∗ f l o a t ( i ) /10 .
i f boundary == 0 :

boundary=0.01
f i l l i n ( boundary , f )
nr=nr+1

Listing 2: Script to calulate the forces on each initial con�guration: calcu-

lateit.sh

#!/bin /bash

MOLECUILDER=molecu i lde r

t e s t ! −z $1 | | { echo "Usage : $0 <.data f i l e >"; e x i t 255 ; }
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f i l e=$1
domx=`grep Box ${ f i l e /pdb/data} | awk '{ p r i n t $3 } ' `
domy=`grep Box ${ f i l e /pdb/data} | awk '{ p r i n t $7 } ' `
domz=`grep Box ${ f i l e /pdb/data} | awk '{ p r i n t $11 } ' `
nr=`echo $ f i l e | sed −e " s#\..∗##g" | awk −F"−" '{ p r i n t $NF} ' `

$MOLECUILDER \
−−input ${ f i l e /data/pdb} \
−−set−output tremolo \
−−set−tremolo−atomdata "F ne ighbors u x" \

−−r e s e t 0 \
−−add−empty−boundary 5 ,5 ,5 \
−−update−molecu le s \
−−s e l e c t−a l l−atoms \
−−set−parser−parameters mpqc \

−−parser−parameters " theory=MBPT2; ba s i s=4−31G" \
−−fragment−molecule BondFragment \

−−order 3 \
−−i n t e r−order 3 \
−−d i s t ance ` echo " s c a l e =9; 4+${nr }/2 .5" | bc ` \

−−fragment−automation \
−−fragment−executab l e mpqc \
−−s e rver−address 1 2 7 . 0 . 0 . 1 \
−−s e rver−port 1026 \

−−analyse−fragment−r e s u l t s \
−−fragment−p r e f i x BondFragment \

−−s e l e c t−a l l−molecu le s \
−−average−molecule−f o r c e \
&>ca l cu l a t i on−${nr } . l og

#−−change−box "$domx , 0 , $domy , 0 , 0 , $domz"

Listing 3: Script to analyse the intermolecular forces of each calculated con�g-
uration: analyse.sh

#!/bin /bash

echo −e "nr\ t f o r c e 1x \ t f o r c e 1y \ t f o r c e 1 z \ t f o r c e 2x \ t f o r c e 2y \ t f o r c e 2 z " \
>f o r c e s . dat

f o r i in ` seq 0 10 ` ; do
f o r c e s =( ` grep " average f o r c e " c a l cu l a t i on−${ i } . l og \

| awk '{ p r i n t $9 } ' ` )
echo −e " $ i \ t$ { f o r c e s [ 0 ] } \ t$ { f o r c e s [ 1 ] } " | t r −d \(\) \

| sed −e " s#,#\t#g" >>f o r c e s . dat
done
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