Changeset cee0b57
- Timestamp:
- Oct 5, 2009, 10:10:53 PM (15 years ago)
- Branches:
- Action_Thermostats, Add_AtomRandomPerturbation, Add_FitFragmentPartialChargesAction, Add_RotateAroundBondAction, Add_SelectAtomByNameAction, Added_ParseSaveFragmentResults, AddingActions_SaveParseParticleParameters, Adding_Graph_to_ChangeBondActions, Adding_MD_integration_tests, Adding_ParticleName_to_Atom, Adding_StructOpt_integration_tests, AtomFragments, Automaking_mpqc_open, AutomationFragmentation_failures, Candidate_v1.5.4, Candidate_v1.6.0, Candidate_v1.6.1, ChangeBugEmailaddress, ChangingTestPorts, ChemicalSpaceEvaluator, CombiningParticlePotentialParsing, Combining_Subpackages, Debian_Package_split, Debian_package_split_molecuildergui_only, Disabling_MemDebug, Docu_Python_wait, EmpiricalPotential_contain_HomologyGraph, EmpiricalPotential_contain_HomologyGraph_documentation, Enable_parallel_make_install, Enhance_userguide, Enhanced_StructuralOptimization, Enhanced_StructuralOptimization_continued, Example_ManyWaysToTranslateAtom, Exclude_Hydrogens_annealWithBondGraph, FitPartialCharges_GlobalError, Fix_BoundInBox_CenterInBox_MoleculeActions, Fix_ChargeSampling_PBC, Fix_ChronosMutex, Fix_FitPartialCharges, Fix_FitPotential_needs_atomicnumbers, Fix_ForceAnnealing, Fix_IndependentFragmentGrids, Fix_ParseParticles, Fix_ParseParticles_split_forward_backward_Actions, Fix_PopActions, Fix_QtFragmentList_sorted_selection, Fix_Restrictedkeyset_FragmentMolecule, Fix_StatusMsg, Fix_StepWorldTime_single_argument, Fix_Verbose_Codepatterns, Fix_fitting_potentials, Fixes, ForceAnnealing_goodresults, ForceAnnealing_oldresults, ForceAnnealing_tocheck, ForceAnnealing_with_BondGraph, ForceAnnealing_with_BondGraph_continued, ForceAnnealing_with_BondGraph_continued_betteresults, ForceAnnealing_with_BondGraph_contraction-expansion, FragmentAction_writes_AtomFragments, FragmentMolecule_checks_bonddegrees, GeometryObjects, Gui_Fixes, Gui_displays_atomic_force_velocity, ImplicitCharges, IndependentFragmentGrids, IndependentFragmentGrids_IndividualZeroInstances, IndependentFragmentGrids_IntegrationTest, IndependentFragmentGrids_Sole_NN_Calculation, JobMarket_RobustOnKillsSegFaults, JobMarket_StableWorkerPool, JobMarket_unresolvable_hostname_fix, MoreRobust_FragmentAutomation, ODR_violation_mpqc_open, PartialCharges_OrthogonalSummation, PdbParser_setsAtomName, PythonUI_with_named_parameters, QtGui_reactivate_TimeChanged_changes, Recreated_GuiChecks, Rewrite_FitPartialCharges, RotateToPrincipalAxisSystem_UndoRedo, SaturateAtoms_findBestMatching, SaturateAtoms_singleDegree, StoppableMakroAction, Subpackage_CodePatterns, Subpackage_JobMarket, Subpackage_LinearAlgebra, Subpackage_levmar, Subpackage_mpqc_open, Subpackage_vmg, Switchable_LogView, ThirdParty_MPQC_rebuilt_buildsystem, TrajectoryDependenant_MaxOrder, TremoloParser_IncreasedPrecision, TremoloParser_MultipleTimesteps, TremoloParser_setsAtomName, Ubuntu_1604_changes, stable
- Children:
- ebcade
- Parents:
- d09ff7
- Location:
- src
- Files:
-
- 5 added
- 10 edited
Legend:
- Unmodified
- Added
- Removed
-
src/Makefile.am
rd09ff7 rcee0b57 1 SOURCE = atom.cpp bond.cpp boundary.cpp config.cpp element.cpp ellipsoid.cpp helpers.cpp leastsquaremin.cpp linkedcell.cpp moleculelist.cpp molecule s.cpp parser.cpp periodentafel.cpp tesselation.cpp tesselationhelpers.cpp vector.cpp verbose.cpp2 HEADER = atom.hpp bond.hpp boundary.hpp config.hpp defs.hpp element.hpp ellipsoid.hpp helpers.hpp leastsquaremin.hpp linkedcell.hpp memoryallocator.hpp memoryusageobserver.cpp memoryusageobserver.hpp molecule s.hpp parser.hpp periodentafel.hpp stackclass.hpp tesselation.hpp tesselationhelpers.hpp vector.hpp verbose.hpp1 SOURCE = atom.cpp bond.cpp boundary.cpp config.cpp element.cpp ellipsoid.cpp helpers.cpp leastsquaremin.cpp linkedcell.cpp moleculelist.cpp molecule.cpp molecule_dynamics.cpp molecule_fragmentation.cpp molecule_geometry.cpp molecule_graph.cpp molecule_pointcloud.cpp parser.cpp periodentafel.cpp tesselation.cpp tesselationhelpers.cpp vector.cpp verbose.cpp 2 HEADER = atom.hpp bond.hpp boundary.hpp config.hpp defs.hpp element.hpp ellipsoid.hpp helpers.hpp leastsquaremin.hpp linkedcell.hpp memoryallocator.hpp memoryusageobserver.cpp memoryusageobserver.hpp molecule.hpp parser.hpp periodentafel.hpp stackclass.hpp tesselation.hpp tesselationhelpers.hpp vector.hpp verbose.hpp 3 3 4 4 noinst_PROGRAMS = ActOnAllTest VectorUnitTest MemoryAllocatorUnitTest MemoryUsageObserverUnitTest TesselationUnitTest -
src/boundary.hpp
rd09ff7 rcee0b57 12 12 #include "config.hpp" 13 13 #include "linkedcell.hpp" 14 #include "molecule s.hpp"14 #include "molecule.hpp" 15 15 #include "tesselation.hpp" 16 16 -
src/builder.cpp
rd09ff7 rcee0b57 54 54 #include "helpers.hpp" 55 55 #include "memoryusageobserverunittest.hpp" 56 #include "molecule s.hpp"56 #include "molecule.hpp" 57 57 /********************************************* Subsubmenu routine ************************************/ 58 58 -
src/config.hpp
rd09ff7 rcee0b57 16 16 #endif 17 17 18 #include "molecule s.hpp"18 #include "molecule.hpp" 19 19 #include "periodentafel.hpp" 20 20 -
src/graph.hpp
rd09ff7 rcee0b57 17 17 #include <multimap> 18 18 19 #include "molecule s.hpp"19 #include "molecule.hpp" 20 20 21 21 class Graph; -
src/linkedcell.cpp
rd09ff7 rcee0b57 7 7 8 8 #include "linkedcell.hpp" 9 #include "molecule s.hpp"9 #include "molecule.hpp" 10 10 #include "tesselation.hpp" 11 11 -
src/molecule.cpp
rd09ff7 rcee0b57 7 7 #include "config.hpp" 8 8 #include "memoryallocator.hpp" 9 #include "molecule s.hpp"9 #include "molecule.hpp" 10 10 11 11 /************************************* Functions for class molecule *********************************/ … … 68 68 }; 69 69 70 71 /** Determine center of all atoms.72 * \param *out output stream for debugging73 * \return pointer to allocated with central coordinates74 */75 Vector *molecule::GetCenter(ofstream *out)76 {77 Vector *center = DetermineCenterOfAll(out);78 return center;79 };80 81 /** Return current atom in the list.82 * \return pointer to atom or NULL if none present83 */84 TesselPoint *molecule::GetPoint()85 {86 if ((InternalPointer != start) && (InternalPointer != end))87 return InternalPointer;88 else89 return NULL;90 };91 92 /** Return pointer to one after last atom in the list.93 * \return pointer to end marker94 */95 TesselPoint *molecule::GetTerminalPoint()96 {97 return end;98 };99 100 /** Go to next atom.101 * Stops at last one.102 */103 void molecule::GoToNext()104 {105 if (InternalPointer != end)106 InternalPointer = InternalPointer->next;107 };108 109 /** Go to previous atom.110 * Stops at first one.111 */112 void molecule::GoToPrevious()113 {114 if (InternalPointer->previous != start)115 InternalPointer = InternalPointer->previous;116 };117 118 /** Goes to first atom.119 */120 void molecule::GoToFirst()121 {122 InternalPointer = start->next;123 };124 125 /** Goes to last atom.126 */127 void molecule::GoToLast()128 {129 InternalPointer = end->previous;130 };131 132 /** Checks whether we have any atoms in molecule.133 * \return true - no atoms, false - not empty134 */135 bool molecule::IsEmpty()136 {137 return (start->next == end);138 };139 140 /** Checks whether we are at the last atom141 * \return true - current atom is last one, false - is not last one142 */143 bool molecule::IsEnd()144 {145 return (InternalPointer == end);146 };147 70 148 71 /** Adds given atom \a *pointer from molecule list. … … 575 498 while(Binder->next != last) { 576 499 Binder = Binder->next; 500 577 501 // get the pendant atoms of current bond in the copy molecule 578 LeftAtom = copy->start; 579 while (LeftAtom->next != copy->end) { 580 LeftAtom = LeftAtom->next; 581 if (LeftAtom->father == Binder->leftatom) 582 break; 583 } 584 RightAtom = copy->start; 585 while (RightAtom->next != copy->end) { 586 RightAtom = RightAtom->next; 587 if (RightAtom->father == Binder->rightatom) 588 break; 589 } 502 copy->ActOnAllAtoms( &atom::EqualsFather, Binder->leftatom, &LeftAtom ); 503 copy->ActOnAllAtoms( &atom::EqualsFather, Binder->rightatom, &RightAtom ); 504 590 505 NewBond = copy->AddBond(LeftAtom, RightAtom, Binder->BondDegree); 591 506 NewBond->Cyclic = Binder->Cyclic; … … 595 510 } 596 511 // correct fathers 597 Walker = copy->start; 598 while(Walker->next != copy->end) { 599 Walker = Walker->next; 600 if (Walker->father->father == Walker->father) // same atom in copy's father points to itself 601 Walker->father = Walker; // set father to itself (copy of a whole molecule) 602 else 603 Walker->father = Walker->father->father; // set father to original's father 604 } 512 ActOnAllAtoms( &atom::CorrectFather ); 513 605 514 // copy values 606 515 copy->CountAtoms((ofstream *)&cout); … … 644 553 * \return pointer to bond or NULL on failure 645 554 */ 646 bond * molecule::AddBond(atom *atom1, atom *atom2, int degree =1)555 bond * molecule::AddBond(atom *atom1, atom *atom2, int degree) 647 556 { 648 557 bond *Binder = NULL; … … 714 623 }; 715 624 716 /** Centers the molecule in the box whose lengths are defined by vector \a *BoxLengths.717 * \param *out output stream for debugging718 */719 bool molecule::CenterInBox(ofstream *out)720 {721 bool status = true;722 Vector x;723 double *M = ReturnFullMatrixforSymmetric(cell_size);724 double *Minv = x.InverseMatrix(M);725 Vector *Center = DetermineCenterOfAll(out);726 727 // go through all atoms728 atom *ptr = start; // start at first in list729 while (ptr->next != end) { // continue with second if present730 ptr = ptr->next;731 //ptr->Output(1,1,out);732 // multiply its vector with matrix inverse733 x.CopyVector(&ptr->x);734 x.SubtractVector(Center); // now, it's centered at origin735 x.MatrixMultiplication(Minv);736 // truncate to [0,1] for each axis737 for (int i=0;i<NDIM;i++) {738 x.x[i] += 0.5; // set to center of box739 while (x.x[i] >= 1.)740 x.x[i] -= 1.;741 while (x.x[i] < 0.)742 x.x[i] += 1.;743 }744 x.MatrixMultiplication(M);745 ptr->x.CopyVector(&x);746 }747 delete(M);748 delete(Minv);749 delete(Center);750 return status;751 };752 753 754 /** Bounds the molecule in the box whose lengths are defined by vector \a *BoxLengths.755 * \param *out output stream for debugging756 */757 bool molecule::BoundInBox(ofstream *out)758 {759 bool status = true;760 Vector x;761 double *M = ReturnFullMatrixforSymmetric(cell_size);762 double *Minv = x.InverseMatrix(M);763 764 // go through all atoms765 atom *ptr = start; // start at first in list766 while (ptr->next != end) { // continue with second if present767 ptr = ptr->next;768 //ptr->Output(1,1,out);769 // multiply its vector with matrix inverse770 x.CopyVector(&ptr->x);771 x.MatrixMultiplication(Minv);772 // truncate to [0,1] for each axis773 for (int i=0;i<NDIM;i++) {774 while (x.x[i] >= 1.)775 x.x[i] -= 1.;776 while (x.x[i] < 0.)777 x.x[i] += 1.;778 }779 x.MatrixMultiplication(M);780 ptr->x.CopyVector(&x);781 }782 delete(M);783 delete(Minv);784 return status;785 };786 787 /** Centers the edge of the atoms at (0,0,0).788 * \param *out output stream for debugging789 * \param *max coordinates of other edge, specifying box dimensions.790 */791 void molecule::CenterEdge(ofstream *out, Vector *max)792 {793 Vector *min = new Vector;794 795 // *out << Verbose(3) << "Begin of CenterEdge." << endl;796 atom *ptr = start->next; // start at first in list797 if (ptr != end) { //list not empty?798 for (int i=NDIM;i--;) {799 max->x[i] = ptr->x.x[i];800 min->x[i] = ptr->x.x[i];801 }802 while (ptr->next != end) { // continue with second if present803 ptr = ptr->next;804 //ptr->Output(1,1,out);805 for (int i=NDIM;i--;) {806 max->x[i] = (max->x[i] < ptr->x.x[i]) ? ptr->x.x[i] : max->x[i];807 min->x[i] = (min->x[i] > ptr->x.x[i]) ? ptr->x.x[i] : min->x[i];808 }809 }810 // *out << Verbose(4) << "Maximum is ";811 // max->Output(out);812 // *out << ", Minimum is ";813 // min->Output(out);814 // *out << endl;815 min->Scale(-1.);816 max->AddVector(min);817 Translate(min);818 Center.Zero();819 }820 delete(min);821 // *out << Verbose(3) << "End of CenterEdge." << endl;822 };823 824 /** Centers the center of the atoms at (0,0,0).825 * \param *out output stream for debugging826 * \param *center return vector for translation vector827 */828 void molecule::CenterOrigin(ofstream *out)829 {830 int Num = 0;831 atom *ptr = start->next; // start at first in list832 833 Center.Zero();834 835 if (ptr != end) { //list not empty?836 while (ptr->next != end) { // continue with second if present837 ptr = ptr->next;838 Num++;839 Center.AddVector(&ptr->x);840 }841 Center.Scale(-1./Num); // divide through total number (and sign for direction)842 Translate(&Center);843 Center.Zero();844 }845 };846 847 /** Returns vector pointing to center of all atoms.848 * \param *out output stream for debugging849 * \return pointer to center of all vector850 */851 Vector * molecule::DetermineCenterOfAll(ofstream *out)852 {853 atom *ptr = start->next; // start at first in list854 Vector *a = new Vector();855 Vector tmp;856 double Num = 0;857 858 a->Zero();859 860 if (ptr != end) { //list not empty?861 while (ptr->next != end) { // continue with second if present862 ptr = ptr->next;863 Num += 1.;864 tmp.CopyVector(&ptr->x);865 a->AddVector(&tmp);866 }867 a->Scale(1./Num); // divide through total mass (and sign for direction)868 }869 //cout << Verbose(1) << "Resulting center of gravity: ";870 //a->Output(out);871 //cout << endl;872 return a;873 };874 875 /** Returns vector pointing to center of gravity.876 * \param *out output stream for debugging877 * \return pointer to center of gravity vector878 */879 Vector * molecule::DetermineCenterOfGravity(ofstream *out)880 {881 atom *ptr = start->next; // start at first in list882 Vector *a = new Vector();883 Vector tmp;884 double Num = 0;885 886 a->Zero();887 888 if (ptr != end) { //list not empty?889 while (ptr->next != end) { // continue with second if present890 ptr = ptr->next;891 Num += ptr->type->mass;892 tmp.CopyVector(&ptr->x);893 tmp.Scale(ptr->type->mass); // scale by mass894 a->AddVector(&tmp);895 }896 a->Scale(-1./Num); // divide through total mass (and sign for direction)897 }898 // *out << Verbose(1) << "Resulting center of gravity: ";899 // a->Output(out);900 // *out << endl;901 return a;902 };903 904 /** Centers the center of gravity of the atoms at (0,0,0).905 * \param *out output stream for debugging906 * \param *center return vector for translation vector907 */908 void molecule::CenterPeriodic(ofstream *out)909 {910 DeterminePeriodicCenter(Center);911 };912 913 914 /** Centers the center of gravity of the atoms at (0,0,0).915 * \param *out output stream for debugging916 * \param *center return vector for translation vector917 */918 void molecule::CenterAtVector(ofstream *out, Vector *newcenter)919 {920 Center.CopyVector(newcenter);921 };922 923 924 /** Scales all atoms by \a *factor.925 * \param *factor pointer to scaling factor926 */927 void molecule::Scale(double **factor)928 {929 atom *ptr = start;930 931 while (ptr->next != end) {932 ptr = ptr->next;933 for (int j=0;j<MDSteps;j++)934 Trajectories[ptr].R.at(j).Scale(factor);935 ptr->x.Scale(factor);936 }937 };938 939 /** Translate all atoms by given vector.940 * \param trans[] translation vector.941 */942 void molecule::Translate(const Vector *trans)943 {944 atom *ptr = start;945 946 while (ptr->next != end) {947 ptr = ptr->next;948 for (int j=0;j<MDSteps;j++)949 Trajectories[ptr].R.at(j).Translate(trans);950 ptr->x.Translate(trans);951 }952 };953 954 /** Translate the molecule periodically in the box.955 * \param trans[] translation vector.956 */957 void molecule::TranslatePeriodically(const Vector *trans)958 {959 atom *ptr = NULL;960 Vector x;961 double *M = ReturnFullMatrixforSymmetric(cell_size);962 double *Minv = x.InverseMatrix(M);963 double value;964 965 // go through all atoms966 ptr = start->next; // start at first in list967 while (ptr != end) { // continue with second if present968 //ptr->Output(1,1,out);969 // multiply its vector with matrix inverse970 x.CopyVector(&ptr->x);971 x.Translate(trans);972 x.MatrixMultiplication(Minv);973 // truncate to [0,1] for each axis974 for (int i=0;i<NDIM;i++) {975 value = floor(fabs(x.x[i])); // next lower integer976 if (x.x[i] >=0) {977 x.x[i] -= value;978 } else {979 x.x[i] += value+1;980 }981 }982 // matrix multiply983 x.MatrixMultiplication(M);984 ptr->x.CopyVector(&x);985 for (int j=0;j<MDSteps;j++) {986 x.CopyVector(&Trajectories[ptr].R.at(j));987 x.Translate(trans);988 x.MatrixMultiplication(Minv);989 // truncate to [0,1] for each axis990 for (int i=0;i<NDIM;i++) {991 value = floor(x.x[i]); // next lower integer992 if (x.x[i] >=0) {993 x.x[i] -= value;994 } else {995 x.x[i] += value+1;996 }997 }998 // matrix multiply999 x.MatrixMultiplication(M);1000 Trajectories[ptr].R.at(j).CopyVector(&x);1001 }1002 ptr = ptr->next;1003 }1004 delete(M);1005 delete(Minv);1006 };1007 1008 1009 /** Mirrors all atoms against a given plane.1010 * \param n[] normal vector of mirror plane.1011 */1012 void molecule::Mirror(const Vector *n)1013 {1014 atom *ptr = start;1015 1016 while (ptr->next != end) {1017 ptr = ptr->next;1018 for (int j=0;j<MDSteps;j++)1019 Trajectories[ptr].R.at(j).Mirror(n);1020 ptr->x.Mirror(n);1021 }1022 };1023 1024 /** Determines center of molecule (yet not considering atom masses).1025 * \param center reference to return vector1026 */1027 void molecule::DeterminePeriodicCenter(Vector ¢er)1028 {1029 atom *Walker = start;1030 bond *Binder = NULL;1031 double *matrix = ReturnFullMatrixforSymmetric(cell_size);1032 double tmp;1033 bool flag;1034 Vector Testvector, Translationvector;1035 1036 do {1037 Center.Zero();1038 flag = true;1039 while (Walker->next != end) {1040 Walker = Walker->next;1041 #ifdef ADDHYDROGEN1042 if (Walker->type->Z != 1) {1043 #endif1044 Testvector.CopyVector(&Walker->x);1045 Testvector.InverseMatrixMultiplication(matrix);1046 Translationvector.Zero();1047 for (int i=0;i<NumberOfBondsPerAtom[Walker->nr]; i++) {1048 Binder = ListOfBondsPerAtom[Walker->nr][i];1049 if (Walker->nr < Binder->GetOtherAtom(Walker)->nr) // otherwise we shift one to, the other fro and gain nothing1050 for (int j=0;j<NDIM;j++) {1051 tmp = Walker->x.x[j] - Binder->GetOtherAtom(Walker)->x.x[j];1052 if ((fabs(tmp)) > BondDistance) {1053 flag = false;1054 cout << Verbose(0) << "Hit: atom " << Walker->Name << " in bond " << *Binder << " has to be shifted due to " << tmp << "." << endl;1055 if (tmp > 0)1056 Translationvector.x[j] -= 1.;1057 else1058 Translationvector.x[j] += 1.;1059 }1060 }1061 }1062 Testvector.AddVector(&Translationvector);1063 Testvector.MatrixMultiplication(matrix);1064 Center.AddVector(&Testvector);1065 cout << Verbose(1) << "vector is: ";1066 Testvector.Output((ofstream *)&cout);1067 cout << endl;1068 #ifdef ADDHYDROGEN1069 // now also change all hydrogens1070 for (int i=0;i<NumberOfBondsPerAtom[Walker->nr]; i++) {1071 Binder = ListOfBondsPerAtom[Walker->nr][i];1072 if (Binder->GetOtherAtom(Walker)->type->Z == 1) {1073 Testvector.CopyVector(&Binder->GetOtherAtom(Walker)->x);1074 Testvector.InverseMatrixMultiplication(matrix);1075 Testvector.AddVector(&Translationvector);1076 Testvector.MatrixMultiplication(matrix);1077 Center.AddVector(&Testvector);1078 cout << Verbose(1) << "Hydrogen vector is: ";1079 Testvector.Output((ofstream *)&cout);1080 cout << endl;1081 }1082 }1083 }1084 #endif1085 }1086 } while (!flag);1087 Free(&matrix);1088 Center.Scale(1./(double)AtomCount);1089 };1090 1091 /** Transforms/Rotates the given molecule into its principal axis system.1092 * \param *out output stream for debugging1093 * \param DoRotate whether to rotate (true) or only to determine the PAS.1094 */1095 void molecule::PrincipalAxisSystem(ofstream *out, bool DoRotate)1096 {1097 atom *ptr = start; // start at first in list1098 double InertiaTensor[NDIM*NDIM];1099 Vector *CenterOfGravity = DetermineCenterOfGravity(out);1100 1101 CenterPeriodic(out);1102 1103 // reset inertia tensor1104 for(int i=0;i<NDIM*NDIM;i++)1105 InertiaTensor[i] = 0.;1106 1107 // sum up inertia tensor1108 while (ptr->next != end) {1109 ptr = ptr->next;1110 Vector x;1111 x.CopyVector(&ptr->x);1112 //x.SubtractVector(CenterOfGravity);1113 InertiaTensor[0] += ptr->type->mass*(x.x[1]*x.x[1] + x.x[2]*x.x[2]);1114 InertiaTensor[1] += ptr->type->mass*(-x.x[0]*x.x[1]);1115 InertiaTensor[2] += ptr->type->mass*(-x.x[0]*x.x[2]);1116 InertiaTensor[3] += ptr->type->mass*(-x.x[1]*x.x[0]);1117 InertiaTensor[4] += ptr->type->mass*(x.x[0]*x.x[0] + x.x[2]*x.x[2]);1118 InertiaTensor[5] += ptr->type->mass*(-x.x[1]*x.x[2]);1119 InertiaTensor[6] += ptr->type->mass*(-x.x[2]*x.x[0]);1120 InertiaTensor[7] += ptr->type->mass*(-x.x[2]*x.x[1]);1121 InertiaTensor[8] += ptr->type->mass*(x.x[0]*x.x[0] + x.x[1]*x.x[1]);1122 }1123 // print InertiaTensor for debugging1124 *out << "The inertia tensor is:" << endl;1125 for(int i=0;i<NDIM;i++) {1126 for(int j=0;j<NDIM;j++)1127 *out << InertiaTensor[i*NDIM+j] << " ";1128 *out << endl;1129 }1130 *out << endl;1131 1132 // diagonalize to determine principal axis system1133 gsl_eigen_symmv_workspace *T = gsl_eigen_symmv_alloc(NDIM);1134 gsl_matrix_view m = gsl_matrix_view_array(InertiaTensor, NDIM, NDIM);1135 gsl_vector *eval = gsl_vector_alloc(NDIM);1136 gsl_matrix *evec = gsl_matrix_alloc(NDIM, NDIM);1137 gsl_eigen_symmv(&m.matrix, eval, evec, T);1138 gsl_eigen_symmv_free(T);1139 gsl_eigen_symmv_sort(eval, evec, GSL_EIGEN_SORT_ABS_DESC);1140 1141 for(int i=0;i<NDIM;i++) {1142 *out << Verbose(1) << "eigenvalue = " << gsl_vector_get(eval, i);1143 *out << ", eigenvector = (" << evec->data[i * evec->tda + 0] << "," << evec->data[i * evec->tda + 1] << "," << evec->data[i * evec->tda + 2] << ")" << endl;1144 }1145 1146 // check whether we rotate or not1147 if (DoRotate) {1148 *out << Verbose(1) << "Transforming molecule into PAS ... ";1149 // the eigenvectors specify the transformation matrix1150 ptr = start;1151 while (ptr->next != end) {1152 ptr = ptr->next;1153 for (int j=0;j<MDSteps;j++)1154 Trajectories[ptr].R.at(j).MatrixMultiplication(evec->data);1155 ptr->x.MatrixMultiplication(evec->data);1156 }1157 *out << "done." << endl;1158 1159 // summing anew for debugging (resulting matrix has to be diagonal!)1160 // reset inertia tensor1161 for(int i=0;i<NDIM*NDIM;i++)1162 InertiaTensor[i] = 0.;1163 1164 // sum up inertia tensor1165 ptr = start;1166 while (ptr->next != end) {1167 ptr = ptr->next;1168 Vector x;1169 x.CopyVector(&ptr->x);1170 //x.SubtractVector(CenterOfGravity);1171 InertiaTensor[0] += ptr->type->mass*(x.x[1]*x.x[1] + x.x[2]*x.x[2]);1172 InertiaTensor[1] += ptr->type->mass*(-x.x[0]*x.x[1]);1173 InertiaTensor[2] += ptr->type->mass*(-x.x[0]*x.x[2]);1174 InertiaTensor[3] += ptr->type->mass*(-x.x[1]*x.x[0]);1175 InertiaTensor[4] += ptr->type->mass*(x.x[0]*x.x[0] + x.x[2]*x.x[2]);1176 InertiaTensor[5] += ptr->type->mass*(-x.x[1]*x.x[2]);1177 InertiaTensor[6] += ptr->type->mass*(-x.x[2]*x.x[0]);1178 InertiaTensor[7] += ptr->type->mass*(-x.x[2]*x.x[1]);1179 InertiaTensor[8] += ptr->type->mass*(x.x[0]*x.x[0] + x.x[1]*x.x[1]);1180 }1181 // print InertiaTensor for debugging1182 *out << "The inertia tensor is:" << endl;1183 for(int i=0;i<NDIM;i++) {1184 for(int j=0;j<NDIM;j++)1185 *out << InertiaTensor[i*NDIM+j] << " ";1186 *out << endl;1187 }1188 *out << endl;1189 }1190 1191 // free everything1192 delete(CenterOfGravity);1193 gsl_vector_free(eval);1194 gsl_matrix_free(evec);1195 };1196 1197 /** Evaluates the potential energy used for constrained molecular dynamics.1198 * \f$V_i^{con} = c^{bond} \cdot | r_{P(i)} - R_i | + sum_{i \neq j} C^{min} \cdot \frac{1}{C_{ij}} + C^{inj} \Bigl (1 - \theta \bigl (\prod_{i \neq j} (P(i) - P(j)) \bigr ) \Bigr )\f$1199 * where the first term points to the target in minimum distance, the second is a penalty for trajectories lying too close to each other (\f$C_{ij}\f$ is minimum distance between1200 * trajectories i and j) and the third term is a penalty for two atoms trying to each the same target point.1201 * Note that for the second term we have to solve the following linear system:1202 * \f$-c_1 \cdot n_1 + c_2 \cdot n_2 + C \cdot n_3 = - p_2 + p_1\f$, where \f$c_1\f$, \f$c_2\f$ and \f$C\f$ are constants,1203 * offset vector \f$p_1\f$ in direction \f$n_1\f$, offset vector \f$p_2\f$ in direction \f$n_2\f$,1204 * \f$n_3\f$ is the normal vector to both directions. \f$C\f$ would be the minimum distance between the two lines.1205 * \sa molecule::MinimiseConstrainedPotential(), molecule::VerletForceIntegration()1206 * \param *out output stream for debugging1207 * \param *PermutationMap gives target ptr for each atom, array of size molecule::AtomCount (this is "x" in \f$ V^{con}(x) \f$ )1208 * \param startstep start configuration (MDStep in molecule::trajectories)1209 * \param endstep end configuration (MDStep in molecule::trajectories)1210 * \param *constants constant in front of each term1211 * \param IsAngstroem whether coordinates are in angstroem (true) or bohrradius (false)1212 * \return potential energy1213 * \note This routine is scaling quadratically which is not optimal.1214 * \todo There's a bit double counting going on for the first time, bu nothing to worry really about.1215 */1216 double molecule::ConstrainedPotential(ofstream *out, atom **PermutationMap, int startstep, int endstep, double *constants, bool IsAngstroem)1217 {1218 double result = 0., tmp, Norm1, Norm2;1219 atom *Walker = NULL, *Runner = NULL, *Sprinter = NULL;1220 Vector trajectory1, trajectory2, normal, TestVector;1221 gsl_matrix *A = gsl_matrix_alloc(NDIM,NDIM);1222 gsl_vector *x = gsl_vector_alloc(NDIM);1223 1224 // go through every atom1225 Walker = start;1226 while (Walker->next != end) {1227 Walker = Walker->next;1228 // first term: distance to target1229 Runner = PermutationMap[Walker->nr]; // find target point1230 tmp = (Trajectories[Walker].R.at(startstep).Distance(&Trajectories[Runner].R.at(endstep)));1231 tmp *= IsAngstroem ? 1. : 1./AtomicLengthToAngstroem;1232 result += constants[0] * tmp;1233 //*out << Verbose(4) << "Adding " << tmp*constants[0] << "." << endl;1234 1235 // second term: sum of distances to other trajectories1236 Runner = start;1237 while (Runner->next != end) {1238 Runner = Runner->next;1239 if (Runner == Walker) // hence, we only go up to the Walker, not beyond (similar to i=0; i<j; i++)1240 break;1241 // determine normalized trajectories direction vector (n1, n2)1242 Sprinter = PermutationMap[Walker->nr]; // find first target point1243 trajectory1.CopyVector(&Trajectories[Sprinter].R.at(endstep));1244 trajectory1.SubtractVector(&Trajectories[Walker].R.at(startstep));1245 trajectory1.Normalize();1246 Norm1 = trajectory1.Norm();1247 Sprinter = PermutationMap[Runner->nr]; // find second target point1248 trajectory2.CopyVector(&Trajectories[Sprinter].R.at(endstep));1249 trajectory2.SubtractVector(&Trajectories[Runner].R.at(startstep));1250 trajectory2.Normalize();1251 Norm2 = trajectory1.Norm();1252 // check whether either is zero()1253 if ((Norm1 < MYEPSILON) && (Norm2 < MYEPSILON)) {1254 tmp = Trajectories[Walker].R.at(startstep).Distance(&Trajectories[Runner].R.at(startstep));1255 } else if (Norm1 < MYEPSILON) {1256 Sprinter = PermutationMap[Walker->nr]; // find first target point1257 trajectory1.CopyVector(&Trajectories[Sprinter].R.at(endstep)); // copy first offset1258 trajectory1.SubtractVector(&Trajectories[Runner].R.at(startstep)); // subtract second offset1259 trajectory2.Scale( trajectory1.ScalarProduct(&trajectory2) ); // trajectory2 is scaled to unity, hence we don't need to divide by anything1260 trajectory1.SubtractVector(&trajectory2); // project the part in norm direction away1261 tmp = trajectory1.Norm(); // remaining norm is distance1262 } else if (Norm2 < MYEPSILON) {1263 Sprinter = PermutationMap[Runner->nr]; // find second target point1264 trajectory2.CopyVector(&Trajectories[Sprinter].R.at(endstep)); // copy second offset1265 trajectory2.SubtractVector(&Trajectories[Walker].R.at(startstep)); // subtract first offset1266 trajectory1.Scale( trajectory2.ScalarProduct(&trajectory1) ); // trajectory1 is scaled to unity, hence we don't need to divide by anything1267 trajectory2.SubtractVector(&trajectory1); // project the part in norm direction away1268 tmp = trajectory2.Norm(); // remaining norm is distance1269 } else if ((fabs(trajectory1.ScalarProduct(&trajectory2)/Norm1/Norm2) - 1.) < MYEPSILON) { // check whether they're linear dependent1270 // *out << Verbose(3) << "Both trajectories of " << *Walker << " and " << *Runner << " are linear dependent: ";1271 // *out << trajectory1;1272 // *out << " and ";1273 // *out << trajectory2;1274 tmp = Trajectories[Walker].R.at(startstep).Distance(&Trajectories[Runner].R.at(startstep));1275 // *out << " with distance " << tmp << "." << endl;1276 } else { // determine distance by finding minimum distance1277 // *out << Verbose(3) << "Both trajectories of " << *Walker << " and " << *Runner << " are linear independent ";1278 // *out << endl;1279 // *out << "First Trajectory: ";1280 // *out << trajectory1 << endl;1281 // *out << "Second Trajectory: ";1282 // *out << trajectory2 << endl;1283 // determine normal vector for both1284 normal.MakeNormalVector(&trajectory1, &trajectory2);1285 // print all vectors for debugging1286 // *out << "Normal vector in between: ";1287 // *out << normal << endl;1288 // setup matrix1289 for (int i=NDIM;i--;) {1290 gsl_matrix_set(A, 0, i, trajectory1.x[i]);1291 gsl_matrix_set(A, 1, i, trajectory2.x[i]);1292 gsl_matrix_set(A, 2, i, normal.x[i]);1293 gsl_vector_set(x,i, (Trajectories[Walker].R.at(startstep).x[i] - Trajectories[Runner].R.at(startstep).x[i]));1294 }1295 // solve the linear system by Householder transformations1296 gsl_linalg_HH_svx(A, x);1297 // distance from last component1298 tmp = gsl_vector_get(x,2);1299 // *out << " with distance " << tmp << "." << endl;1300 // test whether we really have the intersection (by checking on c_1 and c_2)1301 TestVector.CopyVector(&Trajectories[Runner].R.at(startstep));1302 trajectory2.Scale(gsl_vector_get(x,1));1303 TestVector.AddVector(&trajectory2);1304 normal.Scale(gsl_vector_get(x,2));1305 TestVector.AddVector(&normal);1306 TestVector.SubtractVector(&Trajectories[Walker].R.at(startstep));1307 trajectory1.Scale(gsl_vector_get(x,0));1308 TestVector.SubtractVector(&trajectory1);1309 if (TestVector.Norm() < MYEPSILON) {1310 // *out << Verbose(2) << "Test: ok.\tDistance of " << tmp << " is correct." << endl;1311 } else {1312 // *out << Verbose(2) << "Test: failed.\tIntersection is off by ";1313 // *out << TestVector;1314 // *out << "." << endl;1315 }1316 }1317 // add up1318 tmp *= IsAngstroem ? 1. : 1./AtomicLengthToAngstroem;1319 if (fabs(tmp) > MYEPSILON) {1320 result += constants[1] * 1./tmp;1321 //*out << Verbose(4) << "Adding " << 1./tmp*constants[1] << "." << endl;1322 }1323 }1324 1325 // third term: penalty for equal targets1326 Runner = start;1327 while (Runner->next != end) {1328 Runner = Runner->next;1329 if ((PermutationMap[Walker->nr] == PermutationMap[Runner->nr]) && (Walker->nr < Runner->nr)) {1330 Sprinter = PermutationMap[Walker->nr];1331 // *out << *Walker << " and " << *Runner << " are heading to the same target at ";1332 // *out << Trajectories[Sprinter].R.at(endstep);1333 // *out << ", penalting." << endl;1334 result += constants[2];1335 //*out << Verbose(4) << "Adding " << constants[2] << "." << endl;1336 }1337 }1338 }1339 1340 return result;1341 };1342 1343 void PrintPermutationMap(ofstream *out, atom **PermutationMap, int Nr)1344 {1345 stringstream zeile1, zeile2;1346 int *DoubleList = Malloc<int>(Nr, "PrintPermutationMap: *DoubleList");1347 int doubles = 0;1348 for (int i=0;i<Nr;i++)1349 DoubleList[i] = 0;1350 zeile1 << "PermutationMap: ";1351 zeile2 << " ";1352 for (int i=0;i<Nr;i++) {1353 DoubleList[PermutationMap[i]->nr]++;1354 zeile1 << i << " ";1355 zeile2 << PermutationMap[i]->nr << " ";1356 }1357 for (int i=0;i<Nr;i++)1358 if (DoubleList[i] > 1)1359 doubles++;1360 // *out << "Found " << doubles << " Doubles." << endl;1361 Free(&DoubleList);1362 // *out << zeile1.str() << endl << zeile2.str() << endl;1363 };1364 1365 /** Minimises the extra potential for constrained molecular dynamics and gives forces and the constrained potential energy.1366 * We do the following:1367 * -# Generate a distance list from all source to all target points1368 * -# Sort this per source point1369 * -# Take for each source point the target point with minimum distance, use this as initial permutation1370 * -# check whether molecule::ConstrainedPotential() is greater than injective penalty1371 * -# If so, we go through each source point, stepping down in the sorted target point distance list and re-checking potential.1372 * -# Next, we only apply transformations that keep the injectivity of the permutations list.1373 * -# Hence, for one source point we step down the ladder and seek the corresponding owner of this new target1374 * point and try to change it for one with lesser distance, or for the next one with greater distance, but only1375 * if this decreases the conditional potential.1376 * -# finished.1377 * -# Then, we calculate the forces by taking the spatial derivative, where we scale the potential to such a degree,1378 * that the total force is always pointing in direction of the constraint force (ensuring that we move in the1379 * right direction).1380 * -# Finally, we calculate the potential energy and return.1381 * \param *out output stream for debugging1382 * \param **PermutationMap on return: mapping between the atom label of the initial and the final configuration1383 * \param startstep current MD step giving initial position between which and \a endstep we perform the constrained MD (as further steps are always concatenated)1384 * \param endstep step giving final position in constrained MD1385 * \param IsAngstroem whether coordinates are in angstroem (true) or bohrradius (false)1386 * \sa molecule::VerletForceIntegration()1387 * \return potential energy (and allocated **PermutationMap (array of molecule::AtomCount ^2)1388 * \todo The constrained potential's constants are set to fixed values right now, but they should scale based on checks of the system in order1389 * to ensure they're properties (e.g. constants[2] always greater than the energy of the system).1390 * \bug this all is not O(N log N) but O(N^2)1391 */1392 double molecule::MinimiseConstrainedPotential(ofstream *out, atom **&PermutationMap, int startstep, int endstep, bool IsAngstroem)1393 {1394 double Potential, OldPotential, OlderPotential;1395 PermutationMap = Malloc<atom*>(AtomCount, "molecule::MinimiseConstrainedPotential: **PermutationMap");1396 DistanceMap **DistanceList = Malloc<DistanceMap*>(AtomCount, "molecule::MinimiseConstrainedPotential: **DistanceList");1397 DistanceMap::iterator *DistanceIterators = Malloc<DistanceMap::iterator>(AtomCount, "molecule::MinimiseConstrainedPotential: *DistanceIterators");1398 int *DoubleList = Malloc<int>(AtomCount, "molecule::MinimiseConstrainedPotential: *DoubleList");1399 DistanceMap::iterator *StepList = Malloc<DistanceMap::iterator>(AtomCount, "molecule::MinimiseConstrainedPotential: *StepList");1400 double constants[3];1401 int round;1402 atom *Walker = NULL, *Runner = NULL, *Sprinter = NULL;1403 DistanceMap::iterator Rider, Strider;1404 1405 /// Minimise the potential1406 // set Lagrange multiplier constants1407 constants[0] = 10.;1408 constants[1] = 1.;1409 constants[2] = 1e+7; // just a huge penalty1410 // generate the distance list1411 *out << Verbose(1) << "Creating the distance list ... " << endl;1412 for (int i=AtomCount; i--;) {1413 DoubleList[i] = 0; // stores for how many atoms in startstep this atom is a target in endstep1414 DistanceList[i] = new DistanceMap; // is the distance sorted target list per atom1415 DistanceList[i]->clear();1416 }1417 *out << Verbose(1) << "Filling the distance list ... " << endl;1418 Walker = start;1419 while (Walker->next != end) {1420 Walker = Walker->next;1421 Runner = start;1422 while(Runner->next != end) {1423 Runner = Runner->next;1424 DistanceList[Walker->nr]->insert( DistancePair(Trajectories[Walker].R.at(startstep).Distance(&Trajectories[Runner].R.at(endstep)), Runner) );1425 }1426 }1427 // create the initial PermutationMap (source -> target)1428 Walker = start;1429 while (Walker->next != end) {1430 Walker = Walker->next;1431 StepList[Walker->nr] = DistanceList[Walker->nr]->begin(); // stores the step to the next iterator that could be a possible next target1432 PermutationMap[Walker->nr] = DistanceList[Walker->nr]->begin()->second; // always pick target with the smallest distance1433 DoubleList[DistanceList[Walker->nr]->begin()->second->nr]++; // increase this target's source count (>1? not injective)1434 DistanceIterators[Walker->nr] = DistanceList[Walker->nr]->begin(); // and remember which one we picked1435 *out << *Walker << " starts with distance " << DistanceList[Walker->nr]->begin()->first << "." << endl;1436 }1437 *out << Verbose(1) << "done." << endl;1438 // make the PermutationMap injective by checking whether we have a non-zero constants[2] term in it1439 *out << Verbose(1) << "Making the PermutationMap injective ... " << endl;1440 Walker = start;1441 DistanceMap::iterator NewBase;1442 OldPotential = fabs(ConstrainedPotential(out, PermutationMap, startstep, endstep, constants, IsAngstroem));1443 while ((OldPotential) > constants[2]) {1444 PrintPermutationMap(out, PermutationMap, AtomCount);1445 Walker = Walker->next;1446 if (Walker == end) // round-robin at the end1447 Walker = start->next;1448 if (DoubleList[DistanceIterators[Walker->nr]->second->nr] <= 1) // no need to make those injective that aren't1449 continue;1450 // now, try finding a new one1451 NewBase = DistanceIterators[Walker->nr]; // store old base1452 do {1453 NewBase++; // take next further distance in distance to targets list that's a target of no one1454 } while ((DoubleList[NewBase->second->nr] != 0) && (NewBase != DistanceList[Walker->nr]->end()));1455 if (NewBase != DistanceList[Walker->nr]->end()) {1456 PermutationMap[Walker->nr] = NewBase->second;1457 Potential = fabs(ConstrainedPotential(out, PermutationMap, startstep, endstep, constants, IsAngstroem));1458 if (Potential > OldPotential) { // undo1459 PermutationMap[Walker->nr] = DistanceIterators[Walker->nr]->second;1460 } else { // do1461 DoubleList[DistanceIterators[Walker->nr]->second->nr]--; // decrease the old entry in the doubles list1462 DoubleList[NewBase->second->nr]++; // increase the old entry in the doubles list1463 DistanceIterators[Walker->nr] = NewBase;1464 OldPotential = Potential;1465 *out << Verbose(3) << "Found a new permutation, new potential is " << OldPotential << "." << endl;1466 }1467 }1468 }1469 for (int i=AtomCount; i--;) // now each single entry in the DoubleList should be <=11470 if (DoubleList[i] > 1) {1471 cerr << "Failed to create an injective PermutationMap!" << endl;1472 exit(1);1473 }1474 *out << Verbose(1) << "done." << endl;1475 Free(&DoubleList);1476 // argument minimise the constrained potential in this injective PermutationMap1477 *out << Verbose(1) << "Argument minimising the PermutationMap, at current potential " << OldPotential << " ... " << endl;1478 OldPotential = 1e+10;1479 round = 0;1480 do {1481 *out << "Starting round " << ++round << " ... " << endl;1482 OlderPotential = OldPotential;1483 do {1484 Walker = start;1485 while (Walker->next != end) { // pick one1486 Walker = Walker->next;1487 PrintPermutationMap(out, PermutationMap, AtomCount);1488 Sprinter = DistanceIterators[Walker->nr]->second; // store initial partner1489 Strider = DistanceIterators[Walker->nr]; //remember old iterator1490 DistanceIterators[Walker->nr] = StepList[Walker->nr];1491 if (DistanceIterators[Walker->nr] == DistanceList[Walker->nr]->end()) {// stop, before we run through the list and still on1492 DistanceIterators[Walker->nr] == DistanceList[Walker->nr]->begin();1493 break;1494 }1495 //*out << Verbose(2) << "Current Walker: " << *Walker << " with old/next candidate " << *Sprinter << "/" << *DistanceIterators[Walker->nr]->second << "." << endl;1496 // find source of the new target1497 Runner = start->next;1498 while(Runner != end) { // find the source whose toes we might be stepping on (Walker's new target should be in use by another already)1499 if (PermutationMap[Runner->nr] == DistanceIterators[Walker->nr]->second) {1500 //*out << Verbose(2) << "Found the corresponding owner " << *Runner << " to " << *PermutationMap[Runner->nr] << "." << endl;1501 break;1502 }1503 Runner = Runner->next;1504 }1505 if (Runner != end) { // we found the other source1506 // then look in its distance list for Sprinter1507 Rider = DistanceList[Runner->nr]->begin();1508 for (; Rider != DistanceList[Runner->nr]->end(); Rider++)1509 if (Rider->second == Sprinter)1510 break;1511 if (Rider != DistanceList[Runner->nr]->end()) { // if we have found one1512 //*out << Verbose(2) << "Current Other: " << *Runner << " with old/next candidate " << *PermutationMap[Runner->nr] << "/" << *Rider->second << "." << endl;1513 // exchange both1514 PermutationMap[Walker->nr] = DistanceIterators[Walker->nr]->second; // put next farther distance into PermutationMap1515 PermutationMap[Runner->nr] = Sprinter; // and hand the old target to its respective owner1516 PrintPermutationMap(out, PermutationMap, AtomCount);1517 // calculate the new potential1518 //*out << Verbose(2) << "Checking new potential ..." << endl;1519 Potential = ConstrainedPotential(out, PermutationMap, startstep, endstep, constants, IsAngstroem);1520 if (Potential > OldPotential) { // we made everything worse! Undo ...1521 //*out << Verbose(3) << "Nay, made the potential worse: " << Potential << " vs. " << OldPotential << "!" << endl;1522 //*out << Verbose(3) << "Setting " << *Runner << "'s source to " << *DistanceIterators[Runner->nr]->second << "." << endl;1523 // Undo for Runner (note, we haven't moved the iteration yet, we may use this)1524 PermutationMap[Runner->nr] = DistanceIterators[Runner->nr]->second;1525 // Undo for Walker1526 DistanceIterators[Walker->nr] = Strider; // take next farther distance target1527 //*out << Verbose(3) << "Setting " << *Walker << "'s source to " << *DistanceIterators[Walker->nr]->second << "." << endl;1528 PermutationMap[Walker->nr] = DistanceIterators[Walker->nr]->second;1529 } else {1530 DistanceIterators[Runner->nr] = Rider; // if successful also move the pointer in the iterator list1531 *out << Verbose(3) << "Found a better permutation, new potential is " << Potential << " vs." << OldPotential << "." << endl;1532 OldPotential = Potential;1533 }1534 if (Potential > constants[2]) {1535 cerr << "ERROR: The two-step permutation procedure did not maintain injectivity!" << endl;1536 exit(255);1537 }1538 //*out << endl;1539 } else {1540 cerr << "ERROR: " << *Runner << " was not the owner of " << *Sprinter << "!" << endl;1541 exit(255);1542 }1543 } else {1544 PermutationMap[Walker->nr] = DistanceIterators[Walker->nr]->second; // new target has no source!1545 }1546 StepList[Walker->nr]++; // take next farther distance target1547 }1548 } while (Walker->next != end);1549 } while ((OlderPotential - OldPotential) > 1e-3);1550 *out << Verbose(1) << "done." << endl;1551 1552 1553 /// free memory and return with evaluated potential1554 for (int i=AtomCount; i--;)1555 DistanceList[i]->clear();1556 Free(&DistanceList);1557 Free(&DistanceIterators);1558 return ConstrainedPotential(out, PermutationMap, startstep, endstep, constants, IsAngstroem);1559 };1560 1561 /** Evaluates the (distance-related part) of the constrained potential for the constrained forces.1562 * \param *out output stream for debugging1563 * \param startstep current MD step giving initial position between which and \a endstep we perform the constrained MD (as further steps are always concatenated)1564 * \param endstep step giving final position in constrained MD1565 * \param **PermutationMap mapping between the atom label of the initial and the final configuration1566 * \param *Force ForceMatrix containing force vectors from the external energy functional minimisation.1567 * \todo the constant for the constrained potential distance part is hard-coded independently of the hard-coded value in MinimiseConstrainedPotential()1568 */1569 void molecule::EvaluateConstrainedForces(ofstream *out, int startstep, int endstep, atom **PermutationMap, ForceMatrix *Force)1570 {1571 double constant = 10.;1572 atom *Walker = NULL, *Sprinter = NULL;1573 1574 /// evaluate forces (only the distance to target dependent part) with the final PermutationMap1575 *out << Verbose(1) << "Calculating forces and adding onto ForceMatrix ... " << endl;1576 Walker = start;1577 while (Walker->next != NULL) {1578 Walker = Walker->next;1579 Sprinter = PermutationMap[Walker->nr];1580 // set forces1581 for (int i=NDIM;i++;)1582 Force->Matrix[0][Walker->nr][5+i] += 2.*constant*sqrt(Trajectories[Walker].R.at(startstep).Distance(&Trajectories[Sprinter].R.at(endstep)));1583 }1584 *out << Verbose(1) << "done." << endl;1585 };1586 1587 /** Performs a linear interpolation between two desired atomic configurations with a given number of steps.1588 * Note, step number is config::MaxOuterStep1589 * \param *out output stream for debugging1590 * \param startstep stating initial configuration in molecule::Trajectories1591 * \param endstep stating final configuration in molecule::Trajectories1592 * \param &config configuration structure1593 * \param MapByIdentity if true we just use the identity to map atoms in start config to end config, if not we find mapping by \sa MinimiseConstrainedPotential()1594 * \return true - success in writing step files, false - error writing files or only one step in molecule::Trajectories1595 */1596 bool molecule::LinearInterpolationBetweenConfiguration(ofstream *out, int startstep, int endstep, const char *prefix, config &configuration, bool MapByIdentity)1597 {1598 molecule *mol = NULL;1599 bool status = true;1600 int MaxSteps = configuration.MaxOuterStep;1601 MoleculeListClass *MoleculePerStep = new MoleculeListClass();1602 // Get the Permutation Map by MinimiseConstrainedPotential1603 atom **PermutationMap = NULL;1604 atom *Walker = NULL, *Sprinter = NULL;1605 if (!MapByIdentity)1606 MinimiseConstrainedPotential(out, PermutationMap, startstep, endstep, configuration.GetIsAngstroem());1607 else {1608 PermutationMap = Malloc<atom *>(AtomCount, "molecule::LinearInterpolationBetweenConfiguration: **PermutationMap");1609 Walker = start;1610 while (Walker->next != end) {1611 Walker = Walker->next;1612 PermutationMap[Walker->nr] = Walker; // always pick target with the smallest distance1613 }1614 }1615 1616 // check whether we have sufficient space in Trajectories for each atom1617 Walker = start;1618 while (Walker->next != end) {1619 Walker = Walker->next;1620 if (Trajectories[Walker].R.size() <= (unsigned int)(MaxSteps)) {1621 //cout << "Increasing size for trajectory array of " << keyword << " to " << (MaxSteps+1) << "." << endl;1622 Trajectories[Walker].R.resize(MaxSteps+1);1623 Trajectories[Walker].U.resize(MaxSteps+1);1624 Trajectories[Walker].F.resize(MaxSteps+1);1625 }1626 }1627 // push endstep to last one1628 Walker = start;1629 while (Walker->next != end) { // remove the endstep (is now the very last one)1630 Walker = Walker->next;1631 for (int n=NDIM;n--;) {1632 Trajectories[Walker].R.at(MaxSteps).x[n] = Trajectories[Walker].R.at(endstep).x[n];1633 Trajectories[Walker].U.at(MaxSteps).x[n] = Trajectories[Walker].U.at(endstep).x[n];1634 Trajectories[Walker].F.at(MaxSteps).x[n] = Trajectories[Walker].F.at(endstep).x[n];1635 }1636 }1637 endstep = MaxSteps;1638 1639 // go through all steps and add the molecular configuration to the list and to the Trajectories of \a this molecule1640 *out << Verbose(1) << "Filling intermediate " << MaxSteps << " steps with MDSteps of " << MDSteps << "." << endl;1641 for (int step = 0; step <= MaxSteps; step++) {1642 mol = new molecule(elemente);1643 MoleculePerStep->insert(mol);1644 Walker = start;1645 while (Walker->next != end) {1646 Walker = Walker->next;1647 // add to molecule list1648 Sprinter = mol->AddCopyAtom(Walker);1649 for (int n=NDIM;n--;) {1650 Sprinter->x.x[n] = Trajectories[Walker].R.at(startstep).x[n] + (Trajectories[PermutationMap[Walker->nr]].R.at(endstep).x[n] - Trajectories[Walker].R.at(startstep).x[n])*((double)step/(double)MaxSteps);1651 // add to Trajectories1652 //*out << Verbose(3) << step << ">=" << MDSteps-1 << endl;1653 if (step < MaxSteps) {1654 Trajectories[Walker].R.at(step).x[n] = Trajectories[Walker].R.at(startstep).x[n] + (Trajectories[PermutationMap[Walker->nr]].R.at(endstep).x[n] - Trajectories[Walker].R.at(startstep).x[n])*((double)step/(double)MaxSteps);1655 Trajectories[Walker].U.at(step).x[n] = 0.;1656 Trajectories[Walker].F.at(step).x[n] = 0.;1657 }1658 }1659 }1660 }1661 MDSteps = MaxSteps+1; // otherwise new Trajectories' points aren't stored on save&exit1662 1663 // store the list to single step files1664 int *SortIndex = Malloc<int>(AtomCount, "molecule::LinearInterpolationBetweenConfiguration: *SortIndex");1665 for (int i=AtomCount; i--; )1666 SortIndex[i] = i;1667 status = MoleculePerStep->OutputConfigForListOfFragments(out, &configuration, SortIndex);1668 1669 // free and return1670 Free(&PermutationMap);1671 delete(MoleculePerStep);1672 return status;1673 };1674 1675 /** Parses nuclear forces from file and performs Verlet integration.1676 * Note that we assume the parsed forces to be in atomic units (hence, if coordinates are in angstroem, we1677 * have to transform them).1678 * This adds a new MD step to the config file.1679 * \param *out output stream for debugging1680 * \param *file filename1681 * \param config structure with config::Deltat, config::IsAngstroem, config::DoConstrained1682 * \param delta_t time step width in atomic units1683 * \param IsAngstroem whether coordinates are in angstroem (true) or bohrradius (false)1684 * \param DoConstrained whether we perform a constrained (>0, target step in molecule::trajectories) or unconstrained (0) molecular dynamics, \sa molecule::MinimiseConstrainedPotential()1685 * \return true - file found and parsed, false - file not found or imparsable1686 * \todo This is not yet checked if it is correctly working with DoConstrained set to true.1687 */1688 bool molecule::VerletForceIntegration(ofstream *out, char *file, config &configuration)1689 {1690 atom *walker = NULL;1691 ifstream input(file);1692 string token;1693 stringstream item;1694 double IonMass, Vector[NDIM], ConstrainedPotentialEnergy, ActualTemp;1695 ForceMatrix Force;1696 1697 CountElements(); // make sure ElementsInMolecule is up to date1698 1699 // check file1700 if (input == NULL) {1701 return false;1702 } else {1703 // parse file into ForceMatrix1704 if (!Force.ParseMatrix(file, 0,0,0)) {1705 cerr << "Could not parse Force Matrix file " << file << "." << endl;1706 return false;1707 }1708 if (Force.RowCounter[0] != AtomCount) {1709 cerr << "Mismatch between number of atoms in file " << Force.RowCounter[0] << " and in molecule " << AtomCount << "." << endl;1710 return false;1711 }1712 // correct Forces1713 for(int d=0;d<NDIM;d++)1714 Vector[d] = 0.;1715 for(int i=0;i<AtomCount;i++)1716 for(int d=0;d<NDIM;d++) {1717 Vector[d] += Force.Matrix[0][i][d+5];1718 }1719 for(int i=0;i<AtomCount;i++)1720 for(int d=0;d<NDIM;d++) {1721 Force.Matrix[0][i][d+5] -= Vector[d]/(double)AtomCount;1722 }1723 // solve a constrained potential if we are meant to1724 if (configuration.DoConstrainedMD) {1725 // calculate forces and potential1726 atom **PermutationMap = NULL;1727 ConstrainedPotentialEnergy = MinimiseConstrainedPotential(out, PermutationMap,configuration.DoConstrainedMD, 0, configuration.GetIsAngstroem());1728 EvaluateConstrainedForces(out, configuration.DoConstrainedMD, 0, PermutationMap, &Force);1729 Free(&PermutationMap);1730 }1731 1732 // and perform Verlet integration for each atom with position, velocity and force vector1733 walker = start;1734 while (walker->next != end) { // go through every atom of this element1735 walker = walker->next;1736 //a = configuration.Deltat*0.5/walker->type->mass; // (F+F_old)/2m = a and thus: v = (F+F_old)/2m * t = (F + F_old) * a1737 // check size of vectors1738 if (Trajectories[walker].R.size() <= (unsigned int)(MDSteps)) {1739 //out << "Increasing size for trajectory array of " << *walker << " to " << (size+10) << "." << endl;1740 Trajectories[walker].R.resize(MDSteps+10);1741 Trajectories[walker].U.resize(MDSteps+10);1742 Trajectories[walker].F.resize(MDSteps+10);1743 }1744 1745 // Update R (and F)1746 for (int d=0; d<NDIM; d++) {1747 Trajectories[walker].F.at(MDSteps).x[d] = -Force.Matrix[0][walker->nr][d+5]*(configuration.GetIsAngstroem() ? AtomicLengthToAngstroem : 1.);1748 Trajectories[walker].R.at(MDSteps).x[d] = Trajectories[walker].R.at(MDSteps-1).x[d];1749 Trajectories[walker].R.at(MDSteps).x[d] += configuration.Deltat*(Trajectories[walker].U.at(MDSteps-1).x[d]); // s(t) = s(0) + v * deltat + 1/2 a * deltat^21750 Trajectories[walker].R.at(MDSteps).x[d] += 0.5*configuration.Deltat*configuration.Deltat*(Trajectories[walker].F.at(MDSteps).x[d]/walker->type->mass); // F = m * a and s = 0.5 * F/m * t^2 = F * a * t1751 }1752 // Update U1753 for (int d=0; d<NDIM; d++) {1754 Trajectories[walker].U.at(MDSteps).x[d] = Trajectories[walker].U.at(MDSteps-1).x[d];1755 Trajectories[walker].U.at(MDSteps).x[d] += configuration.Deltat * (Trajectories[walker].F.at(MDSteps).x[d]+Trajectories[walker].F.at(MDSteps-1).x[d]/walker->type->mass); // v = F/m * t1756 }1757 // out << "Integrated position&velocity of step " << (MDSteps) << ": (";1758 // for (int d=0;d<NDIM;d++)1759 // out << Trajectories[walker].R.at(MDSteps).x[d] << " "; // next step1760 // out << ")\t(";1761 // for (int d=0;d<NDIM;d++)1762 // cout << Trajectories[walker].U.at(MDSteps).x[d] << " "; // next step1763 // out << ")" << endl;1764 // next atom1765 }1766 }1767 // correct velocities (rather momenta) so that center of mass remains motionless1768 for(int d=0;d<NDIM;d++)1769 Vector[d] = 0.;1770 IonMass = 0.;1771 walker = start;1772 while (walker->next != end) { // go through every atom1773 walker = walker->next;1774 IonMass += walker->type->mass; // sum up total mass1775 for(int d=0;d<NDIM;d++) {1776 Vector[d] += Trajectories[walker].U.at(MDSteps).x[d]*walker->type->mass;1777 }1778 }1779 // correct velocities (rather momenta) so that center of mass remains motionless1780 for(int d=0;d<NDIM;d++)1781 Vector[d] /= IonMass;1782 ActualTemp = 0.;1783 walker = start;1784 while (walker->next != end) { // go through every atom of this element1785 walker = walker->next;1786 for(int d=0;d<NDIM;d++) {1787 Trajectories[walker].U.at(MDSteps).x[d] -= Vector[d];1788 ActualTemp += 0.5 * walker->type->mass * Trajectories[walker].U.at(MDSteps).x[d] * Trajectories[walker].U.at(MDSteps).x[d];1789 }1790 }1791 Thermostats(configuration, ActualTemp, Berendsen);1792 MDSteps++;1793 1794 1795 // exit1796 return true;1797 };1798 1799 /** Implementation of various thermostats.1800 * All these thermostats apply an additional force which has the following forms:1801 * -# Woodcock1802 * \f$p_i \rightarrow \sqrt{\frac{T_0}{T}} \cdot p_i\f$1803 * -# Gaussian1804 * \f$ \frac{ \sum_i \frac{p_i}{m_i} \frac{\partial V}{\partial q_i}} {\sum_i \frac{p^2_i}{m_i}} \cdot p_i\f$1805 * -# Langevin1806 * \f$p_{i,n} \rightarrow \sqrt{1-\alpha^2} p_{i,0} + \alpha p_r\f$1807 * -# Berendsen1808 * \f$p_i \rightarrow \left [ 1+ \frac{\delta t}{\tau_T} \left ( \frac{T_0}{T} \right ) \right ]^{\frac{1}{2}} \cdot p_i\f$1809 * -# Nose-Hoover1810 * \f$\zeta p_i \f$ with \f$\frac{\partial \zeta}{\partial t} = \frac{1}{M_s} \left ( \sum^N_{i=1} \frac{p_i^2}{m_i} - g k_B T \right )\f$1811 * These Thermostats either simply rescale the velocities, thus this function should be called after ion velocities have been updated, and/or1812 * have a constraint force acting additionally on the ions. In the latter case, the ion speeds have to be modified1813 * belatedly and the constraint force set.1814 * \param *P Problem at hand1815 * \param i which of the thermostats to take: 0 - none, 1 - Woodcock, 2 - Gaussian, 3 - Langevin, 4 - Berendsen, 5 - Nose-Hoover1816 * \sa InitThermostat()1817 */1818 void molecule::Thermostats(config &configuration, double ActualTemp, int Thermostat)1819 {1820 double ekin = 0.;1821 double E = 0., G = 0.;1822 double delta_alpha = 0.;1823 double ScaleTempFactor;1824 double sigma;1825 double IonMass;1826 int d;1827 gsl_rng * r;1828 const gsl_rng_type * T;1829 double *U = NULL, *F = NULL, FConstraint[NDIM];1830 atom *walker = NULL;1831 1832 // calculate scale configuration1833 ScaleTempFactor = configuration.TargetTemp/ActualTemp;1834 1835 // differentating between the various thermostats1836 switch(Thermostat) {1837 case None:1838 cout << Verbose(2) << "Applying no thermostat..." << endl;1839 break;1840 case Woodcock:1841 if ((configuration.ScaleTempStep > 0) && ((MDSteps-1) % configuration.ScaleTempStep == 0)) {1842 cout << Verbose(2) << "Applying Woodcock thermostat..." << endl;1843 walker = start;1844 while (walker->next != end) { // go through every atom of this element1845 walker = walker->next;1846 IonMass = walker->type->mass;1847 U = Trajectories[walker].U.at(MDSteps).x;1848 if (walker->FixedIon == 0) // even FixedIon moves, only not by other's forces1849 for (d=0; d<NDIM; d++) {1850 U[d] *= sqrt(ScaleTempFactor);1851 ekin += 0.5*IonMass * U[d]*U[d];1852 }1853 }1854 }1855 break;1856 case Gaussian:1857 cout << Verbose(2) << "Applying Gaussian thermostat..." << endl;1858 walker = start;1859 while (walker->next != end) { // go through every atom of this element1860 walker = walker->next;1861 IonMass = walker->type->mass;1862 U = Trajectories[walker].U.at(MDSteps).x;1863 F = Trajectories[walker].F.at(MDSteps).x;1864 if (walker->FixedIon == 0) // even FixedIon moves, only not by other's forces1865 for (d=0; d<NDIM; d++) {1866 G += U[d] * F[d];1867 E += U[d]*U[d]*IonMass;1868 }1869 }1870 cout << Verbose(1) << "Gaussian Least Constraint constant is " << G/E << "." << endl;1871 walker = start;1872 while (walker->next != end) { // go through every atom of this element1873 walker = walker->next;1874 IonMass = walker->type->mass;1875 U = Trajectories[walker].U.at(MDSteps).x;1876 F = Trajectories[walker].F.at(MDSteps).x;1877 if (walker->FixedIon == 0) // even FixedIon moves, only not by other's forces1878 for (d=0; d<NDIM; d++) {1879 FConstraint[d] = (G/E) * (U[d]*IonMass);1880 U[d] += configuration.Deltat/IonMass * (FConstraint[d]);1881 ekin += IonMass * U[d]*U[d];1882 }1883 }1884 break;1885 case Langevin:1886 cout << Verbose(2) << "Applying Langevin thermostat..." << endl;1887 // init random number generator1888 gsl_rng_env_setup();1889 T = gsl_rng_default;1890 r = gsl_rng_alloc (T);1891 // Go through each ion1892 walker = start;1893 while (walker->next != end) { // go through every atom of this element1894 walker = walker->next;1895 IonMass = walker->type->mass;1896 sigma = sqrt(configuration.TargetTemp/IonMass); // sigma = (k_b T)/m (Hartree/atomicmass = atomiclength/atomictime)1897 U = Trajectories[walker].U.at(MDSteps).x;1898 F = Trajectories[walker].F.at(MDSteps).x;1899 if (walker->FixedIon == 0) { // even FixedIon moves, only not by other's forces1900 // throw a dice to determine whether it gets hit by a heat bath particle1901 if (((((rand()/(double)RAND_MAX))*configuration.TempFrequency) < 1.)) {1902 cout << Verbose(3) << "Particle " << *walker << " was hit (sigma " << sigma << "): " << sqrt(U[0]*U[0]+U[1]*U[1]+U[2]*U[2]) << " -> ";1903 // pick three random numbers from a Boltzmann distribution around the desired temperature T for each momenta axis1904 for (d=0; d<NDIM; d++) {1905 U[d] = gsl_ran_gaussian (r, sigma);1906 }1907 cout << sqrt(U[0]*U[0]+U[1]*U[1]+U[2]*U[2]) << endl;1908 }1909 for (d=0; d<NDIM; d++)1910 ekin += 0.5*IonMass * U[d]*U[d];1911 }1912 }1913 break;1914 case Berendsen:1915 cout << Verbose(2) << "Applying Berendsen-VanGunsteren thermostat..." << endl;1916 walker = start;1917 while (walker->next != end) { // go through every atom of this element1918 walker = walker->next;1919 IonMass = walker->type->mass;1920 U = Trajectories[walker].U.at(MDSteps).x;1921 F = Trajectories[walker].F.at(MDSteps).x;1922 if (walker->FixedIon == 0) { // even FixedIon moves, only not by other's forces1923 for (d=0; d<NDIM; d++) {1924 U[d] *= sqrt(1+(configuration.Deltat/configuration.TempFrequency)*(ScaleTempFactor-1));1925 ekin += 0.5*IonMass * U[d]*U[d];1926 }1927 }1928 }1929 break;1930 case NoseHoover:1931 cout << Verbose(2) << "Applying Nose-Hoover thermostat..." << endl;1932 // dynamically evolve alpha (the additional degree of freedom)1933 delta_alpha = 0.;1934 walker = start;1935 while (walker->next != end) { // go through every atom of this element1936 walker = walker->next;1937 IonMass = walker->type->mass;1938 U = Trajectories[walker].U.at(MDSteps).x;1939 if (walker->FixedIon == 0) { // even FixedIon moves, only not by other's forces1940 for (d=0; d<NDIM; d++) {1941 delta_alpha += U[d]*U[d]*IonMass;1942 }1943 }1944 }1945 delta_alpha = (delta_alpha - (3.*AtomCount+1.) * configuration.TargetTemp)/(configuration.HooverMass*Units2Electronmass);1946 configuration.alpha += delta_alpha*configuration.Deltat;1947 cout << Verbose(3) << "alpha = " << delta_alpha << " * " << configuration.Deltat << " = " << configuration.alpha << "." << endl;1948 // apply updated alpha as additional force1949 walker = start;1950 while (walker->next != end) { // go through every atom of this element1951 walker = walker->next;1952 IonMass = walker->type->mass;1953 U = Trajectories[walker].U.at(MDSteps).x;1954 if (walker->FixedIon == 0) { // even FixedIon moves, only not by other's forces1955 for (d=0; d<NDIM; d++) {1956 FConstraint[d] = - configuration.alpha * (U[d] * IonMass);1957 U[d] += configuration.Deltat/IonMass * (FConstraint[d]);1958 ekin += (0.5*IonMass) * U[d]*U[d];1959 }1960 }1961 }1962 break;1963 }1964 cout << Verbose(1) << "Kinetic energy is " << ekin << "." << endl;1965 };1966 1967 /** Align all atoms in such a manner that given vector \a *n is along z axis.1968 * \param n[] alignment vector.1969 */1970 void molecule::Align(Vector *n)1971 {1972 atom *ptr = start;1973 double alpha, tmp;1974 Vector z_axis;1975 z_axis.x[0] = 0.;1976 z_axis.x[1] = 0.;1977 z_axis.x[2] = 1.;1978 1979 // rotate on z-x plane1980 cout << Verbose(0) << "Begin of Aligning all atoms." << endl;1981 alpha = atan(-n->x[0]/n->x[2]);1982 cout << Verbose(1) << "Z-X-angle: " << alpha << " ... ";1983 while (ptr->next != end) {1984 ptr = ptr->next;1985 tmp = ptr->x.x[0];1986 ptr->x.x[0] = cos(alpha) * tmp + sin(alpha) * ptr->x.x[2];1987 ptr->x.x[2] = -sin(alpha) * tmp + cos(alpha) * ptr->x.x[2];1988 for (int j=0;j<MDSteps;j++) {1989 tmp = Trajectories[ptr].R.at(j).x[0];1990 Trajectories[ptr].R.at(j).x[0] = cos(alpha) * tmp + sin(alpha) * Trajectories[ptr].R.at(j).x[2];1991 Trajectories[ptr].R.at(j).x[2] = -sin(alpha) * tmp + cos(alpha) * Trajectories[ptr].R.at(j).x[2];1992 }1993 }1994 // rotate n vector1995 tmp = n->x[0];1996 n->x[0] = cos(alpha) * tmp + sin(alpha) * n->x[2];1997 n->x[2] = -sin(alpha) * tmp + cos(alpha) * n->x[2];1998 cout << Verbose(1) << "alignment vector after first rotation: ";1999 n->Output((ofstream *)&cout);2000 cout << endl;2001 2002 // rotate on z-y plane2003 ptr = start;2004 alpha = atan(-n->x[1]/n->x[2]);2005 cout << Verbose(1) << "Z-Y-angle: " << alpha << " ... ";2006 while (ptr->next != end) {2007 ptr = ptr->next;2008 tmp = ptr->x.x[1];2009 ptr->x.x[1] = cos(alpha) * tmp + sin(alpha) * ptr->x.x[2];2010 ptr->x.x[2] = -sin(alpha) * tmp + cos(alpha) * ptr->x.x[2];2011 for (int j=0;j<MDSteps;j++) {2012 tmp = Trajectories[ptr].R.at(j).x[1];2013 Trajectories[ptr].R.at(j).x[1] = cos(alpha) * tmp + sin(alpha) * Trajectories[ptr].R.at(j).x[2];2014 Trajectories[ptr].R.at(j).x[2] = -sin(alpha) * tmp + cos(alpha) * Trajectories[ptr].R.at(j).x[2];2015 }2016 }2017 // rotate n vector (for consistency check)2018 tmp = n->x[1];2019 n->x[1] = cos(alpha) * tmp + sin(alpha) * n->x[2];2020 n->x[2] = -sin(alpha) * tmp + cos(alpha) * n->x[2];2021 2022 cout << Verbose(1) << "alignment vector after second rotation: ";2023 n->Output((ofstream *)&cout);2024 cout << Verbose(1) << endl;2025 cout << Verbose(0) << "End of Aligning all atoms." << endl;2026 };2027 2028 625 /** Removes atom from molecule list and deletes it. 2029 626 * \param *pointer atom to be removed … … 2117 714 //return result; 2118 715 return true; /// probably not gonna use the check no more 2119 };2120 2121 /** Calculates sum over least square distance to line hidden in \a *x.2122 * \param *x offset and direction vector2123 * \param *params pointer to lsq_params structure2124 * \return \f$ sum_i^N | y_i - (a + t_i b)|^2\f$2125 */2126 double LeastSquareDistance (const gsl_vector * x, void * params)2127 {2128 double res = 0, t;2129 Vector a,b,c,d;2130 struct lsq_params *par = (struct lsq_params *)params;2131 atom *ptr = par->mol->start;2132 2133 // initialize vectors2134 a.x[0] = gsl_vector_get(x,0);2135 a.x[1] = gsl_vector_get(x,1);2136 a.x[2] = gsl_vector_get(x,2);2137 b.x[0] = gsl_vector_get(x,3);2138 b.x[1] = gsl_vector_get(x,4);2139 b.x[2] = gsl_vector_get(x,5);2140 // go through all atoms2141 while (ptr != par->mol->end) {2142 ptr = ptr->next;2143 if (ptr->type == ((struct lsq_params *)params)->type) { // for specific type2144 c.CopyVector(&ptr->x); // copy vector to temporary one2145 c.SubtractVector(&a); // subtract offset vector2146 t = c.ScalarProduct(&b); // get direction parameter2147 d.CopyVector(&b); // and create vector2148 d.Scale(&t);2149 c.SubtractVector(&d); // ... yielding distance vector2150 res += d.ScalarProduct((const Vector *)&d); // add squared distance2151 }2152 }2153 return res;2154 };2155 2156 /** By minimizing the least square distance gains alignment vector.2157 * \bug this is not yet working properly it seems2158 */2159 void molecule::GetAlignvector(struct lsq_params * par) const2160 {2161 int np = 6;2162 2163 const gsl_multimin_fminimizer_type *T =2164 gsl_multimin_fminimizer_nmsimplex;2165 gsl_multimin_fminimizer *s = NULL;2166 gsl_vector *ss;2167 gsl_multimin_function minex_func;2168 2169 size_t iter = 0, i;2170 int status;2171 double size;2172 2173 /* Initial vertex size vector */2174 ss = gsl_vector_alloc (np);2175 2176 /* Set all step sizes to 1 */2177 gsl_vector_set_all (ss, 1.0);2178 2179 /* Starting point */2180 par->x = gsl_vector_alloc (np);2181 par->mol = this;2182 2183 gsl_vector_set (par->x, 0, 0.0); // offset2184 gsl_vector_set (par->x, 1, 0.0);2185 gsl_vector_set (par->x, 2, 0.0);2186 gsl_vector_set (par->x, 3, 0.0); // direction2187 gsl_vector_set (par->x, 4, 0.0);2188 gsl_vector_set (par->x, 5, 1.0);2189 2190 /* Initialize method and iterate */2191 minex_func.f = &LeastSquareDistance;2192 minex_func.n = np;2193 minex_func.params = (void *)par;2194 2195 s = gsl_multimin_fminimizer_alloc (T, np);2196 gsl_multimin_fminimizer_set (s, &minex_func, par->x, ss);2197 2198 do2199 {2200 iter++;2201 status = gsl_multimin_fminimizer_iterate(s);2202 2203 if (status)2204 break;2205 2206 size = gsl_multimin_fminimizer_size (s);2207 status = gsl_multimin_test_size (size, 1e-2);2208 2209 if (status == GSL_SUCCESS)2210 {2211 printf ("converged to minimum at\n");2212 }2213 2214 printf ("%5d ", (int)iter);2215 for (i = 0; i < (size_t)np; i++)2216 {2217 printf ("%10.3e ", gsl_vector_get (s->x, i));2218 }2219 printf ("f() = %7.3f size = %.3f\n", s->fval, size);2220 }2221 while (status == GSL_CONTINUE && iter < 100);2222 2223 for (i=0;i<(size_t)np;i++)2224 gsl_vector_set(par->x, i, gsl_vector_get(s->x, i));2225 //gsl_vector_free(par->x);2226 gsl_vector_free(ss);2227 gsl_multimin_fminimizer_free (s);2228 716 }; 2229 717 … … 2457 945 }; 2458 946 2459 /** Counts all cyclic bonds and returns their number.2460 * \note Hydrogen bonds can never by cyclic, thus no check for that2461 * \param *out output stream for debugging2462 * \return number opf cyclic bonds2463 */2464 int molecule::CountCyclicBonds(ofstream *out)2465 {2466 int No = 0;2467 int *MinimumRingSize = NULL;2468 MoleculeLeafClass *Subgraphs = NULL;2469 class StackClass<bond *> *BackEdgeStack = NULL;2470 bond *Binder = first;2471 if ((Binder->next != last) && (Binder->next->Type == Undetermined)) {2472 *out << Verbose(0) << "No Depth-First-Search analysis performed so far, calling ..." << endl;2473 Subgraphs = DepthFirstSearchAnalysis(out, BackEdgeStack);2474 while (Subgraphs->next != NULL) {2475 Subgraphs = Subgraphs->next;2476 delete(Subgraphs->previous);2477 }2478 delete(Subgraphs);2479 delete[](MinimumRingSize);2480 }2481 while(Binder->next != last) {2482 Binder = Binder->next;2483 if (Binder->Cyclic)2484 No++;2485 }2486 delete(BackEdgeStack);2487 return No;2488 };2489 /** Returns Shading as a char string.2490 * \param color the Shading2491 * \return string of the flag2492 */2493 string molecule::GetColor(enum Shading color)2494 {2495 switch(color) {2496 case white:2497 return "white";2498 break;2499 case lightgray:2500 return "lightgray";2501 break;2502 case darkgray:2503 return "darkgray";2504 break;2505 case black:2506 return "black";2507 break;2508 default:2509 return "uncolored";2510 break;2511 };2512 };2513 947 2514 948 … … 2539 973 }; 2540 974 2541 /** Creates an adjacency list of the molecule.2542 * We obtain an outside file with the indices of atoms which are bondmembers.2543 */2544 void molecule::CreateAdjacencyList2(ofstream *out, ifstream *input)2545 {2546 2547 // 1 We will parse bonds out of the dbond file created by tremolo.2548 int atom1, atom2, temp;2549 atom *Walker, *OtherWalker;2550 2551 if (!input)2552 {2553 cout << Verbose(1) << "Opening silica failed \n";2554 };2555 2556 *input >> ws >> atom1;2557 *input >> ws >> atom2;2558 cout << Verbose(1) << "Scanning file\n";2559 while (!input->eof()) // Check whether we read everything already2560 {2561 *input >> ws >> atom1;2562 *input >> ws >> atom2;2563 if(atom2<atom1) //Sort indices of atoms in order2564 {2565 temp=atom1;2566 atom1=atom2;2567 atom2=temp;2568 };2569 2570 Walker=start;2571 while(Walker-> nr != atom1) // Find atom corresponding to first index2572 {2573 Walker = Walker->next;2574 };2575 OtherWalker = Walker->next;2576 while(OtherWalker->nr != atom2) // Find atom corresponding to second index2577 {2578 OtherWalker= OtherWalker->next;2579 };2580 AddBond(Walker, OtherWalker); //Add the bond between the two atoms with respective indices.2581 2582 }2583 2584 CreateListOfBondsPerAtom(out);2585 2586 };2587 2588 2589 /** Creates an adjacency list of the molecule.2590 * Generally, we use the CSD approach to bond recognition, that is the the distance2591 * between two atoms A and B must be within [Rcov(A)+Rcov(B)-t,Rcov(A)+Rcov(B)+t] with2592 * a threshold t = 0.4 Angstroem.2593 * To make it O(N log N) the function uses the linked-cell technique as follows:2594 * The procedure is step-wise:2595 * -# Remove every bond in list2596 * -# Count the atoms in the molecule with CountAtoms()2597 * -# partition cell into smaller linked cells of size \a bonddistance2598 * -# put each atom into its corresponding cell2599 * -# go through every cell, check the atoms therein against all possible bond partners in the 27 adjacent cells, add bond if true2600 * -# create the list of bonds via CreateListOfBondsPerAtom()2601 * -# correct the bond degree iteratively (single->double->triple bond)2602 * -# finally print the bond list to \a *out if desired2603 * \param *out out stream for printing the matrix, NULL if no output2604 * \param bonddistance length of linked cells (i.e. maximum minimal length checked)2605 * \param IsAngstroem whether coordinate system is gauged to Angstroem or Bohr radii2606 */2607 void molecule::CreateAdjacencyList(ofstream *out, double bonddistance, bool IsAngstroem)2608 {2609 2610 atom *Walker = NULL, *OtherWalker = NULL, *Candidate = NULL;2611 int No, NoBonds, CandidateBondNo;2612 int NumberCells, divisor[NDIM], n[NDIM], N[NDIM], index, Index, j;2613 molecule **CellList;2614 double distance, MinDistance, MaxDistance;2615 double *matrix = ReturnFullMatrixforSymmetric(cell_size);2616 Vector x;2617 int FalseBondDegree = 0;2618 2619 BondDistance = bonddistance; // * ((IsAngstroem) ? 1. : 1./AtomicLengthToAngstroem);2620 *out << Verbose(0) << "Begin of CreateAdjacencyList." << endl;2621 // remove every bond from the list2622 if ((first->next != last) && (last->previous != first)) { // there are bonds present2623 cleanup(first,last);2624 }2625 2626 // count atoms in molecule = dimension of matrix (also give each unique name and continuous numbering)2627 CountAtoms(out);2628 *out << Verbose(1) << "AtomCount " << AtomCount << "." << endl;2629 2630 if (AtomCount != 0) {2631 // 1. find divisor for each axis, such that a sphere with radius of at least bonddistance can be placed into each cell2632 j=-1;2633 for (int i=0;i<NDIM;i++) {2634 j += i+1;2635 divisor[i] = (int)floor(cell_size[j]/bonddistance); // take smaller value such that size of linked cell is at least bonddistance2636 //*out << Verbose(1) << "divisor[" << i << "] = " << divisor[i] << "." << endl;2637 }2638 // 2a. allocate memory for the cell list2639 NumberCells = divisor[0]*divisor[1]*divisor[2];2640 *out << Verbose(1) << "Allocating " << NumberCells << " cells." << endl;2641 CellList = Malloc<molecule*>(NumberCells, "molecule::CreateAdjacencyList - ** CellList");2642 for (int i=NumberCells;i--;)2643 CellList[i] = NULL;2644 2645 // 2b. put all atoms into its corresponding list2646 Walker = start;2647 while(Walker->next != end) {2648 Walker = Walker->next;2649 //*out << Verbose(1) << "Current atom is " << *Walker << " with coordinates ";2650 //Walker->x.Output(out);2651 //*out << "." << endl;2652 // compute the cell by the atom's coordinates2653 j=-1;2654 for (int i=0;i<NDIM;i++) {2655 j += i+1;2656 x.CopyVector(&(Walker->x));2657 x.KeepPeriodic(out, matrix);2658 n[i] = (int)floor(x.x[i]/cell_size[j]*(double)divisor[i]);2659 }2660 index = n[2] + (n[1] + n[0] * divisor[1]) * divisor[2];2661 //*out << Verbose(1) << "Atom " << *Walker << " goes into cell number [" << n[0] << "," << n[1] << "," << n[2] << "] = " << index << "." << endl;2662 // add copy atom to this cell2663 if (CellList[index] == NULL) // allocate molecule if not done2664 CellList[index] = new molecule(elemente);2665 OtherWalker = CellList[index]->AddCopyAtom(Walker); // add a copy of walker to this atom, father will be walker for later reference2666 //*out << Verbose(1) << "Copy Atom is " << *OtherWalker << "." << endl;2667 }2668 //for (int i=0;i<NumberCells;i++)2669 //*out << Verbose(1) << "Cell number " << i << ": " << CellList[i] << "." << endl;2670 2671 2672 // 3a. go through every cell2673 for (N[0]=divisor[0];N[0]--;)2674 for (N[1]=divisor[1];N[1]--;)2675 for (N[2]=divisor[2];N[2]--;) {2676 Index = N[2] + (N[1] + N[0] * divisor[1]) * divisor[2];2677 if (CellList[Index] != NULL) { // if there atoms in this cell2678 //*out << Verbose(1) << "Current cell is " << Index << "." << endl;2679 // 3b. for every atom therein2680 Walker = CellList[Index]->start;2681 while (Walker->next != CellList[Index]->end) { // go through every atom2682 Walker = Walker->next;2683 //*out << Verbose(0) << "Current Atom is " << *Walker << "." << endl;2684 // 3c. check for possible bond between each atom in this and every one in the 27 cells2685 for (n[0]=-1;n[0]<=1;n[0]++)2686 for (n[1]=-1;n[1]<=1;n[1]++)2687 for (n[2]=-1;n[2]<=1;n[2]++) {2688 // compute the index of this comparison cell and make it periodic2689 index = ((N[2]+n[2]+divisor[2])%divisor[2]) + (((N[1]+n[1]+divisor[1])%divisor[1]) + ((N[0]+n[0]+divisor[0])%divisor[0]) * divisor[1]) * divisor[2];2690 //*out << Verbose(1) << "Number of comparison cell is " << index << "." << endl;2691 if (CellList[index] != NULL) { // if there are any atoms in this cell2692 OtherWalker = CellList[index]->start;2693 while(OtherWalker->next != CellList[index]->end) { // go through every atom in this cell2694 OtherWalker = OtherWalker->next;2695 //*out << Verbose(0) << "Current comparison atom is " << *OtherWalker << "." << endl;2696 /// \todo periodic check is missing here!2697 //*out << Verbose(1) << "Checking distance " << OtherWalker->x.PeriodicDistanceSquared(&(Walker->x), cell_size) << " against typical bond length of " << bonddistance*bonddistance << "." << endl;2698 MinDistance = OtherWalker->type->CovalentRadius + Walker->type->CovalentRadius;2699 MinDistance *= (IsAngstroem) ? 1. : 1./AtomicLengthToAngstroem;2700 MaxDistance = MinDistance + BONDTHRESHOLD;2701 MinDistance -= BONDTHRESHOLD;2702 distance = OtherWalker->x.PeriodicDistanceSquared(&(Walker->x), cell_size);2703 if ((OtherWalker->father->nr > Walker->father->nr) && (distance <= MaxDistance*MaxDistance) && (distance >= MinDistance*MinDistance)) { // create bond if distance is smaller2704 //*out << Verbose(1) << "Adding Bond between " << *Walker << " and " << *OtherWalker << " in distance " << sqrt(distance) << "." << endl;2705 AddBond(Walker->father, OtherWalker->father, 1); // also increases molecule::BondCount2706 } else {2707 //*out << Verbose(1) << "Not Adding: Wrong label order or distance too great." << endl;2708 }2709 }2710 }2711 }2712 }2713 }2714 }2715 2716 2717 2718 // 4. free the cell again2719 for (int i=NumberCells;i--;)2720 if (CellList[i] != NULL) {2721 delete(CellList[i]);2722 }2723 Free(&CellList);2724 2725 // create the adjacency list per atom2726 CreateListOfBondsPerAtom(out);2727 2728 // correct Bond degree of each bond by checking both bond partners for a mismatch between valence and current sum of bond degrees,2729 // iteratively increase the one first where the other bond partner has the fewest number of bonds (i.e. in general bonds oxygene2730 // preferred over carbon bonds). Beforehand, we had picked the first mismatching partner, which lead to oxygenes with single instead of2731 // double bonds as was expected.2732 if (BondCount != 0) {2733 NoCyclicBonds = 0;2734 *out << Verbose(1) << "Correcting Bond degree of each bond ... ";2735 do {2736 No = 0; // No acts as breakup flag (if 1 we still continue)2737 Walker = start;2738 while (Walker->next != end) { // go through every atom2739 Walker = Walker->next;2740 // count valence of first partner2741 NoBonds = 0;2742 for(j=0;j<NumberOfBondsPerAtom[Walker->nr];j++)2743 NoBonds += ListOfBondsPerAtom[Walker->nr][j]->BondDegree;2744 *out << Verbose(3) << "Walker " << *Walker << ": " << (int)Walker->type->NoValenceOrbitals << " > " << NoBonds << "?" << endl;2745 if ((int)(Walker->type->NoValenceOrbitals) > NoBonds) { // we have a mismatch, check all bonding partners for mismatch2746 Candidate = NULL;2747 CandidateBondNo = -1;2748 for(int i=0;i<NumberOfBondsPerAtom[Walker->nr];i++) { // go through each of its bond partners2749 OtherWalker = ListOfBondsPerAtom[Walker->nr][i]->GetOtherAtom(Walker);2750 // count valence of second partner2751 NoBonds = 0;2752 for(j=0;j<NumberOfBondsPerAtom[OtherWalker->nr];j++)2753 NoBonds += ListOfBondsPerAtom[OtherWalker->nr][j]->BondDegree;2754 *out << Verbose(3) << "OtherWalker " << *OtherWalker << ": " << (int)OtherWalker->type->NoValenceOrbitals << " > " << NoBonds << "?" << endl;2755 if ((int)(OtherWalker->type->NoValenceOrbitals) > NoBonds) { // check if possible candidate2756 if ((Candidate == NULL) || (NumberOfBondsPerAtom[Candidate->nr] > NumberOfBondsPerAtom[OtherWalker->nr])) { // pick the one with fewer number of bonds first2757 Candidate = OtherWalker;2758 CandidateBondNo = i;2759 *out << Verbose(3) << "New candidate is " << *Candidate << "." << endl;2760 }2761 }2762 }2763 if ((Candidate != NULL) && (CandidateBondNo != -1)) {2764 ListOfBondsPerAtom[Walker->nr][CandidateBondNo]->BondDegree++;2765 *out << Verbose(2) << "Increased bond degree for bond " << *ListOfBondsPerAtom[Walker->nr][CandidateBondNo] << "." << endl;2766 } else2767 *out << Verbose(2) << "Could not find correct degree for atom " << *Walker << "." << endl;2768 FalseBondDegree++;2769 }2770 }2771 } while (No);2772 *out << " done." << endl;2773 } else2774 *out << Verbose(1) << "BondCount is " << BondCount << ", no bonds between any of the " << AtomCount << " atoms." << endl;2775 *out << Verbose(1) << "I detected " << BondCount << " bonds in the molecule with distance " << bonddistance << ", " << FalseBondDegree << " bonds could not be corrected." << endl;2776 2777 // output bonds for debugging (if bond chain list was correctly installed)2778 *out << Verbose(1) << endl << "From contents of bond chain list:";2779 bond *Binder = first;2780 while(Binder->next != last) {2781 Binder = Binder->next;2782 *out << *Binder << "\t" << endl;2783 }2784 *out << endl;2785 } else2786 *out << Verbose(1) << "AtomCount is " << AtomCount << ", thus no bonds, no connections!." << endl;2787 *out << Verbose(0) << "End of CreateAdjacencyList." << endl;2788 Free(&matrix);2789 2790 };2791 2792 2793 2794 /** Performs a Depth-First search on this molecule.2795 * Marks bonds in molecule as cyclic, bridge, ... and atoms as2796 * articulations points, ...2797 * We use the algorithm from [Even, Graph Algorithms, p.62].2798 * \param *out output stream for debugging2799 * \param *&BackEdgeStack NULL pointer to StackClass with all the found back edges, allocated and filled on return2800 * \return list of each disconnected subgraph as an individual molecule class structure2801 */2802 MoleculeLeafClass * molecule::DepthFirstSearchAnalysis(ofstream *out, class StackClass<bond *> *&BackEdgeStack)2803 {2804 class StackClass<atom *> *AtomStack = new StackClass<atom *>(AtomCount);2805 BackEdgeStack = new StackClass<bond *> (BondCount);2806 MoleculeLeafClass *SubGraphs = new MoleculeLeafClass(NULL);2807 MoleculeLeafClass *LeafWalker = SubGraphs;2808 int CurrentGraphNr = 0, OldGraphNr;2809 int ComponentNumber = 0;2810 atom *Walker = NULL, *OtherAtom = NULL, *Root = start->next;2811 bond *Binder = NULL;2812 bool BackStepping = false;2813 2814 *out << Verbose(0) << "Begin of DepthFirstSearchAnalysis" << endl;2815 2816 ResetAllBondsToUnused();2817 ResetAllAtomNumbers();2818 InitComponentNumbers();2819 BackEdgeStack->ClearStack();2820 while (Root != end) { // if there any atoms at all2821 // (1) mark all edges unused, empty stack, set atom->GraphNr = 0 for all2822 AtomStack->ClearStack();2823 2824 // put into new subgraph molecule and add this to list of subgraphs2825 LeafWalker = new MoleculeLeafClass(LeafWalker);2826 LeafWalker->Leaf = new molecule(elemente);2827 LeafWalker->Leaf->AddCopyAtom(Root);2828 2829 OldGraphNr = CurrentGraphNr;2830 Walker = Root;2831 do { // (10)2832 do { // (2) set number and Lowpoint of Atom to i, increase i, push current atom2833 if (!BackStepping) { // if we don't just return from (8)2834 Walker->GraphNr = CurrentGraphNr;2835 Walker->LowpointNr = CurrentGraphNr;2836 *out << Verbose(1) << "Setting Walker[" << Walker->Name << "]'s number to " << Walker->GraphNr << " with Lowpoint " << Walker->LowpointNr << "." << endl;2837 AtomStack->Push(Walker);2838 CurrentGraphNr++;2839 }2840 do { // (3) if Walker has no unused egdes, go to (5)2841 BackStepping = false; // reset backstepping flag for (8)2842 if (Binder == NULL) // if we don't just return from (11), Binder is already set to next unused2843 Binder = FindNextUnused(Walker);2844 if (Binder == NULL)2845 break;2846 *out << Verbose(2) << "Current Unused Bond is " << *Binder << "." << endl;2847 // (4) Mark Binder used, ...2848 Binder->MarkUsed(black);2849 OtherAtom = Binder->GetOtherAtom(Walker);2850 *out << Verbose(2) << "(4) OtherAtom is " << OtherAtom->Name << "." << endl;2851 if (OtherAtom->GraphNr != -1) {2852 // (4a) ... if "other" atom has been visited (GraphNr != 0), set lowpoint to minimum of both, go to (3)2853 Binder->Type = BackEdge;2854 BackEdgeStack->Push(Binder);2855 Walker->LowpointNr = ( Walker->LowpointNr < OtherAtom->GraphNr ) ? Walker->LowpointNr : OtherAtom->GraphNr;2856 *out << Verbose(3) << "(4a) Visited: Setting Lowpoint of Walker[" << Walker->Name << "] to " << Walker->LowpointNr << "." << endl;2857 } else {2858 // (4b) ... otherwise set OtherAtom as Ancestor of Walker and Walker as OtherAtom, go to (2)2859 Binder->Type = TreeEdge;2860 OtherAtom->Ancestor = Walker;2861 Walker = OtherAtom;2862 *out << Verbose(3) << "(4b) Not Visited: OtherAtom[" << OtherAtom->Name << "]'s Ancestor is now " << OtherAtom->Ancestor->Name << ", Walker is OtherAtom " << OtherAtom->Name << "." << endl;2863 break;2864 }2865 Binder = NULL;2866 } while (1); // (3)2867 if (Binder == NULL) {2868 *out << Verbose(2) << "No more Unused Bonds." << endl;2869 break;2870 } else2871 Binder = NULL;2872 } while (1); // (2)2873 2874 // if we came from backstepping, yet there were no more unused bonds, we end up here with no Ancestor, because Walker is Root! Then we are finished!2875 if ((Walker == Root) && (Binder == NULL))2876 break;2877 2878 // (5) if Ancestor of Walker is ...2879 *out << Verbose(1) << "(5) Number of Walker[" << Walker->Name << "]'s Ancestor[" << Walker->Ancestor->Name << "] is " << Walker->Ancestor->GraphNr << "." << endl;2880 if (Walker->Ancestor->GraphNr != Root->GraphNr) {2881 // (6) (Ancestor of Walker is not Root)2882 if (Walker->LowpointNr < Walker->Ancestor->GraphNr) {2883 // (6a) set Ancestor's Lowpoint number to minimum of of its Ancestor and itself, go to Step(8)2884 Walker->Ancestor->LowpointNr = (Walker->Ancestor->LowpointNr < Walker->LowpointNr) ? Walker->Ancestor->LowpointNr : Walker->LowpointNr;2885 *out << Verbose(2) << "(6) Setting Walker[" << Walker->Name << "]'s Ancestor[" << Walker->Ancestor->Name << "]'s Lowpoint to " << Walker->Ancestor->LowpointNr << "." << endl;2886 } else {2887 // (7) (Ancestor of Walker is a separating vertex, remove all from stack till Walker (including), these and Ancestor form a component2888 Walker->Ancestor->SeparationVertex = true;2889 *out << Verbose(2) << "(7) Walker[" << Walker->Name << "]'s Ancestor[" << Walker->Ancestor->Name << "]'s is a separating vertex, creating component." << endl;2890 SetNextComponentNumber(Walker->Ancestor, ComponentNumber);2891 *out << Verbose(3) << "(7) Walker[" << Walker->Name << "]'s Ancestor's Compont is " << ComponentNumber << "." << endl;2892 SetNextComponentNumber(Walker, ComponentNumber);2893 *out << Verbose(3) << "(7) Walker[" << Walker->Name << "]'s Compont is " << ComponentNumber << "." << endl;2894 do {2895 OtherAtom = AtomStack->PopLast();2896 LeafWalker->Leaf->AddCopyAtom(OtherAtom);2897 SetNextComponentNumber(OtherAtom, ComponentNumber);2898 *out << Verbose(3) << "(7) Other[" << OtherAtom->Name << "]'s Compont is " << ComponentNumber << "." << endl;2899 } while (OtherAtom != Walker);2900 ComponentNumber++;2901 }2902 // (8) Walker becomes its Ancestor, go to (3)2903 *out << Verbose(2) << "(8) Walker[" << Walker->Name << "] is now its Ancestor " << Walker->Ancestor->Name << ", backstepping. " << endl;2904 Walker = Walker->Ancestor;2905 BackStepping = true;2906 }2907 if (!BackStepping) { // coming from (8) want to go to (3)2908 // (9) remove all from stack till Walker (including), these and Root form a component2909 AtomStack->Output(out);2910 SetNextComponentNumber(Root, ComponentNumber);2911 *out << Verbose(3) << "(9) Root[" << Root->Name << "]'s Component is " << ComponentNumber << "." << endl;2912 SetNextComponentNumber(Walker, ComponentNumber);2913 *out << Verbose(3) << "(9) Walker[" << Walker->Name << "]'s Component is " << ComponentNumber << "." << endl;2914 do {2915 OtherAtom = AtomStack->PopLast();2916 LeafWalker->Leaf->AddCopyAtom(OtherAtom);2917 SetNextComponentNumber(OtherAtom, ComponentNumber);2918 *out << Verbose(3) << "(7) Other[" << OtherAtom->Name << "]'s Compont is " << ComponentNumber << "." << endl;2919 } while (OtherAtom != Walker);2920 ComponentNumber++;2921 2922 // (11) Root is separation vertex, set Walker to Root and go to (4)2923 Walker = Root;2924 Binder = FindNextUnused(Walker);2925 *out << Verbose(1) << "(10) Walker is Root[" << Root->Name << "], next Unused Bond is " << Binder << "." << endl;2926 if (Binder != NULL) { // Root is separation vertex2927 *out << Verbose(1) << "(11) Root is a separation vertex." << endl;2928 Walker->SeparationVertex = true;2929 }2930 }2931 } while ((BackStepping) || (Binder != NULL)); // (10) halt only if Root has no unused edges2932 2933 // From OldGraphNr to CurrentGraphNr ranges an disconnected subgraph2934 *out << Verbose(0) << "Disconnected subgraph ranges from " << OldGraphNr << " to " << CurrentGraphNr << "." << endl;2935 LeafWalker->Leaf->Output(out);2936 *out << endl;2937 2938 // step on to next root2939 while ((Root != end) && (Root->GraphNr != -1)) {2940 //*out << Verbose(1) << "Current next subgraph root candidate is " << Root->Name << "." << endl;2941 if (Root->GraphNr != -1) // if already discovered, step on2942 Root = Root->next;2943 }2944 }2945 // set cyclic bond criterium on "same LP" basis2946 Binder = first;2947 while(Binder->next != last) {2948 Binder = Binder->next;2949 if (Binder->rightatom->LowpointNr == Binder->leftatom->LowpointNr) { // cyclic ??2950 Binder->Cyclic = true;2951 NoCyclicBonds++;2952 }2953 }2954 2955 2956 *out << Verbose(1) << "Final graph info for each atom is:" << endl;2957 Walker = start;2958 while (Walker->next != end) {2959 Walker = Walker->next;2960 *out << Verbose(2) << "Atom " << Walker->Name << " is " << ((Walker->SeparationVertex) ? "a" : "not a") << " separation vertex, components are ";2961 OutputComponentNumber(out, Walker);2962 *out << " with Lowpoint " << Walker->LowpointNr << " and Graph Nr. " << Walker->GraphNr << "." << endl;2963 }2964 2965 *out << Verbose(1) << "Final graph info for each bond is:" << endl;2966 Binder = first;2967 while(Binder->next != last) {2968 Binder = Binder->next;2969 *out << Verbose(2) << ((Binder->Type == TreeEdge) ? "TreeEdge " : "BackEdge ") << *Binder << ": <";2970 *out << ((Binder->leftatom->SeparationVertex) ? "SP," : "") << "L" << Binder->leftatom->LowpointNr << " G" << Binder->leftatom->GraphNr << " Comp.";2971 OutputComponentNumber(out, Binder->leftatom);2972 *out << " === ";2973 *out << ((Binder->rightatom->SeparationVertex) ? "SP," : "") << "L" << Binder->rightatom->LowpointNr << " G" << Binder->rightatom->GraphNr << " Comp.";2974 OutputComponentNumber(out, Binder->rightatom);2975 *out << ">." << endl;2976 if (Binder->Cyclic) // cyclic ??2977 *out << Verbose(3) << "Lowpoint at each side are equal: CYCLIC!" << endl;2978 }2979 2980 // free all and exit2981 delete(AtomStack);2982 *out << Verbose(0) << "End of DepthFirstSearchAnalysis" << endl;2983 return SubGraphs;2984 };2985 2986 /** Analyses the cycles found and returns minimum of all cycle lengths.2987 * We begin with a list of Back edges found during DepthFirstSearchAnalysis(). We go through this list - one end is the Root,2988 * the other our initial Walker - and do a Breadth First Search for the Root. We mark down each Predecessor and as soon as2989 * we have found the Root via BFS, we may climb back the closed cycle via the Predecessors. Thereby we mark atoms and bonds2990 * as cyclic and print out the cycles.2991 * \param *out output stream for debugging2992 * \param *BackEdgeStack stack with all back edges found during DFS scan. Beware: This stack contains the bonds from the total molecule, not from the subgraph!2993 * \param *&MinimumRingSize contains smallest ring size in molecular structure on return or -1 if no rings were found, if set is maximum search distance2994 * \todo BFS from the not-same-LP to find back to starting point of tributary cycle over more than one bond2995 */2996 void molecule::CyclicStructureAnalysis(ofstream *out, class StackClass<bond *> * BackEdgeStack, int *&MinimumRingSize)2997 {2998 atom **PredecessorList = Malloc<atom*>(AtomCount, "molecule::CyclicStructureAnalysis: **PredecessorList");2999 int *ShortestPathList = Malloc<int>(AtomCount, "molecule::CyclicStructureAnalysis: *ShortestPathList");3000 enum Shading *ColorList = Malloc<enum Shading>(AtomCount, "molecule::CyclicStructureAnalysis: *ColorList");3001 class StackClass<atom *> *BFSStack = new StackClass<atom *> (AtomCount); // will hold the current ring3002 class StackClass<atom *> *TouchedStack = new StackClass<atom *> (AtomCount); // contains all "touched" atoms (that need to be reset after BFS loop)3003 atom *Walker = NULL, *OtherAtom = NULL, *Root = NULL;3004 bond *Binder = NULL, *BackEdge = NULL;3005 int RingSize, NumCycles, MinRingSize = -1;3006 3007 // initialise each vertex as white with no predecessor, empty queue, color Root lightgray3008 for (int i=AtomCount;i--;) {3009 PredecessorList[i] = NULL;3010 ShortestPathList[i] = -1;3011 ColorList[i] = white;3012 }3013 3014 *out << Verbose(1) << "Back edge list - ";3015 BackEdgeStack->Output(out);3016 3017 *out << Verbose(1) << "Analysing cycles ... " << endl;3018 NumCycles = 0;3019 while (!BackEdgeStack->IsEmpty()) {3020 BackEdge = BackEdgeStack->PopFirst();3021 // this is the target3022 Root = BackEdge->leftatom;3023 // this is the source point3024 Walker = BackEdge->rightatom;3025 ShortestPathList[Walker->nr] = 0;3026 BFSStack->ClearStack(); // start with empty BFS stack3027 BFSStack->Push(Walker);3028 TouchedStack->Push(Walker);3029 *out << Verbose(1) << "---------------------------------------------------------------------------------------------------------" << endl;3030 OtherAtom = NULL;3031 do { // look for Root3032 Walker = BFSStack->PopFirst();3033 *out << Verbose(2) << "Current Walker is " << *Walker << ", we look for SP to Root " << *Root << "." << endl;3034 for(int i=0;i<NumberOfBondsPerAtom[Walker->nr];i++) {3035 Binder = ListOfBondsPerAtom[Walker->nr][i];3036 if (Binder != BackEdge) { // only walk along DFS spanning tree (otherwise we always find SP of one being backedge Binder)3037 OtherAtom = Binder->GetOtherAtom(Walker);3038 #ifdef ADDHYDROGEN3039 if (OtherAtom->type->Z != 1) {3040 #endif3041 *out << Verbose(2) << "Current OtherAtom is: " << OtherAtom->Name << " for bond " << *Binder << "." << endl;3042 if (ColorList[OtherAtom->nr] == white) {3043 TouchedStack->Push(OtherAtom);3044 ColorList[OtherAtom->nr] = lightgray;3045 PredecessorList[OtherAtom->nr] = Walker; // Walker is the predecessor3046 ShortestPathList[OtherAtom->nr] = ShortestPathList[Walker->nr]+1;3047 *out << Verbose(2) << "Coloring OtherAtom " << OtherAtom->Name << " lightgray, its predecessor is " << Walker->Name << " and its Shortest Path is " << ShortestPathList[OtherAtom->nr] << " egde(s) long." << endl;3048 //if (ShortestPathList[OtherAtom->nr] < MinimumRingSize[Walker->GetTrueFather()->nr]) { // Check for maximum distance3049 *out << Verbose(3) << "Putting OtherAtom into queue." << endl;3050 BFSStack->Push(OtherAtom);3051 //}3052 } else {3053 *out << Verbose(3) << "Not Adding, has already been visited." << endl;3054 }3055 if (OtherAtom == Root)3056 break;3057 #ifdef ADDHYDROGEN3058 } else {3059 *out << Verbose(2) << "Skipping hydrogen atom " << *OtherAtom << "." << endl;3060 ColorList[OtherAtom->nr] = black;3061 }3062 #endif3063 } else {3064 *out << Verbose(2) << "Bond " << *Binder << " not Visiting, is the back edge." << endl;3065 }3066 }3067 ColorList[Walker->nr] = black;3068 *out << Verbose(1) << "Coloring Walker " << Walker->Name << " black." << endl;3069 if (OtherAtom == Root) { // if we have found the root, check whether this cycle wasn't already found beforehand3070 // step through predecessor list3071 while (OtherAtom != BackEdge->rightatom) {3072 if (!OtherAtom->GetTrueFather()->IsCyclic) // if one bond in the loop is not marked as cyclic, we haven't found this cycle yet3073 break;3074 else3075 OtherAtom = PredecessorList[OtherAtom->nr];3076 }3077 if (OtherAtom == BackEdge->rightatom) { // if each atom in found cycle is cyclic, loop's been found before already3078 *out << Verbose(3) << "This cycle was already found before, skipping and removing seeker from search." << endl;\3079 do {3080 OtherAtom = TouchedStack->PopLast();3081 if (PredecessorList[OtherAtom->nr] == Walker) {3082 *out << Verbose(4) << "Removing " << *OtherAtom << " from lists and stacks." << endl;3083 PredecessorList[OtherAtom->nr] = NULL;3084 ShortestPathList[OtherAtom->nr] = -1;3085 ColorList[OtherAtom->nr] = white;3086 BFSStack->RemoveItem(OtherAtom);3087 }3088 } while ((!TouchedStack->IsEmpty()) && (PredecessorList[OtherAtom->nr] == NULL));3089 TouchedStack->Push(OtherAtom); // last was wrongly popped3090 OtherAtom = BackEdge->rightatom; // set to not Root3091 } else3092 OtherAtom = Root;3093 }3094 } while ((!BFSStack->IsEmpty()) && (OtherAtom != Root) && (OtherAtom != NULL)); // || (ShortestPathList[OtherAtom->nr] < MinimumRingSize[Walker->GetTrueFather()->nr])));3095 3096 if (OtherAtom == Root) {3097 // now climb back the predecessor list and thus find the cycle members3098 NumCycles++;3099 RingSize = 1;3100 Root->GetTrueFather()->IsCyclic = true;3101 *out << Verbose(1) << "Found ring contains: ";3102 Walker = Root;3103 while (Walker != BackEdge->rightatom) {3104 *out << Walker->Name << " <-> ";3105 Walker = PredecessorList[Walker->nr];3106 Walker->GetTrueFather()->IsCyclic = true;3107 RingSize++;3108 }3109 *out << Walker->Name << " with a length of " << RingSize << "." << endl << endl;3110 // walk through all and set MinimumRingSize3111 Walker = Root;3112 MinimumRingSize[Walker->GetTrueFather()->nr] = RingSize;3113 while (Walker != BackEdge->rightatom) {3114 Walker = PredecessorList[Walker->nr];3115 if (RingSize < MinimumRingSize[Walker->GetTrueFather()->nr])3116 MinimumRingSize[Walker->GetTrueFather()->nr] = RingSize;3117 }3118 if ((RingSize < MinRingSize) || (MinRingSize == -1))3119 MinRingSize = RingSize;3120 } else {3121 *out << Verbose(1) << "No ring containing " << *Root << " with length equal to or smaller than " << MinimumRingSize[Walker->GetTrueFather()->nr] << " found." << endl;3122 }3123 3124 // now clean the lists3125 while (!TouchedStack->IsEmpty()){3126 Walker = TouchedStack->PopFirst();3127 PredecessorList[Walker->nr] = NULL;3128 ShortestPathList[Walker->nr] = -1;3129 ColorList[Walker->nr] = white;3130 }3131 }3132 if (MinRingSize != -1) {3133 // go over all atoms3134 Root = start;3135 while(Root->next != end) {3136 Root = Root->next;3137 3138 if (MinimumRingSize[Root->GetTrueFather()->nr] == AtomCount) { // check whether MinimumRingSize is set, if not BFS to next where it is3139 Walker = Root;3140 ShortestPathList[Walker->nr] = 0;3141 BFSStack->ClearStack(); // start with empty BFS stack3142 BFSStack->Push(Walker);3143 TouchedStack->Push(Walker);3144 //*out << Verbose(1) << "---------------------------------------------------------------------------------------------------------" << endl;3145 OtherAtom = Walker;3146 while (OtherAtom != NULL) { // look for Root3147 Walker = BFSStack->PopFirst();3148 //*out << Verbose(2) << "Current Walker is " << *Walker << ", we look for SP to Root " << *Root << "." << endl;3149 for(int i=0;i<NumberOfBondsPerAtom[Walker->nr];i++) {3150 Binder = ListOfBondsPerAtom[Walker->nr][i];3151 if ((Binder != BackEdge) || (NumberOfBondsPerAtom[Walker->nr] == 1)) { // only walk along DFS spanning tree (otherwise we always find SP of 1 being backedge Binder), but terminal hydrogens may be connected via backedge, hence extra check3152 OtherAtom = Binder->GetOtherAtom(Walker);3153 //*out << Verbose(2) << "Current OtherAtom is: " << OtherAtom->Name << " for bond " << *Binder << "." << endl;3154 if (ColorList[OtherAtom->nr] == white) {3155 TouchedStack->Push(OtherAtom);3156 ColorList[OtherAtom->nr] = lightgray;3157 PredecessorList[OtherAtom->nr] = Walker; // Walker is the predecessor3158 ShortestPathList[OtherAtom->nr] = ShortestPathList[Walker->nr]+1;3159 //*out << Verbose(2) << "Coloring OtherAtom " << OtherAtom->Name << " lightgray, its predecessor is " << Walker->Name << " and its Shortest Path is " << ShortestPathList[OtherAtom->nr] << " egde(s) long." << endl;3160 if (OtherAtom->GetTrueFather()->IsCyclic) { // if the other atom is connected to a ring3161 MinimumRingSize[Root->GetTrueFather()->nr] = ShortestPathList[OtherAtom->nr]+MinimumRingSize[OtherAtom->GetTrueFather()->nr];3162 OtherAtom = NULL; //break;3163 break;3164 } else3165 BFSStack->Push(OtherAtom);3166 } else {3167 //*out << Verbose(3) << "Not Adding, has already been visited." << endl;3168 }3169 } else {3170 //*out << Verbose(3) << "Not Visiting, is a back edge." << endl;3171 }3172 }3173 ColorList[Walker->nr] = black;3174 //*out << Verbose(1) << "Coloring Walker " << Walker->Name << " black." << endl;3175 }3176 3177 // now clean the lists3178 while (!TouchedStack->IsEmpty()){3179 Walker = TouchedStack->PopFirst();3180 PredecessorList[Walker->nr] = NULL;3181 ShortestPathList[Walker->nr] = -1;3182 ColorList[Walker->nr] = white;3183 }3184 }3185 *out << Verbose(1) << "Minimum ring size of " << *Root << " is " << MinimumRingSize[Root->GetTrueFather()->nr] << "." << endl;3186 }3187 *out << Verbose(1) << "Minimum ring size is " << MinRingSize << ", over " << NumCycles << " cycles total." << endl;3188 } else3189 *out << Verbose(1) << "No rings were detected in the molecular structure." << endl;3190 3191 Free(&PredecessorList);3192 Free(&ShortestPathList);3193 Free(&ColorList);3194 delete(BFSStack);3195 };3196 3197 /** Sets the next component number.3198 * This is O(N) as the number of bonds per atom is bound.3199 * \param *vertex atom whose next atom::*ComponentNr is to be set3200 * \param nr number to use3201 */3202 void molecule::SetNextComponentNumber(atom *vertex, int nr)3203 {3204 int i=0;3205 if (vertex != NULL) {3206 for(;i<NumberOfBondsPerAtom[vertex->nr];i++) {3207 if (vertex->ComponentNr[i] == -1) { // check if not yet used3208 vertex->ComponentNr[i] = nr;3209 break;3210 }3211 else if (vertex->ComponentNr[i] == nr) // if number is already present, don't add another time3212 break; // breaking here will not cause error!3213 }3214 if (i == NumberOfBondsPerAtom[vertex->nr])3215 cerr << "Error: All Component entries are already occupied!" << endl;3216 } else3217 cerr << "Error: Given vertex is NULL!" << endl;3218 };3219 3220 /** Output a list of flags, stating whether the bond was visited or not.3221 * \param *out output stream for debugging3222 */3223 void molecule::OutputComponentNumber(ofstream *out, atom *vertex)3224 {3225 for(int i=0;i<NumberOfBondsPerAtom[vertex->nr];i++)3226 *out << vertex->ComponentNr[i] << " ";3227 };3228 3229 /** Allocates memory for all atom::*ComponentNr in this molecule and sets each entry to -1.3230 */3231 void molecule::InitComponentNumbers()3232 {3233 atom *Walker = start;3234 while(Walker->next != end) {3235 Walker = Walker->next;3236 if (Walker->ComponentNr != NULL)3237 Free(&Walker->ComponentNr);3238 Walker->ComponentNr = Malloc<int>(NumberOfBondsPerAtom[Walker->nr], "molecule::InitComponentNumbers: *Walker->ComponentNr");3239 for (int i=NumberOfBondsPerAtom[Walker->nr];i--;)3240 Walker->ComponentNr[i] = -1;3241 }3242 };3243 3244 /** Returns next unused bond for this atom \a *vertex or NULL of none exists.3245 * \param *vertex atom to regard3246 * \return bond class or NULL3247 */3248 bond * molecule::FindNextUnused(atom *vertex)3249 {3250 for(int i=0;i<NumberOfBondsPerAtom[vertex->nr];i++)3251 if (ListOfBondsPerAtom[vertex->nr][i]->IsUsed() == white)3252 return(ListOfBondsPerAtom[vertex->nr][i]);3253 return NULL;3254 };3255 3256 /** Resets bond::Used flag of all bonds in this molecule.3257 * \return true - success, false - -failure3258 */3259 void molecule::ResetAllBondsToUnused()3260 {3261 bond *Binder = first;3262 while (Binder->next != last) {3263 Binder = Binder->next;3264 Binder->ResetUsed();3265 }3266 };3267 3268 /** Resets atom::nr to -1 of all atoms in this molecule.3269 */3270 void molecule::ResetAllAtomNumbers()3271 {3272 atom *Walker = start;3273 while (Walker->next != end) {3274 Walker = Walker->next;3275 Walker->GraphNr = -1;3276 }3277 };3278 3279 /** Output a list of flags, stating whether the bond was visited or not.3280 * \param *out output stream for debugging3281 * \param *list3282 */3283 void OutputAlreadyVisited(ofstream *out, int *list)3284 {3285 *out << Verbose(4) << "Already Visited Bonds:\t";3286 for(int i=1;i<=list[0];i++) *out << Verbose(0) << list[i] << " ";3287 *out << endl;3288 };3289 3290 /** Estimates by educated guessing (using upper limit) the expected number of fragments.3291 * The upper limit is3292 * \f[3293 * n = N \cdot C^k3294 * \f]3295 * where \f$C=2^c\f$ and c is the maximum bond degree over N number of atoms.3296 * \param *out output stream for debugging3297 * \param order bond order k3298 * \return number n of fragments3299 */3300 int molecule::GuesstimateFragmentCount(ofstream *out, int order)3301 {3302 int c = 0;3303 int FragmentCount;3304 // get maximum bond degree3305 atom *Walker = start;3306 while (Walker->next != end) {3307 Walker = Walker->next;3308 c = (NumberOfBondsPerAtom[Walker->nr] > c) ? NumberOfBondsPerAtom[Walker->nr] : c;3309 }3310 FragmentCount = NoNonHydrogen*(1 << (c*order));3311 *out << Verbose(1) << "Upper limit for this subgraph is " << FragmentCount << " for " << NoNonHydrogen << " non-H atoms with maximum bond degree of " << c << "." << endl;3312 return FragmentCount;3313 };3314 3315 /** Scans a single line for number and puts them into \a KeySet.3316 * \param *out output stream for debugging3317 * \param *buffer buffer to scan3318 * \param &CurrentSet filled KeySet on return3319 * \return true - at least one valid atom id parsed, false - CurrentSet is empty3320 */3321 bool molecule::ScanBufferIntoKeySet(ofstream *out, char *buffer, KeySet &CurrentSet)3322 {3323 stringstream line;3324 int AtomNr;3325 int status = 0;3326 3327 line.str(buffer);3328 while (!line.eof()) {3329 line >> AtomNr;3330 if ((AtomNr >= 0) && (AtomNr < AtomCount)) {3331 CurrentSet.insert(AtomNr); // insert at end, hence in same order as in file!3332 status++;3333 } // else it's "-1" or else and thus must not be added3334 }3335 *out << Verbose(1) << "The scanned KeySet is ";3336 for(KeySet::iterator runner = CurrentSet.begin(); runner != CurrentSet.end(); runner++) {3337 *out << (*runner) << "\t";3338 }3339 *out << endl;3340 return (status != 0);3341 };3342 3343 /** Parses the KeySet file and fills \a *FragmentList from the known molecule structure.3344 * Does two-pass scanning:3345 * -# Scans the keyset file and initialises a temporary graph3346 * -# Scans TEFactors file and sets the TEFactor of each key set in the temporary graph accordingly3347 * Finally, the temporary graph is inserted into the given \a FragmentList for return.3348 * \param *out output stream for debugging3349 * \param *path path to file3350 * \param *FragmentList empty, filled on return3351 * \return true - parsing successfully, false - failure on parsing (FragmentList will be NULL)3352 */3353 bool molecule::ParseKeySetFile(ofstream *out, char *path, Graph *&FragmentList)3354 {3355 bool status = true;3356 ifstream InputFile;3357 stringstream line;3358 GraphTestPair testGraphInsert;3359 int NumberOfFragments = 0;3360 double TEFactor;3361 char *filename = Malloc<char>(MAXSTRINGSIZE, "molecule::ParseKeySetFile - filename");3362 3363 if (FragmentList == NULL) { // check list pointer3364 FragmentList = new Graph;3365 }3366 3367 // 1st pass: open file and read3368 *out << Verbose(1) << "Parsing the KeySet file ... " << endl;3369 sprintf(filename, "%s/%s%s", path, FRAGMENTPREFIX, KEYSETFILE);3370 InputFile.open(filename);3371 if (InputFile != NULL) {3372 // each line represents a new fragment3373 char *buffer = Malloc<char>(MAXSTRINGSIZE, "molecule::ParseKeySetFile - *buffer");3374 // 1. parse keysets and insert into temp. graph3375 while (!InputFile.eof()) {3376 InputFile.getline(buffer, MAXSTRINGSIZE);3377 KeySet CurrentSet;3378 if ((strlen(buffer) > 0) && (ScanBufferIntoKeySet(out, buffer, CurrentSet))) { // if at least one valid atom was added, write config3379 testGraphInsert = FragmentList->insert(GraphPair (CurrentSet,pair<int,double>(NumberOfFragments++,1))); // store fragment number and current factor3380 if (!testGraphInsert.second) {3381 cerr << "KeySet file must be corrupt as there are two equal key sets therein!" << endl;3382 }3383 }3384 }3385 // 2. Free and done3386 InputFile.close();3387 InputFile.clear();3388 Free(&buffer);3389 *out << Verbose(1) << "done." << endl;3390 } else {3391 *out << Verbose(1) << "File " << filename << " not found." << endl;3392 status = false;3393 }3394 3395 // 2nd pass: open TEFactors file and read3396 *out << Verbose(1) << "Parsing the TEFactors file ... " << endl;3397 sprintf(filename, "%s/%s%s", path, FRAGMENTPREFIX, TEFACTORSFILE);3398 InputFile.open(filename);3399 if (InputFile != NULL) {3400 // 3. add found TEFactors to each keyset3401 NumberOfFragments = 0;3402 for(Graph::iterator runner = FragmentList->begin();runner != FragmentList->end(); runner++) {3403 if (!InputFile.eof()) {3404 InputFile >> TEFactor;3405 (*runner).second.second = TEFactor;3406 *out << Verbose(2) << "Setting " << ++NumberOfFragments << " fragment's TEFactor to " << (*runner).second.second << "." << endl;3407 } else {3408 status = false;3409 break;3410 }3411 }3412 // 4. Free and done3413 InputFile.close();3414 *out << Verbose(1) << "done." << endl;3415 } else {3416 *out << Verbose(1) << "File " << filename << " not found." << endl;3417 status = false;3418 }3419 3420 // free memory3421 Free(&filename);3422 3423 return status;3424 };3425 3426 /** Stores keysets and TEFactors to file.3427 * \param *out output stream for debugging3428 * \param KeySetList Graph with Keysets and factors3429 * \param *path path to file3430 * \return true - file written successfully, false - writing failed3431 */3432 bool molecule::StoreKeySetFile(ofstream *out, Graph &KeySetList, char *path)3433 {3434 ofstream output;3435 bool status = true;3436 string line;3437 3438 // open KeySet file3439 line = path;3440 line.append("/");3441 line += FRAGMENTPREFIX;3442 line += KEYSETFILE;3443 output.open(line.c_str(), ios::out);3444 *out << Verbose(1) << "Saving key sets of the total graph ... ";3445 if(output != NULL) {3446 for(Graph::iterator runner = KeySetList.begin(); runner != KeySetList.end(); runner++) {3447 for (KeySet::iterator sprinter = (*runner).first.begin();sprinter != (*runner).first.end(); sprinter++) {3448 if (sprinter != (*runner).first.begin())3449 output << "\t";3450 output << *sprinter;3451 }3452 output << endl;3453 }3454 *out << "done." << endl;3455 } else {3456 cerr << "Unable to open " << line << " for writing keysets!" << endl;3457 status = false;3458 }3459 output.close();3460 output.clear();3461 3462 // open TEFactors file3463 line = path;3464 line.append("/");3465 line += FRAGMENTPREFIX;3466 line += TEFACTORSFILE;3467 output.open(line.c_str(), ios::out);3468 *out << Verbose(1) << "Saving TEFactors of the total graph ... ";3469 if(output != NULL) {3470 for(Graph::iterator runner = KeySetList.begin(); runner != KeySetList.end(); runner++)3471 output << (*runner).second.second << endl;3472 *out << Verbose(1) << "done." << endl;3473 } else {3474 *out << Verbose(1) << "failed to open " << line << "." << endl;3475 status = false;3476 }3477 output.close();3478 3479 return status;3480 };3481 3482 /** Storing the bond structure of a molecule to file.3483 * Simply stores Atom::nr and then the Atom::nr of all bond partners per line.3484 * \param *out output stream for debugging3485 * \param *path path to file3486 * \return true - file written successfully, false - writing failed3487 */3488 bool molecule::StoreAdjacencyToFile(ofstream *out, char *path)3489 {3490 ofstream AdjacencyFile;3491 atom *Walker = NULL;3492 stringstream line;3493 bool status = true;3494 3495 line << path << "/" << FRAGMENTPREFIX << ADJACENCYFILE;3496 AdjacencyFile.open(line.str().c_str(), ios::out);3497 *out << Verbose(1) << "Saving adjacency list ... ";3498 if (AdjacencyFile != NULL) {3499 Walker = start;3500 while(Walker->next != end) {3501 Walker = Walker->next;3502 AdjacencyFile << Walker->nr << "\t";3503 for (int i=0;i<NumberOfBondsPerAtom[Walker->nr];i++)3504 AdjacencyFile << ListOfBondsPerAtom[Walker->nr][i]->GetOtherAtom(Walker)->nr << "\t";3505 AdjacencyFile << endl;3506 }3507 AdjacencyFile.close();3508 *out << Verbose(1) << "done." << endl;3509 } else {3510 *out << Verbose(1) << "failed to open file " << line.str() << "." << endl;3511 status = false;3512 }3513 3514 return status;3515 };3516 3517 /** Checks contents of adjacency file against bond structure in structure molecule.3518 * \param *out output stream for debugging3519 * \param *path path to file3520 * \param **ListOfAtoms allocated (molecule::AtomCount) and filled lookup table for ids (Atom::nr) to *Atom3521 * \return true - structure is equal, false - not equivalence3522 */3523 bool molecule::CheckAdjacencyFileAgainstMolecule(ofstream *out, char *path, atom **ListOfAtoms)3524 {3525 ifstream File;3526 stringstream filename;3527 bool status = true;3528 char *buffer = Malloc<char>(MAXSTRINGSIZE, "molecule::CheckAdjacencyFileAgainstMolecule: *buffer");3529 3530 filename << path << "/" << FRAGMENTPREFIX << ADJACENCYFILE;3531 File.open(filename.str().c_str(), ios::out);3532 *out << Verbose(1) << "Looking at bond structure stored in adjacency file and comparing to present one ... ";3533 if (File != NULL) {3534 // allocate storage structure3535 int NonMatchNumber = 0; // will number of atoms with differing bond structure3536 int *CurrentBonds = Malloc<int>(8, "molecule::CheckAdjacencyFileAgainstMolecule - CurrentBonds"); // contains parsed bonds of current atom3537 int CurrentBondsOfAtom;3538 3539 // Parse the file line by line and count the bonds3540 while (!File.eof()) {3541 File.getline(buffer, MAXSTRINGSIZE);3542 stringstream line;3543 line.str(buffer);3544 int AtomNr = -1;3545 line >> AtomNr;3546 CurrentBondsOfAtom = -1; // we count one too far due to line end3547 // parse into structure3548 if ((AtomNr >= 0) && (AtomNr < AtomCount)) {3549 while (!line.eof())3550 line >> CurrentBonds[ ++CurrentBondsOfAtom ];3551 // compare against present bonds3552 //cout << Verbose(2) << "Walker is " << *Walker << ", bond partners: ";3553 if (CurrentBondsOfAtom == NumberOfBondsPerAtom[AtomNr]) {3554 for(int i=0;i<NumberOfBondsPerAtom[AtomNr];i++) {3555 int id = ListOfBondsPerAtom[AtomNr][i]->GetOtherAtom(ListOfAtoms[AtomNr])->nr;3556 int j = 0;3557 for (;(j<CurrentBondsOfAtom) && (CurrentBonds[j++] != id);); // check against all parsed bonds3558 if (CurrentBonds[j-1] != id) { // no match ? Then mark in ListOfAtoms3559 ListOfAtoms[AtomNr] = NULL;3560 NonMatchNumber++;3561 status = false;3562 //out << "[" << id << "]\t";3563 } else {3564 //out << id << "\t";3565 }3566 }3567 //out << endl;3568 } else {3569 *out << "Number of bonds for Atom " << *ListOfAtoms[AtomNr] << " does not match, parsed " << CurrentBondsOfAtom << " against " << NumberOfBondsPerAtom[AtomNr] << "." << endl;3570 status = false;3571 }3572 }3573 }3574 File.close();3575 File.clear();3576 if (status) { // if equal we parse the KeySetFile3577 *out << Verbose(1) << "done: Equal." << endl;3578 status = true;3579 } else3580 *out << Verbose(1) << "done: Not equal by " << NonMatchNumber << " atoms." << endl;3581 Free(&CurrentBonds);3582 } else {3583 *out << Verbose(1) << "Adjacency file not found." << endl;3584 status = false;3585 }3586 *out << endl;3587 Free(&buffer);3588 3589 return status;3590 };3591 3592 /** Checks whether the OrderAtSite is still below \a Order at some site.3593 * \param *out output stream for debugging3594 * \param *AtomMask defines true/false per global Atom::nr to mask in/out each nuclear site, used to activate given number of site to increment order adaptively3595 * \param *GlobalKeySetList list of keysets with global ids (valid in "this" molecule) needed for adaptive increase3596 * \param Order desired Order if positive, desired exponent in threshold criteria if negative (0 is single-step)3597 * \param *MinimumRingSize array of max. possible order to avoid loops3598 * \param *path path to ENERGYPERFRAGMENT file (may be NULL if Order is non-negative)3599 * \return true - needs further fragmentation, false - does not need fragmentation3600 */3601 bool molecule::CheckOrderAtSite(ofstream *out, bool *AtomMask, Graph *GlobalKeySetList, int Order, int *MinimumRingSize, char *path)3602 {3603 atom *Walker = start;3604 bool status = false;3605 ifstream InputFile;3606 3607 // initialize mask list3608 for(int i=AtomCount;i--;)3609 AtomMask[i] = false;3610 3611 if (Order < 0) { // adaptive increase of BondOrder per site3612 if (AtomMask[AtomCount] == true) // break after one step3613 return false;3614 // parse the EnergyPerFragment file3615 char *buffer = Malloc<char>(MAXSTRINGSIZE, "molecule::CheckOrderAtSite: *buffer");3616 sprintf(buffer, "%s/%s%s.dat", path, FRAGMENTPREFIX, ENERGYPERFRAGMENT);3617 InputFile.open(buffer, ios::in);3618 if ((InputFile != NULL) && (GlobalKeySetList != NULL)) {3619 // transmorph graph keyset list into indexed KeySetList3620 map<int,KeySet> IndexKeySetList;3621 for(Graph::iterator runner = GlobalKeySetList->begin(); runner != GlobalKeySetList->end(); runner++) {3622 IndexKeySetList.insert( pair<int,KeySet>(runner->second.first,runner->first) );3623 }3624 int lines = 0;3625 // count the number of lines, i.e. the number of fragments3626 InputFile.getline(buffer, MAXSTRINGSIZE); // skip comment lines3627 InputFile.getline(buffer, MAXSTRINGSIZE);3628 while(!InputFile.eof()) {3629 InputFile.getline(buffer, MAXSTRINGSIZE);3630 lines++;3631 }3632 //*out << Verbose(2) << "Scanned " << lines-1 << " lines." << endl; // one endline too much3633 InputFile.clear();3634 InputFile.seekg(ios::beg);3635 map<int, pair<double,int> > AdaptiveCriteriaList; // (Root No., (Value, Order)) !3636 int No, FragOrder;3637 double Value;3638 // each line represents a fragment root (Atom::nr) id and its energy contribution3639 InputFile.getline(buffer, MAXSTRINGSIZE); // skip comment lines3640 InputFile.getline(buffer, MAXSTRINGSIZE);3641 while(!InputFile.eof()) {3642 InputFile.getline(buffer, MAXSTRINGSIZE);3643 if (strlen(buffer) > 2) {3644 //*out << Verbose(2) << "Scanning: " << buffer << endl;3645 stringstream line(buffer);3646 line >> FragOrder;3647 line >> ws >> No;3648 line >> ws >> Value; // skip time entry3649 line >> ws >> Value;3650 No -= 1; // indices start at 1 in file, not 03651 //*out << Verbose(2) << " - yields (" << No << "," << Value << ", " << FragOrder << ")" << endl;3652 3653 // clean the list of those entries that have been superceded by higher order terms already3654 map<int,KeySet>::iterator marker = IndexKeySetList.find(No); // find keyset to Frag No.3655 if (marker != IndexKeySetList.end()) { // if found3656 Value *= 1 + MYEPSILON*(*((*marker).second.begin())); // in case of equal energies this makes em not equal without changing anything actually3657 // as the smallest number in each set has always been the root (we use global id to keep the doubles away), seek smallest and insert into AtomMask3658 pair <map<int, pair<double,int> >::iterator, bool> InsertedElement = AdaptiveCriteriaList.insert( make_pair(*((*marker).second.begin()), pair<double,int>( fabs(Value), FragOrder) ));3659 map<int, pair<double,int> >::iterator PresentItem = InsertedElement.first;3660 if (!InsertedElement.second) { // this root is already present3661 if ((*PresentItem).second.second < FragOrder) // if order there is lower, update entry with higher-order term3662 //if ((*PresentItem).second.first < (*runner).first) // as higher-order terms are not always better, we skip this part (which would always include this site into adaptive increase)3663 { // if value is smaller, update value and order3664 (*PresentItem).second.first = fabs(Value);3665 (*PresentItem).second.second = FragOrder;3666 *out << Verbose(2) << "Updated element (" << (*PresentItem).first << ",[" << (*PresentItem).second.first << "," << (*PresentItem).second.second << "])." << endl;3667 } else {3668 *out << Verbose(2) << "Did not update element " << (*PresentItem).first << " as " << FragOrder << " is less than or equal to " << (*PresentItem).second.second << "." << endl;3669 }3670 } else {3671 *out << Verbose(2) << "Inserted element (" << (*PresentItem).first << ",[" << (*PresentItem).second.first << "," << (*PresentItem).second.second << "])." << endl;3672 }3673 } else {3674 *out << Verbose(1) << "No Fragment under No. " << No << "found." << endl;3675 }3676 }3677 }3678 // then map back onto (Value, (Root Nr., Order)) (i.e. sorted by value to pick the highest ones)3679 map<double, pair<int,int> > FinalRootCandidates;3680 *out << Verbose(1) << "Root candidate list is: " << endl;3681 for(map<int, pair<double,int> >::iterator runner = AdaptiveCriteriaList.begin(); runner != AdaptiveCriteriaList.end(); runner++) {3682 Walker = FindAtom((*runner).first);3683 if (Walker != NULL) {3684 //if ((*runner).second.second >= Walker->AdaptiveOrder) { // only insert if this is an "active" root site for the current order3685 if (!Walker->MaxOrder) {3686 *out << Verbose(2) << "(" << (*runner).first << ",[" << (*runner).second.first << "," << (*runner).second.second << "])" << endl;3687 FinalRootCandidates.insert( make_pair( (*runner).second.first, pair<int,int>((*runner).first, (*runner).second.second) ) );3688 } else {3689 *out << Verbose(2) << "Excluding (" << *Walker << ", " << (*runner).first << ",[" << (*runner).second.first << "," << (*runner).second.second << "]), as it has reached its maximum order." << endl;3690 }3691 } else {3692 cerr << "Atom No. " << (*runner).second.first << " was not found in this molecule." << endl;3693 }3694 }3695 // pick the ones still below threshold and mark as to be adaptively updated3696 for(map<double, pair<int,int> >::iterator runner = FinalRootCandidates.upper_bound(pow(10.,Order)); runner != FinalRootCandidates.end(); runner++) {3697 No = (*runner).second.first;3698 Walker = FindAtom(No);3699 //if (Walker->AdaptiveOrder < MinimumRingSize[Walker->nr]) {3700 *out << Verbose(2) << "Root " << No << " is still above threshold (10^{" << Order <<"}: " << runner->first << ", setting entry " << No << " of Atom mask to true." << endl;3701 AtomMask[No] = true;3702 status = true;3703 //} else3704 //*out << Verbose(2) << "Root " << No << " is still above threshold (10^{" << Order <<"}: " << runner->first << ", however MinimumRingSize of " << MinimumRingSize[Walker->nr] << " does not allow further adaptive increase." << endl;3705 }3706 // close and done3707 InputFile.close();3708 InputFile.clear();3709 } else {3710 cerr << "Unable to parse " << buffer << " file, incrementing all." << endl;3711 while (Walker->next != end) {3712 Walker = Walker->next;3713 #ifdef ADDHYDROGEN3714 if (Walker->type->Z != 1) // skip hydrogen3715 #endif3716 {3717 AtomMask[Walker->nr] = true; // include all (non-hydrogen) atoms3718 status = true;3719 }3720 }3721 }3722 Free(&buffer);3723 // pick a given number of highest values and set AtomMask3724 } else { // global increase of Bond Order3725 while (Walker->next != end) {3726 Walker = Walker->next;3727 #ifdef ADDHYDROGEN3728 if (Walker->type->Z != 1) // skip hydrogen3729 #endif3730 {3731 AtomMask[Walker->nr] = true; // include all (non-hydrogen) atoms3732 if ((Order != 0) && (Walker->AdaptiveOrder < Order)) // && (Walker->AdaptiveOrder < MinimumRingSize[Walker->nr]))3733 status = true;3734 }3735 }3736 if ((Order == 0) && (AtomMask[AtomCount] == false)) // single stepping, just check3737 status = true;3738 3739 if (!status) {3740 if (Order == 0)3741 *out << Verbose(1) << "Single stepping done." << endl;3742 else3743 *out << Verbose(1) << "Order at every site is already equal or above desired order " << Order << "." << endl;3744 }3745 }3746 3747 // print atom mask for debugging3748 *out << " ";3749 for(int i=0;i<AtomCount;i++)3750 *out << (i % 10);3751 *out << endl << "Atom mask is: ";3752 for(int i=0;i<AtomCount;i++)3753 *out << (AtomMask[i] ? "t" : "f");3754 *out << endl;3755 3756 return status;3757 };3758 3759 /** Create a SortIndex to map from atomic labels to the sequence in which the atoms are given in the config file.3760 * \param *out output stream for debugging3761 * \param *&SortIndex Mapping array of size molecule::AtomCount3762 * \return true - success, false - failure of SortIndex alloc3763 * \todo do we really need this still as the IonType may appear in any order due to recent changes3764 */3765 bool molecule::CreateMappingLabelsToConfigSequence(ofstream *out, int *&SortIndex)3766 {3767 element *runner = elemente->start;3768 int AtomNo = 0;3769 atom *Walker = NULL;3770 3771 if (SortIndex != NULL) {3772 *out << Verbose(1) << "SortIndex is " << SortIndex << " and not NULL as expected." << endl;3773 return false;3774 }3775 SortIndex = Malloc<int>(AtomCount, "molecule::FragmentMolecule: *SortIndex");3776 for(int i=AtomCount;i--;)3777 SortIndex[i] = -1;3778 while (runner->next != elemente->end) { // go through every element3779 runner = runner->next;3780 if (ElementsInMolecule[runner->Z]) { // if this element got atoms3781 Walker = start;3782 while (Walker->next != end) { // go through every atom of this element3783 Walker = Walker->next;3784 if (Walker->type->Z == runner->Z) // if this atom fits to element3785 SortIndex[Walker->nr] = AtomNo++;3786 }3787 }3788 }3789 return true;3790 };3791 3792 /** Performs a many-body bond order analysis for a given bond order.3793 * -# parses adjacency, keysets and orderatsite files3794 * -# performs DFS to find connected subgraphs (to leave this in was a design decision: might be useful later)3795 * -# RootStack is created for every subgraph (here, later we implement the "update 10 sites with highest energ3796 y contribution", and that's why this consciously not done in the following loop)3797 * -# in a loop over all subgraphs3798 * -# calls FragmentBOSSANOVA with this RootStack and within the subgraph molecule structure3799 * -# creates molecule (fragment)s from the returned keysets (StoreFragmentFromKeySet)3800 * -# combines the generated molecule lists from all subgraphs3801 * -# saves to disk: fragment configs, adjacency, orderatsite, keyset files3802 * Note that as we split "this" molecule up into a list of subgraphs, i.e. a MoleculeListClass, we have two sets3803 * of vertex indices: Global always means the index in "this" molecule, whereas local refers to the molecule or3804 * subgraph in the MoleculeListClass.3805 * \param *out output stream for debugging3806 * \param Order up to how many neighbouring bonds a fragment contains in BondOrderScheme::BottumUp scheme3807 * \param *configuration configuration for writing config files for each fragment3808 * \return 1 - continue, 2 - stop (no fragmentation occured)3809 */3810 int molecule::FragmentMolecule(ofstream *out, int Order, config *configuration)3811 {3812 MoleculeListClass *BondFragments = NULL;3813 int *SortIndex = NULL;3814 int *MinimumRingSize = new int[AtomCount];3815 int FragmentCounter;3816 MoleculeLeafClass *MolecularWalker = NULL;3817 MoleculeLeafClass *Subgraphs = NULL; // list of subgraphs from DFS analysis3818 fstream File;3819 bool FragmentationToDo = true;3820 class StackClass<bond *> *BackEdgeStack = NULL, *LocalBackEdgeStack = NULL;3821 bool CheckOrder = false;3822 Graph **FragmentList = NULL;3823 Graph *ParsedFragmentList = NULL;3824 Graph TotalGraph; // graph with all keysets however local numbers3825 int TotalNumberOfKeySets = 0;3826 atom **ListOfAtoms = NULL;3827 atom ***ListOfLocalAtoms = NULL;3828 bool *AtomMask = NULL;3829 3830 *out << endl;3831 #ifdef ADDHYDROGEN3832 *out << Verbose(0) << "I will treat hydrogen special and saturate dangling bonds with it." << endl;3833 #else3834 *out << Verbose(0) << "Hydrogen is treated just like the rest of the lot." << endl;3835 #endif3836 3837 // ++++++++++++++++++++++++++++ INITIAL STUFF: Bond structure analysis, file parsing, ... ++++++++++++++++++++++++++++++++++++++++++3838 3839 // ===== 1. Check whether bond structure is same as stored in files ====3840 3841 // fill the adjacency list3842 CreateListOfBondsPerAtom(out);3843 3844 // create lookup table for Atom::nr3845 FragmentationToDo = FragmentationToDo && CreateFatherLookupTable(out, start, end, ListOfAtoms, AtomCount);3846 3847 // === compare it with adjacency file ===3848 FragmentationToDo = FragmentationToDo && CheckAdjacencyFileAgainstMolecule(out, configuration->configpath, ListOfAtoms);3849 Free(&ListOfAtoms);3850 3851 // ===== 2. perform a DFS analysis to gather info on cyclic structure and a list of disconnected subgraphs =====3852 Subgraphs = DepthFirstSearchAnalysis(out, BackEdgeStack);3853 // fill the bond structure of the individually stored subgraphs3854 Subgraphs->next->FillBondStructureFromReference(out, this, (FragmentCounter = 0), ListOfLocalAtoms, false); // we want to keep the created ListOfLocalAtoms3855 // analysis of the cycles (print rings, get minimum cycle length) for each subgraph3856 for(int i=AtomCount;i--;)3857 MinimumRingSize[i] = AtomCount;3858 MolecularWalker = Subgraphs;3859 FragmentCounter = 0;3860 while (MolecularWalker->next != NULL) {3861 MolecularWalker = MolecularWalker->next;3862 *out << Verbose(0) << "Analysing the cycles of subgraph " << MolecularWalker->Leaf << " with nr. " << FragmentCounter << "." << endl;3863 LocalBackEdgeStack = new StackClass<bond *> (MolecularWalker->Leaf->BondCount);3864 // // check the list of local atoms for debugging3865 // *out << Verbose(0) << "ListOfLocalAtoms for this subgraph is:" << endl;3866 // for (int i=0;i<AtomCount;i++)3867 // if (ListOfLocalAtoms[FragmentCounter][i] == NULL)3868 // *out << "\tNULL";3869 // else3870 // *out << "\t" << ListOfLocalAtoms[FragmentCounter][i]->Name;3871 *out << Verbose(0) << "Gathering local back edges for subgraph " << MolecularWalker->Leaf << " with nr. " << FragmentCounter << "." << endl;3872 MolecularWalker->Leaf->PickLocalBackEdges(out, ListOfLocalAtoms[FragmentCounter++], BackEdgeStack, LocalBackEdgeStack);3873 *out << Verbose(0) << "Analysing the cycles of subgraph " << MolecularWalker->Leaf << " with nr. " << FragmentCounter << "." << endl;3874 MolecularWalker->Leaf->CyclicStructureAnalysis(out, LocalBackEdgeStack, MinimumRingSize);3875 *out << Verbose(0) << "Done with Analysing the cycles of subgraph " << MolecularWalker->Leaf << " with nr. " << FragmentCounter << "." << endl;3876 delete(LocalBackEdgeStack);3877 }3878 3879 // ===== 3. if structure still valid, parse key set file and others =====3880 FragmentationToDo = FragmentationToDo && ParseKeySetFile(out, configuration->configpath, ParsedFragmentList);3881 3882 // ===== 4. check globally whether there's something to do actually (first adaptivity check)3883 FragmentationToDo = FragmentationToDo && ParseOrderAtSiteFromFile(out, configuration->configpath);3884 3885 // =================================== Begin of FRAGMENTATION ===============================3886 // ===== 6a. assign each keyset to its respective subgraph =====3887 Subgraphs->next->AssignKeySetsToFragment(out, this, ParsedFragmentList, ListOfLocalAtoms, FragmentList, (FragmentCounter = 0), true);3888 3889 // ===== 6b. prepare and go into the adaptive (Order<0), single-step (Order==0) or incremental (Order>0) cycle3890 KeyStack *RootStack = new KeyStack[Subgraphs->next->Count()];3891 AtomMask = new bool[AtomCount+1];3892 AtomMask[AtomCount] = false;3893 FragmentationToDo = false; // if CheckOrderAtSite just ones recommends fragmentation, we will save fragments afterwards3894 while ((CheckOrder = CheckOrderAtSite(out, AtomMask, ParsedFragmentList, Order, MinimumRingSize, configuration->configpath))) {3895 FragmentationToDo = FragmentationToDo || CheckOrder;3896 AtomMask[AtomCount] = true; // last plus one entry is used as marker that we have been through this loop once already in CheckOrderAtSite()3897 // ===== 6b. fill RootStack for each subgraph (second adaptivity check) =====3898 Subgraphs->next->FillRootStackForSubgraphs(out, RootStack, AtomMask, (FragmentCounter = 0));3899 3900 // ===== 7. fill the bond fragment list =====3901 FragmentCounter = 0;3902 MolecularWalker = Subgraphs;3903 while (MolecularWalker->next != NULL) {3904 MolecularWalker = MolecularWalker->next;3905 *out << Verbose(1) << "Fragmenting subgraph " << MolecularWalker << "." << endl;3906 //MolecularWalker->Leaf->OutputListOfBonds(out); // output ListOfBondsPerAtom for debugging3907 if (MolecularWalker->Leaf->first->next != MolecularWalker->Leaf->last) {3908 // call BOSSANOVA method3909 *out << Verbose(0) << endl << " ========== BOND ENERGY of subgraph " << FragmentCounter << " ========================= " << endl;3910 MolecularWalker->Leaf->FragmentBOSSANOVA(out, FragmentList[FragmentCounter], RootStack[FragmentCounter], MinimumRingSize);3911 } else {3912 cerr << "Subgraph " << MolecularWalker << " has no atoms!" << endl;3913 }3914 FragmentCounter++; // next fragment list3915 }3916 }3917 delete[](RootStack);3918 delete[](AtomMask);3919 delete(ParsedFragmentList);3920 delete[](MinimumRingSize);3921 3922 3923 // ==================================== End of FRAGMENTATION ============================================3924 3925 // ===== 8a. translate list into global numbers (i.e. ones that are valid in "this" molecule, not in MolecularWalker->Leaf)3926 Subgraphs->next->TranslateIndicesToGlobalIDs(out, FragmentList, (FragmentCounter = 0), TotalNumberOfKeySets, TotalGraph);3927 3928 // free subgraph memory again3929 FragmentCounter = 0;3930 if (Subgraphs != NULL) {3931 while (Subgraphs->next != NULL) {3932 Subgraphs = Subgraphs->next;3933 delete(FragmentList[FragmentCounter++]);3934 delete(Subgraphs->previous);3935 }3936 delete(Subgraphs);3937 }3938 Free(&FragmentList);3939 3940 // ===== 8b. gather keyset lists (graphs) from all subgraphs and transform into MoleculeListClass =====3941 //if (FragmentationToDo) { // we should always store the fragments again as coordination might have changed slightly without changing bond structure3942 // allocate memory for the pointer array and transmorph graphs into full molecular fragments3943 BondFragments = new MoleculeListClass();3944 int k=0;3945 for(Graph::iterator runner = TotalGraph.begin(); runner != TotalGraph.end(); runner++) {3946 KeySet test = (*runner).first;3947 *out << "Fragment No." << (*runner).second.first << " with TEFactor " << (*runner).second.second << "." << endl;3948 BondFragments->insert(StoreFragmentFromKeySet(out, test, configuration));3949 k++;3950 }3951 *out << k << "/" << BondFragments->ListOfMolecules.size() << " fragments generated from the keysets." << endl;3952 3953 // ===== 9. Save fragments' configuration and keyset files et al to disk ===3954 if (BondFragments->ListOfMolecules.size() != 0) {3955 // create the SortIndex from BFS labels to order in the config file3956 CreateMappingLabelsToConfigSequence(out, SortIndex);3957 3958 *out << Verbose(1) << "Writing " << BondFragments->ListOfMolecules.size() << " possible bond fragmentation configs" << endl;3959 if (BondFragments->OutputConfigForListOfFragments(out, configuration, SortIndex))3960 *out << Verbose(1) << "All configs written." << endl;3961 else3962 *out << Verbose(1) << "Some config writing failed." << endl;3963 3964 // store force index reference file3965 BondFragments->StoreForcesFile(out, configuration->configpath, SortIndex);3966 3967 // store keysets file3968 StoreKeySetFile(out, TotalGraph, configuration->configpath);3969 3970 // store Adjacency file3971 StoreAdjacencyToFile(out, configuration->configpath);3972 3973 // store Hydrogen saturation correction file3974 BondFragments->AddHydrogenCorrection(out, configuration->configpath);3975 3976 // store adaptive orders into file3977 StoreOrderAtSiteFile(out, configuration->configpath);3978 3979 // restore orbital and Stop values3980 CalculateOrbitals(*configuration);3981 3982 // free memory for bond part3983 *out << Verbose(1) << "Freeing bond memory" << endl;3984 delete(FragmentList); // remove bond molecule from memory3985 Free(&SortIndex);3986 } else3987 *out << Verbose(1) << "FragmentList is zero on return, splitting failed." << endl;3988 //} else3989 // *out << Verbose(1) << "No fragments to store." << endl;3990 *out << Verbose(0) << "End of bond fragmentation." << endl;3991 3992 return ((int)(!FragmentationToDo)+1); // 1 - continue, 2 - stop (no fragmentation occured)3993 };3994 3995 3996 /** Picks from a global stack with all back edges the ones in the fragment.3997 * \param *out output stream for debugging3998 * \param **ListOfLocalAtoms array of father atom::nr to local atom::nr (reverse of atom::father)3999 * \param *ReferenceStack stack with all the back egdes4000 * \param *LocalStack stack to be filled4001 * \return true - everything ok, false - ReferenceStack was empty4002 */4003 bool molecule::PickLocalBackEdges(ofstream *out, atom **ListOfLocalAtoms, class StackClass<bond *> *&ReferenceStack, class StackClass<bond *> *&LocalStack)4004 {4005 bool status = true;4006 if (ReferenceStack->IsEmpty()) {4007 cerr << "ReferenceStack is empty!" << endl;4008 return false;4009 }4010 bond *Binder = ReferenceStack->PopFirst();4011 bond *FirstBond = Binder; // mark the first bond, so that we don't loop through the stack indefinitely4012 atom *Walker = NULL, *OtherAtom = NULL;4013 ReferenceStack->Push(Binder);4014 4015 do { // go through all bonds and push local ones4016 Walker = ListOfLocalAtoms[Binder->leftatom->nr]; // get one atom in the reference molecule4017 if (Walker != NULL) // if this Walker exists in the subgraph ...4018 for(int i=0;i<NumberOfBondsPerAtom[Walker->nr];i++) { // go through the local list of bonds4019 OtherAtom = ListOfBondsPerAtom[Walker->nr][i]->GetOtherAtom(Walker);4020 if (OtherAtom == ListOfLocalAtoms[Binder->rightatom->nr]) { // found the bond4021 LocalStack->Push(ListOfBondsPerAtom[Walker->nr][i]);4022 *out << Verbose(3) << "Found local edge " << *(ListOfBondsPerAtom[Walker->nr][i]) << "." << endl;4023 break;4024 }4025 }4026 Binder = ReferenceStack->PopFirst(); // loop the stack for next item4027 *out << Verbose(3) << "Current candidate edge " << Binder << "." << endl;4028 ReferenceStack->Push(Binder);4029 } while (FirstBond != Binder);4030 4031 return status;4032 };4033 4034 /** Stores pairs (Atom::nr, Atom::AdaptiveOrder) into file.4035 * Atoms not present in the file get "-1".4036 * \param *out output stream for debugging4037 * \param *path path to file ORDERATSITEFILE4038 * \return true - file writable, false - not writable4039 */4040 bool molecule::StoreOrderAtSiteFile(ofstream *out, char *path)4041 {4042 stringstream line;4043 ofstream file;4044 4045 line << path << "/" << FRAGMENTPREFIX << ORDERATSITEFILE;4046 file.open(line.str().c_str());4047 *out << Verbose(1) << "Writing OrderAtSite " << ORDERATSITEFILE << " ... " << endl;4048 if (file != NULL) {4049 atom *Walker = start;4050 while (Walker->next != end) {4051 Walker = Walker->next;4052 file << Walker->nr << "\t" << (int)Walker->AdaptiveOrder << "\t" << (int)Walker->MaxOrder << endl;4053 *out << Verbose(2) << "Storing: " << Walker->nr << "\t" << (int)Walker->AdaptiveOrder << "\t" << (int)Walker->MaxOrder << "." << endl;4054 }4055 file.close();4056 *out << Verbose(1) << "done." << endl;4057 return true;4058 } else {4059 *out << Verbose(1) << "failed to open file " << line.str() << "." << endl;4060 return false;4061 }4062 };4063 4064 /** Parses pairs(Atom::nr, Atom::AdaptiveOrder) from file and stores in molecule's Atom's.4065 * Atoms not present in the file get "0".4066 * \param *out output stream for debugging4067 * \param *path path to file ORDERATSITEFILEe4068 * \return true - file found and scanned, false - file not found4069 * \sa ParseKeySetFile() and CheckAdjacencyFileAgainstMolecule() as this is meant to be used in conjunction with the two4070 */4071 bool molecule::ParseOrderAtSiteFromFile(ofstream *out, char *path)4072 {4073 unsigned char *OrderArray = Malloc<unsigned char>(AtomCount, "molecule::ParseOrderAtSiteFromFile - *OrderArray");4074 bool *MaxArray = Malloc<bool>(AtomCount, "molecule::ParseOrderAtSiteFromFile - *MaxArray");4075 bool status;4076 int AtomNr, value;4077 stringstream line;4078 ifstream file;4079 4080 *out << Verbose(1) << "Begin of ParseOrderAtSiteFromFile" << endl;4081 for(int i=AtomCount;i--;)4082 OrderArray[i] = 0;4083 line << path << "/" << FRAGMENTPREFIX << ORDERATSITEFILE;4084 file.open(line.str().c_str());4085 if (file != NULL) {4086 for (int i=AtomCount;i--;) { // initialise with 04087 OrderArray[i] = 0;4088 MaxArray[i] = 0;4089 }4090 while (!file.eof()) { // parse from file4091 AtomNr = -1;4092 file >> AtomNr;4093 if (AtomNr != -1) { // test whether we really parsed something (this is necessary, otherwise last atom is set twice and to 0 on second time)4094 file >> value;4095 OrderArray[AtomNr] = value;4096 file >> value;4097 MaxArray[AtomNr] = value;4098 //*out << Verbose(2) << "AtomNr " << AtomNr << " with order " << (int)OrderArray[AtomNr] << " and max order set to " << (int)MaxArray[AtomNr] << "." << endl;4099 }4100 }4101 atom *Walker = start;4102 while (Walker->next != end) { // fill into atom classes4103 Walker = Walker->next;4104 Walker->AdaptiveOrder = OrderArray[Walker->nr];4105 Walker->MaxOrder = MaxArray[Walker->nr];4106 *out << Verbose(2) << *Walker << " gets order " << (int)Walker->AdaptiveOrder << " and is " << (!Walker->MaxOrder ? "not " : " ") << "maxed." << endl;4107 }4108 file.close();4109 *out << Verbose(1) << "done." << endl;4110 status = true;4111 } else {4112 *out << Verbose(1) << "failed to open file " << line.str() << "." << endl;4113 status = false;4114 }4115 Free(&OrderArray);4116 Free(&MaxArray);4117 4118 *out << Verbose(1) << "End of ParseOrderAtSiteFromFile" << endl;4119 return status;4120 };4121 975 4122 976 /** Creates an 2d array of pointer with an entry for each atom and each bond it has. … … 4185 1039 }; 4186 1040 4187 /** Adds atoms up to \a BondCount distance from \a *Root and notes them down in \a **AddedAtomList.4188 * Gray vertices are always enqueued in an StackClass<atom *> FIFO queue, the rest is usual BFS with adding vertices found was4189 * white and putting into queue.4190 * \param *out output stream for debugging4191 * \param *Mol Molecule class to add atoms to4192 * \param **AddedAtomList list with added atom pointers, index is atom father's number4193 * \param **AddedBondList list with added bond pointers, index is bond father's number4194 * \param *Root root vertex for BFS4195 * \param *Bond bond not to look beyond4196 * \param BondOrder maximum distance for vertices to add4197 * \param IsAngstroem lengths are in angstroem or bohrradii4198 */4199 void molecule::BreadthFirstSearchAdd(ofstream *out, molecule *Mol, atom **&AddedAtomList, bond **&AddedBondList, atom *Root, bond *Bond, int BondOrder, bool IsAngstroem)4200 {4201 atom **PredecessorList = Malloc<atom*>(AtomCount, "molecule::BreadthFirstSearchAdd: **PredecessorList");4202 int *ShortestPathList = Malloc<int>(AtomCount, "molecule::BreadthFirstSearchAdd: *ShortestPathList");4203 enum Shading *ColorList = Malloc<enum Shading>(AtomCount, "molecule::BreadthFirstSearchAdd: *ColorList");4204 class StackClass<atom *> *AtomStack = new StackClass<atom *>(AtomCount);4205 atom *Walker = NULL, *OtherAtom = NULL;4206 bond *Binder = NULL;4207 4208 // add Root if not done yet4209 AtomStack->ClearStack();4210 if (AddedAtomList[Root->nr] == NULL) // add Root if not yet present4211 AddedAtomList[Root->nr] = Mol->AddCopyAtom(Root);4212 AtomStack->Push(Root);4213 4214 // initialise each vertex as white with no predecessor, empty queue, color Root lightgray4215 for (int i=AtomCount;i--;) {4216 PredecessorList[i] = NULL;4217 ShortestPathList[i] = -1;4218 if (AddedAtomList[i] != NULL) // mark already present atoms (i.e. Root and maybe others) as visited4219 ColorList[i] = lightgray;4220 else4221 ColorList[i] = white;4222 }4223 ShortestPathList[Root->nr] = 0;4224 4225 // and go on ... Queue always contains all lightgray vertices4226 while (!AtomStack->IsEmpty()) {4227 // we have to pop the oldest atom from stack. This keeps the atoms on the stack always of the same ShortestPath distance.4228 // e.g. if current atom is 2, push to end of stack are of length 3, but first all of length 2 would be popped. They again4229 // append length of 3 (their neighbours). Thus on stack we have always atoms of a certain length n at bottom of stack and4230 // followed by n+1 till top of stack.4231 Walker = AtomStack->PopFirst(); // pop oldest added4232 *out << Verbose(1) << "Current Walker is: " << Walker->Name << ", and has " << NumberOfBondsPerAtom[Walker->nr] << " bonds." << endl;4233 for(int i=0;i<NumberOfBondsPerAtom[Walker->nr];i++) {4234 Binder = ListOfBondsPerAtom[Walker->nr][i];4235 if (Binder != NULL) { // don't look at bond equal NULL4236 OtherAtom = Binder->GetOtherAtom(Walker);4237 *out << Verbose(2) << "Current OtherAtom is: " << OtherAtom->Name << " for bond " << *Binder << "." << endl;4238 if (ColorList[OtherAtom->nr] == white) {4239 if (Binder != Bond) // let other atom white if it's via Root bond. In case it's cyclic it has to be reached again (yet Root is from OtherAtom already black, thus no problem)4240 ColorList[OtherAtom->nr] = lightgray;4241 PredecessorList[OtherAtom->nr] = Walker; // Walker is the predecessor4242 ShortestPathList[OtherAtom->nr] = ShortestPathList[Walker->nr]+1;4243 *out << Verbose(2) << "Coloring OtherAtom " << OtherAtom->Name << " " << ((ColorList[OtherAtom->nr] == white) ? "white" : "lightgray") << ", its predecessor is " << Walker->Name << " and its Shortest Path is " << ShortestPathList[OtherAtom->nr] << " egde(s) long." << endl;4244 if ((((ShortestPathList[OtherAtom->nr] < BondOrder) && (Binder != Bond))) ) { // Check for maximum distance4245 *out << Verbose(3);4246 if (AddedAtomList[OtherAtom->nr] == NULL) { // add if it's not been so far4247 AddedAtomList[OtherAtom->nr] = Mol->AddCopyAtom(OtherAtom);4248 *out << "Added OtherAtom " << OtherAtom->Name;4249 AddedBondList[Binder->nr] = Mol->AddBond(AddedAtomList[Walker->nr], AddedAtomList[OtherAtom->nr], Binder->BondDegree);4250 AddedBondList[Binder->nr]->Cyclic = Binder->Cyclic;4251 AddedBondList[Binder->nr]->Type = Binder->Type;4252 *out << " and bond " << *(AddedBondList[Binder->nr]) << ", ";4253 } else { // this code should actually never come into play (all white atoms are not yet present in BondMolecule, that's why they are white in the first place)4254 *out << "Not adding OtherAtom " << OtherAtom->Name;4255 if (AddedBondList[Binder->nr] == NULL) {4256 AddedBondList[Binder->nr] = Mol->AddBond(AddedAtomList[Walker->nr], AddedAtomList[OtherAtom->nr], Binder->BondDegree);4257 AddedBondList[Binder->nr]->Cyclic = Binder->Cyclic;4258 AddedBondList[Binder->nr]->Type = Binder->Type;4259 *out << ", added Bond " << *(AddedBondList[Binder->nr]);4260 } else4261 *out << ", not added Bond ";4262 }4263 *out << ", putting OtherAtom into queue." << endl;4264 AtomStack->Push(OtherAtom);4265 } else { // out of bond order, then replace4266 if ((AddedAtomList[OtherAtom->nr] == NULL) && (Binder->Cyclic))4267 ColorList[OtherAtom->nr] = white; // unmark if it has not been queued/added, to make it available via its other bonds (cyclic)4268 if (Binder == Bond)4269 *out << Verbose(3) << "Not Queueing, is the Root bond";4270 else if (ShortestPathList[OtherAtom->nr] >= BondOrder)4271 *out << Verbose(3) << "Not Queueing, is out of Bond Count of " << BondOrder;4272 if (!Binder->Cyclic)4273 *out << ", is not part of a cyclic bond, saturating bond with Hydrogen." << endl;4274 if (AddedBondList[Binder->nr] == NULL) {4275 if ((AddedAtomList[OtherAtom->nr] != NULL)) { // .. whether we add or saturate4276 AddedBondList[Binder->nr] = Mol->AddBond(AddedAtomList[Walker->nr], AddedAtomList[OtherAtom->nr], Binder->BondDegree);4277 AddedBondList[Binder->nr]->Cyclic = Binder->Cyclic;4278 AddedBondList[Binder->nr]->Type = Binder->Type;4279 } else {4280 #ifdef ADDHYDROGEN4281 if (!Mol->AddHydrogenReplacementAtom(out, Binder, AddedAtomList[Walker->nr], Walker, OtherAtom, ListOfBondsPerAtom[Walker->nr], NumberOfBondsPerAtom[Walker->nr], IsAngstroem))4282 exit(1);4283 #endif4284 }4285 }4286 }4287 } else {4288 *out << Verbose(3) << "Not Adding, has already been visited." << endl;4289 // This has to be a cyclic bond, check whether it's present ...4290 if (AddedBondList[Binder->nr] == NULL) {4291 if ((Binder != Bond) && (Binder->Cyclic) && (((ShortestPathList[Walker->nr]+1) < BondOrder))) {4292 AddedBondList[Binder->nr] = Mol->AddBond(AddedAtomList[Walker->nr], AddedAtomList[OtherAtom->nr], Binder->BondDegree);4293 AddedBondList[Binder->nr]->Cyclic = Binder->Cyclic;4294 AddedBondList[Binder->nr]->Type = Binder->Type;4295 } else { // if it's root bond it has to broken (otherwise we would not create the fragments)4296 #ifdef ADDHYDROGEN4297 if(!Mol->AddHydrogenReplacementAtom(out, Binder, AddedAtomList[Walker->nr], Walker, OtherAtom, ListOfBondsPerAtom[Walker->nr], NumberOfBondsPerAtom[Walker->nr], IsAngstroem))4298 exit(1);4299 #endif4300 }4301 }4302 }4303 }4304 }4305 ColorList[Walker->nr] = black;4306 *out << Verbose(1) << "Coloring Walker " << Walker->Name << " black." << endl;4307 }4308 Free(&PredecessorList);4309 Free(&ShortestPathList);4310 Free(&ColorList);4311 delete(AtomStack);4312 };4313 4314 /** Adds bond structure to this molecule from \a Father molecule.4315 * This basically causes this molecule to become an induced subgraph of the \a Father, i.e. for every bond in Father4316 * with end points present in this molecule, bond is created in this molecule.4317 * Special care was taken to ensure that this is of complexity O(N), where N is the \a Father's molecule::AtomCount.4318 * \param *out output stream for debugging4319 * \param *Father father molecule4320 * \return true - is induced subgraph, false - there are atoms with fathers not in \a Father4321 * \todo not checked, not fully working probably4322 */4323 bool molecule::BuildInducedSubgraph(ofstream *out, const molecule *Father)4324 {4325 atom *Walker = NULL, *OtherAtom = NULL;4326 bool status = true;4327 atom **ParentList = Malloc<atom*>(Father->AtomCount, "molecule::BuildInducedSubgraph: **ParentList");4328 4329 *out << Verbose(2) << "Begin of BuildInducedSubgraph." << endl;4330 4331 // reset parent list4332 *out << Verbose(3) << "Resetting ParentList." << endl;4333 for (int i=Father->AtomCount;i--;)4334 ParentList[i] = NULL;4335 4336 // fill parent list with sons4337 *out << Verbose(3) << "Filling Parent List." << endl;4338 Walker = start;4339 while (Walker->next != end) {4340 Walker = Walker->next;4341 ParentList[Walker->father->nr] = Walker;4342 // Outputting List for debugging4343 *out << Verbose(4) << "Son["<< Walker->father->nr <<"] of " << Walker->father << " is " << ParentList[Walker->father->nr] << "." << endl;4344 }4345 4346 // check each entry of parent list and if ok (one-to-and-onto matching) create bonds4347 *out << Verbose(3) << "Creating bonds." << endl;4348 Walker = Father->start;4349 while (Walker->next != Father->end) {4350 Walker = Walker->next;4351 if (ParentList[Walker->nr] != NULL) {4352 if (ParentList[Walker->nr]->father != Walker) {4353 status = false;4354 } else {4355 for (int i=0;i<Father->NumberOfBondsPerAtom[Walker->nr];i++) {4356 OtherAtom = Father->ListOfBondsPerAtom[Walker->nr][i]->GetOtherAtom(Walker);4357 if (ParentList[OtherAtom->nr] != NULL) { // if otheratom is also a father of an atom on this molecule, create the bond4358 *out << Verbose(4) << "Endpoints of Bond " << Father->ListOfBondsPerAtom[Walker->nr][i] << " are both present: " << ParentList[Walker->nr]->Name << " and " << ParentList[OtherAtom->nr]->Name << "." << endl;4359 AddBond(ParentList[Walker->nr], ParentList[OtherAtom->nr], Father->ListOfBondsPerAtom[Walker->nr][i]->BondDegree);4360 }4361 }4362 }4363 }4364 }4365 4366 Free(&ParentList);4367 *out << Verbose(2) << "End of BuildInducedSubgraph." << endl;4368 return status;4369 };4370 4371 4372 /** Looks through a StackClass<atom *> and returns the likeliest removal candiate.4373 * \param *out output stream for debugging messages4374 * \param *&Leaf KeySet to look through4375 * \param *&ShortestPathList list of the shortest path to decide which atom to suggest as removal candidate in the end4376 * \param index of the atom suggested for removal4377 */4378 int molecule::LookForRemovalCandidate(ofstream *&out, KeySet *&Leaf, int *&ShortestPathList)4379 {4380 atom *Runner = NULL;4381 int SP, Removal;4382 4383 *out << Verbose(2) << "Looking for removal candidate." << endl;4384 SP = -1; //0; // not -1, so that Root is never removed4385 Removal = -1;4386 for (KeySet::iterator runner = Leaf->begin(); runner != Leaf->end(); runner++) {4387 Runner = FindAtom((*runner));4388 if (Runner->type->Z != 1) { // skip all those added hydrogens when re-filling snake stack4389 if (ShortestPathList[(*runner)] > SP) { // remove the oldest one with longest shortest path4390 SP = ShortestPathList[(*runner)];4391 Removal = (*runner);4392 }4393 }4394 }4395 return Removal;4396 };4397 4398 /** Stores a fragment from \a KeySet into \a molecule.4399 * First creates the minimal set of atoms from the KeySet, then creates the bond structure from the complete4400 * molecule and adds missing hydrogen where bonds were cut.4401 * \param *out output stream for debugging messages4402 * \param &Leaflet pointer to KeySet structure4403 * \param IsAngstroem whether we have Ansgtroem or bohrradius4404 * \return pointer to constructed molecule4405 */4406 molecule * molecule::StoreFragmentFromKeySet(ofstream *out, KeySet &Leaflet, bool IsAngstroem)4407 {4408 atom *Runner = NULL, *FatherOfRunner = NULL, *OtherFather = NULL;4409 atom **SonList = Malloc<atom*>(AtomCount, "molecule::StoreFragmentFromStack: **SonList");4410 molecule *Leaf = new molecule(elemente);4411 bool LonelyFlag = false;4412 int size;4413 4414 // *out << Verbose(1) << "Begin of StoreFragmentFromKeyset." << endl;4415 4416 Leaf->BondDistance = BondDistance;4417 for(int i=NDIM*2;i--;)4418 Leaf->cell_size[i] = cell_size[i];4419 4420 // initialise SonList (indicates when we need to replace a bond with hydrogen instead)4421 for(int i=AtomCount;i--;)4422 SonList[i] = NULL;4423 4424 // first create the minimal set of atoms from the KeySet4425 size = 0;4426 for(KeySet::iterator runner = Leaflet.begin(); runner != Leaflet.end(); runner++) {4427 FatherOfRunner = FindAtom((*runner)); // find the id4428 SonList[FatherOfRunner->nr] = Leaf->AddCopyAtom(FatherOfRunner);4429 size++;4430 }4431 4432 // create the bonds between all: Make it an induced subgraph and add hydrogen4433 // *out << Verbose(2) << "Creating bonds from father graph (i.e. induced subgraph creation)." << endl;4434 Runner = Leaf->start;4435 while (Runner->next != Leaf->end) {4436 Runner = Runner->next;4437 LonelyFlag = true;4438 FatherOfRunner = Runner->father;4439 if (SonList[FatherOfRunner->nr] != NULL) { // check if this, our father, is present in list4440 // create all bonds4441 for (int i=0;i<NumberOfBondsPerAtom[FatherOfRunner->nr];i++) { // go through every bond of father4442 OtherFather = ListOfBondsPerAtom[FatherOfRunner->nr][i]->GetOtherAtom(FatherOfRunner);4443 // *out << Verbose(2) << "Father " << *FatherOfRunner << " of son " << *SonList[FatherOfRunner->nr] << " is bound to " << *OtherFather;4444 if (SonList[OtherFather->nr] != NULL) {4445 // *out << ", whose son is " << *SonList[OtherFather->nr] << "." << endl;4446 if (OtherFather->nr > FatherOfRunner->nr) { // add bond (nr check is for adding only one of both variants: ab, ba)4447 // *out << Verbose(3) << "Adding Bond: ";4448 // *out <<4449 Leaf->AddBond(Runner, SonList[OtherFather->nr], ListOfBondsPerAtom[FatherOfRunner->nr][i]->BondDegree);4450 // *out << "." << endl;4451 //NumBonds[Runner->nr]++;4452 } else {4453 // *out << Verbose(3) << "Not adding bond, labels in wrong order." << endl;4454 }4455 LonelyFlag = false;4456 } else {4457 // *out << ", who has no son in this fragment molecule." << endl;4458 #ifdef ADDHYDROGEN4459 //*out << Verbose(3) << "Adding Hydrogen to " << Runner->Name << " and a bond in between." << endl;4460 if(!Leaf->AddHydrogenReplacementAtom(out, ListOfBondsPerAtom[FatherOfRunner->nr][i], Runner, FatherOfRunner, OtherFather, ListOfBondsPerAtom[FatherOfRunner->nr],NumberOfBondsPerAtom[FatherOfRunner->nr], IsAngstroem))4461 exit(1);4462 #endif4463 //NumBonds[Runner->nr] += ListOfBondsPerAtom[FatherOfRunner->nr][i]->BondDegree;4464 }4465 }4466 } else {4467 *out << Verbose(0) << "ERROR: Son " << Runner->Name << " has father " << FatherOfRunner->Name << " but its entry in SonList is " << SonList[FatherOfRunner->nr] << "!" << endl;4468 }4469 if ((LonelyFlag) && (size > 1)) {4470 *out << Verbose(0) << *Runner << "has got bonds only to hydrogens!" << endl;4471 }4472 #ifdef ADDHYDROGEN4473 while ((Runner->next != Leaf->end) && (Runner->next->type->Z == 1)) // skip added hydrogen4474 Runner = Runner->next;4475 #endif4476 }4477 Leaf->CreateListOfBondsPerAtom(out);4478 //Leaflet->Leaf->ScanForPeriodicCorrection(out);4479 Free(&SonList);4480 // *out << Verbose(1) << "End of StoreFragmentFromKeyset." << endl;4481 return Leaf;4482 };4483 4484 /** Creates \a MoleculeListClass of all unique fragments of the \a molecule containing \a Order atoms or vertices.4485 * The picture to have in mind is that of a DFS "snake" of a certain length \a Order, i.e. as in the infamous4486 * computer game, that winds through the connected graph representing the molecule. Color (white,4487 * lightgray, darkgray, black) indicates whether a vertex has been discovered so far or not. Labels will help in4488 * creating only unique fragments and not additional ones with vertices simply in different sequence.4489 * The Predecessor is always the one that came before in discovering, needed on backstepping. And4490 * finally, the ShortestPath is needed for removing vertices from the snake stack during the back-4491 * stepping.4492 * \param *out output stream for debugging4493 * \param Order number of atoms in each fragment4494 * \param *configuration configuration for writing config files for each fragment4495 * \return List of all unique fragments with \a Order atoms4496 */4497 /*4498 MoleculeListClass * molecule::CreateListOfUniqueFragmentsOfOrder(ofstream *out, int Order, config *configuration)4499 {4500 atom **PredecessorList = Malloc<atom*>(AtomCount, "molecule::CreateListOfUniqueFragmentsOfOrder: **PredecessorList");4501 int *ShortestPathList = Malloc<int>(AtomCount, "molecule::CreateListOfUniqueFragmentsOfOrder: *ShortestPathList");4502 int *Labels = Malloc<int>(AtomCount, "molecule::CreateListOfUniqueFragmentsOfOrder: *Labels");4503 enum Shading *ColorVertexList = Malloc<enum Shading>(AtomCount, "molecule::CreateListOfUniqueFragmentsOfOrder: *ColorList");4504 enum Shading *ColorEdgeList = Malloc<enum Shading>(BondCount, "molecule::CreateListOfUniqueFragmentsOfOrder: *ColorBondList");4505 StackClass<atom *> *RootStack = new StackClass<atom *>(AtomCount);4506 StackClass<atom *> *TouchedStack = new StackClass<atom *>((int)pow(4,Order)+2); // number of atoms reached from one with maximal 4 bonds plus Root itself4507 StackClass<atom *> *SnakeStack = new StackClass<atom *>(Order+1); // equal to Order is not possible, as then the StackClass<atom *> cannot discern between full and empty stack!4508 MoleculeLeafClass *Leaflet = NULL, *TempLeaf = NULL;4509 MoleculeListClass *FragmentList = NULL;4510 atom *Walker = NULL, *OtherAtom = NULL, *Root = NULL, *Removal = NULL;4511 bond *Binder = NULL;4512 int RunningIndex = 0, FragmentCounter = 0;4513 4514 *out << Verbose(1) << "Begin of CreateListOfUniqueFragmentsOfOrder." << endl;4515 4516 // reset parent list4517 *out << Verbose(3) << "Resetting labels, parent, predecessor, color and shortest path lists." << endl;4518 for (int i=0;i<AtomCount;i++) { // reset all atom labels4519 // initialise each vertex as white with no predecessor, empty queue, color lightgray, not labelled, no sons4520 Labels[i] = -1;4521 SonList[i] = NULL;4522 PredecessorList[i] = NULL;4523 ColorVertexList[i] = white;4524 ShortestPathList[i] = -1;4525 }4526 for (int i=0;i<BondCount;i++)4527 ColorEdgeList[i] = white;4528 RootStack->ClearStack(); // clearstack and push first atom if exists4529 TouchedStack->ClearStack();4530 Walker = start->next;4531 while ((Walker != end)4532 #ifdef ADDHYDROGEN4533 && (Walker->type->Z == 1)4534 }4535 }4536 *out << ", SP of " << ShortestPathList[Walker->nr] << " and its color is " << GetColor(ColorVertexList[Walker->nr]) << "." << endl;4537 4538 // then check the stack for a newly stumbled upon fragment4539 if (SnakeStack->ItemCount() == Order) { // is stack full?4540 // store the fragment if it is one and get a removal candidate4541 Removal = StoreFragmentFromStack(out, Root, Walker, Leaflet, SnakeStack, ShortestPathList, SonList, Labels, &FragmentCounter, configuration);4542 // remove the candidate if one was found4543 if (Removal != NULL) {4544 *out << Verbose(2) << "Removing item " << Removal->Name << " with SP of " << ShortestPathList[Removal->nr] << " from snake stack." << endl;4545 SnakeStack->RemoveItem(Removal);4546 ColorVertexList[Removal->nr] = lightgray; // return back to not on snake stack but explored marking4547 if (Walker == Removal) { // if the current atom is to be removed, we also have to take a step back4548 Walker = PredecessorList[Removal->nr];4549 *out << Verbose(2) << "Stepping back to " << Walker->Name << "." << endl;4550 }4551 }4552 } else4553 Removal = NULL;4554 4555 // finally, look for a white neighbour as the next Walker4556 Binder = NULL;4557 if ((Removal == NULL) || (Walker != PredecessorList[Removal->nr])) { // don't look, if a new walker has been set above4558 *out << Verbose(2) << "Snake has currently " << SnakeStack->ItemCount() << " item(s)." << endl;4559 OtherAtom = NULL; // this is actually not needed, every atom has at least one neighbour4560 if (ShortestPathList[Walker->nr] < Order) {4561 for(int i=0;i<NumberOfBondsPerAtom[Walker->nr];i++) {4562 Binder = ListOfBondsPerAtom[Walker->nr][i];4563 *out << Verbose(2) << "Current bond is " << *Binder << ": ";4564 OtherAtom = Binder->GetOtherAtom(Walker);4565 if ((Labels[OtherAtom->nr] != -1) && (Labels[OtherAtom->nr] < Labels[Root->nr])) { // we don't step up to labels bigger than us4566 *out << "Label " << Labels[OtherAtom->nr] << " is smaller than Root's " << Labels[Root->nr] << "." << endl;4567 //ColorVertexList[OtherAtom->nr] = lightgray; // mark as explored4568 } else { // otherwise check its colour and element4569 if (4570 (OtherAtom->type->Z != 1) &&4571 #endif4572 (ColorEdgeList[Binder->nr] == white)) { // skip hydrogen, look for unexplored vertices4573 *out << "Moving along " << GetColor(ColorEdgeList[Binder->nr]) << " bond " << Binder << " to " << ((ColorVertexList[OtherAtom->nr] == white) ? "unexplored" : "explored") << " item: " << OtherAtom->Name << "." << endl;4574 // i find it currently rather sensible to always set the predecessor in order to find one's way back4575 //if (PredecessorList[OtherAtom->nr] == NULL) {4576 PredecessorList[OtherAtom->nr] = Walker;4577 *out << Verbose(3) << "Setting Predecessor of " << OtherAtom->Name << " to " << PredecessorList[OtherAtom->nr]->Name << "." << endl;4578 //} else {4579 // *out << Verbose(3) << "Predecessor of " << OtherAtom->Name << " is " << PredecessorList[OtherAtom->nr]->Name << "." << endl;4580 //}4581 Walker = OtherAtom;4582 break;4583 } else {4584 if (OtherAtom->type->Z == 1)4585 *out << "Links to a hydrogen atom." << endl;4586 else4587 *out << "Bond has not white but " << GetColor(ColorEdgeList[Binder->nr]) << " color." << endl;4588 }4589 }4590 }4591 } else { // means we have stepped beyond the horizon: Return!4592 Walker = PredecessorList[Walker->nr];4593 OtherAtom = Walker;4594 *out << Verbose(3) << "We have gone too far, stepping back to " << Walker->Name << "." << endl;4595 }4596 if (Walker != OtherAtom) { // if no white neighbours anymore, color it black4597 *out << Verbose(2) << "Coloring " << Walker->Name << " black." << endl;4598 ColorVertexList[Walker->nr] = black;4599 Walker = PredecessorList[Walker->nr];4600 }4601 }4602 } while ((Walker != Root) || (ColorVertexList[Root->nr] != black));4603 *out << Verbose(2) << "Inner Looping is finished." << endl;4604 4605 // if we reset all AtomCount atoms, we have again technically O(N^2) ...4606 *out << Verbose(2) << "Resetting lists." << endl;4607 Walker = NULL;4608 Binder = NULL;4609 while (!TouchedStack->IsEmpty()) {4610 Walker = TouchedStack->PopLast();4611 *out << Verbose(3) << "Re-initialising entries of " << *Walker << "." << endl;4612 for(int i=0;i<NumberOfBondsPerAtom[Walker->nr];i++)4613 ColorEdgeList[ListOfBondsPerAtom[Walker->nr][i]->nr] = white;4614 PredecessorList[Walker->nr] = NULL;4615 ColorVertexList[Walker->nr] = white;4616 ShortestPathList[Walker->nr] = -1;4617 }4618 }4619 *out << Verbose(1) << "Outer Looping over all vertices is done." << endl;4620 4621 // copy together4622 *out << Verbose(1) << "Copying all fragments into MoleculeList structure." << endl;4623 FragmentList = new MoleculeListClass(FragmentCounter, AtomCount);4624 RunningIndex = 0;4625 while ((Leaflet != NULL) && (RunningIndex < FragmentCounter)) {4626 FragmentList->ListOfMolecules[RunningIndex++] = Leaflet->Leaf;4627 Leaflet->Leaf = NULL; // prevent molecule from being removed4628 TempLeaf = Leaflet;4629 Leaflet = Leaflet->previous;4630 delete(TempLeaf);4631 };4632 4633 // free memory and exit4634 Free(&PredecessorList);4635 Free(&ShortestPathList);4636 Free(&Labels);4637 Free(&ColorVertexList);4638 delete(RootStack);4639 delete(TouchedStack);4640 delete(SnakeStack);4641 4642 *out << Verbose(1) << "End of CreateListOfUniqueFragmentsOfOrder." << endl;4643 return FragmentList;4644 };4645 */4646 4647 /** Structure containing all values in power set combination generation.4648 */4649 struct UniqueFragments {4650 config *configuration;4651 atom *Root;4652 Graph *Leaflet;4653 KeySet *FragmentSet;4654 int ANOVAOrder;4655 int FragmentCounter;4656 int CurrentIndex;4657 double TEFactor;4658 int *ShortestPathList;4659 bool **UsedList;4660 bond **BondsPerSPList;4661 int *BondsPerSPCount;4662 };4663 4664 /** From a given set of Bond sorted by Shortest Path distance, create all possible fragments of size \a SetDimension.4665 * -# loops over every possible combination (2^dimension of edge set)4666 * -# inserts current set, if there's still space left4667 * -# yes: calls SPFragmentGenerator with structure, created new edge list and size respective to root dist4668 ance+14669 * -# no: stores fragment into keyset list by calling InsertFragmentIntoGraph4670 * -# removes all items added into the snake stack (in UniqueFragments structure) added during level (root4671 distance) and current set4672 * \param *out output stream for debugging4673 * \param FragmentSearch UniqueFragments structure with all values needed4674 * \param RootDistance current shortest path level, whose set of edges is represented by **BondsSet4675 * \param SetDimension Number of possible bonds on this level (i.e. size of the array BondsSet[])4676 * \param SubOrder remaining number of allowed vertices to add4677 */4678 void molecule::SPFragmentGenerator(ofstream *out, struct UniqueFragments *FragmentSearch, int RootDistance, bond **BondsSet, int SetDimension, int SubOrder)4679 {4680 atom *OtherWalker = NULL;4681 int verbosity = 0; //FragmentSearch->ANOVAOrder-SubOrder;4682 int NumCombinations;4683 bool bit;4684 int bits, TouchedIndex, SubSetDimension, SP, Added;4685 int Removal;4686 int SpaceLeft;4687 int *TouchedList = Malloc<int>(SubOrder + 1, "molecule::SPFragmentGenerator: *TouchedList");4688 bond *Binder = NULL;4689 bond **BondsList = NULL;4690 KeySetTestPair TestKeySetInsert;4691 4692 NumCombinations = 1 << SetDimension;4693 4694 // Hier muessen von 1 bis NumberOfBondsPerAtom[Walker->nr] alle Kombinationen4695 // von Endstuecken (aus den Bonds) hinzugefuegt werden und fuer verbleibende ANOVAOrder4696 // rekursiv GraphCrawler in der naechsten Ebene aufgerufen werden4697 4698 *out << Verbose(1+verbosity) << "Begin of SPFragmentGenerator." << endl;4699 *out << Verbose(1+verbosity) << "We are " << RootDistance << " away from Root, which is " << *FragmentSearch->Root << ", SubOrder is " << SubOrder << ", SetDimension is " << SetDimension << " and this means " << NumCombinations-1 << " combination(s)." << endl;4700 4701 // initialised touched list (stores added atoms on this level)4702 *out << Verbose(1+verbosity) << "Clearing touched list." << endl;4703 for (TouchedIndex=SubOrder+1;TouchedIndex--;) // empty touched list4704 TouchedList[TouchedIndex] = -1;4705 TouchedIndex = 0;4706 4707 // create every possible combination of the endpieces4708 *out << Verbose(1+verbosity) << "Going through all combinations of the power set." << endl;4709 for (int i=1;i<NumCombinations;i++) { // sweep through all power set combinations (skip empty set!)4710 // count the set bit of i4711 bits = 0;4712 for (int j=SetDimension;j--;)4713 bits += (i & (1 << j)) >> j;4714 4715 *out << Verbose(1+verbosity) << "Current set is " << Binary(i | (1 << SetDimension)) << ", number of bits is " << bits << "." << endl;4716 if (bits <= SubOrder) { // if not greater than additional atoms allowed on stack, continue4717 // --1-- add this set of the power set of bond partners to the snake stack4718 Added = 0;4719 for (int j=0;j<SetDimension;j++) { // pull out every bit by shifting4720 bit = ((i & (1 << j)) != 0); // mask the bit for the j-th bond4721 if (bit) { // if bit is set, we add this bond partner4722 OtherWalker = BondsSet[j]->rightatom; // rightatom is always the one more distant, i.e. the one to add4723 //*out << Verbose(1+verbosity) << "Current Bond is " << ListOfBondsPerAtom[Walker->nr][i] << ", checking on " << *OtherWalker << "." << endl;4724 *out << Verbose(2+verbosity) << "Adding " << *OtherWalker << " with nr " << OtherWalker->nr << "." << endl;4725 TestKeySetInsert = FragmentSearch->FragmentSet->insert(OtherWalker->nr);4726 if (TestKeySetInsert.second) {4727 TouchedList[TouchedIndex++] = OtherWalker->nr; // note as added4728 Added++;4729 } else {4730 *out << Verbose(2+verbosity) << "This was item was already present in the keyset." << endl;4731 }4732 //FragmentSearch->UsedList[OtherWalker->nr][i] = true;4733 //}4734 } else {4735 *out << Verbose(2+verbosity) << "Not adding." << endl;4736 }4737 }4738 4739 SpaceLeft = SubOrder - Added ;// SubOrder - bits; // due to item's maybe being already present, this does not work anymore4740 if (SpaceLeft > 0) {4741 *out << Verbose(1+verbosity) << "There's still some space left on stack: " << SpaceLeft << "." << endl;4742 if (SubOrder > 1) { // Due to Added above we have to check extra whether we're not already reaching beyond the desired Order4743 // --2-- look at all added end pieces of this combination, construct bond subsets and sweep through a power set of these by recursion4744 SP = RootDistance+1; // this is the next level4745 // first count the members in the subset4746 SubSetDimension = 0;4747 Binder = FragmentSearch->BondsPerSPList[2*SP]; // start node for this level4748 while (Binder->next != FragmentSearch->BondsPerSPList[2*SP+1]) { // compare to end node of this level4749 Binder = Binder->next;4750 for (int k=TouchedIndex;k--;) {4751 if (Binder->Contains(TouchedList[k])) // if we added this very endpiece4752 SubSetDimension++;4753 }4754 }4755 // then allocate and fill the list4756 BondsList = Malloc<bond*>(SubSetDimension, "molecule::SPFragmentGenerator: **BondsList");4757 SubSetDimension = 0;4758 Binder = FragmentSearch->BondsPerSPList[2*SP];4759 while (Binder->next != FragmentSearch->BondsPerSPList[2*SP+1]) {4760 Binder = Binder->next;4761 for (int k=0;k<TouchedIndex;k++) {4762 if (Binder->leftatom->nr == TouchedList[k]) // leftatom is always the close one4763 BondsList[SubSetDimension++] = Binder;4764 }4765 }4766 *out << Verbose(2+verbosity) << "Calling subset generator " << SP << " away from root " << *FragmentSearch->Root << " with sub set dimension " << SubSetDimension << "." << endl;4767 SPFragmentGenerator(out, FragmentSearch, SP, BondsList, SubSetDimension, SubOrder-bits);4768 Free(&BondsList);4769 }4770 } else {4771 // --2-- otherwise store the complete fragment4772 *out << Verbose(1+verbosity) << "Enough items on stack for a fragment!" << endl;4773 // store fragment as a KeySet4774 *out << Verbose(2) << "Found a new fragment[" << FragmentSearch->FragmentCounter << "], local nr.s are: ";4775 for(KeySet::iterator runner = FragmentSearch->FragmentSet->begin(); runner != FragmentSearch->FragmentSet->end(); runner++)4776 *out << (*runner) << " ";4777 *out << endl;4778 //if (!CheckForConnectedSubgraph(out, FragmentSearch->FragmentSet))4779 //*out << Verbose(0) << "ERROR: The found fragment is not a connected subgraph!" << endl;4780 InsertFragmentIntoGraph(out, FragmentSearch);4781 //Removal = LookForRemovalCandidate(out, FragmentSearch->FragmentSet, FragmentSearch->ShortestPathList);4782 //Removal = StoreFragmentFromStack(out, FragmentSearch->Root, FragmentSearch->Leaflet, FragmentSearch->FragmentStack, FragmentSearch->ShortestPathList, &FragmentSearch->FragmentCounter, FragmentSearch->configuration);4783 }4784 4785 // --3-- remove all added items in this level from snake stack4786 *out << Verbose(1+verbosity) << "Removing all items that were added on this SP level " << RootDistance << "." << endl;4787 for(int j=0;j<TouchedIndex;j++) {4788 Removal = TouchedList[j];4789 *out << Verbose(2+verbosity) << "Removing item nr. " << Removal << " from snake stack." << endl;4790 FragmentSearch->FragmentSet->erase(Removal);4791 TouchedList[j] = -1;4792 }4793 *out << Verbose(2) << "Remaining local nr.s on snake stack are: ";4794 for(KeySet::iterator runner = FragmentSearch->FragmentSet->begin(); runner != FragmentSearch->FragmentSet->end(); runner++)4795 *out << (*runner) << " ";4796 *out << endl;4797 TouchedIndex = 0; // set Index to 0 for list of atoms added on this level4798 } else {4799 *out << Verbose(2+verbosity) << "More atoms to add for this set (" << bits << ") than space left on stack " << SubOrder << ", skipping this set." << endl;4800 }4801 }4802 Free(&TouchedList);4803 *out << Verbose(1+verbosity) << "End of SPFragmentGenerator, " << RootDistance << " away from Root " << *FragmentSearch->Root << " and SubOrder is " << SubOrder << "." << endl;4804 };4805 4806 /** For a given keyset \a *Fragment, checks whether it is connected in the current molecule.4807 * \param *out output stream for debugging4808 * \param *Fragment Keyset of fragment's vertices4809 * \return true - connected, false - disconnected4810 * \note this is O(n^2) for it's just a bug checker not meant for permanent use!4811 */4812 bool molecule::CheckForConnectedSubgraph(ofstream *out, KeySet *Fragment)4813 {4814 atom *Walker = NULL, *Walker2 = NULL;4815 bool BondStatus = false;4816 int size;4817 4818 *out << Verbose(1) << "Begin of CheckForConnectedSubgraph" << endl;4819 *out << Verbose(2) << "Disconnected atom: ";4820 4821 // count number of atoms in graph4822 size = 0;4823 for(KeySet::iterator runner = Fragment->begin(); runner != Fragment->end(); runner++)4824 size++;4825 if (size > 1)4826 for(KeySet::iterator runner = Fragment->begin(); runner != Fragment->end(); runner++) {4827 Walker = FindAtom(*runner);4828 BondStatus = false;4829 for(KeySet::iterator runners = Fragment->begin(); runners != Fragment->end(); runners++) {4830 Walker2 = FindAtom(*runners);4831 for (int i=0;i<NumberOfBondsPerAtom[Walker->nr]; i++) {4832 if (ListOfBondsPerAtom[Walker->nr][i]->GetOtherAtom(Walker) == Walker2) {4833 BondStatus = true;4834 break;4835 }4836 if (BondStatus)4837 break;4838 }4839 }4840 if (!BondStatus) {4841 *out << (*Walker) << endl;4842 return false;4843 }4844 }4845 else {4846 *out << "none." << endl;4847 return true;4848 }4849 *out << "none." << endl;4850 4851 *out << Verbose(1) << "End of CheckForConnectedSubgraph" << endl;4852 4853 return true;4854 }4855 4856 /** Creates a list of all unique fragments of certain vertex size from a given graph \a Fragment for a given root vertex in the context of \a this molecule.4857 * -# initialises UniqueFragments structure4858 * -# fills edge list via BFS4859 * -# creates the fragment by calling recursive function SPFragmentGenerator with UniqueFragments structure, 0 as4860 root distance, the edge set, its dimension and the current suborder4861 * -# Free'ing structure4862 * Note that we may use the fact that the atoms are SP-ordered on the atomstack. I.e. when popping always the last, we first get all4863 * with SP of 2, then those with SP of 3, then those with SP of 4 and so on.4864 * \param *out output stream for debugging4865 * \param Order bond order (limits BFS exploration and "number of digits" in power set generation4866 * \param FragmentSearch UniqueFragments structure containing TEFactor, root atom and so on4867 * \param RestrictedKeySet Restricted vertex set to use in context of molecule4868 * \return number of inserted fragments4869 * \note ShortestPathList in FragmentSearch structure is probably due to NumberOfAtomsSPLevel and SP not needed anymore4870 */4871 int molecule::PowerSetGenerator(ofstream *out, int Order, struct UniqueFragments &FragmentSearch, KeySet RestrictedKeySet)4872 {4873 int SP, AtomKeyNr;4874 atom *Walker = NULL, *OtherWalker = NULL, *Predecessor = NULL;4875 bond *Binder = NULL;4876 bond *CurrentEdge = NULL;4877 bond **BondsList = NULL;4878 int RootKeyNr = FragmentSearch.Root->GetTrueFather()->nr;4879 int Counter = FragmentSearch.FragmentCounter;4880 int RemainingWalkers;4881 4882 *out << endl;4883 *out << Verbose(0) << "Begin of PowerSetGenerator with order " << Order << " at Root " << *FragmentSearch.Root << "." << endl;4884 4885 // prepare Label and SP arrays of the BFS search4886 FragmentSearch.ShortestPathList[FragmentSearch.Root->nr] = 0;4887 4888 // prepare root level (SP = 0) and a loop bond denoting Root4889 for (int i=1;i<Order;i++)4890 FragmentSearch.BondsPerSPCount[i] = 0;4891 FragmentSearch.BondsPerSPCount[0] = 1;4892 Binder = new bond(FragmentSearch.Root, FragmentSearch.Root);4893 add(Binder, FragmentSearch.BondsPerSPList[1]);4894 4895 // do a BFS search to fill the SP lists and label the found vertices4896 // Actually, we should construct a spanning tree vom the root atom and select all edges therefrom and put them into4897 // according shortest path lists. However, we don't. Rather we fill these lists right away, as they do form a spanning4898 // tree already sorted into various SP levels. That's why we just do loops over the depth (CurrentSP) and breadth4899 // (EdgeinSPLevel) of this tree ...4900 // In another picture, the bonds always contain a direction by rightatom being the one more distant from root and hence4901 // naturally leftatom forming its predecessor, preventing the BFS"seeker" from continuing in the wrong direction.4902 *out << endl;4903 *out << Verbose(0) << "Starting BFS analysis ..." << endl;4904 for (SP = 0; SP < (Order-1); SP++) {4905 *out << Verbose(1) << "New SP level reached: " << SP << ", creating new SP list with " << FragmentSearch.BondsPerSPCount[SP] << " item(s)";4906 if (SP > 0) {4907 *out << ", old level closed with " << FragmentSearch.BondsPerSPCount[SP-1] << " item(s)." << endl;4908 FragmentSearch.BondsPerSPCount[SP] = 0;4909 } else4910 *out << "." << endl;4911 4912 RemainingWalkers = FragmentSearch.BondsPerSPCount[SP];4913 CurrentEdge = FragmentSearch.BondsPerSPList[2*SP]; /// start of this SP level's list4914 while (CurrentEdge->next != FragmentSearch.BondsPerSPList[2*SP+1]) { /// end of this SP level's list4915 CurrentEdge = CurrentEdge->next;4916 RemainingWalkers--;4917 Walker = CurrentEdge->rightatom; // rightatom is always the one more distant4918 Predecessor = CurrentEdge->leftatom; // ... and leftatom is predecessor4919 AtomKeyNr = Walker->nr;4920 *out << Verbose(0) << "Current Walker is: " << *Walker << " with nr " << Walker->nr << " and SP of " << SP << ", with " << RemainingWalkers << " remaining walkers on this level." << endl;4921 // check for new sp level4922 // go through all its bonds4923 *out << Verbose(1) << "Going through all bonds of Walker." << endl;4924 for (int i=0;i<NumberOfBondsPerAtom[AtomKeyNr];i++) {4925 Binder = ListOfBondsPerAtom[AtomKeyNr][i];4926 OtherWalker = Binder->GetOtherAtom(Walker);4927 if ((RestrictedKeySet.find(OtherWalker->nr) != RestrictedKeySet.end())4928 #ifdef ADDHYDROGEN4929 && (OtherWalker->type->Z != 1)4930 #endif4931 ) { // skip hydrogens and restrict to fragment4932 *out << Verbose(2) << "Current partner is " << *OtherWalker << " with nr " << OtherWalker->nr << " in bond " << *Binder << "." << endl;4933 // set the label if not set (and push on root stack as well)4934 if ((OtherWalker != Predecessor) && (OtherWalker->GetTrueFather()->nr > RootKeyNr)) { // only pass through those with label bigger than Root's4935 FragmentSearch.ShortestPathList[OtherWalker->nr] = SP+1;4936 *out << Verbose(3) << "Set Shortest Path to " << FragmentSearch.ShortestPathList[OtherWalker->nr] << "." << endl;4937 // add the bond in between to the SP list4938 Binder = new bond(Walker, OtherWalker); // create a new bond in such a manner, that bond::rightatom is always the one more distant4939 add(Binder, FragmentSearch.BondsPerSPList[2*(SP+1)+1]);4940 FragmentSearch.BondsPerSPCount[SP+1]++;4941 *out << Verbose(3) << "Added its bond to SP list, having now " << FragmentSearch.BondsPerSPCount[SP+1] << " item(s)." << endl;4942 } else {4943 if (OtherWalker != Predecessor)4944 *out << Verbose(3) << "Not passing on, as index of " << *OtherWalker << " " << OtherWalker->GetTrueFather()->nr << " is smaller than that of Root " << RootKeyNr << "." << endl;4945 else4946 *out << Verbose(3) << "This is my predecessor " << *Predecessor << "." << endl;4947 }4948 } else *out << Verbose(2) << "Is not in the restricted keyset or skipping hydrogen " << *OtherWalker << "." << endl;4949 }4950 }4951 }4952 4953 // outputting all list for debugging4954 *out << Verbose(0) << "Printing all found lists." << endl;4955 for(int i=1;i<Order;i++) { // skip the root edge in the printing4956 Binder = FragmentSearch.BondsPerSPList[2*i];4957 *out << Verbose(1) << "Current SP level is " << i << "." << endl;4958 while (Binder->next != FragmentSearch.BondsPerSPList[2*i+1]) {4959 Binder = Binder->next;4960 *out << Verbose(2) << *Binder << endl;4961 }4962 }4963 4964 // creating fragments with the found edge sets (may be done in reverse order, faster)4965 SP = -1; // the Root <-> Root edge must be subtracted!4966 for(int i=Order;i--;) { // sum up all found edges4967 Binder = FragmentSearch.BondsPerSPList[2*i];4968 while (Binder->next != FragmentSearch.BondsPerSPList[2*i+1]) {4969 Binder = Binder->next;4970 SP ++;4971 }4972 }4973 *out << Verbose(0) << "Total number of edges is " << SP << "." << endl;4974 if (SP >= (Order-1)) {4975 // start with root (push on fragment stack)4976 *out << Verbose(0) << "Starting fragment generation with " << *FragmentSearch.Root << ", local nr is " << FragmentSearch.Root->nr << "." << endl;4977 FragmentSearch.FragmentSet->clear();4978 *out << Verbose(0) << "Preparing subset for this root and calling generator." << endl;4979 // prepare the subset and call the generator4980 BondsList = Malloc<bond*>(FragmentSearch.BondsPerSPCount[0], "molecule::PowerSetGenerator: **BondsList");4981 BondsList[0] = FragmentSearch.BondsPerSPList[0]->next; // on SP level 0 there's only the root bond4982 4983 SPFragmentGenerator(out, &FragmentSearch, 0, BondsList, FragmentSearch.BondsPerSPCount[0], Order);4984 4985 Free(&BondsList);4986 } else {4987 *out << Verbose(0) << "Not enough total number of edges to build " << Order << "-body fragments." << endl;4988 }4989 4990 // as FragmentSearch structure is used only once, we don't have to clean it anymore4991 // remove root from stack4992 *out << Verbose(0) << "Removing root again from stack." << endl;4993 FragmentSearch.FragmentSet->erase(FragmentSearch.Root->nr);4994 4995 // free'ing the bonds lists4996 *out << Verbose(0) << "Free'ing all found lists. and resetting index lists" << endl;4997 for(int i=Order;i--;) {4998 *out << Verbose(1) << "Current SP level is " << i << ": ";4999 Binder = FragmentSearch.BondsPerSPList[2*i];5000 while (Binder->next != FragmentSearch.BondsPerSPList[2*i+1]) {5001 Binder = Binder->next;5002 // *out << "Removing atom " << Binder->leftatom->nr << " and " << Binder->rightatom->nr << "." << endl; // make sure numbers are local5003 FragmentSearch.ShortestPathList[Binder->leftatom->nr] = -1;5004 FragmentSearch.ShortestPathList[Binder->rightatom->nr] = -1;5005 }5006 // delete added bonds5007 cleanup(FragmentSearch.BondsPerSPList[2*i], FragmentSearch.BondsPerSPList[2*i+1]);5008 // also start and end node5009 *out << "cleaned." << endl;5010 }5011 5012 // return list5013 *out << Verbose(0) << "End of PowerSetGenerator." << endl;5014 return (FragmentSearch.FragmentCounter - Counter);5015 };5016 5017 /** Corrects the nuclei position if the fragment was created over the cell borders.5018 * Scans all bonds, checks the distance, if greater than typical, we have a candidate for the correction.5019 * We remove the bond whereafter the graph probably separates. Then, we translate the one component periodically5020 * and re-add the bond. Looping on the distance check.5021 * \param *out ofstream for debugging messages5022 */5023 void molecule::ScanForPeriodicCorrection(ofstream *out)5024 {5025 bond *Binder = NULL;5026 bond *OtherBinder = NULL;5027 atom *Walker = NULL;5028 atom *OtherWalker = NULL;5029 double *matrix = ReturnFullMatrixforSymmetric(cell_size);5030 enum Shading *ColorList = NULL;5031 double tmp;5032 Vector Translationvector;5033 //class StackClass<atom *> *CompStack = NULL;5034 class StackClass<atom *> *AtomStack = new StackClass<atom *>(AtomCount);5035 bool flag = true;5036 5037 *out << Verbose(2) << "Begin of ScanForPeriodicCorrection." << endl;5038 5039 ColorList = Malloc<enum Shading>(AtomCount, "molecule::ScanForPeriodicCorrection: *ColorList");5040 while (flag) {5041 // remove bonds that are beyond bonddistance5042 for(int i=NDIM;i--;)5043 Translationvector.x[i] = 0.;5044 // scan all bonds5045 Binder = first;5046 flag = false;5047 while ((!flag) && (Binder->next != last)) {5048 Binder = Binder->next;5049 for (int i=NDIM;i--;) {5050 tmp = fabs(Binder->leftatom->x.x[i] - Binder->rightatom->x.x[i]);5051 //*out << Verbose(3) << "Checking " << i << "th distance of " << *Binder->leftatom << " to " << *Binder->rightatom << ": " << tmp << "." << endl;5052 if (tmp > BondDistance) {5053 OtherBinder = Binder->next; // note down binding partner for later re-insertion5054 unlink(Binder); // unlink bond5055 *out << Verbose(2) << "Correcting at bond " << *Binder << "." << endl;5056 flag = true;5057 break;5058 }5059 }5060 }5061 if (flag) {5062 // create translation vector from their periodically modified distance5063 for (int i=NDIM;i--;) {5064 tmp = Binder->leftatom->x.x[i] - Binder->rightatom->x.x[i];5065 if (fabs(tmp) > BondDistance)5066 Translationvector.x[i] = (tmp < 0) ? +1. : -1.;5067 }5068 Translationvector.MatrixMultiplication(matrix);5069 //*out << Verbose(3) << "Translation vector is ";5070 Translationvector.Output(out);5071 *out << endl;5072 // apply to all atoms of first component via BFS5073 for (int i=AtomCount;i--;)5074 ColorList[i] = white;5075 AtomStack->Push(Binder->leftatom);5076 while (!AtomStack->IsEmpty()) {5077 Walker = AtomStack->PopFirst();5078 //*out << Verbose (3) << "Current Walker is: " << *Walker << "." << endl;5079 ColorList[Walker->nr] = black; // mark as explored5080 Walker->x.AddVector(&Translationvector); // translate5081 for (int i=0;i<NumberOfBondsPerAtom[Walker->nr];i++) { // go through all binding partners5082 if (ListOfBondsPerAtom[Walker->nr][i] != Binder) {5083 OtherWalker = ListOfBondsPerAtom[Walker->nr][i]->GetOtherAtom(Walker);5084 if (ColorList[OtherWalker->nr] == white) {5085 AtomStack->Push(OtherWalker); // push if yet unexplored5086 }5087 }5088 }5089 }5090 // re-add bond5091 link(Binder, OtherBinder);5092 } else {5093 *out << Verbose(3) << "No corrections for this fragment." << endl;5094 }5095 //delete(CompStack);5096 }5097 5098 // free allocated space from ReturnFullMatrixforSymmetric()5099 delete(AtomStack);5100 Free(&ColorList);5101 Free(&matrix);5102 *out << Verbose(2) << "End of ScanForPeriodicCorrection." << endl;5103 };5104 1041 5105 1042 /** Blows the 6-dimensional \a cell_size array up to a full NDIM by NDIM matrix. … … 5122 1059 }; 5123 1060 5124 bool KeyCompare::operator() (const KeySet SubgraphA, const KeySet SubgraphB) const5125 {5126 //cout << "my check is used." << endl;5127 if (SubgraphA.size() < SubgraphB.size()) {5128 return true;5129 } else {5130 if (SubgraphA.size() > SubgraphB.size()) {5131 return false;5132 } else {5133 KeySet::iterator IteratorA = SubgraphA.begin();5134 KeySet::iterator IteratorB = SubgraphB.begin();5135 while ((IteratorA != SubgraphA.end()) && (IteratorB != SubgraphB.end())) {5136 if ((*IteratorA) < (*IteratorB))5137 return true;5138 else if ((*IteratorA) > (*IteratorB)) {5139 return false;5140 } // else, go on to next index5141 IteratorA++;5142 IteratorB++;5143 } // end of while loop5144 }// end of check in case of equal sizes5145 }5146 return false; // if we reach this point, they are equal5147 };5148 5149 //bool operator < (KeySet SubgraphA, KeySet SubgraphB)5150 //{5151 // return KeyCompare(SubgraphA, SubgraphB);5152 //};5153 5154 /** Checking whether KeySet is not already present in Graph, if so just adds factor.5155 * \param *out output stream for debugging5156 * \param &set KeySet to insert5157 * \param &graph Graph to insert into5158 * \param *counter pointer to unique fragment count5159 * \param factor energy factor for the fragment5160 */5161 inline void InsertFragmentIntoGraph(ofstream *out, struct UniqueFragments *Fragment)5162 {5163 GraphTestPair testGraphInsert;5164 5165 testGraphInsert = Fragment->Leaflet->insert(GraphPair (*Fragment->FragmentSet,pair<int,double>(Fragment->FragmentCounter,Fragment->TEFactor))); // store fragment number and current factor5166 if (testGraphInsert.second) {5167 *out << Verbose(2) << "KeySet " << Fragment->FragmentCounter << " successfully inserted." << endl;5168 Fragment->FragmentCounter++;5169 } else {5170 *out << Verbose(2) << "KeySet " << Fragment->FragmentCounter << " failed to insert, present fragment is " << ((*(testGraphInsert.first)).second).first << endl;5171 ((*(testGraphInsert.first)).second).second += Fragment->TEFactor; // increase the "created" counter5172 *out << Verbose(2) << "New factor is " << ((*(testGraphInsert.first)).second).second << "." << endl;5173 }5174 };5175 //void inline InsertIntoGraph(ofstream *out, KeyStack &stack, Graph &graph, int *counter, double factor)5176 //{5177 // // copy stack contents to set and call overloaded function again5178 // KeySet set;5179 // for(KeyStack::iterator runner = stack.begin(); runner != stack.begin(); runner++)5180 // set.insert((*runner));5181 // InsertIntoGraph(out, set, graph, counter, factor);5182 //};5183 5184 /** Inserts each KeySet in \a graph2 into \a graph1.5185 * \param *out output stream for debugging5186 * \param graph1 first (dest) graph5187 * \param graph2 second (source) graph5188 * \param *counter keyset counter that gets increased5189 */5190 inline void InsertGraphIntoGraph(ofstream *out, Graph &graph1, Graph &graph2, int *counter)5191 {5192 GraphTestPair testGraphInsert;5193 5194 for(Graph::iterator runner = graph2.begin(); runner != graph2.end(); runner++) {5195 testGraphInsert = graph1.insert(GraphPair ((*runner).first,pair<int,double>((*counter)++,((*runner).second).second))); // store fragment number and current factor5196 if (testGraphInsert.second) {5197 *out << Verbose(2) << "KeySet " << (*counter)-1 << " successfully inserted." << endl;5198 } else {5199 *out << Verbose(2) << "KeySet " << (*counter)-1 << " failed to insert, present fragment is " << ((*(testGraphInsert.first)).second).first << endl;5200 ((*(testGraphInsert.first)).second).second += (*runner).second.second;5201 *out << Verbose(2) << "New factor is " << (*(testGraphInsert.first)).second.second << "." << endl;5202 }5203 }5204 };5205 5206 5207 /** Performs BOSSANOVA decomposition at selected sites, increasing the cutoff by one at these sites.5208 * -# constructs a complete keyset of the molecule5209 * -# In a loop over all possible roots from the given rootstack5210 * -# increases order of root site5211 * -# calls PowerSetGenerator with this order, the complete keyset and the rootkeynr5212 * -# for all consecutive lower levels PowerSetGenerator is called with the suborder, the higher order keyset5213 as the restricted one and each site in the set as the root)5214 * -# these are merged into a fragment list of keysets5215 * -# All fragment lists (for all orders, i.e. from all destination fields) are merged into one list for return5216 * Important only is that we create all fragments, it is not important if we create them more than once5217 * as these copies are filtered out via use of the hash table (KeySet).5218 * \param *out output stream for debugging5219 * \param Fragment&*List list of already present keystacks (adaptive scheme) or empty list5220 * \param &RootStack stack with all root candidates (unequal to each atom in complete molecule if adaptive scheme is applied)5221 * \param *MinimumRingSize minimum ring size for each atom (molecule::Atomcount)5222 * \return pointer to Graph list5223 */5224 void molecule::FragmentBOSSANOVA(ofstream *out, Graph *&FragmentList, KeyStack &RootStack, int *MinimumRingSize)5225 {5226 Graph ***FragmentLowerOrdersList = NULL;5227 int NumLevels, NumMolecules, TotalNumMolecules = 0, *NumMoleculesOfOrder = NULL;5228 int counter = 0, Order;5229 int UpgradeCount = RootStack.size();5230 KeyStack FragmentRootStack;5231 int RootKeyNr, RootNr;5232 struct UniqueFragments FragmentSearch;5233 5234 *out << Verbose(0) << "Begin of FragmentBOSSANOVA." << endl;5235 5236 // FragmentLowerOrdersList is a 2D-array of pointer to MoleculeListClass objects, one dimension represents the ANOVA expansion of a single order (i.e. 5)5237 // with all needed lower orders that are subtracted, the other dimension is the BondOrder (i.e. from 1 to 5)5238 NumMoleculesOfOrder = Malloc<int>(UpgradeCount, "molecule::FragmentBOSSANOVA: *NumMoleculesOfOrder");5239 FragmentLowerOrdersList = Malloc<Graph**>(UpgradeCount, "molecule::FragmentBOSSANOVA: ***FragmentLowerOrdersList");5240 5241 // initialise the fragments structure5242 FragmentSearch.ShortestPathList = Malloc<int>(AtomCount, "molecule::PowerSetGenerator: *ShortestPathList");5243 FragmentSearch.FragmentCounter = 0;5244 FragmentSearch.FragmentSet = new KeySet;5245 FragmentSearch.Root = FindAtom(RootKeyNr);5246 for (int i=AtomCount;i--;) {5247 FragmentSearch.ShortestPathList[i] = -1;5248 }5249 5250 // Construct the complete KeySet which we need for topmost level only (but for all Roots)5251 atom *Walker = start;5252 KeySet CompleteMolecule;5253 while (Walker->next != end) {5254 Walker = Walker->next;5255 CompleteMolecule.insert(Walker->GetTrueFather()->nr);5256 }5257 5258 // this can easily be seen: if Order is 5, then the number of levels for each lower order is the total sum of the number of levels above, as5259 // each has to be split up. E.g. for the second level we have one from 5th, one from 4th, two from 3th (which in turn is one from 5th, one from 4th),5260 // hence we have overall four 2th order levels for splitting. This also allows for putting all into a single array (FragmentLowerOrdersList[])5261 // with the order along the cells as this: 5433222211111111 for BondOrder 5 needing 16=pow(2,5-1) cells (only we use bit-shifting which is faster)5262 RootNr = 0; // counts through the roots in RootStack5263 while ((RootNr < UpgradeCount) && (!RootStack.empty())) {5264 RootKeyNr = RootStack.front();5265 RootStack.pop_front();5266 Walker = FindAtom(RootKeyNr);5267 // check cyclic lengths5268 //if ((MinimumRingSize[Walker->GetTrueFather()->nr] != -1) && (Walker->GetTrueFather()->AdaptiveOrder+1 > MinimumRingSize[Walker->GetTrueFather()->nr])) {5269 // *out << Verbose(0) << "Bond order " << Walker->GetTrueFather()->AdaptiveOrder << " of Root " << *Walker << " greater than or equal to Minimum Ring size of " << MinimumRingSize << " found is not allowed." << endl;5270 //} else5271 {5272 // increase adaptive order by one5273 Walker->GetTrueFather()->AdaptiveOrder++;5274 Order = Walker->AdaptiveOrder = Walker->GetTrueFather()->AdaptiveOrder;5275 5276 // initialise Order-dependent entries of UniqueFragments structure5277 FragmentSearch.BondsPerSPList = Malloc<bond*>(Order * 2, "molecule::PowerSetGenerator: ***BondsPerSPList");5278 FragmentSearch.BondsPerSPCount = Malloc<int>(Order, "molecule::PowerSetGenerator: *BondsPerSPCount");5279 for (int i=Order;i--;) {5280 FragmentSearch.BondsPerSPList[2*i] = new bond(); // start node5281 FragmentSearch.BondsPerSPList[2*i+1] = new bond(); // end node5282 FragmentSearch.BondsPerSPList[2*i]->next = FragmentSearch.BondsPerSPList[2*i+1]; // intertwine these two5283 FragmentSearch.BondsPerSPList[2*i+1]->previous = FragmentSearch.BondsPerSPList[2*i];5284 FragmentSearch.BondsPerSPCount[i] = 0;5285 }5286 5287 // allocate memory for all lower level orders in this 1D-array of ptrs5288 NumLevels = 1 << (Order-1); // (int)pow(2,Order);5289 FragmentLowerOrdersList[RootNr] = Malloc<Graph*>(NumLevels, "molecule::FragmentBOSSANOVA: **FragmentLowerOrdersList[]");5290 for (int i=0;i<NumLevels;i++)5291 FragmentLowerOrdersList[RootNr][i] = NULL;5292 5293 // create top order where nothing is reduced5294 *out << Verbose(0) << "==============================================================================================================" << endl;5295 *out << Verbose(0) << "Creating KeySets of Bond Order " << Order << " for " << *Walker << ", " << (RootStack.size()-RootNr) << " Roots remaining." << endl; // , NumLevels is " << NumLevels << "5296 5297 // Create list of Graphs of current Bond Order (i.e. F_{ij})5298 FragmentLowerOrdersList[RootNr][0] = new Graph;5299 FragmentSearch.TEFactor = 1.;5300 FragmentSearch.Leaflet = FragmentLowerOrdersList[RootNr][0]; // set to insertion graph5301 FragmentSearch.Root = Walker;5302 NumMoleculesOfOrder[RootNr] = PowerSetGenerator(out, Walker->AdaptiveOrder, FragmentSearch, CompleteMolecule);5303 *out << Verbose(1) << "Number of resulting KeySets is: " << NumMoleculesOfOrder[RootNr] << "." << endl;5304 if (NumMoleculesOfOrder[RootNr] != 0) {5305 NumMolecules = 0;5306 5307 // we don't have to dive into suborders! These keysets are all already created on lower orders!5308 // this was all ancient stuff, when we still depended on the TEFactors (and for those the suborders were needed)5309 5310 // if ((NumLevels >> 1) > 0) {5311 // // create lower order fragments5312 // *out << Verbose(0) << "Creating list of unique fragments of lower Bond Order terms to be subtracted." << endl;5313 // Order = Walker->AdaptiveOrder;5314 // for (int source=0;source<(NumLevels >> 1);source++) { // 1-terms don't need any more splitting, that's why only half is gone through (shift again)5315 // // step down to next order at (virtual) boundary of powers of 2 in array5316 // while (source >= (1 << (Walker->AdaptiveOrder-Order))) // (int)pow(2,Walker->AdaptiveOrder-Order))5317 // Order--;5318 // *out << Verbose(0) << "Current Order is: " << Order << "." << endl;5319 // for (int SubOrder=Order-1;SubOrder>0;SubOrder--) {5320 // int dest = source + (1 << (Walker->AdaptiveOrder-(SubOrder+1)));5321 // *out << Verbose(0) << "--------------------------------------------------------------------------------------------------------------" << endl;5322 // *out << Verbose(0) << "Current SubOrder is: " << SubOrder << " with source " << source << " to destination " << dest << "." << endl;5323 //5324 // // every molecule is split into a list of again (Order - 1) molecules, while counting all molecules5325 // //*out << Verbose(1) << "Splitting the " << (*FragmentLowerOrdersList[RootNr][source]).size() << " molecules of the " << source << "th cell in the array." << endl;5326 // //NumMolecules = 0;5327 // FragmentLowerOrdersList[RootNr][dest] = new Graph;5328 // for(Graph::iterator runner = (*FragmentLowerOrdersList[RootNr][source]).begin();runner != (*FragmentLowerOrdersList[RootNr][source]).end(); runner++) {5329 // for (KeySet::iterator sprinter = (*runner).first.begin();sprinter != (*runner).first.end(); sprinter++) {5330 // Graph TempFragmentList;5331 // FragmentSearch.TEFactor = -(*runner).second.second;5332 // FragmentSearch.Leaflet = &TempFragmentList; // set to insertion graph5333 // FragmentSearch.Root = FindAtom(*sprinter);5334 // NumMoleculesOfOrder[RootNr] += PowerSetGenerator(out, SubOrder, FragmentSearch, (*runner).first);5335 // // insert new keysets FragmentList into FragmentLowerOrdersList[Walker->AdaptiveOrder-1][dest]5336 // *out << Verbose(1) << "Merging resulting key sets with those present in destination " << dest << "." << endl;5337 // InsertGraphIntoGraph(out, *FragmentLowerOrdersList[RootNr][dest], TempFragmentList, &NumMolecules);5338 // }5339 // }5340 // *out << Verbose(1) << "Number of resulting molecules for SubOrder " << SubOrder << " is: " << NumMolecules << "." << endl;5341 // }5342 // }5343 // }5344 } else {5345 Walker->GetTrueFather()->MaxOrder = true;5346 // *out << Verbose(1) << "Hence, we don't dive into SubOrders ... " << endl;5347 }5348 // now, we have completely filled each cell of FragmentLowerOrdersList[] for the current Walker->AdaptiveOrder5349 //NumMoleculesOfOrder[Walker->AdaptiveOrder-1] = NumMolecules;5350 TotalNumMolecules += NumMoleculesOfOrder[RootNr];5351 // *out << Verbose(1) << "Number of resulting molecules for Order " << (int)Walker->GetTrueFather()->AdaptiveOrder << " is: " << NumMoleculesOfOrder[RootNr] << "." << endl;5352 RootStack.push_back(RootKeyNr); // put back on stack5353 RootNr++;5354 5355 // free Order-dependent entries of UniqueFragments structure for next loop cycle5356 Free(&FragmentSearch.BondsPerSPCount);5357 for (int i=Order;i--;) {5358 delete(FragmentSearch.BondsPerSPList[2*i]);5359 delete(FragmentSearch.BondsPerSPList[2*i+1]);5360 }5361 Free(&FragmentSearch.BondsPerSPList);5362 }5363 }5364 *out << Verbose(0) << "==============================================================================================================" << endl;5365 *out << Verbose(1) << "Total number of resulting molecules is: " << TotalNumMolecules << "." << endl;5366 *out << Verbose(0) << "==============================================================================================================" << endl;5367 5368 // cleanup FragmentSearch structure5369 Free(&FragmentSearch.ShortestPathList);5370 delete(FragmentSearch.FragmentSet);5371 5372 // now, FragmentLowerOrdersList is complete, it looks - for BondOrder 5 - as this (number is the ANOVA Order of the terms therein)5373 // 54332222111111115374 // 432211115375 // 32115376 // 215377 // 15378 5379 // Subsequently, we combine all into a single list (FragmentList)5380 5381 *out << Verbose(0) << "Combining the lists of all orders per order and finally into a single one." << endl;5382 if (FragmentList == NULL) {5383 FragmentList = new Graph;5384 counter = 0;5385 } else {5386 counter = FragmentList->size();5387 }5388 RootNr = 0;5389 while (!RootStack.empty()) {5390 RootKeyNr = RootStack.front();5391 RootStack.pop_front();5392 Walker = FindAtom(RootKeyNr);5393 NumLevels = 1 << (Walker->AdaptiveOrder - 1);5394 for(int i=0;i<NumLevels;i++) {5395 if (FragmentLowerOrdersList[RootNr][i] != NULL) {5396 InsertGraphIntoGraph(out, *FragmentList, (*FragmentLowerOrdersList[RootNr][i]), &counter);5397 delete(FragmentLowerOrdersList[RootNr][i]);5398 }5399 }5400 Free(&FragmentLowerOrdersList[RootNr]);5401 RootNr++;5402 }5403 Free(&FragmentLowerOrdersList);5404 Free(&NumMoleculesOfOrder);5405 5406 *out << Verbose(0) << "End of FragmentBOSSANOVA." << endl;5407 };5408 1061 5409 1062 /** Comparison function for GSL heapsort on distances in two molecules. -
src/molecule.hpp
rd09ff7 rcee0b57 1 /** \file molecule s.hpp1 /** \file molecule.hpp 2 2 * 3 3 * Class definitions of atom and molecule, element and periodentafel … … 133 133 134 134 // templates for allowing global manipulation of all vectors 135 template <typename res> void ActOnAllVectors( res (Vector::*f)() ); 135 136 template <typename res, typename T> void ActOnAllVectors( res (Vector::*f)(T), T t ); 136 137 template <typename res, typename T, typename U> void ActOnAllVectors( res (Vector::*f)(T, U), T t, U u ); 137 138 template <typename res, typename T, typename U, typename V> void ActOnAllVectors( res (Vector::*f)(T, U, V), T t, U u, V v); 139 140 // templates for allowing global manipulation of all atoms 141 template <typename res> void ActOnAllAtoms( res (molecule::*f)(atom *) ); 142 template <typename res> void ActOnAllAtoms( res (atom::*f)() ); 143 template <typename res, typename T> void ActOnAllAtoms( res (atom::*f)(T), T t ); 144 template <typename res, typename T, typename U> void ActOnAllAtoms( res (atom::*f)(T, U), T t, U u ); 145 template <typename res, typename T, typename U, typename V> void ActOnAllAtoms( res (atom::*f)(T, U, V), T t, U u, V v); 138 146 139 147 /// remove atoms from molecule. … … 147 155 bool AddXYZFile(string filename); 148 156 bool AddHydrogenReplacementAtom(ofstream *out, bond *Bond, atom *BottomOrigin, atom *TopOrigin, atom *TopReplacement, bond **BondList, int NumBond, bool IsAngstroem); 149 bond * AddBond(atom *first, atom *second, int degree );157 bond * AddBond(atom *first, atom *second, int degree = 1); 150 158 bool RemoveBond(bond *pointer); 151 159 bool RemoveBonds(atom *BondPartner); … … 255 263 256 264 265 template <typename res> void molecule::ActOnAllVectors( res (Vector::*f)() ) { 266 atom *Walker = start; 267 while (Walker->next != end) { 268 Walker = Walker->next; 269 ((Walker->node)->*f)(); 270 } 271 }; 257 272 template <typename res, typename T> void molecule::ActOnAllVectors( res (Vector::*f)(T), T t ) 258 273 { … … 260 275 while (Walker->next != end) { 261 276 Walker = Walker->next; 262 ((*Walker->node)->*f)(t); 263 } 264 }; 265 277 ((Walker->node)->*f)(t); 278 } 279 }; 266 280 template <typename res, typename T, typename U> void molecule::ActOnAllVectors( res (Vector::*f)(T, U), T t, U u ) 267 281 { … … 269 283 while (Walker->next != end) { 270 284 Walker = Walker->next; 271 ((*Walker->node)->*f)(t, u); 272 } 273 }; 274 285 ((Walker->node)->*f)(t, u); 286 } 287 }; 275 288 template <typename res, typename T, typename U, typename V> void molecule::ActOnAllVectors( res (Vector::*f)(T, U, V), T t, U u, V v) 276 289 { … … 278 291 while (Walker->next != end) { 279 292 Walker = Walker->next; 280 ((*Walker->node)->*f)(t, u, v); 293 ((Walker->node)->*f)(t, u, v); 294 } 295 }; 296 297 template <typename res> void molecule::ActOnAllAtoms( res (molecule::*f)(atom *)) { 298 atom *Walker = start; 299 while (Walker->next != end) { 300 Walker = Walker->next; 301 (*f)(Walker); 302 } 303 }; 304 305 template <typename res> void molecule::ActOnAllAtoms( res (atom::*f)()) { 306 atom *Walker = start; 307 while (Walker->next != end) { 308 Walker = Walker->next; 309 (Walker->*f)(); 310 } 311 }; 312 template <typename res, typename T> void molecule::ActOnAllAtoms( res (atom::*f)(T), T t ) 313 { 314 atom *Walker = start; 315 while (Walker->next != end) { 316 Walker = Walker->next; 317 (Walker->*f)(t); 318 } 319 }; 320 template <typename res, typename T, typename U> void molecule::ActOnAllAtoms( res (atom::*f)(T, U), T t, U u ) 321 { 322 atom *Walker = start; 323 while (Walker->next != end) { 324 Walker = Walker->next; 325 (Walker->*f)(t, u); 326 } 327 }; 328 template <typename res, typename T, typename U, typename V> void molecule::ActOnAllAtoms( res (atom::*f)(T, U, V), T t, U u, V v) 329 { 330 atom *Walker = start; 331 while (Walker->next != end) { 332 Walker = Walker->next; 333 (Walker->*f)(t, u, v); 281 334 } 282 335 }; -
src/moleculelist.cpp
rd09ff7 rcee0b57 7 7 #include "boundary.hpp" 8 8 #include "config.hpp" 9 #include "molecule s.hpp"9 #include "molecule.hpp" 10 10 #include "memoryallocator.hpp" 11 11 -
src/verbose.cpp
rd09ff7 rcee0b57 1 #include "molecule s.hpp"1 #include "molecule.hpp" 2 2 3 3 /** Prints the tabs according to verbosity stored in the temporary constructed class.
Note:
See TracChangeset
for help on using the changeset viewer.