1 | /** \file vector.cpp
|
---|
2 | *
|
---|
3 | * Function implementations for the class vector.
|
---|
4 | *
|
---|
5 | */
|
---|
6 |
|
---|
7 | #include "molecules.hpp"
|
---|
8 |
|
---|
9 |
|
---|
10 | /************************************ Functions for class vector ************************************/
|
---|
11 |
|
---|
12 | /** Constructor of class vector.
|
---|
13 | */
|
---|
14 | vector::vector() { x[0] = x[1] = x[2] = 0.; };
|
---|
15 |
|
---|
16 | /** Constructor of class vector.
|
---|
17 | */
|
---|
18 | vector::vector(double x1, double x2, double x3) { x[0] = x1; x[1] = x2; x[2] = x3; };
|
---|
19 |
|
---|
20 | /** Desctructor of class vector.
|
---|
21 | */
|
---|
22 | vector::~vector() {};
|
---|
23 |
|
---|
24 | /** Calculates distance between this and another vector.
|
---|
25 | * \param *y array to second vector
|
---|
26 | * \return \f$| x - y |^2\f$
|
---|
27 | */
|
---|
28 | double vector::Distance(const vector *y) const
|
---|
29 | {
|
---|
30 | double res = 0.;
|
---|
31 | for (int i=NDIM;i--;)
|
---|
32 | res += (x[i]-y->x[i])*(x[i]-y->x[i]);
|
---|
33 | return (res);
|
---|
34 | };
|
---|
35 |
|
---|
36 | /** Calculates distance between this and another vector in a periodic cell.
|
---|
37 | * \param *y array to second vector
|
---|
38 | * \param *cell_size 6-dimensional array with (xx, xy, yy, xz, yz, zz) entries specifying the periodic cell
|
---|
39 | * \return \f$| x - y |^2\f$
|
---|
40 | */
|
---|
41 | double vector::PeriodicDistance(const vector *y, const double *cell_size) const
|
---|
42 | {
|
---|
43 | double res = Distance(y), tmp, matrix[NDIM*NDIM];
|
---|
44 | vector Shiftedy, TranslationVector;
|
---|
45 | int N[NDIM];
|
---|
46 | matrix[0] = cell_size[0];
|
---|
47 | matrix[1] = cell_size[1];
|
---|
48 | matrix[2] = cell_size[3];
|
---|
49 | matrix[3] = cell_size[1];
|
---|
50 | matrix[4] = cell_size[2];
|
---|
51 | matrix[5] = cell_size[4];
|
---|
52 | matrix[6] = cell_size[3];
|
---|
53 | matrix[7] = cell_size[4];
|
---|
54 | matrix[8] = cell_size[5];
|
---|
55 | // in order to check the periodic distance, translate one of the vectors into each of the 27 neighbouring cells
|
---|
56 | for (N[0]=-1;N[0]<=1;N[0]++)
|
---|
57 | for (N[1]=-1;N[1]<=1;N[1]++)
|
---|
58 | for (N[2]=-1;N[2]<=1;N[2]++) {
|
---|
59 | // create the translation vector
|
---|
60 | TranslationVector.Zero();
|
---|
61 | for (int i=NDIM;i--;)
|
---|
62 | TranslationVector.x[i] = (double)N[i];
|
---|
63 | TranslationVector.MatrixMultiplication(matrix);
|
---|
64 | // add onto the original vector to compare with
|
---|
65 | Shiftedy.CopyVector(y);
|
---|
66 | Shiftedy.AddVector(&TranslationVector);
|
---|
67 | // get distance and compare with minimum so far
|
---|
68 | tmp = Distance(&Shiftedy);
|
---|
69 | if (tmp < res) res = tmp;
|
---|
70 | }
|
---|
71 | return (res);
|
---|
72 | };
|
---|
73 |
|
---|
74 | /** Keeps the vector in a periodic cell, defined by the symmetric \a *matrix.
|
---|
75 | * \param *out ofstream for debugging messages
|
---|
76 | * Tries to translate a vector into each adjacent neighbouring cell.
|
---|
77 | */
|
---|
78 | void vector::KeepPeriodic(ofstream *out, double *matrix)
|
---|
79 | {
|
---|
80 | // int N[NDIM];
|
---|
81 | // bool flag = false;
|
---|
82 | //vector Shifted, TranslationVector;
|
---|
83 | vector TestVector;
|
---|
84 | // *out << Verbose(1) << "Begin of KeepPeriodic." << endl;
|
---|
85 | // *out << Verbose(2) << "Vector is: ";
|
---|
86 | // Output(out);
|
---|
87 | // *out << endl;
|
---|
88 | TestVector.CopyVector(this);
|
---|
89 | TestVector.InverseMatrixMultiplication(matrix);
|
---|
90 | for(int i=NDIM;i--;) { // correct periodically
|
---|
91 | if (TestVector.x[i] < 0) { // get every coefficient into the interval [0,1)
|
---|
92 | TestVector.x[i] += ceil(TestVector.x[i]);
|
---|
93 | } else {
|
---|
94 | TestVector.x[i] -= floor(TestVector.x[i]);
|
---|
95 | }
|
---|
96 | }
|
---|
97 | TestVector.MatrixMultiplication(matrix);
|
---|
98 | CopyVector(&TestVector);
|
---|
99 | // *out << Verbose(2) << "New corrected vector is: ";
|
---|
100 | // Output(out);
|
---|
101 | // *out << endl;
|
---|
102 | // *out << Verbose(1) << "End of KeepPeriodic." << endl;
|
---|
103 | };
|
---|
104 |
|
---|
105 | /** Calculates scalar product between this and another vector.
|
---|
106 | * \param *y array to second vector
|
---|
107 | * \return \f$\langle x, y \rangle\f$
|
---|
108 | */
|
---|
109 | double vector::ScalarProduct(const vector *y) const
|
---|
110 | {
|
---|
111 | double res = 0.;
|
---|
112 | for (int i=NDIM;i--;)
|
---|
113 | res += x[i]*y->x[i];
|
---|
114 | return (res);
|
---|
115 | };
|
---|
116 |
|
---|
117 | /** projects this vector onto plane defined by \a *y.
|
---|
118 | * \param *y array to normal vector of plane
|
---|
119 | * \return \f$\langle x, y \rangle\f$
|
---|
120 | */
|
---|
121 | void vector::ProjectOntoPlane(const vector *y)
|
---|
122 | {
|
---|
123 | vector tmp;
|
---|
124 | tmp.CopyVector(y);
|
---|
125 | tmp.Scale(Projection(y));
|
---|
126 | this->SubtractVector(&tmp);
|
---|
127 | };
|
---|
128 |
|
---|
129 | /** Calculates the projection of a vector onto another \a *y.
|
---|
130 | * \param *y array to second vector
|
---|
131 | * \return \f$\langle x, y \rangle\f$
|
---|
132 | */
|
---|
133 | double vector::Projection(const vector *y) const
|
---|
134 | {
|
---|
135 | return (ScalarProduct(y));
|
---|
136 | };
|
---|
137 |
|
---|
138 | /** Calculates norm of this vector.
|
---|
139 | * \return \f$|x|\f$
|
---|
140 | */
|
---|
141 | double vector::Norm() const
|
---|
142 | {
|
---|
143 | double res = 0.;
|
---|
144 | for (int i=NDIM;i--;)
|
---|
145 | res += this->x[i]*this->x[i];
|
---|
146 | return (sqrt(res));
|
---|
147 | };
|
---|
148 |
|
---|
149 | /** Normalizes this vector.
|
---|
150 | */
|
---|
151 | void vector::Normalize()
|
---|
152 | {
|
---|
153 | double res = 0.;
|
---|
154 | for (int i=NDIM;i--;)
|
---|
155 | res += this->x[i]*this->x[i];
|
---|
156 | res = 1./sqrt(res);
|
---|
157 | Scale(&res);
|
---|
158 | };
|
---|
159 |
|
---|
160 | /** Zeros all components of this vector.
|
---|
161 | */
|
---|
162 | void vector::Zero()
|
---|
163 | {
|
---|
164 | for (int i=NDIM;i--;)
|
---|
165 | this->x[i] = 0.;
|
---|
166 | };
|
---|
167 |
|
---|
168 | /** Zeros all components of this vector.
|
---|
169 | */
|
---|
170 | void vector::One(double one)
|
---|
171 | {
|
---|
172 | for (int i=NDIM;i--;)
|
---|
173 | this->x[i] = one;
|
---|
174 | };
|
---|
175 |
|
---|
176 | /** Initialises all components of this vector.
|
---|
177 | */
|
---|
178 | void vector::Init(double x1, double x2, double x3)
|
---|
179 | {
|
---|
180 | x[0] = x1;
|
---|
181 | x[1] = x2;
|
---|
182 | x[2] = x3;
|
---|
183 | };
|
---|
184 |
|
---|
185 | /** Calculates the angle between this and another vector.
|
---|
186 | * \param *y array to second vector
|
---|
187 | * \return \f$\acos\bigl(frac{\langle x, y \rangle}{|x||y|}\bigr)\f$
|
---|
188 | */
|
---|
189 | double vector::Angle(vector *y) const
|
---|
190 | {
|
---|
191 | return acos(this->ScalarProduct(y)/Norm()/y->Norm());
|
---|
192 | };
|
---|
193 |
|
---|
194 | /** Rotates the vector around the axis given by \a *axis by an angle of \a alpha.
|
---|
195 | * \param *axis rotation axis
|
---|
196 | * \param alpha rotation angle in radian
|
---|
197 | */
|
---|
198 | void vector::RotateVector(const vector *axis, const double alpha)
|
---|
199 | {
|
---|
200 | vector a,y;
|
---|
201 | // normalise this vector with respect to axis
|
---|
202 | a.CopyVector(this);
|
---|
203 | a.Scale(Projection(axis));
|
---|
204 | SubtractVector(&a);
|
---|
205 | // construct normal vector
|
---|
206 | y.MakeNormalVector(axis,this);
|
---|
207 | y.Scale(Norm());
|
---|
208 | // scale normal vector by sine and this vector by cosine
|
---|
209 | y.Scale(sin(alpha));
|
---|
210 | Scale(cos(alpha));
|
---|
211 | // add scaled normal vector onto this vector
|
---|
212 | AddVector(&y);
|
---|
213 | // add part in axis direction
|
---|
214 | AddVector(&a);
|
---|
215 | };
|
---|
216 |
|
---|
217 | /** Sums vector \a to this lhs component-wise.
|
---|
218 | * \param a base vector
|
---|
219 | * \param b vector components to add
|
---|
220 | * \return lhs + a
|
---|
221 | */
|
---|
222 | vector& operator+=(vector& a, const vector& b)
|
---|
223 | {
|
---|
224 | a.AddVector(&b);
|
---|
225 | return a;
|
---|
226 | };
|
---|
227 | /** factor each component of \a a times a double \a m.
|
---|
228 | * \param a base vector
|
---|
229 | * \param m factor
|
---|
230 | * \return lhs.x[i] * m
|
---|
231 | */
|
---|
232 | vector& operator*=(vector& a, const double m)
|
---|
233 | {
|
---|
234 | a.Scale(m);
|
---|
235 | return a;
|
---|
236 | };
|
---|
237 |
|
---|
238 | /** Sums two vectors \a and \b component-wise.
|
---|
239 | * \param a first vector
|
---|
240 | * \param b second vector
|
---|
241 | * \return a + b
|
---|
242 | */
|
---|
243 | vector& operator+(const vector& a, const vector& b)
|
---|
244 | {
|
---|
245 | vector *x = new vector;
|
---|
246 | x->CopyVector(&a);
|
---|
247 | x->AddVector(&b);
|
---|
248 | return *x;
|
---|
249 | };
|
---|
250 |
|
---|
251 | /** Factors given vector \a a times \a m.
|
---|
252 | * \param a vector
|
---|
253 | * \param m factor
|
---|
254 | * \return a + b
|
---|
255 | */
|
---|
256 | vector& operator*(const vector& a, const double m)
|
---|
257 | {
|
---|
258 | vector *x = new vector;
|
---|
259 | x->CopyVector(&a);
|
---|
260 | x->Scale(m);
|
---|
261 | return *x;
|
---|
262 | };
|
---|
263 |
|
---|
264 | /** Prints a 3dim vector.
|
---|
265 | * prints no end of line.
|
---|
266 | * \param *out output stream
|
---|
267 | */
|
---|
268 | bool vector::Output(ofstream *out) const
|
---|
269 | {
|
---|
270 | if (out != NULL) {
|
---|
271 | *out << "(";
|
---|
272 | for (int i=0;i<NDIM;i++) {
|
---|
273 | *out << x[i];
|
---|
274 | if (i != 2)
|
---|
275 | *out << ",";
|
---|
276 | }
|
---|
277 | *out << ")";
|
---|
278 | return true;
|
---|
279 | } else
|
---|
280 | return false;
|
---|
281 | };
|
---|
282 |
|
---|
283 | ofstream& operator<<(ofstream& ost,vector& m)
|
---|
284 | {
|
---|
285 | m.Output(&ost);
|
---|
286 | return ost;
|
---|
287 | };
|
---|
288 |
|
---|
289 | /** Scales each atom coordinate by an individual \a factor.
|
---|
290 | * \param *factor pointer to scaling factor
|
---|
291 | */
|
---|
292 | void vector::Scale(double **factor)
|
---|
293 | {
|
---|
294 | for (int i=NDIM;i--;)
|
---|
295 | x[i] *= (*factor)[i];
|
---|
296 | };
|
---|
297 |
|
---|
298 | void vector::Scale(double *factor)
|
---|
299 | {
|
---|
300 | for (int i=NDIM;i--;)
|
---|
301 | x[i] *= *factor;
|
---|
302 | };
|
---|
303 |
|
---|
304 | void vector::Scale(double factor)
|
---|
305 | {
|
---|
306 | for (int i=NDIM;i--;)
|
---|
307 | x[i] *= factor;
|
---|
308 | };
|
---|
309 |
|
---|
310 | /** Translate atom by given vector.
|
---|
311 | * \param trans[] translation vector.
|
---|
312 | */
|
---|
313 | void vector::Translate(const vector *trans)
|
---|
314 | {
|
---|
315 | for (int i=NDIM;i--;)
|
---|
316 | x[i] += trans->x[i];
|
---|
317 | };
|
---|
318 |
|
---|
319 | /** Do a matrix multiplication.
|
---|
320 | * \param *matrix NDIM_NDIM array
|
---|
321 | */
|
---|
322 | void vector::MatrixMultiplication(double *M)
|
---|
323 | {
|
---|
324 | vector C;
|
---|
325 | // do the matrix multiplication
|
---|
326 | C.x[0] = M[0]*x[0]+M[3]*x[1]+M[6]*x[2];
|
---|
327 | C.x[1] = M[1]*x[0]+M[4]*x[1]+M[7]*x[2];
|
---|
328 | C.x[2] = M[2]*x[0]+M[5]*x[1]+M[8]*x[2];
|
---|
329 | // transfer the result into this
|
---|
330 | for (int i=NDIM;i--;)
|
---|
331 | x[i] = C.x[i];
|
---|
332 | };
|
---|
333 |
|
---|
334 | /** Do a matrix multiplication with \a *matrix' inverse.
|
---|
335 | * \param *matrix NDIM_NDIM array
|
---|
336 | */
|
---|
337 | void vector::InverseMatrixMultiplication(double *A)
|
---|
338 | {
|
---|
339 | vector C;
|
---|
340 | double B[NDIM*NDIM];
|
---|
341 | double detA = RDET3(A);
|
---|
342 | double detAReci;
|
---|
343 |
|
---|
344 | // calculate the inverse B
|
---|
345 | if (fabs(detA) > MYEPSILON) {; // RDET3(A) yields precisely zero if A irregular
|
---|
346 | detAReci = 1./detA;
|
---|
347 | B[0] = detAReci*RDET2(A[4],A[5],A[7],A[8]); // A_11
|
---|
348 | B[1] = -detAReci*RDET2(A[1],A[2],A[7],A[8]); // A_12
|
---|
349 | B[2] = detAReci*RDET2(A[1],A[2],A[4],A[5]); // A_13
|
---|
350 | B[3] = -detAReci*RDET2(A[3],A[5],A[6],A[8]); // A_21
|
---|
351 | B[4] = detAReci*RDET2(A[0],A[2],A[6],A[8]); // A_22
|
---|
352 | B[5] = -detAReci*RDET2(A[0],A[2],A[3],A[5]); // A_23
|
---|
353 | B[6] = detAReci*RDET2(A[3],A[4],A[6],A[7]); // A_31
|
---|
354 | B[7] = -detAReci*RDET2(A[0],A[1],A[6],A[7]); // A_32
|
---|
355 | B[8] = detAReci*RDET2(A[0],A[1],A[3],A[4]); // A_33
|
---|
356 |
|
---|
357 | // do the matrix multiplication
|
---|
358 | C.x[0] = B[0]*x[0]+B[3]*x[1]+B[6]*x[2];
|
---|
359 | C.x[1] = B[1]*x[0]+B[4]*x[1]+B[7]*x[2];
|
---|
360 | C.x[2] = B[2]*x[0]+B[5]*x[1]+B[8]*x[2];
|
---|
361 | // transfer the result into this
|
---|
362 | for (int i=NDIM;i--;)
|
---|
363 | x[i] = C.x[i];
|
---|
364 | } else {
|
---|
365 | cerr << "ERROR: inverse of matrix does not exists!" << endl;
|
---|
366 | }
|
---|
367 | };
|
---|
368 |
|
---|
369 |
|
---|
370 | /** Creates this vector as the b y *factors' components scaled linear combination of the given three.
|
---|
371 | * this vector = x1*factors[0] + x2* factors[1] + x3*factors[2]
|
---|
372 | * \param *x1 first vector
|
---|
373 | * \param *x2 second vector
|
---|
374 | * \param *x3 third vector
|
---|
375 | * \param *factors three-component vector with the factor for each given vector
|
---|
376 | */
|
---|
377 | void vector::LinearCombinationOfVectors(const vector *x1, const vector *x2, const vector *x3, double *factors)
|
---|
378 | {
|
---|
379 | for(int i=NDIM;i--;)
|
---|
380 | x[i] = factors[0]*x1->x[i] + factors[1]*x2->x[i] + factors[2]*x3->x[i];
|
---|
381 | };
|
---|
382 |
|
---|
383 | /** Mirrors atom against a given plane.
|
---|
384 | * \param n[] normal vector of mirror plane.
|
---|
385 | */
|
---|
386 | void vector::Mirror(const vector *n)
|
---|
387 | {
|
---|
388 | double projection;
|
---|
389 | projection = ScalarProduct(n)/n->ScalarProduct(n); // remove constancy from n (keep as logical one)
|
---|
390 | // withdraw projected vector twice from original one
|
---|
391 | cout << Verbose(1) << "Vector: ";
|
---|
392 | Output((ofstream *)&cout);
|
---|
393 | cout << "\t";
|
---|
394 | for (int i=NDIM;i--;)
|
---|
395 | x[i] -= 2.*projection*n->x[i];
|
---|
396 | cout << "Projected vector: ";
|
---|
397 | Output((ofstream *)&cout);
|
---|
398 | cout << endl;
|
---|
399 | };
|
---|
400 |
|
---|
401 | /** Calculates normal vector for three given vectors (being three points in space).
|
---|
402 | * Makes this vector orthonormal to the three given points, making up a place in 3d space.
|
---|
403 | * \param *y1 first vector
|
---|
404 | * \param *y2 second vector
|
---|
405 | * \param *y3 third vector
|
---|
406 | * \return true - success, vectors are linear independent, false - failure due to linear dependency
|
---|
407 | */
|
---|
408 | bool vector::MakeNormalVector(const vector *y1, const vector *y2, const vector *y3)
|
---|
409 | {
|
---|
410 | vector x1, x2;
|
---|
411 |
|
---|
412 | x1.CopyVector(y1);
|
---|
413 | x1.SubtractVector(y2);
|
---|
414 | x2.CopyVector(y3);
|
---|
415 | x2.SubtractVector(y2);
|
---|
416 | if ((x1.Norm()==0) || (x2.Norm()==0)) {
|
---|
417 | cout << Verbose(4) << "Given vectors are linear dependent." << endl;
|
---|
418 | return false;
|
---|
419 | }
|
---|
420 | cout << Verbose(4) << "relative, first plane coordinates:";
|
---|
421 | x1.Output((ofstream *)&cout);
|
---|
422 | cout << endl;
|
---|
423 | cout << Verbose(4) << "second plane coordinates:";
|
---|
424 | x2.Output((ofstream *)&cout);
|
---|
425 | cout << endl;
|
---|
426 |
|
---|
427 | this->x[0] = (x1.x[1]*x2.x[2] - x1.x[2]*x2.x[1]);
|
---|
428 | this->x[1] = (x1.x[2]*x2.x[0] - x1.x[0]*x2.x[2]);
|
---|
429 | this->x[2] = (x1.x[0]*x2.x[1] - x1.x[1]*x2.x[0]);
|
---|
430 | Normalize();
|
---|
431 |
|
---|
432 | return true;
|
---|
433 | };
|
---|
434 |
|
---|
435 |
|
---|
436 | /** Calculates orthonormal vector to two given vectors.
|
---|
437 | * Makes this vector orthonormal to two given vectors. This is very similar to the other
|
---|
438 | * vector::MakeNormalVector(), only there three points whereas here two difference
|
---|
439 | * vectors are given.
|
---|
440 | * \param *x1 first vector
|
---|
441 | * \param *x2 second vector
|
---|
442 | * \return true - success, vectors are linear independent, false - failure due to linear dependency
|
---|
443 | */
|
---|
444 | bool vector::MakeNormalVector(const vector *y1, const vector *y2)
|
---|
445 | {
|
---|
446 | vector x1,x2;
|
---|
447 | x1.CopyVector(y1);
|
---|
448 | x2.CopyVector(y2);
|
---|
449 | Zero();
|
---|
450 | if ((x1.Norm()==0) || (x2.Norm()==0)) {
|
---|
451 | cout << Verbose(4) << "Given vectors are linear dependent." << endl;
|
---|
452 | return false;
|
---|
453 | }
|
---|
454 | cout << Verbose(4) << "relative, first plane coordinates:";
|
---|
455 | x1.Output((ofstream *)&cout);
|
---|
456 | cout << endl;
|
---|
457 | cout << Verbose(4) << "second plane coordinates:";
|
---|
458 | x2.Output((ofstream *)&cout);
|
---|
459 | cout << endl;
|
---|
460 |
|
---|
461 | this->x[0] = (x1.x[1]*x2.x[2] - x1.x[2]*x2.x[1]);
|
---|
462 | this->x[1] = (x1.x[2]*x2.x[0] - x1.x[0]*x2.x[2]);
|
---|
463 | this->x[2] = (x1.x[0]*x2.x[1] - x1.x[1]*x2.x[0]);
|
---|
464 | Normalize();
|
---|
465 |
|
---|
466 | return true;
|
---|
467 | };
|
---|
468 |
|
---|
469 | /** Calculates orthonormal vector to one given vectors.
|
---|
470 | * Just subtracts the projection onto the given vector from this vector.
|
---|
471 | * \param *x1 vector
|
---|
472 | * \return true - success, false - vector is zero
|
---|
473 | */
|
---|
474 | bool vector::MakeNormalVector(const vector *y1)
|
---|
475 | {
|
---|
476 | bool result = false;
|
---|
477 | vector x1;
|
---|
478 | x1.CopyVector(y1);
|
---|
479 | x1.Scale(x1.Projection(this));
|
---|
480 | SubtractVector(&x1);
|
---|
481 | for (int i=NDIM;i--;)
|
---|
482 | result = result || (fabs(x[i]) > MYEPSILON);
|
---|
483 |
|
---|
484 | return result;
|
---|
485 | };
|
---|
486 |
|
---|
487 | /** Creates this vector as one of the possible orthonormal ones to the given one.
|
---|
488 | * Just scan how many components of given *vector are unequal to zero and
|
---|
489 | * try to get the skp of both to be zero accordingly.
|
---|
490 | * \param *vector given vector
|
---|
491 | * \return true - success, false - failure (null vector given)
|
---|
492 | */
|
---|
493 | bool vector::GetOneNormalVector(const vector *GivenVector)
|
---|
494 | {
|
---|
495 | int Components[NDIM]; // contains indices of non-zero components
|
---|
496 | int Last = 0; // count the number of non-zero entries in vector
|
---|
497 | int j; // loop variables
|
---|
498 | double norm;
|
---|
499 |
|
---|
500 | cout << Verbose(4);
|
---|
501 | GivenVector->Output((ofstream *)&cout);
|
---|
502 | cout << endl;
|
---|
503 | for (j=NDIM;j--;)
|
---|
504 | Components[j] = -1;
|
---|
505 | // find two components != 0
|
---|
506 | for (j=0;j<NDIM;j++)
|
---|
507 | if (fabs(GivenVector->x[j]) > MYEPSILON)
|
---|
508 | Components[Last++] = j;
|
---|
509 | cout << Verbose(4) << Last << " Components != 0: (" << Components[0] << "," << Components[1] << "," << Components[2] << ")" << endl;
|
---|
510 |
|
---|
511 | switch(Last) {
|
---|
512 | case 3: // threecomponent system
|
---|
513 | case 2: // two component system
|
---|
514 | norm = sqrt(1./(GivenVector->x[Components[1]]*GivenVector->x[Components[1]]) + 1./(GivenVector->x[Components[0]]*GivenVector->x[Components[0]]));
|
---|
515 | x[Components[2]] = 0.;
|
---|
516 | // in skp both remaining parts shall become zero but with opposite sign and third is zero
|
---|
517 | x[Components[1]] = -1./GivenVector->x[Components[1]] / norm;
|
---|
518 | x[Components[0]] = 1./GivenVector->x[Components[0]] / norm;
|
---|
519 | return true;
|
---|
520 | break;
|
---|
521 | case 1: // one component system
|
---|
522 | // set sole non-zero component to 0, and one of the other zero component pendants to 1
|
---|
523 | x[(Components[0]+2)%NDIM] = 0.;
|
---|
524 | x[(Components[0]+1)%NDIM] = 1.;
|
---|
525 | x[Components[0]] = 0.;
|
---|
526 | return true;
|
---|
527 | break;
|
---|
528 | default:
|
---|
529 | return false;
|
---|
530 | }
|
---|
531 | };
|
---|
532 |
|
---|
533 | /** Creates a new vector as the one with least square distance to a given set of \a vectors.
|
---|
534 | * \param *vectors set of vectors
|
---|
535 | * \param num number of vectors
|
---|
536 | * \return true if success, false if failed due to linear dependency
|
---|
537 | */
|
---|
538 | bool vector::LSQdistance(vector **vectors, int num)
|
---|
539 | {
|
---|
540 | int j;
|
---|
541 |
|
---|
542 | for (j=0;j<num;j++) {
|
---|
543 | cout << Verbose(1) << j << "th atom's vector: ";
|
---|
544 | (vectors[j])->Output((ofstream *)&cout);
|
---|
545 | cout << endl;
|
---|
546 | }
|
---|
547 |
|
---|
548 | int np = 3;
|
---|
549 | struct LSQ_params par;
|
---|
550 |
|
---|
551 | const gsl_multimin_fminimizer_type *T =
|
---|
552 | gsl_multimin_fminimizer_nmsimplex;
|
---|
553 | gsl_multimin_fminimizer *s = NULL;
|
---|
554 | gsl_vector *ss, *y;
|
---|
555 | gsl_multimin_function minex_func;
|
---|
556 |
|
---|
557 | size_t iter = 0, i;
|
---|
558 | int status;
|
---|
559 | double size;
|
---|
560 |
|
---|
561 | /* Initial vertex size vector */
|
---|
562 | ss = gsl_vector_alloc (np);
|
---|
563 | y = gsl_vector_alloc (np);
|
---|
564 |
|
---|
565 | /* Set all step sizes to 1 */
|
---|
566 | gsl_vector_set_all (ss, 1.0);
|
---|
567 |
|
---|
568 | /* Starting point */
|
---|
569 | par.vectors = vectors;
|
---|
570 | par.num = num;
|
---|
571 |
|
---|
572 | for (i=NDIM;i--;)
|
---|
573 | gsl_vector_set(y, i, (vectors[0]->x[i] - vectors[1]->x[i])/2.);
|
---|
574 |
|
---|
575 | /* Initialize method and iterate */
|
---|
576 | minex_func.f = &LSQ;
|
---|
577 | minex_func.n = np;
|
---|
578 | minex_func.params = (void *)∥
|
---|
579 |
|
---|
580 | s = gsl_multimin_fminimizer_alloc (T, np);
|
---|
581 | gsl_multimin_fminimizer_set (s, &minex_func, y, ss);
|
---|
582 |
|
---|
583 | do
|
---|
584 | {
|
---|
585 | iter++;
|
---|
586 | status = gsl_multimin_fminimizer_iterate(s);
|
---|
587 |
|
---|
588 | if (status)
|
---|
589 | break;
|
---|
590 |
|
---|
591 | size = gsl_multimin_fminimizer_size (s);
|
---|
592 | status = gsl_multimin_test_size (size, 1e-2);
|
---|
593 |
|
---|
594 | if (status == GSL_SUCCESS)
|
---|
595 | {
|
---|
596 | printf ("converged to minimum at\n");
|
---|
597 | }
|
---|
598 |
|
---|
599 | printf ("%5d ", (int)iter);
|
---|
600 | for (i = 0; i < (size_t)np; i++)
|
---|
601 | {
|
---|
602 | printf ("%10.3e ", gsl_vector_get (s->x, i));
|
---|
603 | }
|
---|
604 | printf ("f() = %7.3f size = %.3f\n", s->fval, size);
|
---|
605 | }
|
---|
606 | while (status == GSL_CONTINUE && iter < 100);
|
---|
607 |
|
---|
608 | for (i=(size_t)np;i--;)
|
---|
609 | this->x[i] = gsl_vector_get(s->x, i);
|
---|
610 | gsl_vector_free(y);
|
---|
611 | gsl_vector_free(ss);
|
---|
612 | gsl_multimin_fminimizer_free (s);
|
---|
613 |
|
---|
614 | return true;
|
---|
615 | };
|
---|
616 |
|
---|
617 | /** Adds vector \a *y componentwise.
|
---|
618 | * \param *y vector
|
---|
619 | */
|
---|
620 | void vector::AddVector(const vector *y)
|
---|
621 | {
|
---|
622 | for (int i=NDIM;i--;)
|
---|
623 | this->x[i] += y->x[i];
|
---|
624 | }
|
---|
625 |
|
---|
626 | /** Adds vector \a *y componentwise.
|
---|
627 | * \param *y vector
|
---|
628 | */
|
---|
629 | void vector::SubtractVector(const vector *y)
|
---|
630 | {
|
---|
631 | for (int i=NDIM;i--;)
|
---|
632 | this->x[i] -= y->x[i];
|
---|
633 | }
|
---|
634 |
|
---|
635 | /** Copy vector \a *y componentwise.
|
---|
636 | * \param *y vector
|
---|
637 | */
|
---|
638 | void vector::CopyVector(const vector *y)
|
---|
639 | {
|
---|
640 | for (int i=NDIM;i--;)
|
---|
641 | this->x[i] = y->x[i];
|
---|
642 | }
|
---|
643 |
|
---|
644 |
|
---|
645 | /** Asks for position, checks for boundary.
|
---|
646 | * \param cell_size unitary size of cubic cell, coordinates must be within 0...cell_size
|
---|
647 | * \param check whether bounds shall be checked (true) or not (false)
|
---|
648 | */
|
---|
649 | void vector::AskPosition(double *cell_size, bool check)
|
---|
650 | {
|
---|
651 | char coords[3] = {'x','y','z'};
|
---|
652 | int j = -1;
|
---|
653 | for (int i=0;i<3;i++) {
|
---|
654 | j += i+1;
|
---|
655 | do {
|
---|
656 | cout << Verbose(0) << coords[i] << "[0.." << cell_size[j] << "]: ";
|
---|
657 | cin >> x[i];
|
---|
658 | } while (((x[i] < 0) || (x[i] >= cell_size[j])) && (check));
|
---|
659 | }
|
---|
660 | };
|
---|
661 |
|
---|
662 | /** Solves a vectorial system consisting of two orthogonal statements and a norm statement.
|
---|
663 | * This is linear system of equations to be solved, however of the three given (skp of this vector\
|
---|
664 | * with either of the three hast to be zero) only two are linear independent. The third equation
|
---|
665 | * is that the vector should be of magnitude 1 (orthonormal). This all leads to a case-based solution
|
---|
666 | * where very often it has to be checked whether a certain value is zero or not and thus forked into
|
---|
667 | * another case.
|
---|
668 | * \param *x1 first vector
|
---|
669 | * \param *x2 second vector
|
---|
670 | * \param *y third vector
|
---|
671 | * \param alpha first angle
|
---|
672 | * \param beta second angle
|
---|
673 | * \param c norm of final vector
|
---|
674 | * \return a vector with \f$\langle x1,x2 \rangle=A\f$, \f$\langle x1,y \rangle = B\f$ and with norm \a c.
|
---|
675 | * \bug this is not yet working properly
|
---|
676 | */
|
---|
677 | bool vector::SolveSystem(vector *x1, vector *x2, vector *y, double alpha, double beta, double c)
|
---|
678 | {
|
---|
679 | double D1,D2,D3,E1,E2,F1,F2,F3,p,q=0., A, B1, B2, C;
|
---|
680 | double ang; // angle on testing
|
---|
681 | double sign[3];
|
---|
682 | int i,j,k;
|
---|
683 | A = cos(alpha) * x1->Norm() * c;
|
---|
684 | B1 = cos(beta + M_PI/2.) * y->Norm() * c;
|
---|
685 | B2 = cos(beta) * x2->Norm() * c;
|
---|
686 | C = c * c;
|
---|
687 | cout << Verbose(2) << "A " << A << "\tB " << B1 << "\tC " << C << endl;
|
---|
688 | int flag = 0;
|
---|
689 | if (fabs(x1->x[0]) < MYEPSILON) { // check for zero components for the later flipping and back-flipping
|
---|
690 | if (fabs(x1->x[1]) > MYEPSILON) {
|
---|
691 | flag = 1;
|
---|
692 | } else if (fabs(x1->x[2]) > MYEPSILON) {
|
---|
693 | flag = 2;
|
---|
694 | } else {
|
---|
695 | return false;
|
---|
696 | }
|
---|
697 | }
|
---|
698 | switch (flag) {
|
---|
699 | default:
|
---|
700 | case 0:
|
---|
701 | break;
|
---|
702 | case 2:
|
---|
703 | flip(&x1->x[0],&x1->x[1]);
|
---|
704 | flip(&x2->x[0],&x2->x[1]);
|
---|
705 | flip(&y->x[0],&y->x[1]);
|
---|
706 | //flip(&x[0],&x[1]);
|
---|
707 | flip(&x1->x[1],&x1->x[2]);
|
---|
708 | flip(&x2->x[1],&x2->x[2]);
|
---|
709 | flip(&y->x[1],&y->x[2]);
|
---|
710 | //flip(&x[1],&x[2]);
|
---|
711 | case 1:
|
---|
712 | flip(&x1->x[0],&x1->x[1]);
|
---|
713 | flip(&x2->x[0],&x2->x[1]);
|
---|
714 | flip(&y->x[0],&y->x[1]);
|
---|
715 | //flip(&x[0],&x[1]);
|
---|
716 | flip(&x1->x[1],&x1->x[2]);
|
---|
717 | flip(&x2->x[1],&x2->x[2]);
|
---|
718 | flip(&y->x[1],&y->x[2]);
|
---|
719 | //flip(&x[1],&x[2]);
|
---|
720 | break;
|
---|
721 | }
|
---|
722 | // now comes the case system
|
---|
723 | D1 = -y->x[0]/x1->x[0]*x1->x[1]+y->x[1];
|
---|
724 | D2 = -y->x[0]/x1->x[0]*x1->x[2]+y->x[2];
|
---|
725 | D3 = y->x[0]/x1->x[0]*A-B1;
|
---|
726 | cout << Verbose(2) << "D1 " << D1 << "\tD2 " << D2 << "\tD3 " << D3 << "\n";
|
---|
727 | if (fabs(D1) < MYEPSILON) {
|
---|
728 | cout << Verbose(2) << "D1 == 0!\n";
|
---|
729 | if (fabs(D2) > MYEPSILON) {
|
---|
730 | cout << Verbose(3) << "D2 != 0!\n";
|
---|
731 | x[2] = -D3/D2;
|
---|
732 | E1 = A/x1->x[0] + x1->x[2]/x1->x[0]*D3/D2;
|
---|
733 | E2 = -x1->x[1]/x1->x[0];
|
---|
734 | cout << Verbose(3) << "E1 " << E1 << "\tE2 " << E2 << "\n";
|
---|
735 | F1 = E1*E1 + 1.;
|
---|
736 | F2 = -E1*E2;
|
---|
737 | F3 = E1*E1 + D3*D3/(D2*D2) - C;
|
---|
738 | cout << Verbose(3) << "F1 " << F1 << "\tF2 " << F2 << "\tF3 " << F3 << "\n";
|
---|
739 | if (fabs(F1) < MYEPSILON) {
|
---|
740 | cout << Verbose(4) << "F1 == 0!\n";
|
---|
741 | cout << Verbose(4) << "Gleichungssystem linear\n";
|
---|
742 | x[1] = F3/(2.*F2);
|
---|
743 | } else {
|
---|
744 | p = F2/F1;
|
---|
745 | q = p*p - F3/F1;
|
---|
746 | cout << Verbose(4) << "p " << p << "\tq " << q << endl;
|
---|
747 | if (q < 0) {
|
---|
748 | cout << Verbose(4) << "q < 0" << endl;
|
---|
749 | return false;
|
---|
750 | }
|
---|
751 | x[1] = p + sqrt(q);
|
---|
752 | }
|
---|
753 | x[0] = A/x1->x[0] - x1->x[1]/x1->x[0]*x[1] + x1->x[2]/x1->x[0]*x[2];
|
---|
754 | } else {
|
---|
755 | cout << Verbose(2) << "Gleichungssystem unterbestimmt\n";
|
---|
756 | return false;
|
---|
757 | }
|
---|
758 | } else {
|
---|
759 | E1 = A/x1->x[0]+x1->x[1]/x1->x[0]*D3/D1;
|
---|
760 | E2 = x1->x[1]/x1->x[0]*D2/D1 - x1->x[2];
|
---|
761 | cout << Verbose(2) << "E1 " << E1 << "\tE2 " << E2 << "\n";
|
---|
762 | F1 = E2*E2 + D2*D2/(D1*D1) + 1.;
|
---|
763 | F2 = -(E1*E2 + D2*D3/(D1*D1));
|
---|
764 | F3 = E1*E1 + D3*D3/(D1*D1) - C;
|
---|
765 | cout << Verbose(2) << "F1 " << F1 << "\tF2 " << F2 << "\tF3 " << F3 << "\n";
|
---|
766 | if (fabs(F1) < MYEPSILON) {
|
---|
767 | cout << Verbose(3) << "F1 == 0!\n";
|
---|
768 | cout << Verbose(3) << "Gleichungssystem linear\n";
|
---|
769 | x[2] = F3/(2.*F2);
|
---|
770 | } else {
|
---|
771 | p = F2/F1;
|
---|
772 | q = p*p - F3/F1;
|
---|
773 | cout << Verbose(3) << "p " << p << "\tq " << q << endl;
|
---|
774 | if (q < 0) {
|
---|
775 | cout << Verbose(3) << "q < 0" << endl;
|
---|
776 | return false;
|
---|
777 | }
|
---|
778 | x[2] = p + sqrt(q);
|
---|
779 | }
|
---|
780 | x[1] = (-D2 * x[2] - D3)/D1;
|
---|
781 | x[0] = A/x1->x[0] - x1->x[1]/x1->x[0]*x[1] + x1->x[2]/x1->x[0]*x[2];
|
---|
782 | }
|
---|
783 | switch (flag) { // back-flipping
|
---|
784 | default:
|
---|
785 | case 0:
|
---|
786 | break;
|
---|
787 | case 2:
|
---|
788 | flip(&x1->x[0],&x1->x[1]);
|
---|
789 | flip(&x2->x[0],&x2->x[1]);
|
---|
790 | flip(&y->x[0],&y->x[1]);
|
---|
791 | flip(&x[0],&x[1]);
|
---|
792 | flip(&x1->x[1],&x1->x[2]);
|
---|
793 | flip(&x2->x[1],&x2->x[2]);
|
---|
794 | flip(&y->x[1],&y->x[2]);
|
---|
795 | flip(&x[1],&x[2]);
|
---|
796 | case 1:
|
---|
797 | flip(&x1->x[0],&x1->x[1]);
|
---|
798 | flip(&x2->x[0],&x2->x[1]);
|
---|
799 | flip(&y->x[0],&y->x[1]);
|
---|
800 | //flip(&x[0],&x[1]);
|
---|
801 | flip(&x1->x[1],&x1->x[2]);
|
---|
802 | flip(&x2->x[1],&x2->x[2]);
|
---|
803 | flip(&y->x[1],&y->x[2]);
|
---|
804 | flip(&x[1],&x[2]);
|
---|
805 | break;
|
---|
806 | }
|
---|
807 | // one z component is only determined by its radius (without sign)
|
---|
808 | // thus check eight possible sign flips and determine by checking angle with second vector
|
---|
809 | for (i=0;i<8;i++) {
|
---|
810 | // set sign vector accordingly
|
---|
811 | for (j=2;j>=0;j--) {
|
---|
812 | k = (i & pot(2,j)) << j;
|
---|
813 | cout << Verbose(2) << "k " << k << "\tpot(2,j) " << pot(2,j) << endl;
|
---|
814 | sign[j] = (k == 0) ? 1. : -1.;
|
---|
815 | }
|
---|
816 | cout << Verbose(2) << i << ": sign matrix is " << sign[0] << "\t" << sign[1] << "\t" << sign[2] << "\n";
|
---|
817 | // apply sign matrix
|
---|
818 | for (j=NDIM;j--;)
|
---|
819 | x[j] *= sign[j];
|
---|
820 | // calculate angle and check
|
---|
821 | ang = x2->Angle (this);
|
---|
822 | cout << Verbose(1) << i << "th angle " << ang << "\tbeta " << cos(beta) << " :\t";
|
---|
823 | if (fabs(ang - cos(beta)) < MYEPSILON) {
|
---|
824 | break;
|
---|
825 | }
|
---|
826 | // unapply sign matrix (is its own inverse)
|
---|
827 | for (j=NDIM;j--;)
|
---|
828 | x[j] *= sign[j];
|
---|
829 | }
|
---|
830 | return true;
|
---|
831 | };
|
---|