source: util/src/NanoCreator.c@ 59b70a

Last change on this file since 59b70a was ef87ee, checked in by Frederik Heber <heber@…>, 16 years ago

Added versioning to each executable.

  • credits to Ralf Wildenhues for writing the Makefile.am code
  • version.c section added to Makefile.am (pcp, molecuilder and util)
  • src/version.h to each pcp, molecuilder and util
  • each of the executables includes version.h and prints version in main()

Signed-off-by: Frederik Heber <heber@…>

  • Property mode set to 100644
File size: 64.1 KB
Line 
1#include <stdlib.h>
2#include <stdio.h>
3#include <string.h>
4#include <math.h>
5#include <time.h>
6
7#include <gsl/gsl_matrix.h>
8#include <gsl/gsl_vector.h>
9#include <gsl/gsl_eigen.h>
10#include <gsl/gsl_blas.h>
11
12#include "NanoCreator.h"
13#include "version.h"
14
15
16// ---------------------------------- F U N C T I O N S ----------------------------------------------
17
18// ================================= File functions ==============================
19
20#define LINE_SIZE 80
21#define NDIM 3
22
23/** Allocs memory and prints a message on fail.
24 * \param *size size of alloc in bytes
25 * \param *msg error msg
26 * \return pointer to allocated memory
27 */
28void * Malloc (size_t size, const char *msg)
29{
30 void *ptr = malloc(size);
31 if (ptr == NULL) {
32 if (msg == NULL)
33 fprintf(stdout, "ERROR: Malloc\n");
34 else
35 fprintf(stdout, "ERROR: Malloc - %s\n", msg);
36 return NULL;
37 } else {
38 return ptr;
39 }
40}
41
42/** Callocs memory and prints a message on fail.
43 * \param *size size of alloc in bytes
44 * \param *value pointer to initial value
45 * \param *msg error msg
46 * \return pointer to allocated memory
47 */
48void * Calloc (size_t size, double value, const char *msg)
49{
50 void *ptr = calloc(size, value);
51 if (ptr == NULL) {
52 if (msg == NULL)
53 fprintf(stdout, "ERROR: Calloc\n");
54 else
55 fprintf(stdout, "ERROR: Calloc - %s\n", msg);
56 return NULL;
57 } else {
58 return ptr;
59 }
60}
61
62/** Frees memory only if ptr != NULL.
63 * \param *ptr pointer to array
64 * \param *msg
65 */
66void Free(void * ptr, const char *msg)
67{
68 if (ptr != NULL)
69 free(ptr);
70 else {
71 if (msg == NULL)
72 fprintf(stdout, "ERROR: Free\n");
73 else
74 fprintf(stdout, "ERROR: Free - %s\n", msg);
75 }
76}
77
78/** Allocs memory and prints a message on fail.
79 * \param **old_ptr pointer to old memory range
80 * \param *newsize new size of alloc in bytes
81 * \param *msg error msg
82 * \return pointer to allocated memory
83 */
84void * Realloc (void *old_ptr, size_t newsize, const char *msg)
85{
86 if (old_ptr == NULL) {
87 fprintf(stdout, "ERROR: Realloc - old_ptr NULL\n");
88 exit(255);
89 }
90 void *ptr = realloc(old_ptr, newsize);
91 if (ptr == NULL) {
92 if (msg == NULL)
93 fprintf(stdout, "ERROR: Realloc\n");
94 else
95 fprintf(stdout, "ERROR: Realloc - %s\n", msg);
96 return NULL;
97 } else {
98 return ptr;
99 }
100}
101
102/** Reads a file's contents into a char buffer of appropiate size.
103 * \param *filename name of file
104 * \param pointer to integer holding read/allocated buffer length
105 * \return pointer to allocated segment with contents
106 */
107char * ReadBuffer (char *filename, int *bufferlength)
108{
109 if ((filename == NULL) || (bufferlength == NULL)) {
110 fprintf(stderr, "ERROR: ReadBuffer - ptr to filename or bufferlength NULL\n");
111 exit(255);
112 }
113 char *buffer = Malloc(sizeof(char)*LINE_SIZE, "ReadBuffer: buffer");
114 int i = 0, number;
115 FILE *file = fopen(filename, "r");
116 if (file == NULL) {
117 fprintf(stderr, "File open error: %s", filename);
118 exit(255);
119 }
120 while ((number = fread(&buffer[i], sizeof(char), LINE_SIZE, file)) == LINE_SIZE) {
121 //fprintf(stdout, "%s", &buffer[i]);
122 i+= LINE_SIZE;
123 buffer = (char *) Realloc(buffer, i+LINE_SIZE, "ReadBuffer: buffer");
124 }
125 fclose(file);
126 fprintf(stdout, "Buffer length is %i\n", i);
127 *bufferlength = i+(number);
128 return buffer;
129}
130
131/** Extracts next line out of a buffer.
132 * \param *buffer buffer to parse for newline
133 * \param *line contains complete line on return
134 * \return length of line, 0 if end of file
135 */
136int GetNextline(char *buffer, char *line)
137{
138 if ((buffer == NULL) || (line == NULL)) {
139 fprintf(stderr, "ERROR: GetNextline - ptr to buffer or line NULL\n");
140 exit(255);
141 }
142 int length;
143 char *ptr = strchr(buffer, '\n');
144 //fprintf(stdout, "Newline at %p from %p\n", ptr, buffer);
145 if (ptr == NULL) { // buffer ends
146 return 0;
147 } else {
148 //fprintf(stdout, "length of line is %d\n", length);
149 length = (int)(ptr - buffer)/sizeof(char);
150 strncpy(line, buffer, length);
151 line[length]='\0';
152 return length+1;
153 }
154}
155
156/** Adds commentary stuff (needed for further stages) to Cell xyz files.
157 * \param *filename file name
158 * \param atomicnumner number of atoms in xyz
159 * \param **Vector list of three unit cell vectors
160 * \param **Recivector list of three reciprocal unit cell vectors
161 * \param atomicnumber number of atoms in cell
162 */
163void AddAtomicNumber(char *filename, int atomicnumber, double **Vector, double **Recivector)
164{
165 if ((filename == NULL) || (Vector == NULL) || (Recivector == NULL)) {
166 fprintf(stdout, "ERROR: AddAtomicNumber - ptr to filename, Vector or Recivector NULL\n");
167 exit(255);
168 }
169 int bufferlength;
170 char *buffer = ReadBuffer(filename, &bufferlength);
171 FILE *file2 = fopen(filename, "w+");
172 if (file2 == NULL) {
173 fprintf(stdout, "ERROR: AddAtomicNumber: %s can't open for writing\n", filename);
174 exit(255);
175 }
176 double volume = Determinant(Vector);
177 time_t now;
178
179 now = time((time_t *)NULL); // Get the system time and put it into 'now' as 'calender time'
180 // open for writing and prepend
181 fprintf(file2,"%d\n", atomicnumber); // 2
182 fprintf(file2,"\tgenerated with Nanotube creator on %s", ctime(&now));
183 fwrite(buffer, sizeof(char), bufferlength, file2); // append buffer
184
185 // Add primitive vectors as comment
186 fprintf(file2,"\n****************************************\n\n");
187 fprintf(file2,"Primitive vectors\n");
188 fprintf(file2,"a(1) = %f\t%f\t%f\n", Vector[0][0], Vector[0][1], Vector[0][2]);
189 fprintf(file2,"a(2) = %f\t%f\t%f\n", Vector[1][0], Vector[1][1], Vector[1][2]);
190 fprintf(file2,"a(3) = %f\t%f\t%f\n", Vector[2][0], Vector[2][1], Vector[2][2]);
191 fprintf(file2,"\nVolume = %f", volume);
192 fprintf(file2,"\nReciprocal Vectors\n");
193 fprintf(file2,"b(1) = %f\t%f\t%f\n", Recivector[0][0], Recivector[0][1], Recivector[0][2]);
194 fprintf(file2,"b(2) = %f\t%f\t%f\n", Recivector[1][0], Recivector[1][1], Recivector[1][2]);
195 fprintf(file2,"b(3) = %f\t%f\t%f\n", Recivector[2][0], Recivector[2][1], Recivector[2][2]);
196
197 fclose(file2); // close file
198 Free(buffer, "AddAtomicNumber: buffer");
199}
200
201/** Adds commentary stuff (needed for further stages) to Sheet xyz files.
202 * \param *filename file name
203 * \param *axis array with major, minor and no axis
204 * \param *chiral pointer to array with both chiral values
205 * \param *factors pointer to array with length and radius factor
206 * \param seed random number seed
207 * \param numbercell number of atoms in unit cell, needed as length of \a *randomness
208 * \param *randomness for each atom in unit cell a factor between 0..1, giving its probability of appearance
209 */
210void AddSheetInfo(char *filename, int *axis, int *chiral, int *factors, int seed, int numbercell, double *randomness)
211{
212 int i;
213 if ((filename == NULL) || (axis == NULL) || (chiral == NULL) || (factors == NULL)) {
214 fprintf(stdout, "ERROR: AddSheetInfo - ptr to filename, axis, chiral or factors NULL\n");
215 exit(255);
216 }
217 // open for writing and append
218 FILE *file2 = fopen(filename,"a");
219 if (file2 == NULL) {
220 fprintf(stderr, "ERROR: AddSheetInfo - can't open %s for appending\n", filename);
221 exit(255);
222 }
223 // Add primitive vectors as comment
224 fprintf(file2,"\n****************************************\n\n");
225 fprintf(file2,"Axis %d\t%d\t%d\n", axis[0], axis[1], axis[2]);
226 fprintf(file2,"(n,m) %d\t%d\n", chiral[0], chiral[1]);
227 fprintf(file2,"factors %d\t%d\n", factors[0], factors[1]);
228 fprintf(file2,"seed %d\n", seed);
229 fprintf(file2,"\nRandomness\n");
230 for (i=0; i<numbercell; i++) {
231 fprintf(file2,"%d %g\n", i, randomness[i]);
232 }
233 fclose(file2);
234}
235
236
237// ================================= Vector functions ==============================
238
239/** Transforms a vector b with a matrix A: Ab = x.
240 * \param **matrixref reference to NDIMxNDIM matrix A
241 * \param *vectorref reference to NDIM vector b
242 * \return reference to resulting NDIM vector Ab = x
243 */
244double *MatrixTrafo(double **matrixref, double *vectorref)
245{
246 if ((matrixref == NULL) || (vectorref == NULL)) {
247 fprintf(stderr, "ERROR: MatrixTrafo: ptr to matrixref or vectorref NULL\n");
248 exit(255);
249 }
250 //double *returnvector = Calloc(sizeof(double)*NDIM, 0., "MatrixTrafo: returnvector");
251 double *returnvector = calloc(sizeof(double)*NDIM, 0.);
252 if (returnvector == NULL) {
253 fprintf(stderr, "ERROR: MatrixTrafo - returnvector\n");
254 exit(255);
255 }
256 int i,j;
257
258 for (i=0;i<NDIM;i++)
259 for (j=0;j<NDIM;j++)
260 returnvector[j] += matrixref[i][j] * vectorref[i];
261
262 return returnvector;
263}
264double *MatrixTrafoInverse(double *vectorref, double **matrixref)
265{
266 if ((matrixref == NULL) || (vectorref == NULL)) {
267 fprintf(stderr, "ERROR: MatrixTrafo: ptr to matrixref or vectorref NULL\n");
268 exit(255);
269 }
270 //double *returnvector = Calloc(sizeof(double)*NDIM, 0., "MatrixTrafo: returnvector");
271 double *returnvector = calloc(sizeof(double)*NDIM, 0.);
272 if (returnvector == NULL) {
273 fprintf(stderr, "ERROR: MatrixTrafo - returnvector\n");
274 exit(255);
275 }
276 int i,j;
277
278 for (i=0;i<NDIM;i++)
279 for (j=0;j<NDIM;j++)
280 returnvector[i] += matrixref[i][j] * vectorref[j];
281
282 return returnvector;
283}
284
285/** Inverts a NDIMxNDIM matrix.
286 * \param **matrix to be inverted
287 * \param **inverse allocated space for inverse of \a **matrix
288 */
289void MatrixInversion(double **matrix, double **inverse)
290{
291 if ((matrix == NULL) || (inverse == NULL)) {
292 fprintf(stderr, "ERROR: MatrixInversion: ptr to matrix or inverse NULL\n");
293 exit(255);
294 }
295 // determine inverse
296 double det = Determinant(matrix);
297 inverse[0][0] = (matrix[1][1]*matrix[2][2] - matrix[1][2]*matrix[2][1])/det;
298 inverse[1][0] = (matrix[0][2]*matrix[2][1] - matrix[0][1]*matrix[2][2])/det;
299 inverse[2][0] = (matrix[0][1]*matrix[1][2] - matrix[0][2]*matrix[1][1])/det;
300 inverse[0][1] = (matrix[1][2]*matrix[2][0] - matrix[1][0]*matrix[2][2])/det;
301 inverse[1][1] = (matrix[0][0]*matrix[2][2] - matrix[0][2]*matrix[2][0])/det;
302 inverse[2][1] = (matrix[0][2]*matrix[1][0] - matrix[0][0]*matrix[1][2])/det;
303 inverse[0][2] = (matrix[1][0]*matrix[2][1] - matrix[1][1]*matrix[2][0])/det;
304 inverse[1][2] = (matrix[0][1]*matrix[2][0] - matrix[0][0]*matrix[2][1])/det;
305 inverse[2][2] = (matrix[0][0]*matrix[1][1] - matrix[0][1]*matrix[1][0])/det;
306
307 // check inverse
308 int flag = 0;
309 int i,j,k;
310 double tmp;
311 fprintf(stdout, "Checking inverse ... ");
312 for (i=0;i<NDIM;i++)
313 for (j=0;j<NDIM;j++) {
314 tmp = 0.;
315 for (k=0;k<NDIM;k++)
316 tmp += matrix[i][k]*inverse[j][k];
317 if (!flag) {
318 if (i == j) {
319 flag = (fabs(1.-tmp) > MYEPSILON) ? 1 : 0;
320 } else {
321 flag = (fabs(tmp) > MYEPSILON) ? 1 : 0;
322 }
323 }
324 }
325 if (!flag)
326 fprintf(stdout, "ok\n");
327 else
328 fprintf(stdout, "false\n");
329}
330
331/** Flips to double numbers in place.
332 * \param *number1 pointer to first double
333 * \param *number2 pointer to second double
334 */
335void flip(double *number1, double *number2)
336{
337 if ((number1 == NULL) || (number2 == NULL)) {
338 fprintf(stderr, "ERROR: flip: ptr to number1 or number2 NULL\n");
339 exit(255);
340 }
341 double tmp = *number1;
342 *number1 = *number2;
343 *number2 = tmp;
344}
345
346/** Transposes a matrix.
347 * \param **matrix pointer to NDIMxNDIM-matrix array
348 */
349void Transpose(double **matrix)
350{
351 if (matrix == NULL) {
352 fprintf(stderr, "ERROR: Transpose: ptr to matrix NULL\n");
353 exit(255);
354 }
355 int i,j;
356 for (i=0;i<NDIM;i++)
357 for (j=0;j<i;j++)
358 flip(&matrix[i][j],&matrix[j][i]);
359}
360
361
362/** Computes the determinant of a NDIMxNDIM matrix.
363 * \param **matrix pointer to matrix array
364 * \return det(matrix)
365 */
366double Determinant(double **matrix) {
367 if (matrix == NULL) {
368 fprintf(stderr, "ERROR: Determinant: ptr to Determinant NULL\n");
369 exit(255);
370 }
371 double det = matrix[0][0] * (matrix[1][1]*matrix[2][2] - matrix[1][2]*matrix[2][1])
372 - matrix[1][1] * (matrix[0][0]*matrix[2][2] - matrix[0][2]*matrix[2][0])
373 + matrix[2][2] * (matrix[0][0]*matrix[1][1] - matrix[0][1]*matrix[1][0]);
374 return det;
375}
376
377/** Adds \a *vector1 onto \a *vector2 coefficient-wise.
378 * \param *vector1 first vector, on return contains sum
379 * \param *vector2 vector which is projected
380 * \return sum of the two vectors
381 */
382double * VectorAdd(double *vector1, double *vector2)
383{
384 if ((vector1 == NULL) || (vector2 == NULL)) {
385 fprintf(stderr, "ERROR: VectorAdd: ptr to vector1 or vector2 NULL\n");
386 exit(255);
387 }
388 //double *returnvector = Calloc(sizeof(double)*NDIM, 0., "VectorAdd: returnvector");
389 double *returnvector = calloc(sizeof(double)*NDIM, 0.);
390 if (returnvector == NULL) {
391 fprintf(stderr, "ERROR: VectorAdd - returnvector\n");
392 exit(255);
393 }
394 int i;
395
396 for (i=0;i<NDIM;i++)
397 returnvector[i] = vector1[i] + vector2[i];
398
399 return returnvector;
400}
401
402/** Fixed GramSchmidt-Orthogonalization for NDIM vectors
403 * \param @orthvector reference to NDIMxNDIM matrix
404 * \param @orthbetrag reference to NDIM vector with vector magnitudes
405 * \param @axis major-, minor- and noaxis for specific order for the GramSchmidt procedure
406 */
407void Orthogonalize(double **orthvector, int *axis)
408{
409 if ((orthvector == NULL) || (axis == NULL)) {
410 fprintf(stderr, "ERROR: Orthogonalize: ptr to orthvector or axis NULL\n");
411 exit(255);
412 }
413 double betrag;
414 int i;
415
416 // first vector is untouched
417 // second vector
418 betrag = Projection(orthvector[axis[1]], orthvector[axis[0]]);
419 fprintf(stdout,"%lg\t",betrag);
420 for (i=0;i<NDIM;i++)
421 orthvector[axis[1]][i] -= orthvector[axis[0]][i] * betrag;
422 // third vector
423 betrag = Projection(orthvector[axis[0]], orthvector[axis[2]]);
424 fprintf(stdout,"%lg\t",betrag);
425 for (i=0;i<NDIM;i++)
426 orthvector[axis[2]][i] -= orthvector[axis[0]][i] * betrag;
427 betrag = Projection(orthvector[axis[1]], orthvector[axis[2]]);
428 fprintf(stdout,"%lg\n",betrag);
429 for (i=0;i<NDIM;i++)
430 orthvector[axis[2]][i] -= orthvector[axis[1]][i] * betrag;
431}
432
433/** Computes projection of \a *vector2 onto \a *vector1.
434 * \param *vector1 reference vector
435 * \param *vector2 vector which is projected
436 * \return projection
437 */
438double Projection(double *vector1, double *vector2)
439{
440 if ((vector1 == NULL) || (vector2 == NULL)) {
441 fprintf(stderr, "ERROR: Projection: ptr to vector1 or vector2 NULL\n");
442 exit(255);
443 }
444 return (ScalarProduct(vector1, vector2)/Norm(vector1)/Norm(vector2));
445}
446
447/** Determine scalar product between two vectors.
448 * \param *vector1 first vector
449 * \param *vector2 second vector
450 * \return scalar product
451 */
452double ScalarProduct(double *vector1, double *vector2)
453{
454 if ((vector1 == NULL) || (vector2 == NULL)) {
455 fprintf(stderr, "ERROR: ScalarProduct: ptr to vector1 or vector2 NULL\n");
456 exit(255);
457 }
458 double scp = 0.;
459 int i;
460
461 for (i=0;i<NDIM;i++)
462 scp += vector1[i] * vector2[i];
463
464 return scp;
465}
466
467/** Computes norm of \a *vector.
468 * \param *vector pointer to NDIM vector
469 * \return norm of \a *vector
470 */
471double Norm(double *vector)
472{
473 if (vector == NULL) {
474 fprintf(stderr, "ERROR: Norm: ptr to vector NULL\n");
475 exit(255);
476 }
477 return sqrt(ScalarProduct(vector, vector));
478}
479
480/** Prints vector to \a *file.
481 * \param *file file or e.g. stdout
482 * \param *vector vector to be printed
483 */
484void PrintVector(FILE *file, double *vector)
485{
486 if ((file == NULL) || (vector == NULL)) {
487 fprintf(stderr, "ERROR: PrintVector: ptr to file or vector NULL\n");
488 exit(255);
489 }
490 int i;
491 for (i=0;i<NDIM;i++)
492 fprintf(file, "%5.5f\t", vector[i]);
493 fprintf(file, "\n");
494}
495
496/** Prints matrix to \a *file.
497 * \param *file file or e.g. stdout
498 * \param **matrix matrix to be printed
499 */
500void PrintMatrix(FILE *file, double **matrix)
501{
502 if ((file == NULL) || (matrix == NULL)) {
503 fprintf(stderr, "ERROR: PrintMatrix: ptr to file or matrix NULL\n");
504 exit(255);
505 }
506 int i,j;
507 for (i=0;i<NDIM;i++) {
508 for (j=0;j<NDIM;j++)
509 fprintf(file, "%5.5f\t", matrix[i][j]);
510 fprintf(file, "\n");
511 }
512}
513
514/** Returns greatest common denominator.
515 * \param a first integer
516 * \param b second integer
517 * \return GCD of a and b
518 */
519int GCD(int a, int b)
520{
521 int c;
522 do {
523 c = a % b; /* Rest of integer divison */
524 a = b; b = c; /* flip the two values */
525 } while( c != 0);
526 return a;
527}
528
529/** Determines the biggest diameter of a sheet.
530 * \param **matrix reference to NDIMxNDIM matrix with row vectors
531 * \param *axis reference to NDIM vector with permutation of axis indices [0,1,2]
532 * \param *factors factorsfor axis[0] and axis[1]
533 * \return biggest diameter of sheet
534*/
535double DetermineBiggestDiameter(double **matrix, int *axis, int *factors)
536{
537 if ((axis == NULL) || (factors == NULL) || (matrix == NULL)) {
538 fprintf(stderr, "ERROR: DetermineBiggestDiameter: ptr to factors, axis or matrix NULL\n");
539 exit(255);
540 }
541 double diameter[2] = {0.,0.};
542 int i, biggest;
543
544 for (i=0;i<NDIM;i++) {
545 diameter[0] += (matrix[axis[0]][i]*factors[0] - matrix[axis[1]][i]*factors[1]) * (matrix[axis[0]][i]*factors[0] - matrix[axis[1]][i]*factors[1]);
546 diameter[1] += (matrix[axis[0]][i]*factors[0] + matrix[axis[1]][i]*factors[1]) * (matrix[axis[0]][i]*factors[0] + matrix[axis[1]][i]*factors[1]);
547 }
548 if ((diameter[0] - diameter[1]) > MYEPSILON) {
549 biggest = 0;
550 } else {
551 biggest = 1;
552 }
553 diameter[0] = sqrt(diameter[0]);
554 diameter[1] = sqrt(diameter[1]);
555 fprintf(stdout, "\n\nMajor diameter of the sheet is %5.5f, minor diameter is %5.5f.\n",diameter[biggest],diameter[(biggest+1)%2]);
556
557 return diameter[biggest];
558}
559
560/** Determines the center of gravity of atoms in a buffer \a bufptr with given \a number
561 * \param *bufptr pointer to char buffer with atoms in (name x y z)-manner
562 * \param number number of atoms/lines to scan
563 * \return NDIM vector (allocated doubles) pointing back to center of gravity
564 */
565double * CenterOfGravity(char *bufptr, int number)
566{
567 if (bufptr == NULL) {
568 fprintf(stderr, "ERROR: CenterOfGravity - bufptr NULL\n");
569 exit(255);
570 }
571 double *cog = calloc(sizeof(double)*NDIM, 0.);
572 if (cog == NULL) {
573 fprintf(stderr, "ERROR: CenterOfGravity - cog\n");
574 exit(255);
575 }
576 double *atom = Malloc(sizeof(double)*NDIM, "CenterOfGravity: atom");
577 char name[255], line[255];
578 int i,j;
579
580 // Determine center of gravity
581 for (i=0;i<number;i++) {
582 bufptr += GetNextline(bufptr, line);
583 sscanf(line, "%s %lg %lg %lg", name, &atom[0], &atom[1], &atom[2]);
584 //fprintf(stdout, "Read Atom %s %lg %lg %lg\n", name, atom[0], atom[1], atom[2]);
585 for (j=0;j<NDIM;j++)
586 cog[j] += atom[j];
587 }
588 for (i=0;i<NDIM;i++)
589 cog[i] /= -number;
590
591 Free(atom, "CenterOfGravity: atom");
592 return cog;
593}
594
595/** Creates orthogonal vectors to directions axis[0] and axis[1], assuming that axis[2] is always orthogonal.
596 * \param **OrthoVector contains vectors set on return with axis[2] equal to Vector[axis[2]]
597 * \param **Vector vectors to orthogonalize against
598 * \param *axis lookup for which direction is which.
599 */
600void CreateOrthogonalAxisVectors(double **OrthoVector, double **Vector, int *axis) {
601 int i,j;
602 double factor;
603 // allocate memory
604 int *TempAxis = (int *) Malloc(sizeof(int)*NDIM, "Main: *TempAxis");
605 double **TempVectors = (double **) Malloc(sizeof(double *)*NDIM, "Main: *TempVectors");
606 for (i=0; i<NDIM; i++)
607 TempVectors[i] = (double *) Malloc(sizeof(double)*NDIM, "Main: TempVectors");
608
609 for (i=0; i<NDIM; i++)
610 for (j=0; j<NDIM; j++)
611 TempVectors[i][j] = Vector[i][j];
612 // GramSchmidt generates Vector[1] orthogonal to Vector[0] and Vector[2] ortho. to Vector[1] and Vector[0]!
613 TempAxis[0] = axis[2]; // (axis 2 is the orthogonal plane axis)
614 TempAxis[1] = axis[0];
615 TempAxis[2] = axis[1];
616 Orthogonalize(TempVectors, TempAxis);
617 factor = Norm(Vector[axis[0]])/Norm(TempVectors[TempAxis[2]]);
618 factor *= (Projection(TempVectors[TempAxis[2]], Vector[axis[0]]) > 0) ? 1. : -1.;
619 for (i=0; i<NDIM; i++)
620 OrthoVector[axis[0]][i] = TempVectors[TempAxis[2]][i]*factor;
621
622 TempAxis[1] = axis[1];
623 TempAxis[2] = axis[0];
624 for (i=0; i<NDIM; i++)
625 for (j=0; j<NDIM; j++)
626 TempVectors[i][j] = Vector[i][j];
627 Orthogonalize(TempVectors, TempAxis);
628 factor = Norm(Vector[axis[1]])/Norm(TempVectors[TempAxis[2]]);
629 factor *= (Projection(TempVectors[TempAxis[2]], Vector[axis[1]]) > 0) ? 1. : -1.;
630 for (i=0; i<NDIM; i++)
631 OrthoVector[axis[1]][i] = TempVectors[TempAxis[2]][i]*factor;
632
633 for (i=0; i<NDIM; i++)
634 OrthoVector[axis[2]][i] = Vector[axis[2]][i];
635 //print vectors
636 fprintf(stdout, "Orthogonal vectors are: \n");
637 for (i=0; i<NDIM; i++) {
638 for (j=0; j<NDIM; j++)
639 fprintf(stdout, "%lg\t", OrthoVector[axis[i]][j]);
640 fprintf(stdout, "\n");
641 }
642
643 // free memory
644 Free(TempAxis, "CreateOrthogonalAxisVectors: *TempAxis");
645 for (i=0; i<NDIM; i++ )
646 Free(TempVectors[i], "CreateOrthogonalAxisVectors: TempVectors");
647 Free(TempVectors, "CreateOrthogonalAxisVectors: *TempVectors");
648};
649
650// ================================= other functions ==============================
651
652/** Prints a debug message.
653 * \param *msg debug message
654 */
655void Debug(char *msg)
656{
657 if (msg == NULL) {
658 fprintf(stderr, "ERROR: Debug: ptr to msg NULL\n");
659 exit(255);
660 }
661 fprintf(stdout, "%s", msg);
662}
663
664
665// --------------------------------------- M A I N ---------------------------------------------------
666int main(int argc, char **argv) {
667 char *filename = NULL;
668 char *CellFilename = NULL, *SheetFilename = NULL, *TubeFilename = NULL, *TorusFilename = NULL;
669 char *SheetFilenameAligned = NULL, *TubeFilenameAligned = NULL;
670 double **Vector, **OrthoVector, **Recivector = NULL, **Tubevector = NULL, **TubevectorInverse = NULL;
671 double *atom = NULL, *atom_transformed = NULL;
672 double *x = NULL, *coord = NULL, *tempvector = NULL, *offset = NULL;
673 //double *cog = NULL, *cog_projected = NULL;
674 char stage[6];
675 int axis[NDIM] = {0,1,2}, chiral[2] = {1,1}, factors[NDIM] = {1,1,1};
676 char name[255], line[255], input = 'n';
677 char *CellBuffer = NULL, *SheetBuffer = NULL, *TubeBuffer = NULL, *bufptr = NULL;
678 double *randomness = NULL, percentage; // array with percentages for presence in sheet and beyond
679 int i,j, ggT;
680 int length;
681
682 fprintf(stdout, "%s\n", ESPACKVersion);
683
684 // Read command line arguments
685 if (argc <= 2) {
686 fprintf(stdout, "Usage: %s <file> <stage>\n\tWhere <file> specifies a file to start from <stage> or a basename\n\t<stage> is either None, Cell, Sheet, Tube, Torus and specifies where to start the rolling up from.\n\tNote: The .Aligned. files can't be used (rotation is essential).\n", argv[0]);
687 exit(255);
688 } else {
689 // store variables
690 filename = argv[1];
691 strncpy(stage, argv[2], 5);
692 fprintf(stdout, "I will begin at stage %s.\n", stage);
693
694 // build filenames
695 char *ptr = strrchr(filename, '.');
696 if (ptr == NULL) {
697 ptr = filename;
698 } else {
699 length = strlen(filename);
700 if (ptr != NULL) {
701 length = ((int)(ptr-filename) >= length-5) ? (int)(ptr-filename) : length;
702 filename[length] = '\0'; // eventueller
703 }
704 }
705 fprintf(stdout, "I will use \'%s' as base for the filenames.\n\n", filename);
706 CellFilename = Malloc(sizeof(char)*(length+10), "Main: CellFilename");
707 SheetFilename = Malloc(sizeof(char)*(length+11), "Main: SheetFilename");
708 TubeFilename = Malloc(sizeof(char)*(length+10), "Main: TubeFilename");
709 TorusFilename = Malloc(sizeof(char)*(length+11), "Main: TorusFilename");
710 SheetFilenameAligned = Malloc(sizeof(char)*(length+20), "Main: SheetFilenameAligned");
711 TubeFilenameAligned = Malloc(sizeof(char)*(length+19), "Main: TubeFilenameAligned");
712 sprintf(CellFilename, "%s.Cell.xyz", filename);
713 sprintf(SheetFilename, "%s.Sheet.xyz", filename);
714 sprintf(TubeFilename, "%s.Tube.xyz", filename);
715 sprintf(TorusFilename, "%s.Torus.xyz", filename);
716 sprintf(SheetFilenameAligned, "%s.Sheet.Aligned.xyz", filename);
717 sprintf(TubeFilenameAligned, "%s.Tube.Aligned.xyz", filename);
718 }
719
720 // Allocating memory
721 Debug ("Allocating memory\n");
722 atom = (double *) Malloc(sizeof(double)*NDIM, "Main: atom");
723 Vector = (double **) Malloc(sizeof(double *)*NDIM, "Main: *Vector");
724 OrthoVector = (double **) Malloc(sizeof(double *)*NDIM, "Main: *OrthoVector");
725 Recivector = (double **) Malloc(sizeof(double *)*NDIM, "Main: *Recivector");
726 Tubevector = (double **) Malloc(sizeof(double *)*NDIM, "Main: *Tubevector");
727 TubevectorInverse = (double **) Malloc(sizeof(double *)*NDIM, "Main: *TubevectorInverse");
728 for (i=0; i<NDIM; i++ ) {
729 Vector[i] = (double *) Malloc(sizeof(double)*NDIM, "Main: Vector");
730 OrthoVector[i] = (double *) Malloc(sizeof(double)*NDIM, "Main: OrthoVector");
731 Recivector[i] = (double *) Malloc(sizeof(double)*NDIM, "Main: Recivector");
732 Tubevector[i] = (double *) Malloc(sizeof(double)*NDIM, "Main: Tubevector");
733 TubevectorInverse[i] = (double *) Malloc(sizeof(double)*NDIM, "Main: TubevectorInverse");
734 }
735
736 // ======================== STAGE: Cell ==============================
737 // The cell is simply created by transforming relative coordinates within the cell
738 // into cartesian ones using the unit cell vectors.
739
740 double volume;
741 int numbercell;
742 FILE *CellFile;
743
744 Debug ("STAGE: None\n");
745 // Read cell vectors from stdin or from file
746 if (!strncmp(stage, "Non", 3)) {
747 fprintf(stdout, "You will give the unit cell of the given substance.\nAfterwards, the programme will create a Sheet, a Tube and a Torus, each with their own xyz-file named accordingly.\n\n");
748 fprintf(stdout, "Enter 1st primitive vector: ");
749 fscanf(stdin, "%lg %lg %lg", &Vector[0][0], &Vector[0][1], &Vector[0][2]);
750 fprintf(stdout, "Enter 2nd primitive vector: ");
751 fscanf(stdin, "%lg %lg %lg", &Vector[1][0], &Vector[1][1], &Vector[1][2]);
752 fprintf(stdout, "Enter 3rd primitive vector: ");
753 fscanf(stdin, "%lg %lg %lg", &Vector[2][0], &Vector[2][1], &Vector[2][2]);
754 fprintf(stdout,"Unit vectors are\n");
755 PrintMatrix(stdout, Vector);
756 } else {
757 char *ptr = NULL;
758 char dummy[10];
759 CellBuffer = bufptr = ReadBuffer(CellFilename, &length);
760 for (i=0;i<NDIM;i++) {
761 sprintf(dummy, "a(%i) = ", i+1);
762 fprintf(stdout, "%s", dummy);
763 while ((length = GetNextline(bufptr, line)) != -1) {
764 bufptr += (length)*sizeof(char);
765 //fprintf(stdout, "LINE at %p: %s\n", bufptr, line);
766 if ((ptr = strstr(line, dummy)) != NULL)
767 break;
768 }
769 ptr += strlen(dummy);
770 sscanf(ptr, "%lg %lg %lg", &Vector[i][0], &Vector[i][1], &Vector[i][2]);
771 fprintf(stdout, "%5.5lg %5.5lg %5.5lg\n", Vector[i][0], Vector[i][1], Vector[i][2]);
772 }
773 }
774
775 volume = Determinant(Vector);
776 fprintf(stdout,"Volume is %lg\n", volume);
777 MatrixInversion(Vector, Recivector);
778 //Transpose(Recivector); // inverse's got row vectors if normal matrix' got column ones
779 fprintf(stdout, "Reciprocal vector is ");
780 PrintMatrix(stdout, Recivector);
781 fprintf(stdout, "Reciprocal volume is %lg\n", Determinant(Recivector));
782
783 fprintf(stdout, "Vector magnitudes: %5.5lg %5.5lg %5.5lg\n", Norm(Vector[0]), Norm(Vector[1]), Norm(Vector[2]));
784
785 Debug ("STAGE: Cell\n");
786 if (!strncmp(stage, "Non", 3)) {
787 fprintf(stdout, "\nHow many atoms are in the unit cell: ");
788 fscanf(stdin, "%i", &numbercell);
789 CellFile = fopen(CellFilename, "w");
790 if (CellFile == NULL) {
791 fprintf(stderr, "ERROR: main - can't open %s for writing\n", CellFilename);
792 exit(255);
793 }
794 fprintf(stdout, "\nNext, you have to enter each atom in the cell as follows, e.g.\n");
795 fprintf(stdout, "Enter \'ChemicalSymbol X Y Z\' (relative to primitive vectors): C 0.5 0.25 0.5\n\n");
796 for (i = 0; i < numbercell; i++) {
797 fprintf(stdout, "Enter for atom %i \'ChemicalSymbol X Y Z\': ", i+1);
798 fscanf(stdin, "%s %lg %lg %lg", name, &atom[0], &atom[1], &atom[2]);
799 tempvector = MatrixTrafo(Vector, atom);
800 fprintf(stdout, "Atom %i: %s %5.5lg %5.5lg %5.5lg\n", i, name, tempvector[0], tempvector[1], tempvector[2]);
801 fprintf(stdout, "Probe: %s %5.5lg %5.5lg %5.5lg\n", name,
802 atom[0]*Vector[0][0]+atom[1]*Vector[1][0]+atom[2]*Vector[2][0],
803 atom[0]*Vector[0][1]+atom[1]*Vector[1][1]+atom[2]*Vector[2][1],
804 atom[0]*Vector[0][2]+atom[1]*Vector[1][2]+atom[2]*Vector[2][2]
805 );
806 fprintf(CellFile, "%s %lg %lg %lg\n", name, tempvector[0], tempvector[1], tempvector[2]);
807 Free(tempvector, "Main: At stage Cell - tempvector");
808 }
809 fflush(CellFile);
810 fclose(CellFile);
811 AddAtomicNumber(CellFilename, numbercell, Vector, Recivector);
812
813 CellBuffer = ReadBuffer(CellFilename, &length);
814
815 sprintf(stage, "Cell");
816 } else {
817 bufptr = CellBuffer;
818 GetNextline(bufptr, line);
819 sscanf(line, "%i", &numbercell);
820 }
821
822 fprintf(stdout, "\nThere are %i atoms in the cell.\n", numbercell);
823
824 // ======================== STAGE: Sheet =============================
825 // The sheet is a bit more complex. We read the cell in cartesian coordinates
826 // from the file. Next, we have to rotate the unit cell vectors by the so called
827 // chiral angle. This gives a slanted and elongated section upon the sheet of
828 // periodically repeated original unit cells. It only matches up if the factors
829 // were all integer! (That's why the rotation is discrete and the chiral angle
830 // specified not as (cos alpha, sin alpha) but as (n,m)) Also, we want this
831 // section to be rectangular, thus we orthogonalize the original unit vectors
832 // to gain our (later) tube axis.
833 // By looking at the biggest possible diameter we know whose original cells to
834 // look at and check if their respective compounds (contained atoms) still reside
835 // in the rotated, elongated section we need for the later tube.
836 // Then in a for loop we go through every cell. By projecting the vector leading
837 // from the origin to the specific atom down onto the major and minor axis we
838 // know if it's still within the boundaries spanned by these rotated and elongated
839 // (radius-, length factor) unit vectors or not. If yes, its coordinates are
840 // written to file.
841
842 int numbersheet, biggestdiameter, sheetnr[NDIM], tmp, seed;
843 double x1,x2,x3, angle;
844 char flag = 'n';
845 FILE *SheetFile = NULL;
846 FILE *SheetFileAligned = NULL;
847
848 Debug ("STAGE: Sheet\n");
849 if (!strncmp(stage, "Cell", 4)) {
850 fprintf(stdout, "\nEnter seed unequal 0 if any of the bonds shall have a randomness in their being: ");
851 fscanf(stdin, "%d", &seed);
852 if (seed != 0)
853 input = 'y';
854 randomness = (double *) Malloc(sizeof(double)*numbercell, "Main: at sheet - randomness");
855 for(i=0;i<numbercell;i++)
856 randomness[i] = 0.;
857 i = 0;
858 fprintf(stdout, "\n");
859 while (input == 'y') {
860 fprintf(stdout, "Enter atom number (-1 0 to end) and percentage (0.0...1.0): ");
861 fscanf(stdin, "%d %lg", &i, &percentage);
862 if (i == -1) { input = 'n'; fprintf(stdout, "Breaking\n"); }
863 else { randomness[i] = 1.-percentage; }
864 };
865
866 fprintf(stdout, "\nSpecify the axis permutation that is going to be perpendicular to the sheet [tubeaxis, torusaxis, noaxis]: ");
867 fscanf(stdin, "%d %d %d", &axis[0], &axis[1], &axis[2]);
868 fprintf(stdout, "axis: %d %d %d\n", axis[0], axis[1], axis[2]);
869
870 // create orthogonal vectors individually for each unit cell vector
871 CreateOrthogonalAxisVectors(OrthoVector, Vector, axis);
872 fprintf(stdout, "Orthogonal vector axis[0] %lg\n", Projection(Vector[axis[0]], OrthoVector[axis[0]]));
873 fprintf(stdout, "Orthogonal vector axis[1] %lg\n", Projection(Vector[axis[1]], OrthoVector[axis[1]]));
874
875 do {
876 fprintf(stdout, "\nNow specify the two natural numbers (m n) defining the chiral angle, \nif the result is crap, try flipping to (m,n): ");
877 fscanf(stdin, "%d %d", &chiral[0], &chiral[1]);
878 ggT = GCD(2*chiral[1]+chiral[0],2*chiral[0]+chiral[1]);
879 fprintf(stdout, "Greatest Common Denominator of (2n+m, 2m+n) is %d\n", ggT);
880 fprintf(stdout, "chiral0: %d\tchiral1: %d\n", chiral[0], chiral[1]);
881 for (i=0;i<NDIM;i++) {
882 Tubevector[axis[0]][i] = (double)chiral[0] * Vector[axis[0]][i] + (double)chiral[1] * Vector[axis[1]][i];
883 //Tubevector[axis[0]][i] = chiral[0] * Vector[axis[0]][i] + chiral[1] * Vector[axis[1]][i];
884 //Tubevector[axis[0]][i] = (2.*chiral[0]+chiral[1])/(double)ggT * Vector[axis[0]][i] + (-chiral[0]-2.*chiral[1])/(double)ggT * Vector[axis[1]][i];
885 //Tubevector[axis[1]][i] = -chiral[1] * Vector[axis[0]][i] + chiral[0] * Vector[axis[1]][i];
886 Tubevector[axis[1]][i] = (double)chiral[0] * OrthoVector[axis[0]][i] - (double)chiral[1] * OrthoVector[axis[1]][i];
887 //Tubevector[axis[1]][i] = (-chiral[0]-2.*chiral[1])/(double)ggT * Vector[axis[0]][i] + (2.*chiral[0]+chiral[1])/(double)ggT * Vector[axis[1]][i];
888// fprintf(stderr, "Tubevector[axis[0]][i] = (double)chiral[0] * Vector[axis[0]][i] + (double)chiral[1] * Vector[axis[1]][i]\n = %lg * %lg + %lg * %lg = %lg + %lg = %lg\n\n",
889// (double)chiral[0], Vector[axis[0]][i], (double)chiral[1], Vector[axis[1]][i],
890// (double)chiral[0] * Vector[axis[0]][i], (double)chiral[1] * Vector[axis[1]][i],
891// Tubevector[axis[0]][i]);
892 Tubevector[axis[2]][i] = Vector[axis[2]][i];
893 }
894 // here we assume, that Vector[axis[2]] is along z direction!
895 gsl_matrix *M = gsl_matrix_alloc(2,2);
896 gsl_matrix *C = gsl_matrix_alloc(2,2);
897 gsl_matrix *evec = gsl_matrix_alloc(2,2);
898 gsl_vector *eval = gsl_vector_alloc(2);
899 gsl_vector *v = gsl_vector_alloc(2);
900 gsl_vector *u = gsl_vector_alloc(2);
901 gsl_eigen_symmv_workspace *w = gsl_eigen_symmv_alloc(2);
902 gsl_matrix_set(C, 0,0, Vector[axis[0]][0]);
903 gsl_matrix_set(C, 1,0, Vector[axis[0]][1]);
904 gsl_matrix_set(C, 0,1, Vector[axis[1]][0]);
905 gsl_matrix_set(C, 1,1, Vector[axis[1]][1]);
906 gsl_blas_dgemm(CblasTrans,CblasNoTrans, 1.0, C, C, 0.0, M);
907 fprintf(stdout, "M: \t%lg\t%lg\n\t%lg\t%lg\n", gsl_matrix_get(M,0,0), gsl_matrix_get(M,0,1), gsl_matrix_get(M,1,0), gsl_matrix_get(M,1,1));
908 gsl_eigen_symmv(M, eval, evec, w);
909 gsl_eigen_symmv_sort(eval,evec,GSL_EIGEN_SORT_ABS_DESC);
910 fprintf(stdout, "Eigenvalues: %lg\t%lg\n", gsl_vector_get(eval,0), gsl_vector_get(eval,1));
911 fprintf(stdout, "Eigenvectors: \t%lg\t%lg\n\t\t%lg\t%lg\n", gsl_matrix_get(evec,0,0), gsl_matrix_get(evec,0,1), gsl_matrix_get(evec,1,0), gsl_matrix_get(evec,1,1));
912 gsl_matrix_set(M, 0,0, 0.);
913 gsl_matrix_set(M, 1,0, 1.);
914 gsl_matrix_set(M, 0,1, -gsl_vector_get(eval,1)/gsl_vector_get(eval,0));
915 gsl_matrix_set(M, 1,1, 0.);
916 gsl_vector_set(v,0,(double)chiral[0]);
917 gsl_vector_set(v,1,(double)chiral[1]);
918 gsl_blas_dgemm(CblasNoTrans,CblasNoTrans, 1.0, evec, M, 0.0, C);
919 gsl_blas_dgemm(CblasNoTrans,CblasTrans, 1.0, C, evec, 0.0, M);
920 fprintf(stdout, "M: \t%lg\t%lg\n\t%lg\t%lg\n", gsl_matrix_get(M,0,0), gsl_matrix_get(M,0,1), gsl_matrix_get(M,1,0), gsl_matrix_get(M,1,1));
921 gsl_blas_dgemv(CblasNoTrans, 1.0, M, v, 0.0, u);
922 fprintf(stdout, "Looking for factor to integer...\n");
923 for(i=1;i<(chiral[0]+chiral[1])*(chiral[0]+chiral[1]);i++) {
924 x1 = gsl_vector_get(u,0)*(double)i;
925 x2 = gsl_vector_get(u,1)*(double)i;
926 x3 =
927 fprintf(stdout, "%d: %d\t%d vs. %lg\t%lg\n",i, ((int)(x1+x1/fabs(x1)*.5)), ((int)(x2+x2/fabs(x2)*.5)), (x1), (x2));
928 if (( fabs( ((int)(x1+x1/fabs(x1)*.5)) - (x1) ) < 1e-6) && ( fabs( ((int)(x2+x2/fabs(x2)*.5)) - (x2) ) < 1e-6 )) {
929 gsl_blas_dscal((double)i, u);
930 break;
931 }
932 }
933 fprintf(stdout, "(c,d) = (%lg,%lg)\n",gsl_vector_get(u,0), gsl_vector_get(u,1));
934
935 // get length
936 double x[NDIM];
937 for (i=0;i<NDIM;i++)
938 x[i] = gsl_vector_get(u,0) * Vector[axis[0]][i] + gsl_vector_get(u,1) * Vector[axis[1]][i];
939 angle = Norm(x)/Norm(Tubevector[axis[1]]) ;//ScalarProduct(x,Tubevector[axis[1]])/Norm(Tubevector[axis[1]]);
940 fprintf(stdout, "angle is %lg\n", angle);
941 for (i=0;i<NDIM;i++) {
942 Tubevector[axis[1]][i] = gsl_vector_get(u,0) * Vector[axis[0]][i] + gsl_vector_get(u,1) * Vector[axis[1]][i];
943 }
944
945 // Probe
946 gsl_matrix_set(M, 0,0, Vector[axis[0]][0]);
947 gsl_matrix_set(M, 1,0, Vector[axis[0]][1]);
948 gsl_matrix_set(M, 0,1, Vector[axis[1]][0]);
949 gsl_matrix_set(M, 1,1, Vector[axis[1]][1]);
950 gsl_vector_set(v,0,(double)chiral[0]);
951 gsl_vector_set(v,1,(double)chiral[1]);
952 gsl_blas_dgemv(CblasNoTrans, 1.0, M, u, 0.0, eval);
953 gsl_blas_dgemv(CblasNoTrans, 1.0, M, v, 0.0, u);
954 x1=1.;
955 gsl_blas_ddot(u,eval,&x1);
956 fprintf(stdout, "Testing (c,d): (a,b) M^t M (c,d)^t = 0 ? : %lg\n", x1);
957
958 gsl_matrix_free(M);
959 gsl_matrix_free(C);
960 gsl_matrix_free(evec);
961 gsl_vector_free(eval);
962 gsl_vector_free(v);
963 gsl_vector_free(u);
964 gsl_eigen_symmv_free(w);
965
966 if (fabs(x1) > 1e-6) {
967 fprintf(stderr,"Resulting TubeVectors of axis %d and %d and not orthogonal, aborting.\n", axis[0], axis[1]);
968 return(128);
969 }
970
971
972 angle = Projection(Tubevector[axis[1]], Vector[axis[0]]);
973 fprintf(stdout, "Projection Tubevector1 axis[0] %lg %lg\n", angle, 1./angle);
974 angle = Projection(Tubevector[axis[1]], Vector[axis[1]]);
975 fprintf(stdout, "Projection Tubevector1 axis[1] %lg %lg\n", angle, 1./angle);
976
977/* fprintf(stdout, "Vector\n");
978 PrintMatrix(stdout, Vector);
979 fprintf(stdout, "Tubevector\n");
980 PrintMatrix(stdout, Tubevector);
981 for (i=0;i<NDIM;i++) {
982 fprintf(stdout, "Tubevector %d in Unit cell vectors:\t", axis[i]);
983 tempvector = MatrixTrafoInverse(Tubevector[axis[i]], Recivector);
984 PrintVector(stdout, tempvector);
985 Free(tempvector, "Main:tempvector");
986 }*/
987
988 // Give info for length and radius factors
989 fprintf(stdout, "\nThe chiral angle then is %lg degrees with tube radius %5.5f A and length %5.5f A, i.e. torus radius of %5.5f A.\n",
990 acos(Projection(Vector[axis[0]], Tubevector[axis[0]]))/M_PI*180.,
991 Norm(Tubevector[axis[0]])/(2.*M_PI),
992 Norm(Tubevector[axis[1]]),
993 Norm(Tubevector[axis[1]])/(2.*M_PI)
994 );
995 fprintf(stdout, "\nGive integer factors for length and radius of tube (multiple of %d suggested) : ", ggT);
996 fscanf(stdin, "%d %d", &factors[1], &factors[0]);
997 fprintf(stdout, "\nThe chiral angle then is %5.5f degrees with tube radius %5.5f A and length %5.5f A, i.e. torus radius of %5.5f A.\n",
998 acos(Projection(Vector[axis[0]], Tubevector[axis[0]]))/M_PI*180.,
999 (double)factors[0]*Norm(Tubevector[axis[0]])/(2.*M_PI),
1000 (double)factors[1]*Norm(Tubevector[axis[1]]),
1001 (double)factors[1]*Norm(Tubevector[axis[1]])/(2.*M_PI)
1002 );
1003 fprintf(stdout, "Satisfied? [yn] ");
1004 fscanf(stdin, "%c", &flag);
1005 fscanf(stdin, "%c", &flag);
1006 } while (flag != 'y');
1007 } else {
1008 char *ptr = NULL;
1009 char dummy[10];
1010 double dummydouble;
1011
1012 SheetBuffer = bufptr = ReadBuffer(SheetFilename, &length);
1013 bufptr += (GetNextline(bufptr, line))*sizeof(char);
1014 sscanf(line, "%d", &numbersheet);
1015
1016 // retrieve axis permutation
1017 sprintf(dummy, "Axis");
1018 fprintf(stdout, "%s ", dummy);
1019 while ((length = GetNextline(bufptr, line)) != 0) {
1020 bufptr += (length)*sizeof(char);
1021 if ((ptr = strstr(line, dummy)) != NULL)
1022 break;
1023 }
1024 if (length == 0) {
1025 fprintf(stderr, "ERROR: Main at stage Sheet - could not find %s in %s\n", dummy, SheetFilename);
1026 exit(255);
1027 }
1028 ptr += strlen(dummy);
1029 sscanf(ptr, "%d %d %d", &axis[0], &axis[1], &axis[2]);
1030 fprintf(stdout, "%d %d %d\n", axis[0], axis[1], axis[2]);
1031
1032 // retrieve chiral numbers
1033 sprintf(dummy, "(n,m)");
1034 fprintf(stdout, "%s ", dummy);
1035 while ((length = GetNextline(bufptr, line)) != 0) {
1036 bufptr += (length)*sizeof(char);
1037 if ((ptr = strstr(line, dummy)) != NULL)
1038 break;
1039 }
1040 if (length == 0) {
1041 fprintf(stderr, "ERROR: Main at stage Sheet - could not find %s in %s\n", dummy, SheetFilename);
1042 exit(255);
1043 }
1044 ptr += strlen(dummy);
1045 sscanf(ptr, "%d %d", &chiral[0], &chiral[1]);
1046 fprintf(stdout, "%d %d\n", chiral[0], chiral[1]);
1047 ggT = GCD(2*chiral[1]+chiral[0],2*chiral[0]+chiral[1]);
1048 fprintf(stdout, "Greatest Common Denominator of (2n+m, 2m+n) is %d\n", ggT);
1049
1050 // retrieve length and radius factors
1051 sprintf(dummy, "factors");
1052 fprintf(stdout, "%s ", dummy);
1053 while ((length = GetNextline(bufptr, line)) != 0) {
1054 bufptr += (length)*sizeof(char);
1055 if ((ptr = strstr(line, dummy)) != NULL)
1056 break;
1057 }
1058 if (length == 0) {
1059 fprintf(stderr, "ERROR: Main at stage Sheet - could not find %s in %s\n", dummy, SheetFilename);
1060 exit(255);
1061 }
1062 ptr += strlen(dummy);
1063 sscanf(ptr, "%d %d %d", &factors[0], &factors[1], &factors[2]);
1064 fprintf(stdout, "%d %d %d\n", factors[0], factors[1], factors[2]);
1065
1066 // create orthogonal vectors individually for each unit cell vector
1067 CreateOrthogonalAxisVectors(OrthoVector, Vector, axis);
1068 fprintf(stdout, "Orthogonal vector axis[0] %lg", Projection(Vector[axis[0]], OrthoVector[axis[0]]));
1069 fprintf(stdout, "Orthogonal vector axis[1] %lg", Projection(Vector[axis[1]], OrthoVector[axis[1]]));
1070 // create Tubevectors
1071 for (i=0;i<NDIM;i++) {
1072 Tubevector[axis[0]][i] = chiral[0] * Vector[axis[0]][i] + chiral[1] * Vector[axis[1]][i];
1073 //Tubevector[axis[0]][i] = (2.*chiral[0]+chiral[1])/(double)ggT * Vector[axis[0]][i] + (-chiral[0]-2.*chiral[1])/(double)ggT * Vector[axis[1]][i];
1074 //Tubevector[axis[1]][i] = -chiral[1] * Vector[axis[0]][i] + chiral[0] * Vector[axis[1]][i];
1075 Tubevector[axis[1]][i] = chiral[0] * OrthoVector[axis[0]][i] + chiral[1] * OrthoVector[axis[1]][i];
1076 //Tubevector[axis[1]][i] = (-chiral[0]-2.*chiral[1])/(double)ggT * Vector[axis[0]][i] + (2.*chiral[0]+chiral[1])/(double)ggT * Vector[axis[1]][i];
1077 Tubevector[axis[2]][i] = Vector[axis[2]][i];
1078 }
1079 // here we assume, that Vector[axis[2]] is along z direction!
1080 gsl_matrix *M = gsl_matrix_alloc(2,2);
1081 gsl_matrix *C = gsl_matrix_alloc(2,2);
1082 gsl_matrix *evec = gsl_matrix_alloc(2,2);
1083 gsl_vector *eval = gsl_vector_alloc(2);
1084 gsl_vector *v = gsl_vector_alloc(2);
1085 gsl_vector *u = gsl_vector_alloc(2);
1086 gsl_eigen_symmv_workspace *w = gsl_eigen_symmv_alloc(2);
1087 gsl_matrix_set(C, 0,0, Vector[axis[0]][0]);
1088 gsl_matrix_set(C, 1,0, Vector[axis[0]][1]);
1089 gsl_matrix_set(C, 0,1, Vector[axis[1]][0]);
1090 gsl_matrix_set(C, 1,1, Vector[axis[1]][1]);
1091 gsl_blas_dgemm(CblasTrans,CblasNoTrans, 1.0, C, C, 0.0, M);
1092 fprintf(stdout, "M: \t%lg\t%lg\n\t%lg\t%lg\n", gsl_matrix_get(M,0,0), gsl_matrix_get(M,0,1), gsl_matrix_get(M,1,0), gsl_matrix_get(M,1,1));
1093 gsl_eigen_symmv(M, eval, evec, w);
1094 gsl_eigen_symmv_sort(eval,evec,GSL_EIGEN_SORT_ABS_DESC);
1095 fprintf(stdout, "Eigenvalues: %lg\t%lg\n", gsl_vector_get(eval,0), gsl_vector_get(eval,1));
1096 fprintf(stdout, "Eigenvectors: \t%lg\t%lg\n\t\t%lg\t%lg\n", gsl_matrix_get(evec,0,0), gsl_matrix_get(evec,0,1), gsl_matrix_get(evec,1,0), gsl_matrix_get(evec,1,1));
1097 gsl_matrix_set(M, 0,0, 0.);
1098 gsl_matrix_set(M, 1,0, 1.);
1099 gsl_matrix_set(M, 0,1, -gsl_vector_get(eval,1)/gsl_vector_get(eval,0));
1100 gsl_matrix_set(M, 1,1, 0.);
1101 gsl_vector_set(v,0,(double)chiral[0]);
1102 gsl_vector_set(v,1,(double)chiral[1]);
1103 gsl_blas_dgemm(CblasNoTrans,CblasNoTrans, 1.0, evec, M, 0.0, C);
1104 gsl_blas_dgemm(CblasNoTrans,CblasTrans, 1.0, C, evec, 0.0, M);
1105 fprintf(stdout, "M: \t%lg\t%lg\n\t%lg\t%lg\n", gsl_matrix_get(M,0,0), gsl_matrix_get(M,0,1), gsl_matrix_get(M,1,0), gsl_matrix_get(M,1,1));
1106 gsl_blas_dgemv(CblasNoTrans, 1.0, M, v, 0.0, u);
1107 fprintf(stdout, "Looking for factor to integer...\n");
1108 for(i=1;i<(chiral[0]+chiral[1])*(chiral[0]+chiral[1]);i++) {
1109 x1 = gsl_vector_get(u,0)*(double)i;
1110 x2 = gsl_vector_get(u,1)*(double)i;
1111 x3 =
1112 fprintf(stdout, "%d: %d\t%d vs. %lg\t%lg\n",i, ((int)(x1+x1/fabs(x1)*.5)), ((int)(x2+x2/fabs(x2)*.5)), (x1), (x2));
1113 if (( fabs( ((int)(x1+x1/fabs(x1)*.5)) - (x1) ) < 1e-6) && ( fabs( ((int)(x2+x2/fabs(x2)*.5)) - (x2) ) < 1e-6 )) {
1114 gsl_blas_dscal((double)i, u);
1115 break;
1116 }
1117 }
1118 fprintf(stdout, "(c,d) = (%lg,%lg)\n",gsl_vector_get(u,0), gsl_vector_get(u,1));
1119
1120 // get length
1121 double x[NDIM];
1122 for (i=0;i<NDIM;i++)
1123 x[i] = gsl_vector_get(u,0) * Vector[axis[0]][i] + gsl_vector_get(u,1) * Vector[axis[1]][i];
1124 angle = Norm(x)/Norm(Tubevector[axis[1]]) ;//ScalarProduct(x,Tubevector[axis[1]])/Norm(Tubevector[axis[1]]);
1125 fprintf(stdout, "angle is %lg\n", angle);
1126 for (i=0;i<NDIM;i++) {
1127 Tubevector[axis[1]][i] = gsl_vector_get(u,0) * Vector[axis[0]][i] + gsl_vector_get(u,1) * Vector[axis[1]][i];
1128 }
1129
1130 // Probe
1131 gsl_matrix_set(M, 0,0, Vector[axis[0]][0]);
1132 gsl_matrix_set(M, 1,0, Vector[axis[0]][1]);
1133 gsl_matrix_set(M, 0,1, Vector[axis[1]][0]);
1134 gsl_matrix_set(M, 1,1, Vector[axis[1]][1]);
1135 gsl_vector_set(v,0,(double)chiral[0]);
1136 gsl_vector_set(v,1,(double)chiral[1]);
1137 gsl_blas_dgemv(CblasNoTrans, 1.0, M, u, 0.0, eval);
1138 gsl_blas_dgemv(CblasNoTrans, 1.0, M, v, 0.0, u);
1139 x1=1.;
1140 gsl_blas_ddot(u,eval,&x1);
1141 fprintf(stdout, "Testing (c,d): (a,b) M^t M (c,d)^t = 0 ? : %lg\n", x1);
1142
1143 gsl_matrix_free(M);
1144 gsl_matrix_free(C);
1145 gsl_matrix_free(evec);
1146 gsl_vector_free(eval);
1147 gsl_vector_free(v);
1148 gsl_vector_free(u);
1149 gsl_eigen_symmv_free(w);
1150
1151 if (fabs(x1) > 1e-6) {
1152 fprintf(stderr,"Resulting TubeVectors of axis %d and %d and not orthogonal, aborting.\n", axis[0], axis[1]);
1153 return(128);
1154 }
1155
1156 // retrieve seed ...
1157 randomness = (double *) Calloc(sizeof(double)*numbercell, 0., "Main: at sheet - randomness");
1158 sprintf(dummy, "seed");
1159 fprintf(stdout, "%s ", dummy);
1160 while ((length = GetNextline(bufptr, line)) != 0) {
1161 bufptr += (length)*sizeof(char);
1162 if ((ptr = strstr(line, dummy)) != NULL)
1163 break;
1164 }
1165 if (length == 0) {
1166 fprintf(stderr, "ERROR: Main at stage Sheet - could not find %s in %s\n", dummy, SheetFilename);
1167 exit(255);
1168 }
1169 ptr += strlen(dummy);
1170 sscanf(ptr, "%d", &seed);
1171 fprintf(stdout, "%d\n", seed);
1172
1173 // ... and randomness
1174 if (seed != 0) { // only parse for values if a seed, i.e. randomness wanted, was specified
1175 sprintf(dummy, "Randomness");
1176 fprintf(stdout, "%s\n", dummy);
1177 while ((length = GetNextline(bufptr, line)) != 0) {
1178 bufptr += (length)*sizeof(char);
1179 if ((ptr = strstr(line, dummy)) != NULL)
1180 break;
1181 }
1182 if (length == 0) {
1183 fprintf(stderr, "ERROR: Main at stage Sheet - could not find %s in %s\n", dummy, SheetFilename);
1184 exit(255);
1185 }
1186 sprintf(dummy, "probability values");
1187 for (i=0;i<numbercell;i++) {
1188 length = GetNextline(bufptr, line);
1189 if (length == 0) {
1190 fprintf(stderr, "ERROR: Main at stage Sheet - could not find %s in %s\n", dummy, SheetFilename);
1191 exit(255);
1192 }
1193 bufptr += (length)*sizeof(char);
1194 sscanf(line, "%d %lg", &j, &dummydouble);
1195 randomness[j] = dummydouble;
1196 fprintf(stdout, "%d %g\n", j, randomness[j]);
1197 }
1198 }
1199 }
1200
1201 //int OrthOrder[NDIM] = { axis[2], axis[0], axis[1] };
1202 //Orthogonalize(Tubevector,OrthOrder);
1203 angle = acos(Projection(Vector[axis[0]], Vector[axis[1]])); // calcs angle between shanks in unit cell
1204 fprintf(stdout, "The basic angle between the two shanks of the unit cell is %lg %lg\n", angle/M_PI*180., Projection(Vector[axis[0]], Vector[axis[1]]));
1205 if ( angle/M_PI*180. > 90 ) {
1206 fprintf(stderr, "There seems to be something wrong with the unit cell! for nanotube the angle should be 60 degrees for example!\n");
1207 return 1;
1208 }
1209 angle = acos(Projection(Tubevector[axis[0]], Tubevector[axis[1]])); // calcs angle between shanks in unit cell
1210 fprintf(stdout, "The basic angle between the two shanks of the tube unit cell is %lg %lg\n", angle/M_PI*180., Projection(Tubevector[axis[0]], Tubevector[axis[1]]));
1211 //angle -= acos(Projection(Vector[axis[0]], Tubevector[axis[0]]));
1212 //angle = 30./180.*M_PI - acos(Projection(Vector[axis[0]], Tubevector[axis[0]]));
1213 //angle = acos(Projection(Tubevector[axis[0]], Vector[axis[0]]));
1214 fprintf(stdout, "The relative alignment rotation angle then is %lg\n", angle/M_PI*180.);
1215 if (fabs(Tubevector[axis[0]][0]) > MYEPSILON)
1216 angle = -M_PI/2. + acos(Tubevector[axis[0]][0]/Norm(Tubevector[axis[0]]));
1217 else
1218 angle = 0.;
1219 fprintf(stdout, "The absolute alignment rotation angle then is %lg %lg\n", angle/M_PI*180., Tubevector[axis[0]][0]/Norm(Tubevector[axis[0]]));
1220 fprintf(stdout, "\nThe chiral angle then is %5.5f degrees with tube radius %5.5f A and length %5.5f A, i.e. final torus radius of %5.5f A.\n",
1221 acos(Projection(Vector[axis[0]], Tubevector[axis[0]]))/M_PI*180.,
1222 (double)factors[0]*Norm(Tubevector[axis[0]])/(2.*M_PI),
1223 (double)factors[1]*Norm(Tubevector[axis[1]]),
1224 (double)factors[1]*Norm(Tubevector[axis[1]])/(2.*M_PI)
1225 );
1226 Orthogonalize(Tubevector, axis); // with correct translational vector, not needed anymore (? what's been done here. Hence, re-inserted)
1227 fprintf(stdout, "Tubevector magnitudes: %5.5lg %5.5lg %5.5lg\n", Norm(Tubevector[0]), Norm(Tubevector[1]), Norm(Tubevector[2]));
1228 fprintf(stdout, "Tubevectors are \n");
1229 PrintMatrix(stdout, Tubevector);
1230 MatrixInversion(Tubevector, TubevectorInverse);
1231 //Transpose(TubevectorInverse);
1232 fprintf(stdout, "Vector\n");
1233 PrintMatrix(stdout, Vector);
1234 fprintf(stdout, "TubevectorInverse\n");
1235 PrintMatrix(stdout, TubevectorInverse);
1236 for (i=0;i<NDIM;i++) {
1237 fprintf(stdout, "Vector %d in TubeVectorInverse vectors:\t", axis[i]);
1238 tempvector = MatrixTrafoInverse(Vector[axis[i]], TubevectorInverse);
1239 PrintVector(stdout, tempvector);
1240 Free(tempvector, "Main:tempvector");
1241 }
1242 fprintf(stdout, "Reciprocal Tubebvectors are \n");
1243 PrintMatrix(stdout, TubevectorInverse);
1244 fprintf(stdout, "Tubevector magnitudes: %5.5lg %5.5lg %5.5lg\n", Norm(Tubevector[0]), Norm(Tubevector[1]), Norm(Tubevector[2]));
1245
1246 biggestdiameter = DetermineBiggestDiameter(Tubevector, axis, factors);
1247 for (i=0;i<NDIM;i++) {
1248 sheetnr[i] = 0;
1249 }
1250 for (i=0;i<NDIM;i++) {
1251 for (j=0;j<NDIM;j++) {
1252// sheetnr[j] = ceil(biggestdiameter/Norm(Vector[j]));
1253 if (fabs(Vector[i][j]) > MYEPSILON) {
1254 tmp = ceil(biggestdiameter/fabs(Vector[i][j]));
1255 } else {
1256 tmp = 0;
1257 }
1258 sheetnr[j] = sheetnr[j] > tmp ? sheetnr[j] : tmp;
1259 }
1260 }
1261 fprintf(stdout, "Maximum indices to regard: %d %d %d\n", sheetnr[0], sheetnr[1], sheetnr[2]);
1262 for (i=0;i<NDIM;i++) {
1263 fprintf(stdout, "For axis %d: (%5.5lg\t%5.5lg\t%5.5lg) with %5.5lg\n", i, (Vector[i][0]*sheetnr[i]), (Vector[i][1]*sheetnr[i]), (Vector[i][2]*sheetnr[i]), Norm(Vector[i]));
1264 }
1265
1266 //if (!strncmp(stage, "Cell", 4)) {
1267 // parse in atoms for quicker processing
1268 struct Atoms *atombuffer = malloc(sizeof(struct Atoms)*numbercell);
1269 bufptr = CellBuffer;
1270 bufptr += GetNextline(bufptr, line)*sizeof(char);
1271 bufptr += GetNextline(bufptr, line)*sizeof(char);
1272 for (i=0;i<numbercell;i++) {
1273 if ((length = GetNextline(bufptr, line)) != 0) {
1274 bufptr += length*sizeof(char);
1275 sscanf(line, "%s %lg %lg %lg", atombuffer[i].name, &(atombuffer[i].x[0]), &(atombuffer[i].x[1]), &(atombuffer[i].x[2]));
1276 fprintf(stdout, "Read Atombuffer Nr %i: %s %5.5lg %5.5lg %5.5lg\n", i+1, atombuffer[i].name, atombuffer[i].x[0], atombuffer[i].x[1], atombuffer[i].x[2]);
1277 } else {
1278 fprintf(stdout, "Error reading Atom Nr. %i\n", i+1);
1279 break;
1280 }
1281 }
1282 SheetFile = fopen(SheetFilename, "w");
1283 if (SheetFile == NULL) {
1284 fprintf(stderr, "ERROR: main - can't open %s for writing\n", SheetFilename);
1285 exit(255);
1286 }
1287 SheetFileAligned = fopen(SheetFilenameAligned, "w");
1288 if (SheetFile == NULL) {
1289 fprintf(stderr, "ERROR: main - can't open %s for writing\n", SheetFilenameAligned);
1290 exit(255);
1291 }
1292 // Now create the sheet
1293 double index[NDIM];
1294 int nr;//, nummer = 0;
1295 numbersheet = 0;
1296 index[axis[2]] = 0;
1297 // initialise pseudo random number generator with given seed
1298 fprintf(stdout, "Initialising pseudo random number generator with given seed %d.\n", seed);
1299 srand(seed);
1300 //for (index[axis[0]] = 0; index[axis[0]] <= sheetnr[axis[0]]; index[axis[0]]++) { // NOTE: minor axis may start from 0! Check on this later ...
1301 for (index[axis[0]] = -sheetnr[axis[0]]+1; index[axis[0]] < sheetnr[axis[0]]; index[axis[0]]++) { // NOTE: minor axis may start from 0! Check on this later ...
1302 //for (index[axis[1]] = 0; index[axis[1]] <= sheetnr[axis[1]]; index[axis[1]]++) { // These are all the cells that need be checked on
1303 for (index[axis[1]] = -sheetnr[axis[1]]+1; index[axis[1]] < sheetnr[axis[1]]; index[axis[1]]++) { // These are all the cells that need be checked on
1304 // Calculate offset in cartesian coordinates
1305 offset = MatrixTrafo(Vector, index);
1306
1307 //fprintf(stdout, "Now dealing with numbercell atoms in unit cell at R = (%lg,%lg,%lg)\n", offset[0], offset[1], offset[2]);
1308 for (nr = 0; nr < numbercell; nr++) {
1309 percentage = rand()/(RAND_MAX+1.0);
1310 //fprintf(stdout, "Lucky number for %d is %lg >? %lg\n", nr, percentage, randomness[nr]);
1311 if (percentage >= randomness[nr]) {
1312 // Create coordinates at atom site
1313 coord = VectorAdd(atombuffer[nr].x, offset);
1314 //fprintf(stdout, "Atom Nr. %i: ", (numbersheet+1));
1315 //PrintVector(stdout, coord);
1316 // project down on major and minor Tubevectors and check for length if out of sheet
1317 tempvector = MatrixTrafoInverse(coord, TubevectorInverse);
1318 if (((tempvector[axis[0]] + MYEPSILON) > 0) && ((factors[0] - tempvector[axis[0]]) > MYEPSILON) &&
1319 ((tempvector[axis[1]] + MYEPSILON) > 0) && ((factors[1] - tempvector[axis[1]]) > MYEPSILON) &&
1320 ((tempvector[axis[2]] + MYEPSILON) > 0) && ((factors[2] - tempvector[axis[2]]) > MYEPSILON)) { // check if within rotated cell numbersheet++;
1321 //if (nummer >= 2) strcpy(atombuffer[nr].name, "O");
1322 //nummer++;
1323 fprintf(SheetFile, "%s\t%5.5lg\t%5.5lg\t%5.5lg\n", atombuffer[nr].name, coord[0], coord[1], coord[2]);
1324 // rotate to align the sheet in xy plane
1325 x1 = coord[0]*cos(-angle) + coord[1] * sin(-angle);
1326 x2 = coord[0]*(-sin(-angle)) + coord[1] * cos(-angle);
1327 x3 = coord[2];
1328 fprintf(SheetFileAligned, "%s\t%5.5lg\t%5.5lg\t%5.5lg\n", atombuffer[nr].name, x1, x2, x3);
1329 //fprintf(SheetFile, "O\t%5.5lg\t%5.5lg\t%5.5lg\n", coord[0], coord[1], coord[2]);
1330 //fprintf(stdout, "%s/%d\t(%lg\t%lg\t%lg)\t", atombuffer[nr].name, numbersheet+1, coord[0], coord[1], coord[2]);
1331 //PrintVector(stdout, tempvector);
1332 numbersheet++;
1333 //fprintf(stdout, "%i,", nr);
1334 } //else {
1335 //numbersheet++;
1336 //fprintf(SheetFile, "B\t%lg\t%lg\t%lg\n", coord[0], coord[1], coord[2]);
1337 //fprintf(stdout, "O \t(%lg\t%lg\t%lg)\n", coord[0], coord[1], coord[2]);
1338 //fprintf(stdout, "!!%i!!, ", nr);
1339 //}
1340 Free(tempvector, "Main: At stage Sheet - tempvector");
1341 Free(coord, "Main: At stage Sheet - coord");
1342 }
1343 }
1344 Free(offset, "Main: At stage Sheet - offset");
1345 }
1346 //fprintf(stdout, "\n";
1347 }
1348
1349 fclose(SheetFile);
1350 fclose(SheetFileAligned);
1351 AddAtomicNumber(SheetFilename,numbersheet, Vector, Recivector); // prepend atomic number and comment
1352 AddAtomicNumber(SheetFilenameAligned,numbersheet, Vector, Recivector); // prepend atomic number and comment
1353 AddSheetInfo(SheetFilename,axis,chiral, factors, seed, numbercell, randomness);
1354 fprintf(stdout, "\nThere are %i atoms in the created sheet.\n", numbersheet);
1355
1356 strncpy(stage, "Sheet", 5);
1357 //}
1358 SheetBuffer = ReadBuffer(SheetFilename, &length);
1359
1360
1361 // ======================== STAGE: Tube ==============================
1362 // The tube starts with the rectangular (due to the orthogonalization) sheet
1363 // just created (or read). Along the minor axis it is rolled up, i.e. projected
1364 // from a 2d surface onto a cylindrical surface (x,y,z <-> r,alpha,z). The only
1365 // thing that's a bit complex is that the sheet it not aligned along the cartesian
1366 // axis but along major and minor. That's why we have to transform the atomic
1367 // cartesian coordinates into the orthogonal tubevector base, do the rolling up
1368 // there (and regard that minor and major axis must not necessarily be of equal
1369 // length) and afterwards transform back again (where we need the $halfaxis due to
1370 // the above possible inequality).
1371
1372 FILE *TubeFile = NULL;
1373 FILE *TubeFileAligned = NULL;
1374
1375 Debug ("STAGE: Tube\n");
1376 if (!strncmp(stage, "Sheet", 4)) {
1377 TubeFile = fopen(TubeFilename, "w");
1378 if (TubeFile == NULL) {
1379 fprintf(stderr, "ERROR: Main - can't open %s for writing\n", TubeFilename);
1380 exit(255);
1381 }
1382 TubeFileAligned = fopen(TubeFilenameAligned, "w");
1383 if (TubeFile == NULL) {
1384 fprintf(stderr, "ERROR: Main - can't open %s for writing\n", TubeFilenameAligned);
1385 exit(255);
1386 }
1387 bufptr = SheetBuffer;
1388 bufptr += GetNextline(bufptr, line); // write numbers to file
1389 bufptr += GetNextline(bufptr, line); // write comment to file
1390
1391 //cog = CenterOfGravity(bufptr, numbersheet);
1392 //cog_projected = MatrixTrafoInverse(cog, TubevectorInverse);
1393 //fprintf(stdout, "\nCenter of Gravity at (%5.5lg\t%5.5lg\t%5.5lg) and projected at (%5.5lg\t%5.5lg\t%5.5lg)\n", cog[0], cog[1], cog[2], cog_projected[0], cog_projected[1], cog_projected[2]);
1394
1395 // restart
1396 bufptr = SheetBuffer;
1397 bufptr += GetNextline(bufptr, line); // write numbers to file
1398 bufptr += GetNextline(bufptr, line); // write numbers to file
1399
1400 // determine half axis as tube vector not necessarily have the same length
1401 double halfaxis[NDIM];
1402 for (i=0;i<NDIM;i++)
1403 halfaxis[i] = factors[0]*Norm(Tubevector[axis[0]])/Norm(Tubevector[i]);
1404
1405 double arg, radius;
1406 for (i=0;i<numbersheet;i++) {
1407 // scan next atom
1408 bufptr += GetNextline(bufptr, line);
1409 sscanf(line, "%s %lg %lg %lg", name, &atom[0], &atom[1], &atom[2]);
1410
1411 // transform atom coordinates in cartesian system to the axis eigensystem
1412 x = MatrixTrafoInverse(atom, TubevectorInverse);
1413 //x = VectorAdd(y, cog_projected);
1414 //free(y);
1415
1416 // roll up (project (x,y,z) on cylindrical coordinates (radius,arg,z))
1417 arg = 2.*M_PI*x[axis[0]]/(factors[0]) - M_PI; // is angle
1418 radius = 1./(2.*M_PI); // is length of sheet in units of axis vector, divide by pi to get radius (from circumference)
1419 // fprintf(stdout, "arg: %5.2f (c%2.2f,s%2.2f)\t",$arg, cos($arg), sin($arg));
1420 x[axis[0]] = cos(arg)*halfaxis[axis[0]]*(radius+x[axis[2]]/halfaxis[axis[2]]); // as both vectors are not normalized additional betrag has to be taken into account!
1421 x[axis[2]] = sin(arg)*halfaxis[axis[2]]*(radius+x[axis[2]]/halfaxis[axis[2]]); // due to the back-transformation from eigensystem to cartesian one
1422 //fprintf(stdout, "rotated: (%5.2f,%5.2f,%5.2f)\n",x[0],x[1],x[2]);
1423 atom_transformed = MatrixTrafo(Tubevector, x);
1424 fprintf(TubeFile, "%s\t%lg\t%lg\t%lg\n", name, atom_transformed[0], atom_transformed[1], atom_transformed[2]);
1425 // rotate and flip to align tube in z-direction
1426 x1 = atom_transformed[0]*cos(-angle) + atom_transformed[1] * sin(-angle);
1427 x2 = atom_transformed[0]*(-sin(-angle)) + atom_transformed[1] * cos(-angle);
1428 x3 = atom_transformed[2];
1429 fprintf(TubeFileAligned, "%s\t%lg\t%lg\t%lg\n", name, x3, x2, x1); // order so that symmetry is along z axis
1430 //fprintf(stdout, "%s\t%5.5lg\t%5.5lg\t%5.5lg\n", name, atom_transformed[0], atom_transformed[1] ,atom_transformed[2]);
1431
1432 Free(x, "Main: at stage Tube - x");
1433 Free(atom_transformed, "Main: at stage Tube - atom_transformed");
1434 }
1435
1436
1437 fclose(TubeFile);
1438 fclose(TubeFileAligned);
1439 //free(cog);
1440 //free(cog_projected);
1441 AddAtomicNumber(TubeFilename,numbersheet, Vector, Recivector); // prepend atomic number and comment
1442 AddAtomicNumber(TubeFilenameAligned,numbersheet, Vector, Recivector); // prepend atomic number and comment
1443 AddSheetInfo(TubeFilename,axis,chiral, factors, seed, numbercell, randomness);
1444 fprintf(stdout, "\nThere are %i atoms in the created tube.\n", numbersheet);
1445
1446 strncpy(stage, "Tube", 4);
1447 } else {
1448 }
1449
1450 TubeBuffer = ReadBuffer(TubeFilename, &length);
1451
1452 // ======================== STAGE: Torus =============================
1453 // The procedure for the torus is very much alike to the one used to make the
1454 // tube. Only the projection is not from 2d surface onto a cylindrical one but
1455 // from a cylindrial onto a torus surface
1456 // (x,y,z) <-> (cos(s)*(R+r*cos(t)), sin(s)*(R+rcos(t)), r*sin(t)).
1457 // Here t is the angle within the tube with radius r, s is the torus angle with
1458 // radius R. We get R from the tubelength (that's why we need lengthfactor to
1459 // make it long enough). And due to fact that we have it already upon a cylindrical
1460 // surface, r*cos(t) and r*sin(t) already reside in $minoraxis and $noaxis.
1461
1462 FILE *TorusFile;
1463
1464 Debug ("STAGE: Torus\n");
1465 if (!strncmp(stage, "Tube", 4)) {
1466 TorusFile = fopen(TorusFilename, "w");
1467 if (TorusFile == NULL) {
1468 fprintf(stderr, "ERROR: main - can't open %s for writing\n", TorusFilename);
1469 exit(255);
1470 }
1471 bufptr = TubeBuffer;
1472 bufptr += GetNextline(bufptr, line); // write numbers to file
1473 bufptr += GetNextline(bufptr, line); // write comment to file
1474
1475 //cog = CenterOfGravity(bufptr, numbersheet);
1476 //cog_projected = MatrixTrafoInverse(cog, TubevectorInverse);
1477 //fprintf(stdout, "\nCenter of Gravity at (%5.5lg\t%5.5lg\t%5.5lg) and projected at (%5.5lg\t%5.5lg\t%5.5lg)\n", cog[0], cog[1], cog[2], cog_projected[0], cog_projected[1], cog_projected[2]);
1478
1479 // determine half axis as tube vectors not necessarily have same length
1480 double halfaxis[NDIM];
1481 for (i=0;i<NDIM;i++)
1482 halfaxis[i] = Norm(Tubevector[axis[1]])/Norm(Tubevector[i]);
1483
1484 double arg, radius;
1485 for (i=0;i<numbersheet;i++) {
1486 // scan next atom
1487 bufptr += GetNextline(bufptr, line);
1488 sscanf(line, "%s %lg %lg %lg", name, &atom[0], &atom[1], &atom[2]);
1489
1490 // transform atom coordinates in cartesian system to the axis eigensystem
1491 x = MatrixTrafoInverse(atom, TubevectorInverse);
1492 //x = VectorAdd(y, cog_projected);
1493 //free(y);
1494
1495 // roll up (project (x,y,z) on cylindrical coordinates (radius,arg,z))
1496 arg = 2.*M_PI*x[axis[1]]/(factors[1]) - M_PI; // is angle
1497 radius = (factors[1])/(2.*M_PI) + x[axis[0]]/halfaxis[axis[0]]; // is length of sheet in units of axis vector, divide by pi to get radius (from circumference)
1498 // fprintf(stdout, "arg: %5.2f (c%2.2f,s%2.2f)\t",$arg, cos($arg), sin($arg));
1499 x[axis[0]] = cos(arg)*halfaxis[axis[0]]*radius; // as both vectors are not normalized additional betrag has to be taken into account!
1500 x[axis[1]] = sin(arg)*halfaxis[axis[1]]*radius; // due to the back-transformation from eigensystem to cartesian one
1501 //fprintf(stdout, "rotated: (%5.2f,%5.2f,%5.2f)\n",x[0],x[1],x[2]);
1502 atom_transformed = MatrixTrafo(Tubevector, x);
1503 fprintf(TorusFile, "%s\t%lg\t%lg\t%lg\n", name, atom_transformed[0], atom_transformed[1] ,atom_transformed[2]);
1504 //fprintf(stdout, "%s\t%5.5lg\t%5.5lg\t%5.5lg\n", name, atom_transformed[0], atom_transformed[1] ,atom_transformed[2]);
1505
1506 Free(x, "Main: at stage Torus - x");
1507 Free(atom_transformed, "Main: at stage Torus - atom_transformed");
1508 }
1509
1510 fclose(TorusFile);
1511 //free(cog);
1512 //free(cog_projected);
1513 AddAtomicNumber(TorusFilename,numbersheet, Vector, Recivector); // prepend atomic number and comment
1514 AddSheetInfo(TorusFilename,axis,chiral, factors, seed, numbercell, randomness);
1515 fprintf(stdout, "\nThere are %i atoms in the created torus.\n", numbersheet);
1516
1517 strncpy(stage, "Torus", 5);
1518 } else {
1519 }
1520
1521 // Free memory
1522 for (i=0; i<NDIM; i++ ) {
1523 Free(Vector[i], "Main: end of stages - *Vector");
1524 Free(Recivector[i], "Main: end of stages - *Recivector");
1525 Free(Tubevector[i], "Main: end of stages - *Tubevector");
1526 Free(TubevectorInverse[i], "Main: end of stages - *TubevectorInverse");
1527 }
1528 Free(atom, "Main: end of stages - atom");
1529 Free(Vector, "Main: end of stages - Vector");
1530 Free(Recivector, "Main: end of stages - Recivector");
1531 Free(Tubevector, "Main: end of stages - Tubevector");
1532 Free(TubevectorInverse, "Main: end of stages - TubevectorInverse");
1533 Free(randomness, "Main: at stage Sheet - randomness");
1534
1535 if (CellBuffer != NULL) Free(CellBuffer, "Main: end of stages - CellBuffer");
1536 if (SheetBuffer != NULL) Free(SheetBuffer, "Main: end of stages - SheetBuffer");
1537 if (TubeBuffer != NULL) Free(TubeBuffer, "Main: end of stages - TubeBuffer");
1538
1539 Free(CellFilename, "Main: end of stafes - CellFilename");
1540 Free(SheetFilename, "Main: end of stafes - CellFilename");
1541 Free(TubeFilename, "Main: end of stafes - CellFilename");
1542 Free(TorusFilename, "Main: end of stafes - CellFilename");
1543 Free(SheetFilenameAligned, "Main: end of stafes - CellFilename");
1544 Free(TubeFilenameAligned, "Main: end of stafes - CellFilename");
1545
1546 // exit
1547 exit(0);
1548}
Note: See TracBrowser for help on using the repository browser.