Changes in src/tesselationhelpers.cpp [e138de:299554]
- File:
-
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
src/tesselationhelpers.cpp
re138de r299554 8 8 #include <fstream> 9 9 10 #include "info.hpp" 10 11 #include "linkedcell.hpp" 11 12 #include "log.hpp" … … 15 16 #include "verbose.hpp" 16 17 17 double DetGet(gsl_matrix * const A, const int inPlace) { 18 double DetGet(gsl_matrix * const A, const int inPlace) 19 { 20 Info FunctionInfo(__func__); 18 21 /* 19 22 inPlace = 1 => A is replaced with the LU decomposed copy. … … 45 48 void GetSphere(Vector * const center, const Vector &a, const Vector &b, const Vector &c, const double RADIUS) 46 49 { 50 Info FunctionInfo(__func__); 47 51 gsl_matrix *A = gsl_matrix_calloc(3,3); 48 52 double m11, m12, m13, m14; … … 77 81 78 82 if (fabs(m11) < MYEPSILON) 79 eLog() << Verbose(0) << "ERROR: three points are colinear." << endl;83 DoeLog(1) && (eLog()<< Verbose(1) << "three points are colinear." << endl); 80 84 81 85 center->x[0] = 0.5 * m12/ m11; … … 84 88 85 89 if (fabs(a.Distance(center) - RADIUS) > MYEPSILON) 86 eLog() << Verbose(0) << "ERROR: The given center is further way by " << fabs(a.Distance(center) - RADIUS) << " from a than RADIUS." << endl;90 DoeLog(1) && (eLog()<< Verbose(1) << "The given center is further way by " << fabs(a.Distance(center) - RADIUS) << " from a than RADIUS." << endl); 87 91 88 92 gsl_matrix_free(A); … … 111 115 const double HalfplaneIndicator, const double AlternativeIndicator, const double alpha, const double beta, const double gamma, const double RADIUS, const double Umkreisradius) 112 116 { 117 Info FunctionInfo(__func__); 113 118 Vector TempNormal, helper; 114 119 double Restradius; 115 120 Vector OtherCenter; 116 Log() << Verbose(3) << "Begin of GetCenterOfSphere.\n";117 121 Center->Zero(); 118 122 helper.CopyVector(&a); … … 128 132 Center->Scale(1./(sin(2.*alpha) + sin(2.*beta) + sin(2.*gamma))); 129 133 NewUmkreismittelpunkt->CopyVector(Center); 130 Log() << Verbose(4) << "Center of new circumference is " << *NewUmkreismittelpunkt << ".\n";134 DoLog(1) && (Log() << Verbose(1) << "Center of new circumference is " << *NewUmkreismittelpunkt << ".\n"); 131 135 // Here we calculated center of circumscribing circle, using barycentric coordinates 132 Log() << Verbose(4) << "Center of circumference is " << *Center << " in direction " << *Direction << ".\n";136 DoLog(1) && (Log() << Verbose(1) << "Center of circumference is " << *Center << " in direction " << *Direction << ".\n"); 133 137 134 138 TempNormal.CopyVector(&a); … … 139 143 if (fabs(HalfplaneIndicator) < MYEPSILON) 140 144 { 141 if ((TempNormal.ScalarProduct(AlternativeDirection) <0 and AlternativeIndicator >0) or (TempNormal.ScalarProduct(AlternativeDirection) >0 andAlternativeIndicator <0))145 if ((TempNormal.ScalarProduct(AlternativeDirection) <0 && AlternativeIndicator >0) || (TempNormal.ScalarProduct(AlternativeDirection) >0 && AlternativeIndicator <0)) 142 146 { 143 147 TempNormal.Scale(-1); … … 146 150 else 147 151 { 148 if ( TempNormal.ScalarProduct(Direction)<0 && HalfplaneIndicator >0 || TempNormal.ScalarProduct(Direction)>0 && HalfplaneIndicator<0)152 if (((TempNormal.ScalarProduct(Direction)<0) && (HalfplaneIndicator >0)) || ((TempNormal.ScalarProduct(Direction)>0) && (HalfplaneIndicator<0))) 149 153 { 150 154 TempNormal.Scale(-1); … … 154 158 TempNormal.Normalize(); 155 159 Restradius = sqrt(RADIUS*RADIUS - Umkreisradius*Umkreisradius); 156 Log() << Verbose(4) << "Height of center of circumference to center of sphere is " << Restradius << ".\n";160 DoLog(1) && (Log() << Verbose(1) << "Height of center of circumference to center of sphere is " << Restradius << ".\n"); 157 161 TempNormal.Scale(Restradius); 158 Log() << Verbose(4) << "Shift vector to sphere of circumference is " << TempNormal << ".\n";162 DoLog(1) && (Log() << Verbose(1) << "Shift vector to sphere of circumference is " << TempNormal << ".\n"); 159 163 160 164 Center->AddVector(&TempNormal); 161 Log() << Verbose(0) << "Center of sphere of circumference is " << *Center << ".\n";165 DoLog(1) && (Log() << Verbose(1) << "Center of sphere of circumference is " << *Center << ".\n"); 162 166 GetSphere(&OtherCenter, a, b, c, RADIUS); 163 Log() << Verbose(0) << "OtherCenter of sphere of circumference is " << OtherCenter << ".\n"; 164 Log() << Verbose(3) << "End of GetCenterOfSphere.\n"; 167 DoLog(1) && (Log() << Verbose(1) << "OtherCenter of sphere of circumference is " << OtherCenter << ".\n"); 165 168 }; 166 169 … … 174 177 void GetCenterofCircumcircle(Vector * const Center, const Vector &a, const Vector &b, const Vector &c) 175 178 { 179 Info FunctionInfo(__func__); 176 180 Vector helper; 177 181 double alpha, beta, gamma; … … 186 190 beta = M_PI - SideC.Angle(&SideA); 187 191 gamma = M_PI - SideA.Angle(&SideB); 188 //Log() << Verbose(3) << "INFO: alpha = " << alpha/M_PI*180. << ", beta = " << beta/M_PI*180. << ", gamma = " << gamma/M_PI*180. << "." << endl; 189 if (fabs(M_PI - alpha - beta - gamma) > HULLEPSILON) 190 eLog() << Verbose(0) << "GetCenterofCircumcircle: Sum of angles " << (alpha+beta+gamma)/M_PI*180. << " > 180 degrees by " << fabs(M_PI - alpha - beta - gamma)/M_PI*180. << "!" << endl; 192 //Log() << Verbose(1) << "INFO: alpha = " << alpha/M_PI*180. << ", beta = " << beta/M_PI*180. << ", gamma = " << gamma/M_PI*180. << "." << endl; 193 if (fabs(M_PI - alpha - beta - gamma) > HULLEPSILON) { 194 DoeLog(2) && (eLog()<< Verbose(2) << "GetCenterofCircumcircle: Sum of angles " << (alpha+beta+gamma)/M_PI*180. << " > 180 degrees by " << fabs(M_PI - alpha - beta - gamma)/M_PI*180. << "!" << endl); 195 } 191 196 192 197 Center->Zero(); … … 218 223 double GetPathLengthonCircumCircle(const Vector &CircleCenter, const Vector &CirclePlaneNormal, const double CircleRadius, const Vector &NewSphereCenter, const Vector &OldSphereCenter, const Vector &NormalVector, const Vector &SearchDirection) 219 224 { 225 Info FunctionInfo(__func__); 220 226 Vector helper; 221 227 double radius, alpha; 222 223 helper.CopyVector(&NewSphereCenter); 228 Vector RelativeOldSphereCenter; 229 Vector RelativeNewSphereCenter; 230 231 RelativeOldSphereCenter.CopyVector(&OldSphereCenter); 232 RelativeOldSphereCenter.SubtractVector(&CircleCenter); 233 RelativeNewSphereCenter.CopyVector(&NewSphereCenter); 234 RelativeNewSphereCenter.SubtractVector(&CircleCenter); 235 helper.CopyVector(&RelativeNewSphereCenter); 224 236 // test whether new center is on the parameter circle's plane 225 237 if (fabs(helper.ScalarProduct(&CirclePlaneNormal)) > HULLEPSILON) { 226 eLog() << Verbose(0) << "ERROR: Something's very wrong here: NewSphereCenter is not on the band's plane as desired by " <<fabs(helper.ScalarProduct(&CirclePlaneNormal)) << "!" << endl;238 DoeLog(1) && (eLog()<< Verbose(1) << "Something's very wrong here: NewSphereCenter is not on the band's plane as desired by " <<fabs(helper.ScalarProduct(&CirclePlaneNormal)) << "!" << endl); 227 239 helper.ProjectOntoPlane(&CirclePlaneNormal); 228 240 } 229 radius = helper. ScalarProduct(&helper);241 radius = helper.NormSquared(); 230 242 // test whether the new center vector has length of CircleRadius 231 243 if (fabs(radius - CircleRadius) > HULLEPSILON) 232 eLog() << Verbose(1) << "ERROR: The projected center of the new sphere has radius " << radius << " instead of " << CircleRadius << "." << endl;233 alpha = helper.Angle(& OldSphereCenter);244 DoeLog(1) && (eLog()<< Verbose(1) << "The projected center of the new sphere has radius " << radius << " instead of " << CircleRadius << "." << endl); 245 alpha = helper.Angle(&RelativeOldSphereCenter); 234 246 // make the angle unique by checking the halfplanes/search direction 235 247 if (helper.ScalarProduct(&SearchDirection) < -HULLEPSILON) // acos is not unique on [0, 2.*M_PI), hence extra check to decide between two half intervals 236 248 alpha = 2.*M_PI - alpha; 237 //Log() << Verbose(2) << "INFO: RelativeNewSphereCenter is " << helper << ", RelativeOldSphereCenter is " << OldSphereCenter << " and resulting angle is " << alpha << "." << endl;238 radius = helper.Distance(& OldSphereCenter);249 DoLog(1) && (Log() << Verbose(1) << "INFO: RelativeNewSphereCenter is " << helper << ", RelativeOldSphereCenter is " << RelativeOldSphereCenter << " and resulting angle is " << alpha << "." << endl); 250 radius = helper.Distance(&RelativeOldSphereCenter); 239 251 helper.ProjectOntoPlane(&NormalVector); 240 252 // check whether new center is somewhat away or at least right over the current baseline to prevent intersecting triangles 241 253 if ((radius > HULLEPSILON) || (helper.Norm() < HULLEPSILON)) { 242 //Log() << Verbose(2) << "INFO: Distance between old and new center is " << radius << " and between new center and baseline center is " << helper.Norm() << "." << endl;254 DoLog(1) && (Log() << Verbose(1) << "INFO: Distance between old and new center is " << radius << " and between new center and baseline center is " << helper.Norm() << "." << endl); 243 255 return alpha; 244 256 } else { 245 //Log() << Verbose(1) << "INFO: NewSphereCenter " << helper << " is too close to OldSphereCenter" << OldSphereCenter << "." << endl;257 DoLog(1) && (Log() << Verbose(1) << "INFO: NewSphereCenter " << RelativeNewSphereCenter << " is too close to RelativeOldSphereCenter" << RelativeOldSphereCenter << "." << endl); 246 258 return 2.*M_PI; 247 259 } … … 263 275 double MinIntersectDistance(const gsl_vector * x, void *params) 264 276 { 277 Info FunctionInfo(__func__); 265 278 double retval = 0; 266 279 struct Intersection *I = (struct Intersection *)params; … … 283 296 284 297 retval = HeightA.ScalarProduct(&HeightA) + HeightB.ScalarProduct(&HeightB); 285 //Log() << Verbose( 2) << "MinIntersectDistance called, result: " << retval << endl;298 //Log() << Verbose(1) << "MinIntersectDistance called, result: " << retval << endl; 286 299 287 300 return retval; … … 303 316 bool existsIntersection(const Vector &point1, const Vector &point2, const Vector &point3, const Vector &point4) 304 317 { 318 Info FunctionInfo(__func__); 305 319 bool result; 306 320 … … 350 364 351 365 if (status == GSL_SUCCESS) { 352 Log() << Verbose(2) << "converged to minimum" << endl;366 DoLog(1) && (Log() << Verbose(1) << "converged to minimum" << endl); 353 367 } 354 368 } while (status == GSL_CONTINUE && iter < 100); … … 375 389 t2 = HeightB.ScalarProduct(&SideB)/SideB.ScalarProduct(&SideB); 376 390 377 Log() << Verbose( 2) << "Intersection " << intersection << " is at "391 Log() << Verbose(1) << "Intersection " << intersection << " is at " 378 392 << t1 << " for (" << point1 << "," << point2 << ") and at " 379 393 << t2 << " for (" << point3 << "," << point4 << "): "; 380 394 381 395 if (((t1 >= 0) && (t1 <= 1)) && ((t2 >= 0) && (t2 <= 1))) { 382 Log() << Verbose(0) << "true intersection." << endl;396 DoLog(1) && (Log() << Verbose(1) << "true intersection." << endl); 383 397 result = true; 384 398 } else { 385 Log() << Verbose(0) << "intersection out of region of interest." << endl;399 DoLog(1) && (Log() << Verbose(1) << "intersection out of region of interest." << endl); 386 400 result = false; 387 401 } … … 406 420 double GetAngle(const Vector &point, const Vector &reference, const Vector &OrthogonalVector) 407 421 { 422 Info FunctionInfo(__func__); 408 423 if (reference.IsZero()) 409 424 return M_PI; … … 417 432 } 418 433 419 Log() << Verbose(4) << "INFO: " << point << " has angle " << phi << " with respect to reference " << reference << "." << endl;434 DoLog(1) && (Log() << Verbose(1) << "INFO: " << point << " has angle " << phi << " with respect to reference " << reference << "." << endl); 420 435 421 436 return phi; … … 432 447 double CalculateVolumeofGeneralTetraeder(const Vector &a, const Vector &b, const Vector &c, const Vector &d) 433 448 { 449 Info FunctionInfo(__func__); 434 450 Vector Point, TetraederVector[3]; 435 451 double volume; … … 455 471 bool CheckLineCriteriaForDegeneratedTriangle(const BoundaryPointSet * const nodes[3]) 456 472 { 473 Info FunctionInfo(__func__); 457 474 bool result = false; 458 475 int counter = 0; … … 461 478 for (int i=0;i<3;i++) 462 479 for (int j=i+1; j<3; j++) { 463 if (nodes[i]->lines.find(nodes[j]->node->nr) != nodes[i]->lines.end()) { // there already is a line 480 if (nodes[i] == NULL) { 481 DoLog(1) && (Log() << Verbose(1) << "Node nr. " << i << " is not yet present." << endl); 482 result = true; 483 } else if (nodes[i]->lines.find(nodes[j]->node->nr) != nodes[i]->lines.end()) { // there already is a line 464 484 LineMap::const_iterator FindLine; 465 485 pair<LineMap::const_iterator,LineMap::const_iterator> FindPair; … … 473 493 } 474 494 } else { // no line 475 Log() << Verbose(1) << "The line between " << *nodes[i] << " and " << *nodes[j] << " is not yet present, hence no need for a degenerate triangle." << endl;495 DoLog(1) && (Log() << Verbose(1) << "The line between " << *nodes[i] << " and " << *nodes[j] << " is not yet present, hence no need for a degenerate triangle." << endl); 476 496 result = true; 477 497 } 478 498 } 479 499 if ((!result) && (counter > 1)) { 480 Log() << Verbose(2) << "INFO: Degenerate triangle is ok, at least two, here " << counter << ", existing lines are used." << endl;500 DoLog(1) && (Log() << Verbose(1) << "INFO: Degenerate triangle is ok, at least two, here " << counter << ", existing lines are used." << endl); 481 501 result = true; 482 502 } … … 485 505 486 506 487 /** Sort function for the candidate list. 488 */ 489 bool SortCandidates(const CandidateForTesselation* candidate1, const CandidateForTesselation* candidate2) 490 { 491 Vector BaseLineVector, OrthogonalVector, helper; 492 if (candidate1->BaseLine != candidate2->BaseLine) { // sanity check 493 Log() << Verbose(0) << "ERROR: sortCandidates was called for two different baselines: " << candidate1->BaseLine << " and " << candidate2->BaseLine << "." << endl; 494 //return false; 495 exit(1); 496 } 497 // create baseline vector 498 BaseLineVector.CopyVector(candidate1->BaseLine->endpoints[1]->node->node); 499 BaseLineVector.SubtractVector(candidate1->BaseLine->endpoints[0]->node->node); 500 BaseLineVector.Normalize(); 501 502 // create normal in-plane vector to cope with acos() non-uniqueness on [0,2pi] (note that is pointing in the "right" direction already, hence ">0" test!) 503 helper.CopyVector(candidate1->BaseLine->endpoints[0]->node->node); 504 helper.SubtractVector(candidate1->point->node); 505 OrthogonalVector.CopyVector(&helper); 506 helper.VectorProduct(&BaseLineVector); 507 OrthogonalVector.SubtractVector(&helper); 508 OrthogonalVector.Normalize(); 509 510 // calculate both angles and correct with in-plane vector 511 helper.CopyVector(candidate1->point->node); 512 helper.SubtractVector(candidate1->BaseLine->endpoints[0]->node->node); 513 double phi = BaseLineVector.Angle(&helper); 514 if (OrthogonalVector.ScalarProduct(&helper) > 0) { 515 phi = 2.*M_PI - phi; 516 } 517 helper.CopyVector(candidate2->point->node); 518 helper.SubtractVector(candidate1->BaseLine->endpoints[0]->node->node); 519 double psi = BaseLineVector.Angle(&helper); 520 if (OrthogonalVector.ScalarProduct(&helper) > 0) { 521 psi = 2.*M_PI - psi; 522 } 523 524 Log() << Verbose(2) << *candidate1->point << " has angle " << phi << endl; 525 Log() << Verbose(2) << *candidate2->point << " has angle " << psi << endl; 526 527 // return comparison 528 return phi < psi; 529 }; 507 ///** Sort function for the candidate list. 508 // */ 509 //bool SortCandidates(const CandidateForTesselation* candidate1, const CandidateForTesselation* candidate2) 510 //{ 511 // Info FunctionInfo(__func__); 512 // Vector BaseLineVector, OrthogonalVector, helper; 513 // if (candidate1->BaseLine != candidate2->BaseLine) { // sanity check 514 // DoeLog(1) && (eLog()<< Verbose(1) << "sortCandidates was called for two different baselines: " << candidate1->BaseLine << " and " << candidate2->BaseLine << "." << endl); 515 // //return false; 516 // exit(1); 517 // } 518 // // create baseline vector 519 // BaseLineVector.CopyVector(candidate1->BaseLine->endpoints[1]->node->node); 520 // BaseLineVector.SubtractVector(candidate1->BaseLine->endpoints[0]->node->node); 521 // BaseLineVector.Normalize(); 522 // 523 // // create normal in-plane vector to cope with acos() non-uniqueness on [0,2pi] (note that is pointing in the "right" direction already, hence ">0" test!) 524 // helper.CopyVector(candidate1->BaseLine->endpoints[0]->node->node); 525 // helper.SubtractVector(candidate1->point->node); 526 // OrthogonalVector.CopyVector(&helper); 527 // helper.VectorProduct(&BaseLineVector); 528 // OrthogonalVector.SubtractVector(&helper); 529 // OrthogonalVector.Normalize(); 530 // 531 // // calculate both angles and correct with in-plane vector 532 // helper.CopyVector(candidate1->point->node); 533 // helper.SubtractVector(candidate1->BaseLine->endpoints[0]->node->node); 534 // double phi = BaseLineVector.Angle(&helper); 535 // if (OrthogonalVector.ScalarProduct(&helper) > 0) { 536 // phi = 2.*M_PI - phi; 537 // } 538 // helper.CopyVector(candidate2->point->node); 539 // helper.SubtractVector(candidate1->BaseLine->endpoints[0]->node->node); 540 // double psi = BaseLineVector.Angle(&helper); 541 // if (OrthogonalVector.ScalarProduct(&helper) > 0) { 542 // psi = 2.*M_PI - psi; 543 // } 544 // 545 // Log() << Verbose(1) << *candidate1->point << " has angle " << phi << endl; 546 // Log() << Verbose(1) << *candidate2->point << " has angle " << psi << endl; 547 // 548 // // return comparison 549 // return phi < psi; 550 //}; 530 551 531 552 /** … … 537 558 * @return point which is second closest to the provided one 538 559 */ 539 TesselPoint* FindSecondClosestPoint(const Vector* Point, const LinkedCell* const LC) 540 { 560 TesselPoint* FindSecondClosestTesselPoint(const Vector* Point, const LinkedCell* const LC) 561 { 562 Info FunctionInfo(__func__); 541 563 TesselPoint* closestPoint = NULL; 542 564 TesselPoint* secondClosestPoint = NULL; … … 549 571 for(int i=0;i<NDIM;i++) // store indices of this cell 550 572 N[i] = LC->n[i]; 551 Log() << Verbose(2) << "INFO: Center cell is " << N[0] << ", " << N[1] << ", " << N[2] << " with No. " << LC->index << "." << endl;573 DoLog(1) && (Log() << Verbose(1) << "INFO: Center cell is " << N[0] << ", " << N[1] << ", " << N[2] << " with No. " << LC->index << "." << endl); 552 574 553 575 LC->GetNeighbourBounds(Nlower, Nupper); 554 //Log() << Verbose( 0) << endl;576 //Log() << Verbose(1) << endl; 555 577 for (LC->n[0] = Nlower[0]; LC->n[0] <= Nupper[0]; LC->n[0]++) 556 578 for (LC->n[1] = Nlower[1]; LC->n[1] <= Nupper[1]; LC->n[1]++) 557 579 for (LC->n[2] = Nlower[2]; LC->n[2] <= Nupper[2]; LC->n[2]++) { 558 const Linked Nodes *List = LC->GetCurrentCell();559 //Log() << Verbose( 3) << "The current cell " << LC->n[0] << "," << LC->n[1] << "," << LC->n[2] << endl;580 const LinkedCell::LinkedNodes *List = LC->GetCurrentCell(); 581 //Log() << Verbose(1) << "The current cell " << LC->n[0] << "," << LC->n[1] << "," << LC->n[2] << endl; 560 582 if (List != NULL) { 561 for (Linked Nodes::const_iterator Runner = List->begin(); Runner != List->end(); Runner++) {583 for (LinkedCell::LinkedNodes::const_iterator Runner = List->begin(); Runner != List->end(); Runner++) { 562 584 helper.CopyVector(Point); 563 585 helper.SubtractVector((*Runner)->node); … … 574 596 } 575 597 } else { 576 eLog() << Verbose( 0) << "ERROR:The current cell " << LC->n[0] << "," << LC->n[1] << ","598 eLog() << Verbose(1) << "The current cell " << LC->n[0] << "," << LC->n[1] << "," 577 599 << LC->n[2] << " is invalid!" << endl; 578 600 } … … 591 613 * @return point which is closest to the provided one, NULL if none found 592 614 */ 593 TesselPoint* FindClosestPoint(const Vector* Point, TesselPoint *&SecondPoint, const LinkedCell* const LC) 594 { 615 TesselPoint* FindClosestTesselPoint(const Vector* Point, TesselPoint *&SecondPoint, const LinkedCell* const LC) 616 { 617 Info FunctionInfo(__func__); 595 618 TesselPoint* closestPoint = NULL; 596 619 SecondPoint = NULL; … … 603 626 for(int i=0;i<NDIM;i++) // store indices of this cell 604 627 N[i] = LC->n[i]; 605 Log() << Verbose(3) << "INFO: Center cell is " << N[0] << ", " << N[1] << ", " << N[2] << " with No. " << LC->index << "." << endl;628 DoLog(1) && (Log() << Verbose(1) << "INFO: Center cell is " << N[0] << ", " << N[1] << ", " << N[2] << " with No. " << LC->index << "." << endl); 606 629 607 630 LC->GetNeighbourBounds(Nlower, Nupper); 608 //Log() << Verbose( 0) << endl;631 //Log() << Verbose(1) << endl; 609 632 for (LC->n[0] = Nlower[0]; LC->n[0] <= Nupper[0]; LC->n[0]++) 610 633 for (LC->n[1] = Nlower[1]; LC->n[1] <= Nupper[1]; LC->n[1]++) 611 634 for (LC->n[2] = Nlower[2]; LC->n[2] <= Nupper[2]; LC->n[2]++) { 612 const Linked Nodes *List = LC->GetCurrentCell();613 //Log() << Verbose( 3) << "The current cell " << LC->n[0] << "," << LC->n[1] << "," << LC->n[2] << endl;635 const LinkedCell::LinkedNodes *List = LC->GetCurrentCell(); 636 //Log() << Verbose(1) << "The current cell " << LC->n[0] << "," << LC->n[1] << "," << LC->n[2] << endl; 614 637 if (List != NULL) { 615 for (Linked Nodes::const_iterator Runner = List->begin(); Runner != List->end(); Runner++) {638 for (LinkedCell::LinkedNodes::const_iterator Runner = List->begin(); Runner != List->end(); Runner++) { 616 639 helper.CopyVector(Point); 617 640 helper.SubtractVector((*Runner)->node); 618 double currentNorm = helper. Norm();641 double currentNorm = helper.NormSquared(); 619 642 if (currentNorm < distance) { 620 643 secondDistance = distance; … … 622 645 distance = currentNorm; 623 646 closestPoint = (*Runner); 624 //Log() << Verbose( 2) << "INFO: New Nearest Neighbour is " << *closestPoint << "." << endl;647 //Log() << Verbose(1) << "INFO: New Nearest Neighbour is " << *closestPoint << "." << endl; 625 648 } else if (currentNorm < secondDistance) { 626 649 secondDistance = currentNorm; 627 650 SecondPoint = (*Runner); 628 //Log() << Verbose( 2) << "INFO: New Second Nearest Neighbour is " << *SecondPoint << "." << endl;651 //Log() << Verbose(1) << "INFO: New Second Nearest Neighbour is " << *SecondPoint << "." << endl; 629 652 } 630 653 } 631 654 } else { 632 eLog() << Verbose( 0) << "ERROR:The current cell " << LC->n[0] << "," << LC->n[1] << ","655 eLog() << Verbose(1) << "The current cell " << LC->n[0] << "," << LC->n[1] << "," 633 656 << LC->n[2] << " is invalid!" << endl; 634 657 } … … 636 659 // output 637 660 if (closestPoint != NULL) { 638 Log() << Verbose(2) << "Closest point is " << *closestPoint;661 DoLog(1) && (Log() << Verbose(1) << "Closest point is " << *closestPoint); 639 662 if (SecondPoint != NULL) 640 Log() << Verbose(0) << " and second closest is " << *SecondPoint;641 Log() << Verbose(0) << "." << endl;663 DoLog(0) && (Log() << Verbose(0) << " and second closest is " << *SecondPoint); 664 DoLog(0) && (Log() << Verbose(0) << "." << endl); 642 665 } 643 666 return closestPoint; … … 652 675 Vector * GetClosestPointBetweenLine(const BoundaryLineSet * const Base, const BoundaryLineSet * const OtherBase) 653 676 { 677 Info FunctionInfo(__func__); 654 678 // construct the plane of the two baselines (i.e. take both their directional vectors) 655 679 Vector Normal; … … 662 686 Normal.VectorProduct(&OtherBaseline); 663 687 Normal.Normalize(); 664 Log() << Verbose(4) << "First direction is " << Baseline << ", second direction is " << OtherBaseline << ", normal of intersection plane is " << Normal << "." << endl;688 DoLog(1) && (Log() << Verbose(1) << "First direction is " << Baseline << ", second direction is " << OtherBaseline << ", normal of intersection plane is " << Normal << "." << endl); 665 689 666 690 // project one offset point of OtherBase onto this plane (and add plane offset vector) … … 679 703 Normal.CopyVector(Intersection); 680 704 Normal.SubtractVector(Base->endpoints[0]->node->node); 681 Log() << Verbose(3) << "Found closest point on " << *Base << " at " << *Intersection << ", factor in line is " << fabs(Normal.ScalarProduct(&Baseline)/Baseline.NormSquared()) << "." << endl;705 DoLog(1) && (Log() << Verbose(1) << "Found closest point on " << *Base << " at " << *Intersection << ", factor in line is " << fabs(Normal.ScalarProduct(&Baseline)/Baseline.NormSquared()) << "." << endl); 682 706 683 707 return Intersection; … … 692 716 double DistanceToTrianglePlane(const Vector *x, const BoundaryTriangleSet * const triangle) 693 717 { 718 Info FunctionInfo(__func__); 694 719 double distance = 0.; 695 720 if (x == NULL) { … … 708 733 void WriteVrmlFile(ofstream * const vrmlfile, const Tesselation * const Tess, const PointCloud * const cloud) 709 734 { 735 Info FunctionInfo(__func__); 710 736 TesselPoint *Walker = NULL; 711 737 int i; … … 738 764 } 739 765 } else { 740 eLog() << Verbose(0) << "ERROR: Given vrmlfile is " << vrmlfile << "." << endl;766 DoeLog(1) && (eLog()<< Verbose(1) << "Given vrmlfile is " << vrmlfile << "." << endl); 741 767 } 742 768 delete(center); … … 751 777 void IncludeSphereinRaster3D(ofstream * const rasterfile, const Tesselation * const Tess, const PointCloud * const cloud) 752 778 { 779 Info FunctionInfo(__func__); 753 780 Vector helper; 754 // include the current position of the virtual sphere in the temporary raster3d file 755 Vector *center = cloud->GetCenter(); 756 // make the circumsphere's center absolute again 757 helper.CopyVector(Tess->LastTriangle->endpoints[0]->node->node); 758 helper.AddVector(Tess->LastTriangle->endpoints[1]->node->node); 759 helper.AddVector(Tess->LastTriangle->endpoints[2]->node->node); 760 helper.Scale(1./3.); 761 helper.SubtractVector(center); 762 // and add to file plus translucency object 763 *rasterfile << "# current virtual sphere\n"; 764 *rasterfile << "8\n 25.0 0.6 -1.0 -1.0 -1.0 0.2 0 0 0 0\n"; 765 *rasterfile << "2\n " << helper.x[0] << " " << helper.x[1] << " " << helper.x[2] << "\t" << 5. << "\t1 0 0\n"; 766 *rasterfile << "9\n terminating special property\n"; 767 delete(center); 781 782 if (Tess->LastTriangle != NULL) { 783 // include the current position of the virtual sphere in the temporary raster3d file 784 Vector *center = cloud->GetCenter(); 785 // make the circumsphere's center absolute again 786 helper.CopyVector(Tess->LastTriangle->endpoints[0]->node->node); 787 helper.AddVector(Tess->LastTriangle->endpoints[1]->node->node); 788 helper.AddVector(Tess->LastTriangle->endpoints[2]->node->node); 789 helper.Scale(1./3.); 790 helper.SubtractVector(center); 791 // and add to file plus translucency object 792 *rasterfile << "# current virtual sphere\n"; 793 *rasterfile << "8\n 25.0 0.6 -1.0 -1.0 -1.0 0.2 0 0 0 0\n"; 794 *rasterfile << "2\n " << helper.x[0] << " " << helper.x[1] << " " << helper.x[2] << "\t" << 5. << "\t1 0 0\n"; 795 *rasterfile << "9\n terminating special property\n"; 796 delete(center); 797 } 768 798 }; 769 799 … … 776 806 void WriteRaster3dFile(ofstream * const rasterfile, const Tesselation * const Tess, const PointCloud * const cloud) 777 807 { 808 Info FunctionInfo(__func__); 778 809 TesselPoint *Walker = NULL; 779 810 int i; … … 808 839 *rasterfile << "9\n# terminating special property\n"; 809 840 } else { 810 eLog() << Verbose(0) << "ERROR: Given rasterfile is " << rasterfile << "." << endl;841 DoeLog(1) && (eLog()<< Verbose(1) << "Given rasterfile is " << rasterfile << "." << endl); 811 842 } 812 843 IncludeSphereinRaster3D(rasterfile, Tess, cloud); … … 821 852 void WriteTecplotFile(ofstream * const tecplot, const Tesselation * const TesselStruct, const PointCloud * const cloud, const int N) 822 853 { 854 Info FunctionInfo(__func__); 823 855 if ((tecplot != NULL) && (TesselStruct != NULL)) { 824 856 // write header 825 857 *tecplot << "TITLE = \"3D CONVEX SHELL\"" << endl; 826 858 *tecplot << "VARIABLES = \"X\" \"Y\" \"Z\" \"U\"" << endl; 827 *tecplot << "ZONE T=\"" << N << "-"; 828 for (int i=0;i<3;i++) 829 *tecplot << (i==0 ? "" : "_") << TesselStruct->LastTriangle->endpoints[i]->node->Name; 859 *tecplot << "ZONE T=\""; 860 if (N < 0) { 861 *tecplot << cloud->GetName(); 862 } else { 863 *tecplot << N << "-"; 864 if (TesselStruct->LastTriangle != NULL) { 865 for (int i=0;i<3;i++) 866 *tecplot << (i==0 ? "" : "_") << TesselStruct->LastTriangle->endpoints[i]->node->Name; 867 } else { 868 *tecplot << "none"; 869 } 870 } 830 871 *tecplot << "\", N=" << TesselStruct->PointsOnBoundary.size() << ", E=" << TesselStruct->TrianglesOnBoundary.size() << ", DATAPACKING=POINT, ZONETYPE=FETRIANGLE" << endl; 831 int i=0; 832 for (cloud->GoToFirst(); !cloud->IsEnd(); cloud->GoToNext(), i++); 872 int i=cloud->GetMaxId(); 833 873 int *LookupList = new int[i]; 834 874 for (cloud->GoToFirst(), i=0; !cloud->IsEnd(); cloud->GoToNext(), i++) … … 836 876 837 877 // print atom coordinates 838 Log() << Verbose(2) << "The following triangles were created:";839 878 int Counter = 1; 840 879 TesselPoint *Walker = NULL; … … 846 885 *tecplot << endl; 847 886 // print connectivity 887 DoLog(1) && (Log() << Verbose(1) << "The following triangles were created:" << endl); 848 888 for (TriangleMap::const_iterator runner = TesselStruct->TrianglesOnBoundary.begin(); runner != TesselStruct->TrianglesOnBoundary.end(); runner++) { 849 Log() << Verbose(0) << " " << runner->second->endpoints[0]->node->Name << "<->" << runner->second->endpoints[1]->node->Name << "<->" << runner->second->endpoints[2]->node->Name;889 DoLog(1) && (Log() << Verbose(1) << " " << runner->second->endpoints[0]->node->Name << "<->" << runner->second->endpoints[1]->node->Name << "<->" << runner->second->endpoints[2]->node->Name << endl); 850 890 *tecplot << LookupList[runner->second->endpoints[0]->node->nr] << " " << LookupList[runner->second->endpoints[1]->node->nr] << " " << LookupList[runner->second->endpoints[2]->node->nr] << endl; 851 891 } 852 892 delete[] (LookupList); 853 Log() << Verbose(0) << endl;854 893 } 855 894 }; … … 862 901 void CalculateConcavityPerBoundaryPoint(const Tesselation * const TesselStruct) 863 902 { 903 Info FunctionInfo(__func__); 864 904 class BoundaryPointSet *point = NULL; 865 905 class BoundaryLineSet *line = NULL; 866 906 867 //Log() << Verbose(2) << "Begin of CalculateConcavityPerBoundaryPoint" << endl;868 907 // calculate remaining concavity 869 908 for (PointMap::const_iterator PointRunner = TesselStruct->PointsOnBoundary.begin(); PointRunner != TesselStruct->PointsOnBoundary.end(); PointRunner++) { 870 909 point = PointRunner->second; 871 Log() << Verbose(1) << "INFO: Current point is " << *point << "." << endl;910 DoLog(1) && (Log() << Verbose(1) << "INFO: Current point is " << *point << "." << endl); 872 911 point->value = 0; 873 912 for (LineMap::iterator LineRunner = point->lines.begin(); LineRunner != point->lines.end(); LineRunner++) { 874 913 line = LineRunner->second; 875 //Log() << Verbose( 2) << "INFO: Current line of point " << *point << " is " << *line << "." << endl;914 //Log() << Verbose(1) << "INFO: Current line of point " << *point << " is " << *line << "." << endl; 876 915 if (!line->CheckConvexityCriterion()) 877 916 point->value += 1; 878 917 } 879 918 } 880 //Log() << Verbose(2) << "End of CalculateConcavityPerBoundaryPoint" << endl;881 919 }; 882 920 … … 889 927 bool CheckListOfBaselines(const Tesselation * const TesselStruct) 890 928 { 929 Info FunctionInfo(__func__); 891 930 LineMap::const_iterator testline; 892 931 bool result = false; 893 932 int counter = 0; 894 933 895 Log() << Verbose(1) << "Check: List of Baselines with not two connected triangles:" << endl;934 DoLog(1) && (Log() << Verbose(1) << "Check: List of Baselines with not two connected triangles:" << endl); 896 935 for (testline = TesselStruct->LinesOnBoundary.begin(); testline != TesselStruct->LinesOnBoundary.end(); testline++) { 897 936 if (testline->second->triangles.size() != 2) { 898 Log() << Verbose(1) << *testline->second << "\t" << testline->second->triangles.size() << endl;937 DoLog(2) && (Log() << Verbose(2) << *testline->second << "\t" << testline->second->triangles.size() << endl); 899 938 counter++; 900 939 } 901 940 } 902 941 if (counter == 0) { 903 Log() << Verbose(1) << "None." << endl;942 DoLog(1) && (Log() << Verbose(1) << "None." << endl); 904 943 result = true; 905 944 } … … 907 946 } 908 947 948 /** Counts the number of triangle pairs that contain the given polygon. 949 * \param *P polygon with endpoints to look for 950 * \param *T set of triangles to create pairs from containing \a *P 951 */ 952 int CountTrianglePairContainingPolygon(const BoundaryPolygonSet * const P, const TriangleSet * const T) 953 { 954 Info FunctionInfo(__func__); 955 // check number of endpoints in *P 956 if (P->endpoints.size() != 4) { 957 DoeLog(1) && (eLog()<< Verbose(1) << "CountTrianglePairContainingPolygon works only on polygons with 4 nodes!" << endl); 958 return 0; 959 } 960 961 // check number of triangles in *T 962 if (T->size() < 2) { 963 DoeLog(1) && (eLog()<< Verbose(1) << "Not enough triangles to have pairs!" << endl); 964 return 0; 965 } 966 967 DoLog(0) && (Log() << Verbose(0) << "Polygon is " << *P << endl); 968 // create each pair, get the endpoints and check whether *P is contained. 969 int counter = 0; 970 PointSet Trianglenodes; 971 class BoundaryPolygonSet PairTrianglenodes; 972 for(TriangleSet::iterator Walker = T->begin(); Walker != T->end(); Walker++) { 973 for (int i=0;i<3;i++) 974 Trianglenodes.insert((*Walker)->endpoints[i]); 975 976 for(TriangleSet::iterator PairWalker = Walker; PairWalker != T->end(); PairWalker++) { 977 if (Walker != PairWalker) { // skip first 978 PairTrianglenodes.endpoints = Trianglenodes; 979 for (int i=0;i<3;i++) 980 PairTrianglenodes.endpoints.insert((*PairWalker)->endpoints[i]); 981 const int size = PairTrianglenodes.endpoints.size(); 982 if (size == 4) { 983 DoLog(0) && (Log() << Verbose(0) << " Current pair of triangles: " << **Walker << "," << **PairWalker << " with " << size << " distinct endpoints:" << PairTrianglenodes << endl); 984 // now check 985 if (PairTrianglenodes.ContainsPresentTupel(P)) { 986 counter++; 987 DoLog(0) && (Log() << Verbose(0) << " ACCEPT: Matches with " << *P << endl); 988 } else { 989 DoLog(0) && (Log() << Verbose(0) << " REJECT: No match with " << *P << endl); 990 } 991 } else { 992 DoLog(0) && (Log() << Verbose(0) << " REJECT: Less than four endpoints." << endl); 993 } 994 } 995 } 996 Trianglenodes.clear(); 997 } 998 return counter; 999 }; 1000 1001 /** Checks whether two give polygons have two or more points in common. 1002 * \param *P1 first polygon 1003 * \param *P2 second polygon 1004 * \return true - are connected, false = are note 1005 */ 1006 bool ArePolygonsEdgeConnected(const BoundaryPolygonSet * const P1, const BoundaryPolygonSet * const P2) 1007 { 1008 Info FunctionInfo(__func__); 1009 int counter = 0; 1010 for(PointSet::const_iterator Runner = P1->endpoints.begin(); Runner != P1->endpoints.end(); Runner++) { 1011 if (P2->ContainsBoundaryPoint((*Runner))) { 1012 counter++; 1013 DoLog(1) && (Log() << Verbose(1) << *(*Runner) << " of second polygon is found in the first one." << endl); 1014 return true; 1015 } 1016 } 1017 return false; 1018 }; 1019 1020 /** Combines second into the first and deletes the second. 1021 * \param *P1 first polygon, contains all nodes on return 1022 * \param *&P2 second polygon, is deleted. 1023 */ 1024 void CombinePolygons(BoundaryPolygonSet * const P1, BoundaryPolygonSet * &P2) 1025 { 1026 Info FunctionInfo(__func__); 1027 pair <PointSet::iterator, bool> Tester; 1028 for(PointSet::iterator Runner = P2->endpoints.begin(); Runner != P2->endpoints.end(); Runner++) { 1029 Tester = P1->endpoints.insert((*Runner)); 1030 if (Tester.second) 1031 DoLog(0) && (Log() << Verbose(0) << "Inserting endpoint " << *(*Runner) << " into first polygon." << endl); 1032 } 1033 P2->endpoints.clear(); 1034 delete(P2); 1035 }; 1036
Note:
See TracChangeset
for help on using the changeset viewer.