source: src/vector.cpp@ e3cbf9

Action_Thermostats Add_AtomRandomPerturbation Add_FitFragmentPartialChargesAction Add_RotateAroundBondAction Add_SelectAtomByNameAction Added_ParseSaveFragmentResults AddingActions_SaveParseParticleParameters Adding_Graph_to_ChangeBondActions Adding_MD_integration_tests Adding_ParticleName_to_Atom Adding_StructOpt_integration_tests AtomFragments Automaking_mpqc_open AutomationFragmentation_failures Candidate_v1.5.4 Candidate_v1.6.0 Candidate_v1.6.1 ChangeBugEmailaddress ChangingTestPorts ChemicalSpaceEvaluator CombiningParticlePotentialParsing Combining_Subpackages Debian_Package_split Debian_package_split_molecuildergui_only Disabling_MemDebug Docu_Python_wait EmpiricalPotential_contain_HomologyGraph EmpiricalPotential_contain_HomologyGraph_documentation Enable_parallel_make_install Enhance_userguide Enhanced_StructuralOptimization Enhanced_StructuralOptimization_continued Example_ManyWaysToTranslateAtom Exclude_Hydrogens_annealWithBondGraph FitPartialCharges_GlobalError Fix_BoundInBox_CenterInBox_MoleculeActions Fix_ChargeSampling_PBC Fix_ChronosMutex Fix_FitPartialCharges Fix_FitPotential_needs_atomicnumbers Fix_ForceAnnealing Fix_IndependentFragmentGrids Fix_ParseParticles Fix_ParseParticles_split_forward_backward_Actions Fix_PopActions Fix_QtFragmentList_sorted_selection Fix_Restrictedkeyset_FragmentMolecule Fix_StatusMsg Fix_StepWorldTime_single_argument Fix_Verbose_Codepatterns Fix_fitting_potentials Fixes ForceAnnealing_goodresults ForceAnnealing_oldresults ForceAnnealing_tocheck ForceAnnealing_with_BondGraph ForceAnnealing_with_BondGraph_continued ForceAnnealing_with_BondGraph_continued_betteresults ForceAnnealing_with_BondGraph_contraction-expansion FragmentAction_writes_AtomFragments FragmentMolecule_checks_bonddegrees GeometryObjects Gui_Fixes Gui_displays_atomic_force_velocity ImplicitCharges IndependentFragmentGrids IndependentFragmentGrids_IndividualZeroInstances IndependentFragmentGrids_IntegrationTest IndependentFragmentGrids_Sole_NN_Calculation JobMarket_RobustOnKillsSegFaults JobMarket_StableWorkerPool JobMarket_unresolvable_hostname_fix MoreRobust_FragmentAutomation ODR_violation_mpqc_open PartialCharges_OrthogonalSummation PdbParser_setsAtomName PythonUI_with_named_parameters QtGui_reactivate_TimeChanged_changes Recreated_GuiChecks Rewrite_FitPartialCharges RotateToPrincipalAxisSystem_UndoRedo SaturateAtoms_findBestMatching SaturateAtoms_singleDegree StoppableMakroAction Subpackage_CodePatterns Subpackage_JobMarket Subpackage_LinearAlgebra Subpackage_levmar Subpackage_mpqc_open Subpackage_vmg Switchable_LogView ThirdParty_MPQC_rebuilt_buildsystem TrajectoryDependenant_MaxOrder TremoloParser_IncreasedPrecision TremoloParser_MultipleTimesteps TremoloParser_setsAtomName Ubuntu_1604_changes stable
Last change on this file since e3cbf9 was 2ededc2, checked in by Tillmann Crueger <crueger@…>, 15 years ago

Added possibility to query doubles and vectors using dialogs.

  • Property mode set to 100644
File size: 38.9 KB
Line 
1/** \file vector.cpp
2 *
3 * Function implementations for the class vector.
4 *
5 */
6
7
8#include "defs.hpp"
9#include "helpers.hpp"
10#include "info.hpp"
11#include "gslmatrix.hpp"
12#include "leastsquaremin.hpp"
13#include "log.hpp"
14#include "memoryallocator.hpp"
15#include "vector.hpp"
16#include "verbose.hpp"
17
18#include <gsl/gsl_linalg.h>
19#include <gsl/gsl_matrix.h>
20#include <gsl/gsl_permutation.h>
21#include <gsl/gsl_vector.h>
22
23/************************************ Functions for class vector ************************************/
24
25/** Constructor of class vector.
26 */
27Vector::Vector() { x[0] = x[1] = x[2] = 0.; };
28
29/** Constructor of class vector.
30 */
31Vector::Vector(const double x1, const double x2, const double x3) { x[0] = x1; x[1] = x2; x[2] = x3; };
32
33/** Desctructor of class vector.
34 */
35Vector::~Vector() {};
36
37/** Calculates square of distance between this and another vector.
38 * \param *y array to second vector
39 * \return \f$| x - y |^2\f$
40 */
41double Vector::DistanceSquared(const Vector * const y) const
42{
43 double res = 0.;
44 for (int i=NDIM;i--;)
45 res += (x[i]-y->x[i])*(x[i]-y->x[i]);
46 return (res);
47};
48
49/** Calculates distance between this and another vector.
50 * \param *y array to second vector
51 * \return \f$| x - y |\f$
52 */
53double Vector::Distance(const Vector * const y) const
54{
55 double res = 0.;
56 for (int i=NDIM;i--;)
57 res += (x[i]-y->x[i])*(x[i]-y->x[i]);
58 return (sqrt(res));
59};
60
61/** Calculates distance between this and another vector in a periodic cell.
62 * \param *y array to second vector
63 * \param *cell_size 6-dimensional array with (xx, xy, yy, xz, yz, zz) entries specifying the periodic cell
64 * \return \f$| x - y |\f$
65 */
66double Vector::PeriodicDistance(const Vector * const y, const double * const cell_size) const
67{
68 double res = Distance(y), tmp, matrix[NDIM*NDIM];
69 Vector Shiftedy, TranslationVector;
70 int N[NDIM];
71 matrix[0] = cell_size[0];
72 matrix[1] = cell_size[1];
73 matrix[2] = cell_size[3];
74 matrix[3] = cell_size[1];
75 matrix[4] = cell_size[2];
76 matrix[5] = cell_size[4];
77 matrix[6] = cell_size[3];
78 matrix[7] = cell_size[4];
79 matrix[8] = cell_size[5];
80 // in order to check the periodic distance, translate one of the vectors into each of the 27 neighbouring cells
81 for (N[0]=-1;N[0]<=1;N[0]++)
82 for (N[1]=-1;N[1]<=1;N[1]++)
83 for (N[2]=-1;N[2]<=1;N[2]++) {
84 // create the translation vector
85 TranslationVector.Zero();
86 for (int i=NDIM;i--;)
87 TranslationVector.x[i] = (double)N[i];
88 TranslationVector.MatrixMultiplication(matrix);
89 // add onto the original vector to compare with
90 Shiftedy.CopyVector(y);
91 Shiftedy.AddVector(&TranslationVector);
92 // get distance and compare with minimum so far
93 tmp = Distance(&Shiftedy);
94 if (tmp < res) res = tmp;
95 }
96 return (res);
97};
98
99/** Calculates distance between this and another vector in a periodic cell.
100 * \param *y array to second vector
101 * \param *cell_size 6-dimensional array with (xx, xy, yy, xz, yz, zz) entries specifying the periodic cell
102 * \return \f$| x - y |^2\f$
103 */
104double Vector::PeriodicDistanceSquared(const Vector * const y, const double * const cell_size) const
105{
106 double res = DistanceSquared(y), tmp, matrix[NDIM*NDIM];
107 Vector Shiftedy, TranslationVector;
108 int N[NDIM];
109 matrix[0] = cell_size[0];
110 matrix[1] = cell_size[1];
111 matrix[2] = cell_size[3];
112 matrix[3] = cell_size[1];
113 matrix[4] = cell_size[2];
114 matrix[5] = cell_size[4];
115 matrix[6] = cell_size[3];
116 matrix[7] = cell_size[4];
117 matrix[8] = cell_size[5];
118 // in order to check the periodic distance, translate one of the vectors into each of the 27 neighbouring cells
119 for (N[0]=-1;N[0]<=1;N[0]++)
120 for (N[1]=-1;N[1]<=1;N[1]++)
121 for (N[2]=-1;N[2]<=1;N[2]++) {
122 // create the translation vector
123 TranslationVector.Zero();
124 for (int i=NDIM;i--;)
125 TranslationVector.x[i] = (double)N[i];
126 TranslationVector.MatrixMultiplication(matrix);
127 // add onto the original vector to compare with
128 Shiftedy.CopyVector(y);
129 Shiftedy.AddVector(&TranslationVector);
130 // get distance and compare with minimum so far
131 tmp = DistanceSquared(&Shiftedy);
132 if (tmp < res) res = tmp;
133 }
134 return (res);
135};
136
137/** Keeps the vector in a periodic cell, defined by the symmetric \a *matrix.
138 * \param *out ofstream for debugging messages
139 * Tries to translate a vector into each adjacent neighbouring cell.
140 */
141void Vector::KeepPeriodic(const double * const matrix)
142{
143// int N[NDIM];
144// bool flag = false;
145 //vector Shifted, TranslationVector;
146 Vector TestVector;
147// Log() << Verbose(1) << "Begin of KeepPeriodic." << endl;
148// Log() << Verbose(2) << "Vector is: ";
149// Output(out);
150// Log() << Verbose(0) << endl;
151 TestVector.CopyVector(this);
152 TestVector.InverseMatrixMultiplication(matrix);
153 for(int i=NDIM;i--;) { // correct periodically
154 if (TestVector.x[i] < 0) { // get every coefficient into the interval [0,1)
155 TestVector.x[i] += ceil(TestVector.x[i]);
156 } else {
157 TestVector.x[i] -= floor(TestVector.x[i]);
158 }
159 }
160 TestVector.MatrixMultiplication(matrix);
161 CopyVector(&TestVector);
162// Log() << Verbose(2) << "New corrected vector is: ";
163// Output(out);
164// Log() << Verbose(0) << endl;
165// Log() << Verbose(1) << "End of KeepPeriodic." << endl;
166};
167
168/** Calculates scalar product between this and another vector.
169 * \param *y array to second vector
170 * \return \f$\langle x, y \rangle\f$
171 */
172double Vector::ScalarProduct(const Vector * const y) const
173{
174 double res = 0.;
175 for (int i=NDIM;i--;)
176 res += x[i]*y->x[i];
177 return (res);
178};
179
180
181/** Calculates VectorProduct between this and another vector.
182 * -# returns the Product in place of vector from which it was initiated
183 * -# ATTENTION: Only three dim.
184 * \param *y array to vector with which to calculate crossproduct
185 * \return \f$ x \times y \f&
186 */
187void Vector::VectorProduct(const Vector * const y)
188{
189 Vector tmp;
190 tmp.x[0] = x[1]* (y->x[2]) - x[2]* (y->x[1]);
191 tmp.x[1] = x[2]* (y->x[0]) - x[0]* (y->x[2]);
192 tmp.x[2] = x[0]* (y->x[1]) - x[1]* (y->x[0]);
193 this->CopyVector(&tmp);
194};
195
196
197/** projects this vector onto plane defined by \a *y.
198 * \param *y normal vector of plane
199 * \return \f$\langle x, y \rangle\f$
200 */
201void Vector::ProjectOntoPlane(const Vector * const y)
202{
203 Vector tmp;
204 tmp.CopyVector(y);
205 tmp.Normalize();
206 tmp.Scale(ScalarProduct(&tmp));
207 this->SubtractVector(&tmp);
208};
209
210/** Calculates the intersection point between a line defined by \a *LineVector and \a *LineVector2 and a plane defined by \a *Normal and \a *PlaneOffset.
211 * According to [Bronstein] the vectorial plane equation is:
212 * -# \f$\stackrel{r}{\rightarrow} \cdot \stackrel{N}{\rightarrow} + D = 0\f$,
213 * where \f$\stackrel{r}{\rightarrow}\f$ is the vector to be testet, \f$\stackrel{N}{\rightarrow}\f$ is the plane's normal vector and
214 * \f$D = - \stackrel{a}{\rightarrow} \stackrel{N}{\rightarrow}\f$, the offset with respect to origin, if \f$\stackrel{a}{\rightarrow}\f$,
215 * is an offset vector onto the plane. The line is parametrized by \f$\stackrel{x}{\rightarrow} + k \stackrel{t}{\rightarrow}\f$, where
216 * \f$\stackrel{x}{\rightarrow}\f$ is the offset and \f$\stackrel{t}{\rightarrow}\f$ the directional vector (NOTE: No need to normalize
217 * the latter). Inserting the parametrized form into the plane equation and solving for \f$k\f$, which we insert then into the parametrization
218 * of the line yields the intersection point on the plane.
219 * \param *out output stream for debugging
220 * \param *PlaneNormal Plane's normal vector
221 * \param *PlaneOffset Plane's offset vector
222 * \param *Origin first vector of line
223 * \param *LineVector second vector of line
224 * \return true - \a this contains intersection point on return, false - line is parallel to plane (even if in-plane)
225 */
226bool Vector::GetIntersectionWithPlane(const Vector * const PlaneNormal, const Vector * const PlaneOffset, const Vector * const Origin, const Vector * const LineVector)
227{
228 Info FunctionInfo(__func__);
229 double factor;
230 Vector Direction, helper;
231
232 // find intersection of a line defined by Offset and Direction with a plane defined by triangle
233 Direction.CopyVector(LineVector);
234 Direction.SubtractVector(Origin);
235 Direction.Normalize();
236 Log() << Verbose(1) << "INFO: Direction is " << Direction << "." << endl;
237 //Log() << Verbose(1) << "INFO: PlaneNormal is " << *PlaneNormal << " and PlaneOffset is " << *PlaneOffset << "." << endl;
238 factor = Direction.ScalarProduct(PlaneNormal);
239 if (fabs(factor) < MYEPSILON) { // Uniqueness: line parallel to plane?
240 Log() << Verbose(1) << "BAD: Line is parallel to plane, no intersection." << endl;
241 return false;
242 }
243 helper.CopyVector(PlaneOffset);
244 helper.SubtractVector(Origin);
245 factor = helper.ScalarProduct(PlaneNormal)/factor;
246 if (fabs(factor) < MYEPSILON) { // Origin is in-plane
247 Log() << Verbose(1) << "GOOD: Origin of line is in-plane." << endl;
248 CopyVector(Origin);
249 return true;
250 }
251 //factor = Origin->ScalarProduct(PlaneNormal)*(-PlaneOffset->ScalarProduct(PlaneNormal))/(Direction.ScalarProduct(PlaneNormal));
252 Direction.Scale(factor);
253 CopyVector(Origin);
254 Log() << Verbose(1) << "INFO: Scaled direction is " << Direction << "." << endl;
255 AddVector(&Direction);
256
257 // test whether resulting vector really is on plane
258 helper.CopyVector(this);
259 helper.SubtractVector(PlaneOffset);
260 if (helper.ScalarProduct(PlaneNormal) < MYEPSILON) {
261 Log() << Verbose(1) << "GOOD: Intersection is " << *this << "." << endl;
262 return true;
263 } else {
264 eLog() << Verbose(2) << "Intersection point " << *this << " is not on plane." << endl;
265 return false;
266 }
267};
268
269/** Calculates the minimum distance of this vector to the plane.
270 * \param *out output stream for debugging
271 * \param *PlaneNormal normal of plane
272 * \param *PlaneOffset offset of plane
273 * \return distance to plane
274 */
275double Vector::DistanceToPlane(const Vector * const PlaneNormal, const Vector * const PlaneOffset) const
276{
277 Vector temp;
278
279 // first create part that is orthonormal to PlaneNormal with withdraw
280 temp.CopyVector(this);
281 temp.SubtractVector(PlaneOffset);
282 temp.MakeNormalVector(PlaneNormal);
283 temp.Scale(-1.);
284 // then add connecting vector from plane to point
285 temp.AddVector(this);
286 temp.SubtractVector(PlaneOffset);
287 double sign = temp.ScalarProduct(PlaneNormal);
288 if (fabs(sign) > MYEPSILON)
289 sign /= fabs(sign);
290 else
291 sign = 0.;
292
293 return (temp.Norm()*sign);
294};
295
296/** Calculates the intersection of the two lines that are both on the same plane.
297 * This is taken from Weisstein, Eric W. "Line-Line Intersection." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/Line-LineIntersection.html
298 * \param *out output stream for debugging
299 * \param *Line1a first vector of first line
300 * \param *Line1b second vector of first line
301 * \param *Line2a first vector of second line
302 * \param *Line2b second vector of second line
303 * \param *PlaneNormal normal of plane, is supplemental/arbitrary
304 * \return true - \a this will contain the intersection on return, false - lines are parallel
305 */
306bool Vector::GetIntersectionOfTwoLinesOnPlane(const Vector * const Line1a, const Vector * const Line1b, const Vector * const Line2a, const Vector * const Line2b, const Vector *PlaneNormal)
307{
308 Info FunctionInfo(__func__);
309
310 GSLMatrix *M = new GSLMatrix(4,4);
311
312 M->SetAll(1.);
313 for (int i=0;i<3;i++) {
314 M->Set(0, i, Line1a->x[i]);
315 M->Set(1, i, Line1b->x[i]);
316 M->Set(2, i, Line2a->x[i]);
317 M->Set(3, i, Line2b->x[i]);
318 }
319
320 //Log() << Verbose(1) << "Coefficent matrix is:" << endl;
321 //for (int i=0;i<4;i++) {
322 // for (int j=0;j<4;j++)
323 // cout << "\t" << M->Get(i,j);
324 // cout << endl;
325 //}
326 if (fabs(M->Determinant()) > MYEPSILON) {
327 Log() << Verbose(1) << "Determinant of coefficient matrix is NOT zero." << endl;
328 return false;
329 }
330 Log() << Verbose(1) << "INFO: Line1a = " << *Line1a << ", Line1b = " << *Line1b << ", Line2a = " << *Line2a << ", Line2b = " << *Line2b << "." << endl;
331
332
333 // constuct a,b,c
334 Vector a;
335 Vector b;
336 Vector c;
337 Vector d;
338 a.CopyVector(Line1b);
339 a.SubtractVector(Line1a);
340 b.CopyVector(Line2b);
341 b.SubtractVector(Line2a);
342 c.CopyVector(Line2a);
343 c.SubtractVector(Line1a);
344 d.CopyVector(Line2b);
345 d.SubtractVector(Line1b);
346 Log() << Verbose(1) << "INFO: a = " << a << ", b = " << b << ", c = " << c << "." << endl;
347 if ((a.NormSquared() < MYEPSILON) || (b.NormSquared() < MYEPSILON)) {
348 Zero();
349 Log() << Verbose(1) << "At least one of the lines is ill-defined, i.e. offset equals second vector." << endl;
350 return false;
351 }
352
353 // check for parallelity
354 Vector parallel;
355 double factor = 0.;
356 if (fabs(a.ScalarProduct(&b)*a.ScalarProduct(&b)/a.NormSquared()/b.NormSquared() - 1.) < MYEPSILON) {
357 parallel.CopyVector(Line1a);
358 parallel.SubtractVector(Line2a);
359 factor = parallel.ScalarProduct(&a)/a.Norm();
360 if ((factor >= -MYEPSILON) && (factor - 1. < MYEPSILON)) {
361 CopyVector(Line2a);
362 Log() << Verbose(1) << "Lines conincide." << endl;
363 return true;
364 } else {
365 parallel.CopyVector(Line1a);
366 parallel.SubtractVector(Line2b);
367 factor = parallel.ScalarProduct(&a)/a.Norm();
368 if ((factor >= -MYEPSILON) && (factor - 1. < MYEPSILON)) {
369 CopyVector(Line2b);
370 Log() << Verbose(1) << "Lines conincide." << endl;
371 return true;
372 }
373 }
374 Log() << Verbose(1) << "Lines are parallel." << endl;
375 Zero();
376 return false;
377 }
378
379 // obtain s
380 double s;
381 Vector temp1, temp2;
382 temp1.CopyVector(&c);
383 temp1.VectorProduct(&b);
384 temp2.CopyVector(&a);
385 temp2.VectorProduct(&b);
386 Log() << Verbose(1) << "INFO: temp1 = " << temp1 << ", temp2 = " << temp2 << "." << endl;
387 if (fabs(temp2.NormSquared()) > MYEPSILON)
388 s = temp1.ScalarProduct(&temp2)/temp2.NormSquared();
389 else
390 s = 0.;
391 Log() << Verbose(1) << "Factor s is " << temp1.ScalarProduct(&temp2) << "/" << temp2.NormSquared() << " = " << s << "." << endl;
392
393 // construct intersection
394 CopyVector(&a);
395 Scale(s);
396 AddVector(Line1a);
397 Log() << Verbose(1) << "Intersection is at " << *this << "." << endl;
398
399 return true;
400};
401
402/** Calculates the projection of a vector onto another \a *y.
403 * \param *y array to second vector
404 */
405void Vector::ProjectIt(const Vector * const y)
406{
407 Vector helper(*y);
408 helper.Scale(-(ScalarProduct(y)));
409 AddVector(&helper);
410};
411
412/** Calculates the projection of a vector onto another \a *y.
413 * \param *y array to second vector
414 * \return Vector
415 */
416Vector Vector::Projection(const Vector * const y) const
417{
418 Vector helper(*y);
419 helper.Scale((ScalarProduct(y)/y->NormSquared()));
420
421 return helper;
422};
423
424/** Calculates norm of this vector.
425 * \return \f$|x|\f$
426 */
427double Vector::Norm() const
428{
429 double res = 0.;
430 for (int i=NDIM;i--;)
431 res += this->x[i]*this->x[i];
432 return (sqrt(res));
433};
434
435/** Calculates squared norm of this vector.
436 * \return \f$|x|^2\f$
437 */
438double Vector::NormSquared() const
439{
440 return (ScalarProduct(this));
441};
442
443/** Normalizes this vector.
444 */
445void Vector::Normalize()
446{
447 double res = 0.;
448 for (int i=NDIM;i--;)
449 res += this->x[i]*this->x[i];
450 if (fabs(res) > MYEPSILON)
451 res = 1./sqrt(res);
452 Scale(&res);
453};
454
455/** Zeros all components of this vector.
456 */
457void Vector::Zero()
458{
459 for (int i=NDIM;i--;)
460 this->x[i] = 0.;
461};
462
463/** Zeros all components of this vector.
464 */
465void Vector::One(const double one)
466{
467 for (int i=NDIM;i--;)
468 this->x[i] = one;
469};
470
471/** Initialises all components of this vector.
472 */
473void Vector::Init(const double x1, const double x2, const double x3)
474{
475 x[0] = x1;
476 x[1] = x2;
477 x[2] = x3;
478};
479
480/** Checks whether vector has all components zero.
481 * @return true - vector is zero, false - vector is not
482 */
483bool Vector::IsZero() const
484{
485 return (fabs(x[0])+fabs(x[1])+fabs(x[2]) < MYEPSILON);
486};
487
488/** Checks whether vector has length of 1.
489 * @return true - vector is normalized, false - vector is not
490 */
491bool Vector::IsOne() const
492{
493 return (fabs(Norm() - 1.) < MYEPSILON);
494};
495
496/** Checks whether vector is normal to \a *normal.
497 * @return true - vector is normalized, false - vector is not
498 */
499bool Vector::IsNormalTo(const Vector * const normal) const
500{
501 if (ScalarProduct(normal) < MYEPSILON)
502 return true;
503 else
504 return false;
505};
506
507/** Checks whether vector is normal to \a *normal.
508 * @return true - vector is normalized, false - vector is not
509 */
510bool Vector::IsEqualTo(const Vector * const a) const
511{
512 bool status = true;
513 for (int i=0;i<NDIM;i++) {
514 if (fabs(x[i] - a->x[i]) > MYEPSILON)
515 status = false;
516 }
517 return status;
518};
519
520/** Calculates the angle between this and another vector.
521 * \param *y array to second vector
522 * \return \f$\acos\bigl(frac{\langle x, y \rangle}{|x||y|}\bigr)\f$
523 */
524double Vector::Angle(const Vector * const y) const
525{
526 double norm1 = Norm(), norm2 = y->Norm();
527 double angle = -1;
528 if ((fabs(norm1) > MYEPSILON) && (fabs(norm2) > MYEPSILON))
529 angle = this->ScalarProduct(y)/norm1/norm2;
530 // -1-MYEPSILON occured due to numerical imprecision, catch ...
531 //Log() << Verbose(2) << "INFO: acos(-1) = " << acos(-1) << ", acos(-1+MYEPSILON) = " << acos(-1+MYEPSILON) << ", acos(-1-MYEPSILON) = " << acos(-1-MYEPSILON) << "." << endl;
532 if (angle < -1)
533 angle = -1;
534 if (angle > 1)
535 angle = 1;
536 return acos(angle);
537};
538
539/** Rotates the vector relative to the origin around the axis given by \a *axis by an angle of \a alpha.
540 * \param *axis rotation axis
541 * \param alpha rotation angle in radian
542 */
543void Vector::RotateVector(const Vector * const axis, const double alpha)
544{
545 Vector a,y;
546 // normalise this vector with respect to axis
547 a.CopyVector(this);
548 a.ProjectOntoPlane(axis);
549 // construct normal vector
550 bool rotatable = y.MakeNormalVector(axis,&a);
551 // The normal vector cannot be created if there is linar dependency.
552 // Then the vector to rotate is on the axis and any rotation leads to the vector itself.
553 if (!rotatable) {
554 return;
555 }
556 y.Scale(Norm());
557 // scale normal vector by sine and this vector by cosine
558 y.Scale(sin(alpha));
559 a.Scale(cos(alpha));
560 CopyVector(Projection(axis));
561 // add scaled normal vector onto this vector
562 AddVector(&y);
563 // add part in axis direction
564 AddVector(&a);
565};
566
567/** Compares vector \a to vector \a b component-wise.
568 * \param a base vector
569 * \param b vector components to add
570 * \return a == b
571 */
572bool operator==(const Vector& a, const Vector& b)
573{
574 bool status = true;
575 for (int i=0;i<NDIM;i++)
576 status = status && (fabs(a.x[i] - b.x[i]) < MYEPSILON);
577 return status;
578};
579
580/** Sums vector \a to this lhs component-wise.
581 * \param a base vector
582 * \param b vector components to add
583 * \return lhs + a
584 */
585Vector& operator+=(Vector& a, const Vector& b)
586{
587 a.AddVector(&b);
588 return a;
589};
590
591/** Subtracts vector \a from this lhs component-wise.
592 * \param a base vector
593 * \param b vector components to add
594 * \return lhs - a
595 */
596Vector& operator-=(Vector& a, const Vector& b)
597{
598 a.SubtractVector(&b);
599 return a;
600};
601
602/** factor each component of \a a times a double \a m.
603 * \param a base vector
604 * \param m factor
605 * \return lhs.x[i] * m
606 */
607Vector& operator*=(Vector& a, const double m)
608{
609 a.Scale(m);
610 return a;
611};
612
613/** Sums two vectors \a and \b component-wise.
614 * \param a first vector
615 * \param b second vector
616 * \return a + b
617 */
618Vector& operator+(const Vector& a, const Vector& b)
619{
620 Vector *x = new Vector;
621 x->CopyVector(&a);
622 x->AddVector(&b);
623 return *x;
624};
625
626/** Subtracts vector \a from \b component-wise.
627 * \param a first vector
628 * \param b second vector
629 * \return a - b
630 */
631Vector& operator-(const Vector& a, const Vector& b)
632{
633 Vector *x = new Vector;
634 x->CopyVector(&a);
635 x->SubtractVector(&b);
636 return *x;
637};
638
639/** Factors given vector \a a times \a m.
640 * \param a vector
641 * \param m factor
642 * \return m * a
643 */
644Vector& operator*(const Vector& a, const double m)
645{
646 Vector *x = new Vector;
647 x->CopyVector(&a);
648 x->Scale(m);
649 return *x;
650};
651
652/** Factors given vector \a a times \a m.
653 * \param m factor
654 * \param a vector
655 * \return m * a
656 */
657Vector& operator*(const double m, const Vector& a )
658{
659 Vector *x = new Vector;
660 x->CopyVector(&a);
661 x->Scale(m);
662 return *x;
663};
664
665Vector& Vector::operator=(const Vector& src) {
666 CopyVector(src);
667 return *this;
668}
669
670/** Prints a 3dim vector.
671 * prints no end of line.
672 */
673void Vector::Output() const
674{
675 Log() << Verbose(0) << "(";
676 for (int i=0;i<NDIM;i++) {
677 Log() << Verbose(0) << x[i];
678 if (i != 2)
679 Log() << Verbose(0) << ",";
680 }
681 Log() << Verbose(0) << ")";
682};
683
684ostream& operator<<(ostream& ost, const Vector& m)
685{
686 ost << "(";
687 for (int i=0;i<NDIM;i++) {
688 ost << m.x[i];
689 if (i != 2)
690 ost << ",";
691 }
692 ost << ")";
693 return ost;
694};
695
696/** Scales each atom coordinate by an individual \a factor.
697 * \param *factor pointer to scaling factor
698 */
699void Vector::Scale(const double ** const factor)
700{
701 for (int i=NDIM;i--;)
702 x[i] *= (*factor)[i];
703};
704
705void Vector::Scale(const double * const factor)
706{
707 for (int i=NDIM;i--;)
708 x[i] *= *factor;
709};
710
711void Vector::Scale(const double factor)
712{
713 for (int i=NDIM;i--;)
714 x[i] *= factor;
715};
716
717/** Translate atom by given vector.
718 * \param trans[] translation vector.
719 */
720void Vector::Translate(const Vector * const trans)
721{
722 for (int i=NDIM;i--;)
723 x[i] += trans->x[i];
724};
725
726/** Given a box by its matrix \a *M and its inverse *Minv the vector is made to point within that box.
727 * \param *M matrix of box
728 * \param *Minv inverse matrix
729 */
730void Vector::WrapPeriodically(const double * const M, const double * const Minv)
731{
732 MatrixMultiplication(Minv);
733 // truncate to [0,1] for each axis
734 for (int i=0;i<NDIM;i++) {
735 x[i] += 0.5; // set to center of box
736 while (x[i] >= 1.)
737 x[i] -= 1.;
738 while (x[i] < 0.)
739 x[i] += 1.;
740 }
741 MatrixMultiplication(M);
742};
743
744/** Do a matrix multiplication.
745 * \param *matrix NDIM_NDIM array
746 */
747void Vector::MatrixMultiplication(const double * const M)
748{
749 Vector C;
750 // do the matrix multiplication
751 C.x[0] = M[0]*x[0]+M[3]*x[1]+M[6]*x[2];
752 C.x[1] = M[1]*x[0]+M[4]*x[1]+M[7]*x[2];
753 C.x[2] = M[2]*x[0]+M[5]*x[1]+M[8]*x[2];
754 // transfer the result into this
755 for (int i=NDIM;i--;)
756 x[i] = C.x[i];
757};
758
759/** Do a matrix multiplication with the \a *A' inverse.
760 * \param *matrix NDIM_NDIM array
761 */
762void Vector::InverseMatrixMultiplication(const double * const A)
763{
764 Vector C;
765 double B[NDIM*NDIM];
766 double detA = RDET3(A);
767 double detAReci;
768
769 // calculate the inverse B
770 if (fabs(detA) > MYEPSILON) {; // RDET3(A) yields precisely zero if A irregular
771 detAReci = 1./detA;
772 B[0] = detAReci*RDET2(A[4],A[5],A[7],A[8]); // A_11
773 B[1] = -detAReci*RDET2(A[1],A[2],A[7],A[8]); // A_12
774 B[2] = detAReci*RDET2(A[1],A[2],A[4],A[5]); // A_13
775 B[3] = -detAReci*RDET2(A[3],A[5],A[6],A[8]); // A_21
776 B[4] = detAReci*RDET2(A[0],A[2],A[6],A[8]); // A_22
777 B[5] = -detAReci*RDET2(A[0],A[2],A[3],A[5]); // A_23
778 B[6] = detAReci*RDET2(A[3],A[4],A[6],A[7]); // A_31
779 B[7] = -detAReci*RDET2(A[0],A[1],A[6],A[7]); // A_32
780 B[8] = detAReci*RDET2(A[0],A[1],A[3],A[4]); // A_33
781
782 // do the matrix multiplication
783 C.x[0] = B[0]*x[0]+B[3]*x[1]+B[6]*x[2];
784 C.x[1] = B[1]*x[0]+B[4]*x[1]+B[7]*x[2];
785 C.x[2] = B[2]*x[0]+B[5]*x[1]+B[8]*x[2];
786 // transfer the result into this
787 for (int i=NDIM;i--;)
788 x[i] = C.x[i];
789 } else {
790 eLog() << Verbose(1) << "inverse of matrix does not exists: det A = " << detA << "." << endl;
791 }
792};
793
794
795/** Creates this vector as the b y *factors' components scaled linear combination of the given three.
796 * this vector = x1*factors[0] + x2* factors[1] + x3*factors[2]
797 * \param *x1 first vector
798 * \param *x2 second vector
799 * \param *x3 third vector
800 * \param *factors three-component vector with the factor for each given vector
801 */
802void Vector::LinearCombinationOfVectors(const Vector * const x1, const Vector * const x2, const Vector * const x3, const double * const factors)
803{
804 for(int i=NDIM;i--;)
805 x[i] = factors[0]*x1->x[i] + factors[1]*x2->x[i] + factors[2]*x3->x[i];
806};
807
808/** Mirrors atom against a given plane.
809 * \param n[] normal vector of mirror plane.
810 */
811void Vector::Mirror(const Vector * const n)
812{
813 double projection;
814 projection = ScalarProduct(n)/n->ScalarProduct(n); // remove constancy from n (keep as logical one)
815 // withdraw projected vector twice from original one
816 Log() << Verbose(1) << "Vector: ";
817 Output();
818 Log() << Verbose(0) << "\t";
819 for (int i=NDIM;i--;)
820 x[i] -= 2.*projection*n->x[i];
821 Log() << Verbose(0) << "Projected vector: ";
822 Output();
823 Log() << Verbose(0) << endl;
824};
825
826/** Calculates normal vector for three given vectors (being three points in space).
827 * Makes this vector orthonormal to the three given points, making up a place in 3d space.
828 * \param *y1 first vector
829 * \param *y2 second vector
830 * \param *y3 third vector
831 * \return true - success, vectors are linear independent, false - failure due to linear dependency
832 */
833bool Vector::MakeNormalVector(const Vector * const y1, const Vector * const y2, const Vector * const y3)
834{
835 Vector x1, x2;
836
837 x1.CopyVector(y1);
838 x1.SubtractVector(y2);
839 x2.CopyVector(y3);
840 x2.SubtractVector(y2);
841 if ((fabs(x1.Norm()) < MYEPSILON) || (fabs(x2.Norm()) < MYEPSILON) || (fabs(x1.Angle(&x2)) < MYEPSILON)) {
842 eLog() << Verbose(2) << "Given vectors are linear dependent." << endl;
843 return false;
844 }
845// Log() << Verbose(4) << "relative, first plane coordinates:";
846// x1.Output((ofstream *)&cout);
847// Log() << Verbose(0) << endl;
848// Log() << Verbose(4) << "second plane coordinates:";
849// x2.Output((ofstream *)&cout);
850// Log() << Verbose(0) << endl;
851
852 this->x[0] = (x1.x[1]*x2.x[2] - x1.x[2]*x2.x[1]);
853 this->x[1] = (x1.x[2]*x2.x[0] - x1.x[0]*x2.x[2]);
854 this->x[2] = (x1.x[0]*x2.x[1] - x1.x[1]*x2.x[0]);
855 Normalize();
856
857 return true;
858};
859
860
861/** Calculates orthonormal vector to two given vectors.
862 * Makes this vector orthonormal to two given vectors. This is very similar to the other
863 * vector::MakeNormalVector(), only there three points whereas here two difference
864 * vectors are given.
865 * \param *x1 first vector
866 * \param *x2 second vector
867 * \return true - success, vectors are linear independent, false - failure due to linear dependency
868 */
869bool Vector::MakeNormalVector(const Vector * const y1, const Vector * const y2)
870{
871 Vector x1,x2;
872 x1.CopyVector(y1);
873 x2.CopyVector(y2);
874 Zero();
875 if ((fabs(x1.Norm()) < MYEPSILON) || (fabs(x2.Norm()) < MYEPSILON) || (fabs(x1.Angle(&x2)) < MYEPSILON)) {
876 eLog() << Verbose(2) << "Given vectors are linear dependent." << endl;
877 return false;
878 }
879// Log() << Verbose(4) << "relative, first plane coordinates:";
880// x1.Output((ofstream *)&cout);
881// Log() << Verbose(0) << endl;
882// Log() << Verbose(4) << "second plane coordinates:";
883// x2.Output((ofstream *)&cout);
884// Log() << Verbose(0) << endl;
885
886 this->x[0] = (x1.x[1]*x2.x[2] - x1.x[2]*x2.x[1]);
887 this->x[1] = (x1.x[2]*x2.x[0] - x1.x[0]*x2.x[2]);
888 this->x[2] = (x1.x[0]*x2.x[1] - x1.x[1]*x2.x[0]);
889 Normalize();
890
891 return true;
892};
893
894/** Calculates orthonormal vector to one given vectors.
895 * Just subtracts the projection onto the given vector from this vector.
896 * The removed part of the vector is Vector::Projection()
897 * \param *x1 vector
898 * \return true - success, false - vector is zero
899 */
900bool Vector::MakeNormalVector(const Vector * const y1)
901{
902 bool result = false;
903 double factor = y1->ScalarProduct(this)/y1->NormSquared();
904 Vector x1;
905 x1.CopyVector(y1);
906 x1.Scale(factor);
907 SubtractVector(&x1);
908 for (int i=NDIM;i--;)
909 result = result || (fabs(x[i]) > MYEPSILON);
910
911 return result;
912};
913
914/** Creates this vector as one of the possible orthonormal ones to the given one.
915 * Just scan how many components of given *vector are unequal to zero and
916 * try to get the skp of both to be zero accordingly.
917 * \param *vector given vector
918 * \return true - success, false - failure (null vector given)
919 */
920bool Vector::GetOneNormalVector(const Vector * const GivenVector)
921{
922 int Components[NDIM]; // contains indices of non-zero components
923 int Last = 0; // count the number of non-zero entries in vector
924 int j; // loop variables
925 double norm;
926
927 Log() << Verbose(4);
928 GivenVector->Output();
929 Log() << Verbose(0) << endl;
930 for (j=NDIM;j--;)
931 Components[j] = -1;
932 // find two components != 0
933 for (j=0;j<NDIM;j++)
934 if (fabs(GivenVector->x[j]) > MYEPSILON)
935 Components[Last++] = j;
936 Log() << Verbose(4) << Last << " Components != 0: (" << Components[0] << "," << Components[1] << "," << Components[2] << ")" << endl;
937
938 switch(Last) {
939 case 3: // threecomponent system
940 case 2: // two component system
941 norm = sqrt(1./(GivenVector->x[Components[1]]*GivenVector->x[Components[1]]) + 1./(GivenVector->x[Components[0]]*GivenVector->x[Components[0]]));
942 x[Components[2]] = 0.;
943 // in skp both remaining parts shall become zero but with opposite sign and third is zero
944 x[Components[1]] = -1./GivenVector->x[Components[1]] / norm;
945 x[Components[0]] = 1./GivenVector->x[Components[0]] / norm;
946 return true;
947 break;
948 case 1: // one component system
949 // set sole non-zero component to 0, and one of the other zero component pendants to 1
950 x[(Components[0]+2)%NDIM] = 0.;
951 x[(Components[0]+1)%NDIM] = 1.;
952 x[Components[0]] = 0.;
953 return true;
954 break;
955 default:
956 return false;
957 }
958};
959
960/** Determines parameter needed to multiply this vector to obtain intersection point with plane defined by \a *A, \a *B and \a *C.
961 * \param *A first plane vector
962 * \param *B second plane vector
963 * \param *C third plane vector
964 * \return scaling parameter for this vector
965 */
966double Vector::CutsPlaneAt(const Vector * const A, const Vector * const B, const Vector * const C) const
967{
968// Log() << Verbose(3) << "For comparison: ";
969// Log() << Verbose(0) << "A " << A->Projection(this) << "\t";
970// Log() << Verbose(0) << "B " << B->Projection(this) << "\t";
971// Log() << Verbose(0) << "C " << C->Projection(this) << "\t";
972// Log() << Verbose(0) << endl;
973 return A->ScalarProduct(this);
974};
975
976/** Creates a new vector as the one with least square distance to a given set of \a vectors.
977 * \param *vectors set of vectors
978 * \param num number of vectors
979 * \return true if success, false if failed due to linear dependency
980 */
981bool Vector::LSQdistance(const Vector **vectors, int num)
982{
983 int j;
984
985 for (j=0;j<num;j++) {
986 Log() << Verbose(1) << j << "th atom's vector: ";
987 (vectors[j])->Output();
988 Log() << Verbose(0) << endl;
989 }
990
991 int np = 3;
992 struct LSQ_params par;
993
994 const gsl_multimin_fminimizer_type *T =
995 gsl_multimin_fminimizer_nmsimplex;
996 gsl_multimin_fminimizer *s = NULL;
997 gsl_vector *ss, *y;
998 gsl_multimin_function minex_func;
999
1000 size_t iter = 0, i;
1001 int status;
1002 double size;
1003
1004 /* Initial vertex size vector */
1005 ss = gsl_vector_alloc (np);
1006 y = gsl_vector_alloc (np);
1007
1008 /* Set all step sizes to 1 */
1009 gsl_vector_set_all (ss, 1.0);
1010
1011 /* Starting point */
1012 par.vectors = vectors;
1013 par.num = num;
1014
1015 for (i=NDIM;i--;)
1016 gsl_vector_set(y, i, (vectors[0]->x[i] - vectors[1]->x[i])/2.);
1017
1018 /* Initialize method and iterate */
1019 minex_func.f = &LSQ;
1020 minex_func.n = np;
1021 minex_func.params = (void *)&par;
1022
1023 s = gsl_multimin_fminimizer_alloc (T, np);
1024 gsl_multimin_fminimizer_set (s, &minex_func, y, ss);
1025
1026 do
1027 {
1028 iter++;
1029 status = gsl_multimin_fminimizer_iterate(s);
1030
1031 if (status)
1032 break;
1033
1034 size = gsl_multimin_fminimizer_size (s);
1035 status = gsl_multimin_test_size (size, 1e-2);
1036
1037 if (status == GSL_SUCCESS)
1038 {
1039 printf ("converged to minimum at\n");
1040 }
1041
1042 printf ("%5d ", (int)iter);
1043 for (i = 0; i < (size_t)np; i++)
1044 {
1045 printf ("%10.3e ", gsl_vector_get (s->x, i));
1046 }
1047 printf ("f() = %7.3f size = %.3f\n", s->fval, size);
1048 }
1049 while (status == GSL_CONTINUE && iter < 100);
1050
1051 for (i=(size_t)np;i--;)
1052 this->x[i] = gsl_vector_get(s->x, i);
1053 gsl_vector_free(y);
1054 gsl_vector_free(ss);
1055 gsl_multimin_fminimizer_free (s);
1056
1057 return true;
1058};
1059
1060/** Adds vector \a *y componentwise.
1061 * \param *y vector
1062 */
1063void Vector::AddVector(const Vector * const y)
1064{
1065 for (int i=NDIM;i--;)
1066 this->x[i] += y->x[i];
1067}
1068
1069/** Adds vector \a *y componentwise.
1070 * \param *y vector
1071 */
1072void Vector::SubtractVector(const Vector * const y)
1073{
1074 for (int i=NDIM;i--;)
1075 this->x[i] -= y->x[i];
1076}
1077
1078/** Copy vector \a *y componentwise.
1079 * \param *y vector
1080 */
1081void Vector::CopyVector(const Vector * const y)
1082{
1083 // check for self assignment
1084 if(y!=this){
1085 for (int i=NDIM;i--;)
1086 this->x[i] = y->x[i];
1087 }
1088}
1089
1090/** Copy vector \a y componentwise.
1091 * \param y vector
1092 */
1093void Vector::CopyVector(const Vector &y)
1094{
1095 // check for self assignment
1096 if(&y!=this) {
1097 for (int i=NDIM;i--;)
1098 this->x[i] = y.x[i];
1099 }
1100}
1101
1102
1103/** Asks for position, checks for boundary.
1104 * \param cell_size unitary size of cubic cell, coordinates must be within 0...cell_size
1105 * \param check whether bounds shall be checked (true) or not (false)
1106 */
1107void Vector::AskPosition(const double * const cell_size, const bool check)
1108{
1109 char coords[3] = {'x','y','z'};
1110 int j = -1;
1111 for (int i=0;i<3;i++) {
1112 j += i+1;
1113 do {
1114 Log() << Verbose(0) << coords[i] << "[0.." << cell_size[j] << "]: ";
1115 cin >> x[i];
1116 } while (((x[i] < 0) || (x[i] >= cell_size[j])) && (check));
1117 }
1118};
1119
1120/** Solves a vectorial system consisting of two orthogonal statements and a norm statement.
1121 * This is linear system of equations to be solved, however of the three given (skp of this vector\
1122 * with either of the three hast to be zero) only two are linear independent. The third equation
1123 * is that the vector should be of magnitude 1 (orthonormal). This all leads to a case-based solution
1124 * where very often it has to be checked whether a certain value is zero or not and thus forked into
1125 * another case.
1126 * \param *x1 first vector
1127 * \param *x2 second vector
1128 * \param *y third vector
1129 * \param alpha first angle
1130 * \param beta second angle
1131 * \param c norm of final vector
1132 * \return a vector with \f$\langle x1,x2 \rangle=A\f$, \f$\langle x1,y \rangle = B\f$ and with norm \a c.
1133 * \bug this is not yet working properly
1134 */
1135bool Vector::SolveSystem(Vector * x1, Vector * x2, Vector * y, const double alpha, const double beta, const double c)
1136{
1137 double D1,D2,D3,E1,E2,F1,F2,F3,p,q=0., A, B1, B2, C;
1138 double ang; // angle on testing
1139 double sign[3];
1140 int i,j,k;
1141 A = cos(alpha) * x1->Norm() * c;
1142 B1 = cos(beta + M_PI/2.) * y->Norm() * c;
1143 B2 = cos(beta) * x2->Norm() * c;
1144 C = c * c;
1145 Log() << Verbose(2) << "A " << A << "\tB " << B1 << "\tC " << C << endl;
1146 int flag = 0;
1147 if (fabs(x1->x[0]) < MYEPSILON) { // check for zero components for the later flipping and back-flipping
1148 if (fabs(x1->x[1]) > MYEPSILON) {
1149 flag = 1;
1150 } else if (fabs(x1->x[2]) > MYEPSILON) {
1151 flag = 2;
1152 } else {
1153 return false;
1154 }
1155 }
1156 switch (flag) {
1157 default:
1158 case 0:
1159 break;
1160 case 2:
1161 flip(x1->x[0],x1->x[1]);
1162 flip(x2->x[0],x2->x[1]);
1163 flip(y->x[0],y->x[1]);
1164 //flip(x[0],x[1]);
1165 flip(x1->x[1],x1->x[2]);
1166 flip(x2->x[1],x2->x[2]);
1167 flip(y->x[1],y->x[2]);
1168 //flip(x[1],x[2]);
1169 case 1:
1170 flip(x1->x[0],x1->x[1]);
1171 flip(x2->x[0],x2->x[1]);
1172 flip(y->x[0],y->x[1]);
1173 //flip(x[0],x[1]);
1174 flip(x1->x[1],x1->x[2]);
1175 flip(x2->x[1],x2->x[2]);
1176 flip(y->x[1],y->x[2]);
1177 //flip(x[1],x[2]);
1178 break;
1179 }
1180 // now comes the case system
1181 D1 = -y->x[0]/x1->x[0]*x1->x[1]+y->x[1];
1182 D2 = -y->x[0]/x1->x[0]*x1->x[2]+y->x[2];
1183 D3 = y->x[0]/x1->x[0]*A-B1;
1184 Log() << Verbose(2) << "D1 " << D1 << "\tD2 " << D2 << "\tD3 " << D3 << "\n";
1185 if (fabs(D1) < MYEPSILON) {
1186 Log() << Verbose(2) << "D1 == 0!\n";
1187 if (fabs(D2) > MYEPSILON) {
1188 Log() << Verbose(3) << "D2 != 0!\n";
1189 x[2] = -D3/D2;
1190 E1 = A/x1->x[0] + x1->x[2]/x1->x[0]*D3/D2;
1191 E2 = -x1->x[1]/x1->x[0];
1192 Log() << Verbose(3) << "E1 " << E1 << "\tE2 " << E2 << "\n";
1193 F1 = E1*E1 + 1.;
1194 F2 = -E1*E2;
1195 F3 = E1*E1 + D3*D3/(D2*D2) - C;
1196 Log() << Verbose(3) << "F1 " << F1 << "\tF2 " << F2 << "\tF3 " << F3 << "\n";
1197 if (fabs(F1) < MYEPSILON) {
1198 Log() << Verbose(4) << "F1 == 0!\n";
1199 Log() << Verbose(4) << "Gleichungssystem linear\n";
1200 x[1] = F3/(2.*F2);
1201 } else {
1202 p = F2/F1;
1203 q = p*p - F3/F1;
1204 Log() << Verbose(4) << "p " << p << "\tq " << q << endl;
1205 if (q < 0) {
1206 Log() << Verbose(4) << "q < 0" << endl;
1207 return false;
1208 }
1209 x[1] = p + sqrt(q);
1210 }
1211 x[0] = A/x1->x[0] - x1->x[1]/x1->x[0]*x[1] + x1->x[2]/x1->x[0]*x[2];
1212 } else {
1213 Log() << Verbose(2) << "Gleichungssystem unterbestimmt\n";
1214 return false;
1215 }
1216 } else {
1217 E1 = A/x1->x[0]+x1->x[1]/x1->x[0]*D3/D1;
1218 E2 = x1->x[1]/x1->x[0]*D2/D1 - x1->x[2];
1219 Log() << Verbose(2) << "E1 " << E1 << "\tE2 " << E2 << "\n";
1220 F1 = E2*E2 + D2*D2/(D1*D1) + 1.;
1221 F2 = -(E1*E2 + D2*D3/(D1*D1));
1222 F3 = E1*E1 + D3*D3/(D1*D1) - C;
1223 Log() << Verbose(2) << "F1 " << F1 << "\tF2 " << F2 << "\tF3 " << F3 << "\n";
1224 if (fabs(F1) < MYEPSILON) {
1225 Log() << Verbose(3) << "F1 == 0!\n";
1226 Log() << Verbose(3) << "Gleichungssystem linear\n";
1227 x[2] = F3/(2.*F2);
1228 } else {
1229 p = F2/F1;
1230 q = p*p - F3/F1;
1231 Log() << Verbose(3) << "p " << p << "\tq " << q << endl;
1232 if (q < 0) {
1233 Log() << Verbose(3) << "q < 0" << endl;
1234 return false;
1235 }
1236 x[2] = p + sqrt(q);
1237 }
1238 x[1] = (-D2 * x[2] - D3)/D1;
1239 x[0] = A/x1->x[0] - x1->x[1]/x1->x[0]*x[1] + x1->x[2]/x1->x[0]*x[2];
1240 }
1241 switch (flag) { // back-flipping
1242 default:
1243 case 0:
1244 break;
1245 case 2:
1246 flip(x1->x[0],x1->x[1]);
1247 flip(x2->x[0],x2->x[1]);
1248 flip(y->x[0],y->x[1]);
1249 flip(x[0],x[1]);
1250 flip(x1->x[1],x1->x[2]);
1251 flip(x2->x[1],x2->x[2]);
1252 flip(y->x[1],y->x[2]);
1253 flip(x[1],x[2]);
1254 case 1:
1255 flip(x1->x[0],x1->x[1]);
1256 flip(x2->x[0],x2->x[1]);
1257 flip(y->x[0],y->x[1]);
1258 //flip(x[0],x[1]);
1259 flip(x1->x[1],x1->x[2]);
1260 flip(x2->x[1],x2->x[2]);
1261 flip(y->x[1],y->x[2]);
1262 flip(x[1],x[2]);
1263 break;
1264 }
1265 // one z component is only determined by its radius (without sign)
1266 // thus check eight possible sign flips and determine by checking angle with second vector
1267 for (i=0;i<8;i++) {
1268 // set sign vector accordingly
1269 for (j=2;j>=0;j--) {
1270 k = (i & pot(2,j)) << j;
1271 Log() << Verbose(2) << "k " << k << "\tpot(2,j) " << pot(2,j) << endl;
1272 sign[j] = (k == 0) ? 1. : -1.;
1273 }
1274 Log() << Verbose(2) << i << ": sign matrix is " << sign[0] << "\t" << sign[1] << "\t" << sign[2] << "\n";
1275 // apply sign matrix
1276 for (j=NDIM;j--;)
1277 x[j] *= sign[j];
1278 // calculate angle and check
1279 ang = x2->Angle (this);
1280 Log() << Verbose(1) << i << "th angle " << ang << "\tbeta " << cos(beta) << " :\t";
1281 if (fabs(ang - cos(beta)) < MYEPSILON) {
1282 break;
1283 }
1284 // unapply sign matrix (is its own inverse)
1285 for (j=NDIM;j--;)
1286 x[j] *= sign[j];
1287 }
1288 return true;
1289};
1290
1291/**
1292 * Checks whether this vector is within the parallelepiped defined by the given three vectors and
1293 * their offset.
1294 *
1295 * @param offest for the origin of the parallelepiped
1296 * @param three vectors forming the matrix that defines the shape of the parallelpiped
1297 */
1298bool Vector::IsInParallelepiped(const Vector &offset, const double * const parallelepiped) const
1299{
1300 Vector a;
1301 a.CopyVector(this);
1302 a.SubtractVector(&offset);
1303 a.InverseMatrixMultiplication(parallelepiped);
1304 bool isInside = true;
1305
1306 for (int i=NDIM;i--;)
1307 isInside = isInside && ((a.x[i] <= 1) && (a.x[i] >= 0));
1308
1309 return isInside;
1310}
Note: See TracBrowser for help on using the repository browser.