1 | /** \file vector.cpp
|
---|
2 | *
|
---|
3 | * Function implementations for the class vector.
|
---|
4 | *
|
---|
5 | */
|
---|
6 |
|
---|
7 | #include "Helpers/MemDebug.hpp"
|
---|
8 |
|
---|
9 | #include "vector.hpp"
|
---|
10 | #include "verbose.hpp"
|
---|
11 | #include "World.hpp"
|
---|
12 | #include "Helpers/Assert.hpp"
|
---|
13 | #include "Helpers/fast_functions.hpp"
|
---|
14 |
|
---|
15 | #include <iostream>
|
---|
16 |
|
---|
17 | using namespace std;
|
---|
18 |
|
---|
19 |
|
---|
20 | /************************************ Functions for class vector ************************************/
|
---|
21 |
|
---|
22 | /** Constructor of class vector.
|
---|
23 | */
|
---|
24 | Vector::Vector()
|
---|
25 | {
|
---|
26 | content = gsl_vector_calloc (NDIM);
|
---|
27 | };
|
---|
28 |
|
---|
29 | /**
|
---|
30 | * Copy constructor
|
---|
31 | */
|
---|
32 |
|
---|
33 | Vector::Vector(const Vector& src)
|
---|
34 | {
|
---|
35 | content = gsl_vector_alloc(NDIM);
|
---|
36 | gsl_vector_set(content,0,src[0]);
|
---|
37 | gsl_vector_set(content,1,src[1]);
|
---|
38 | gsl_vector_set(content,2,src[2]);
|
---|
39 | }
|
---|
40 |
|
---|
41 | /** Constructor of class vector.
|
---|
42 | */
|
---|
43 | Vector::Vector(const double x1, const double x2, const double x3)
|
---|
44 | {
|
---|
45 | content = gsl_vector_alloc(NDIM);
|
---|
46 | gsl_vector_set(content,0,x1);
|
---|
47 | gsl_vector_set(content,1,x2);
|
---|
48 | gsl_vector_set(content,2,x3);
|
---|
49 | };
|
---|
50 |
|
---|
51 | /**
|
---|
52 | * Assignment operator
|
---|
53 | */
|
---|
54 | Vector& Vector::operator=(const Vector& src){
|
---|
55 | // check for self assignment
|
---|
56 | if(&src!=this){
|
---|
57 | gsl_vector_set(content,0,src[0]);
|
---|
58 | gsl_vector_set(content,1,src[1]);
|
---|
59 | gsl_vector_set(content,2,src[2]);
|
---|
60 | }
|
---|
61 | return *this;
|
---|
62 | }
|
---|
63 |
|
---|
64 | /** Desctructor of class vector.
|
---|
65 | */
|
---|
66 | Vector::~Vector() {
|
---|
67 | gsl_vector_free(content);
|
---|
68 | };
|
---|
69 |
|
---|
70 | /** Calculates square of distance between this and another vector.
|
---|
71 | * \param *y array to second vector
|
---|
72 | * \return \f$| x - y |^2\f$
|
---|
73 | */
|
---|
74 | double Vector::DistanceSquared(const Vector &y) const
|
---|
75 | {
|
---|
76 | double res = 0.;
|
---|
77 | for (int i=NDIM;i--;)
|
---|
78 | res += (at(i)-y[i])*(at(i)-y[i]);
|
---|
79 | return (res);
|
---|
80 | };
|
---|
81 |
|
---|
82 | /** Calculates distance between this and another vector.
|
---|
83 | * \param *y array to second vector
|
---|
84 | * \return \f$| x - y |\f$
|
---|
85 | */
|
---|
86 | double Vector::distance(const Vector &y) const
|
---|
87 | {
|
---|
88 | return (sqrt(DistanceSquared(y)));
|
---|
89 | };
|
---|
90 |
|
---|
91 | Vector Vector::getClosestPoint(const Vector &point) const{
|
---|
92 | // the closest point to a single point space is always the single point itself
|
---|
93 | return *this;
|
---|
94 | }
|
---|
95 |
|
---|
96 | /** Calculates distance between this and another vector in a periodic cell.
|
---|
97 | * \param *y array to second vector
|
---|
98 | * \param *cell_size 6-dimensional array with (xx, xy, yy, xz, yz, zz) entries specifying the periodic cell
|
---|
99 | * \return \f$| x - y |\f$
|
---|
100 | */
|
---|
101 | double Vector::PeriodicDistance(const Vector &y, const double * const cell_size) const
|
---|
102 | {
|
---|
103 | double res = distance(y), tmp, matrix[NDIM*NDIM];
|
---|
104 | Vector Shiftedy, TranslationVector;
|
---|
105 | int N[NDIM];
|
---|
106 | matrix[0] = cell_size[0];
|
---|
107 | matrix[1] = cell_size[1];
|
---|
108 | matrix[2] = cell_size[3];
|
---|
109 | matrix[3] = cell_size[1];
|
---|
110 | matrix[4] = cell_size[2];
|
---|
111 | matrix[5] = cell_size[4];
|
---|
112 | matrix[6] = cell_size[3];
|
---|
113 | matrix[7] = cell_size[4];
|
---|
114 | matrix[8] = cell_size[5];
|
---|
115 | // in order to check the periodic distance, translate one of the vectors into each of the 27 neighbouring cells
|
---|
116 | for (N[0]=-1;N[0]<=1;N[0]++)
|
---|
117 | for (N[1]=-1;N[1]<=1;N[1]++)
|
---|
118 | for (N[2]=-1;N[2]<=1;N[2]++) {
|
---|
119 | // create the translation vector
|
---|
120 | TranslationVector.Zero();
|
---|
121 | for (int i=NDIM;i--;)
|
---|
122 | TranslationVector[i] = (double)N[i];
|
---|
123 | TranslationVector.MatrixMultiplication(matrix);
|
---|
124 | // add onto the original vector to compare with
|
---|
125 | Shiftedy = y + TranslationVector;
|
---|
126 | // get distance and compare with minimum so far
|
---|
127 | tmp = distance(Shiftedy);
|
---|
128 | if (tmp < res) res = tmp;
|
---|
129 | }
|
---|
130 | return (res);
|
---|
131 | };
|
---|
132 |
|
---|
133 | /** Calculates distance between this and another vector in a periodic cell.
|
---|
134 | * \param *y array to second vector
|
---|
135 | * \param *cell_size 6-dimensional array with (xx, xy, yy, xz, yz, zz) entries specifying the periodic cell
|
---|
136 | * \return \f$| x - y |^2\f$
|
---|
137 | */
|
---|
138 | double Vector::PeriodicDistanceSquared(const Vector &y, const double * const cell_size) const
|
---|
139 | {
|
---|
140 | double res = DistanceSquared(y), tmp, matrix[NDIM*NDIM];
|
---|
141 | Vector Shiftedy, TranslationVector;
|
---|
142 | int N[NDIM];
|
---|
143 | matrix[0] = cell_size[0];
|
---|
144 | matrix[1] = cell_size[1];
|
---|
145 | matrix[2] = cell_size[3];
|
---|
146 | matrix[3] = cell_size[1];
|
---|
147 | matrix[4] = cell_size[2];
|
---|
148 | matrix[5] = cell_size[4];
|
---|
149 | matrix[6] = cell_size[3];
|
---|
150 | matrix[7] = cell_size[4];
|
---|
151 | matrix[8] = cell_size[5];
|
---|
152 | // in order to check the periodic distance, translate one of the vectors into each of the 27 neighbouring cells
|
---|
153 | for (N[0]=-1;N[0]<=1;N[0]++)
|
---|
154 | for (N[1]=-1;N[1]<=1;N[1]++)
|
---|
155 | for (N[2]=-1;N[2]<=1;N[2]++) {
|
---|
156 | // create the translation vector
|
---|
157 | TranslationVector.Zero();
|
---|
158 | for (int i=NDIM;i--;)
|
---|
159 | TranslationVector[i] = (double)N[i];
|
---|
160 | TranslationVector.MatrixMultiplication(matrix);
|
---|
161 | // add onto the original vector to compare with
|
---|
162 | Shiftedy = y + TranslationVector;
|
---|
163 | // get distance and compare with minimum so far
|
---|
164 | tmp = DistanceSquared(Shiftedy);
|
---|
165 | if (tmp < res) res = tmp;
|
---|
166 | }
|
---|
167 | return (res);
|
---|
168 | };
|
---|
169 |
|
---|
170 | /** Keeps the vector in a periodic cell, defined by the symmetric \a *matrix.
|
---|
171 | * \param *out ofstream for debugging messages
|
---|
172 | * Tries to translate a vector into each adjacent neighbouring cell.
|
---|
173 | */
|
---|
174 | void Vector::KeepPeriodic(const double * const matrix)
|
---|
175 | {
|
---|
176 | // int N[NDIM];
|
---|
177 | // bool flag = false;
|
---|
178 | //vector Shifted, TranslationVector;
|
---|
179 | // Log() << Verbose(1) << "Begin of KeepPeriodic." << endl;
|
---|
180 | // Log() << Verbose(2) << "Vector is: ";
|
---|
181 | // Output(out);
|
---|
182 | // Log() << Verbose(0) << endl;
|
---|
183 | InverseMatrixMultiplication(matrix);
|
---|
184 | for(int i=NDIM;i--;) { // correct periodically
|
---|
185 | if (at(i) < 0) { // get every coefficient into the interval [0,1)
|
---|
186 | at(i) += ceil(at(i));
|
---|
187 | } else {
|
---|
188 | at(i) -= floor(at(i));
|
---|
189 | }
|
---|
190 | }
|
---|
191 | MatrixMultiplication(matrix);
|
---|
192 | // Log() << Verbose(2) << "New corrected vector is: ";
|
---|
193 | // Output(out);
|
---|
194 | // Log() << Verbose(0) << endl;
|
---|
195 | // Log() << Verbose(1) << "End of KeepPeriodic." << endl;
|
---|
196 | };
|
---|
197 |
|
---|
198 | /** Calculates scalar product between this and another vector.
|
---|
199 | * \param *y array to second vector
|
---|
200 | * \return \f$\langle x, y \rangle\f$
|
---|
201 | */
|
---|
202 | double Vector::ScalarProduct(const Vector &y) const
|
---|
203 | {
|
---|
204 | double res = 0.;
|
---|
205 | for (int i=NDIM;i--;)
|
---|
206 | res += at(i)*y[i];
|
---|
207 | return (res);
|
---|
208 | };
|
---|
209 |
|
---|
210 |
|
---|
211 | /** Calculates VectorProduct between this and another vector.
|
---|
212 | * -# returns the Product in place of vector from which it was initiated
|
---|
213 | * -# ATTENTION: Only three dim.
|
---|
214 | * \param *y array to vector with which to calculate crossproduct
|
---|
215 | * \return \f$ x \times y \f&
|
---|
216 | */
|
---|
217 | void Vector::VectorProduct(const Vector &y)
|
---|
218 | {
|
---|
219 | Vector tmp;
|
---|
220 | for(int i=NDIM;i--;)
|
---|
221 | tmp[i] = at((i+1)%NDIM)*y[(i+2)%NDIM] - at((i+2)%NDIM)*y[(i+1)%NDIM];
|
---|
222 | (*this) = tmp;
|
---|
223 | };
|
---|
224 |
|
---|
225 |
|
---|
226 | /** projects this vector onto plane defined by \a *y.
|
---|
227 | * \param *y normal vector of plane
|
---|
228 | * \return \f$\langle x, y \rangle\f$
|
---|
229 | */
|
---|
230 | void Vector::ProjectOntoPlane(const Vector &y)
|
---|
231 | {
|
---|
232 | Vector tmp;
|
---|
233 | tmp = y;
|
---|
234 | tmp.Normalize();
|
---|
235 | tmp.Scale(ScalarProduct(tmp));
|
---|
236 | *this -= tmp;
|
---|
237 | };
|
---|
238 |
|
---|
239 | /** Calculates the minimum distance of this vector to the plane.
|
---|
240 | * \sa Vector::GetDistanceVectorToPlane()
|
---|
241 | * \param *out output stream for debugging
|
---|
242 | * \param *PlaneNormal normal of plane
|
---|
243 | * \param *PlaneOffset offset of plane
|
---|
244 | * \return distance to plane
|
---|
245 | */
|
---|
246 | double Vector::DistanceToSpace(const Space &space) const
|
---|
247 | {
|
---|
248 | return space.distance(*this);
|
---|
249 | };
|
---|
250 |
|
---|
251 | /** Calculates the projection of a vector onto another \a *y.
|
---|
252 | * \param *y array to second vector
|
---|
253 | */
|
---|
254 | void Vector::ProjectIt(const Vector &y)
|
---|
255 | {
|
---|
256 | (*this) += (-ScalarProduct(y))*y;
|
---|
257 | };
|
---|
258 |
|
---|
259 | /** Calculates the projection of a vector onto another \a *y.
|
---|
260 | * \param *y array to second vector
|
---|
261 | * \return Vector
|
---|
262 | */
|
---|
263 | Vector Vector::Projection(const Vector &y) const
|
---|
264 | {
|
---|
265 | Vector helper = y;
|
---|
266 | helper.Scale((ScalarProduct(y)/y.NormSquared()));
|
---|
267 |
|
---|
268 | return helper;
|
---|
269 | };
|
---|
270 |
|
---|
271 | /** Calculates norm of this vector.
|
---|
272 | * \return \f$|x|\f$
|
---|
273 | */
|
---|
274 | double Vector::Norm() const
|
---|
275 | {
|
---|
276 | return (sqrt(NormSquared()));
|
---|
277 | };
|
---|
278 |
|
---|
279 | /** Calculates squared norm of this vector.
|
---|
280 | * \return \f$|x|^2\f$
|
---|
281 | */
|
---|
282 | double Vector::NormSquared() const
|
---|
283 | {
|
---|
284 | return (ScalarProduct(*this));
|
---|
285 | };
|
---|
286 |
|
---|
287 | /** Normalizes this vector.
|
---|
288 | */
|
---|
289 | void Vector::Normalize()
|
---|
290 | {
|
---|
291 | double factor = Norm();
|
---|
292 | (*this) *= 1/factor;
|
---|
293 | };
|
---|
294 |
|
---|
295 | /** Zeros all components of this vector.
|
---|
296 | */
|
---|
297 | void Vector::Zero()
|
---|
298 | {
|
---|
299 | at(0)=at(1)=at(2)=0;
|
---|
300 | };
|
---|
301 |
|
---|
302 | /** Zeros all components of this vector.
|
---|
303 | */
|
---|
304 | void Vector::One(const double one)
|
---|
305 | {
|
---|
306 | at(0)=at(1)=at(2)=one;
|
---|
307 | };
|
---|
308 |
|
---|
309 | /** Checks whether vector has all components zero.
|
---|
310 | * @return true - vector is zero, false - vector is not
|
---|
311 | */
|
---|
312 | bool Vector::IsZero() const
|
---|
313 | {
|
---|
314 | return (fabs(at(0))+fabs(at(1))+fabs(at(2)) < MYEPSILON);
|
---|
315 | };
|
---|
316 |
|
---|
317 | /** Checks whether vector has length of 1.
|
---|
318 | * @return true - vector is normalized, false - vector is not
|
---|
319 | */
|
---|
320 | bool Vector::IsOne() const
|
---|
321 | {
|
---|
322 | return (fabs(Norm() - 1.) < MYEPSILON);
|
---|
323 | };
|
---|
324 |
|
---|
325 | /** Checks whether vector is normal to \a *normal.
|
---|
326 | * @return true - vector is normalized, false - vector is not
|
---|
327 | */
|
---|
328 | bool Vector::IsNormalTo(const Vector &normal) const
|
---|
329 | {
|
---|
330 | if (ScalarProduct(normal) < MYEPSILON)
|
---|
331 | return true;
|
---|
332 | else
|
---|
333 | return false;
|
---|
334 | };
|
---|
335 |
|
---|
336 | /** Checks whether vector is normal to \a *normal.
|
---|
337 | * @return true - vector is normalized, false - vector is not
|
---|
338 | */
|
---|
339 | bool Vector::IsEqualTo(const Vector &a) const
|
---|
340 | {
|
---|
341 | bool status = true;
|
---|
342 | for (int i=0;i<NDIM;i++) {
|
---|
343 | if (fabs(at(i) - a[i]) > MYEPSILON)
|
---|
344 | status = false;
|
---|
345 | }
|
---|
346 | return status;
|
---|
347 | };
|
---|
348 |
|
---|
349 | /** Calculates the angle between this and another vector.
|
---|
350 | * \param *y array to second vector
|
---|
351 | * \return \f$\acos\bigl(frac{\langle x, y \rangle}{|x||y|}\bigr)\f$
|
---|
352 | */
|
---|
353 | double Vector::Angle(const Vector &y) const
|
---|
354 | {
|
---|
355 | double norm1 = Norm(), norm2 = y.Norm();
|
---|
356 | double angle = -1;
|
---|
357 | if ((fabs(norm1) > MYEPSILON) && (fabs(norm2) > MYEPSILON))
|
---|
358 | angle = this->ScalarProduct(y)/norm1/norm2;
|
---|
359 | // -1-MYEPSILON occured due to numerical imprecision, catch ...
|
---|
360 | //Log() << Verbose(2) << "INFO: acos(-1) = " << acos(-1) << ", acos(-1+MYEPSILON) = " << acos(-1+MYEPSILON) << ", acos(-1-MYEPSILON) = " << acos(-1-MYEPSILON) << "." << endl;
|
---|
361 | if (angle < -1)
|
---|
362 | angle = -1;
|
---|
363 | if (angle > 1)
|
---|
364 | angle = 1;
|
---|
365 | return acos(angle);
|
---|
366 | };
|
---|
367 |
|
---|
368 |
|
---|
369 | double& Vector::operator[](size_t i){
|
---|
370 | ASSERT(i<=NDIM && i>=0,"Vector Index out of Range");
|
---|
371 | return *gsl_vector_ptr (content, i);
|
---|
372 | }
|
---|
373 |
|
---|
374 | const double& Vector::operator[](size_t i) const{
|
---|
375 | ASSERT(i<=NDIM && i>=0,"Vector Index out of Range");
|
---|
376 | return *gsl_vector_ptr (content, i);
|
---|
377 | }
|
---|
378 |
|
---|
379 | double& Vector::at(size_t i){
|
---|
380 | return (*this)[i];
|
---|
381 | }
|
---|
382 |
|
---|
383 | const double& Vector::at(size_t i) const{
|
---|
384 | return (*this)[i];
|
---|
385 | }
|
---|
386 |
|
---|
387 | gsl_vector* Vector::get(){
|
---|
388 | return content;
|
---|
389 | }
|
---|
390 |
|
---|
391 | /** Compares vector \a to vector \a b component-wise.
|
---|
392 | * \param a base vector
|
---|
393 | * \param b vector components to add
|
---|
394 | * \return a == b
|
---|
395 | */
|
---|
396 | bool Vector::operator==(const Vector& b) const
|
---|
397 | {
|
---|
398 | return IsEqualTo(b);
|
---|
399 | };
|
---|
400 |
|
---|
401 | bool Vector::operator!=(const Vector& b) const
|
---|
402 | {
|
---|
403 | return !IsEqualTo(b);
|
---|
404 | }
|
---|
405 |
|
---|
406 | /** Sums vector \a to this lhs component-wise.
|
---|
407 | * \param a base vector
|
---|
408 | * \param b vector components to add
|
---|
409 | * \return lhs + a
|
---|
410 | */
|
---|
411 | const Vector& Vector::operator+=(const Vector& b)
|
---|
412 | {
|
---|
413 | this->AddVector(b);
|
---|
414 | return *this;
|
---|
415 | };
|
---|
416 |
|
---|
417 | /** Subtracts vector \a from this lhs component-wise.
|
---|
418 | * \param a base vector
|
---|
419 | * \param b vector components to add
|
---|
420 | * \return lhs - a
|
---|
421 | */
|
---|
422 | const Vector& Vector::operator-=(const Vector& b)
|
---|
423 | {
|
---|
424 | this->SubtractVector(b);
|
---|
425 | return *this;
|
---|
426 | };
|
---|
427 |
|
---|
428 | /** factor each component of \a a times a double \a m.
|
---|
429 | * \param a base vector
|
---|
430 | * \param m factor
|
---|
431 | * \return lhs.x[i] * m
|
---|
432 | */
|
---|
433 | const Vector& operator*=(Vector& a, const double m)
|
---|
434 | {
|
---|
435 | a.Scale(m);
|
---|
436 | return a;
|
---|
437 | };
|
---|
438 |
|
---|
439 | /** Sums two vectors \a and \b component-wise.
|
---|
440 | * \param a first vector
|
---|
441 | * \param b second vector
|
---|
442 | * \return a + b
|
---|
443 | */
|
---|
444 | Vector const Vector::operator+(const Vector& b) const
|
---|
445 | {
|
---|
446 | Vector x = *this;
|
---|
447 | x.AddVector(b);
|
---|
448 | return x;
|
---|
449 | };
|
---|
450 |
|
---|
451 | /** Subtracts vector \a from \b component-wise.
|
---|
452 | * \param a first vector
|
---|
453 | * \param b second vector
|
---|
454 | * \return a - b
|
---|
455 | */
|
---|
456 | Vector const Vector::operator-(const Vector& b) const
|
---|
457 | {
|
---|
458 | Vector x = *this;
|
---|
459 | x.SubtractVector(b);
|
---|
460 | return x;
|
---|
461 | };
|
---|
462 |
|
---|
463 | /** Factors given vector \a a times \a m.
|
---|
464 | * \param a vector
|
---|
465 | * \param m factor
|
---|
466 | * \return m * a
|
---|
467 | */
|
---|
468 | Vector const operator*(const Vector& a, const double m)
|
---|
469 | {
|
---|
470 | Vector x(a);
|
---|
471 | x.Scale(m);
|
---|
472 | return x;
|
---|
473 | };
|
---|
474 |
|
---|
475 | /** Factors given vector \a a times \a m.
|
---|
476 | * \param m factor
|
---|
477 | * \param a vector
|
---|
478 | * \return m * a
|
---|
479 | */
|
---|
480 | Vector const operator*(const double m, const Vector& a )
|
---|
481 | {
|
---|
482 | Vector x(a);
|
---|
483 | x.Scale(m);
|
---|
484 | return x;
|
---|
485 | };
|
---|
486 |
|
---|
487 | ostream& operator<<(ostream& ost, const Vector& m)
|
---|
488 | {
|
---|
489 | ost << "(";
|
---|
490 | for (int i=0;i<NDIM;i++) {
|
---|
491 | ost << m[i];
|
---|
492 | if (i != 2)
|
---|
493 | ost << ",";
|
---|
494 | }
|
---|
495 | ost << ")";
|
---|
496 | return ost;
|
---|
497 | };
|
---|
498 |
|
---|
499 |
|
---|
500 | void Vector::ScaleAll(const double *factor)
|
---|
501 | {
|
---|
502 | for (int i=NDIM;i--;)
|
---|
503 | at(i) *= factor[i];
|
---|
504 | };
|
---|
505 |
|
---|
506 |
|
---|
507 |
|
---|
508 | void Vector::Scale(const double factor)
|
---|
509 | {
|
---|
510 | for (int i=NDIM;i--;)
|
---|
511 | at(i) *= factor;
|
---|
512 | };
|
---|
513 |
|
---|
514 | /** Given a box by its matrix \a *M and its inverse *Minv the vector is made to point within that box.
|
---|
515 | * \param *M matrix of box
|
---|
516 | * \param *Minv inverse matrix
|
---|
517 | */
|
---|
518 | void Vector::WrapPeriodically(const double * const M, const double * const Minv)
|
---|
519 | {
|
---|
520 | MatrixMultiplication(Minv);
|
---|
521 | // truncate to [0,1] for each axis
|
---|
522 | for (int i=0;i<NDIM;i++) {
|
---|
523 | //at(i) += 0.5; // set to center of box
|
---|
524 | while (at(i) >= 1.)
|
---|
525 | at(i) -= 1.;
|
---|
526 | while (at(i) < 0.)
|
---|
527 | at(i) += 1.;
|
---|
528 | }
|
---|
529 | MatrixMultiplication(M);
|
---|
530 | };
|
---|
531 |
|
---|
532 | std::pair<Vector,Vector> Vector::partition(const Vector &rhs) const{
|
---|
533 | double factor = ScalarProduct(rhs)/rhs.NormSquared();
|
---|
534 | Vector res= factor * rhs;
|
---|
535 | return make_pair(res,(*this)-res);
|
---|
536 | }
|
---|
537 |
|
---|
538 | std::pair<pointset,Vector> Vector::partition(const pointset &points) const{
|
---|
539 | Vector helper = *this;
|
---|
540 | pointset res;
|
---|
541 | for(pointset::const_iterator iter=points.begin();iter!=points.end();++iter){
|
---|
542 | pair<Vector,Vector> currPart = helper.partition(*iter);
|
---|
543 | res.push_back(currPart.first);
|
---|
544 | helper = currPart.second;
|
---|
545 | }
|
---|
546 | return make_pair(res,helper);
|
---|
547 | }
|
---|
548 |
|
---|
549 | /** Do a matrix multiplication.
|
---|
550 | * \param *matrix NDIM_NDIM array
|
---|
551 | */
|
---|
552 | void Vector::MatrixMultiplication(const double * const M)
|
---|
553 | {
|
---|
554 | Vector tmp;
|
---|
555 | // do the matrix multiplication
|
---|
556 | for(int i=NDIM;i--;)
|
---|
557 | tmp[i] = M[i]*at(0)+M[i+3]*at(1)+M[i+6]*at(2);
|
---|
558 |
|
---|
559 | (*this) = tmp;
|
---|
560 | };
|
---|
561 |
|
---|
562 | /** Do a matrix multiplication with the \a *A' inverse.
|
---|
563 | * \param *matrix NDIM_NDIM array
|
---|
564 | */
|
---|
565 | bool Vector::InverseMatrixMultiplication(const double * const A)
|
---|
566 | {
|
---|
567 | double B[NDIM*NDIM];
|
---|
568 | double detA = RDET3(A);
|
---|
569 | double detAReci;
|
---|
570 |
|
---|
571 | // calculate the inverse B
|
---|
572 | if (fabs(detA) > MYEPSILON) {; // RDET3(A) yields precisely zero if A irregular
|
---|
573 | detAReci = 1./detA;
|
---|
574 | B[0] = detAReci*RDET2(A[4],A[5],A[7],A[8]); // A_11
|
---|
575 | B[1] = -detAReci*RDET2(A[1],A[2],A[7],A[8]); // A_12
|
---|
576 | B[2] = detAReci*RDET2(A[1],A[2],A[4],A[5]); // A_13
|
---|
577 | B[3] = -detAReci*RDET2(A[3],A[5],A[6],A[8]); // A_21
|
---|
578 | B[4] = detAReci*RDET2(A[0],A[2],A[6],A[8]); // A_22
|
---|
579 | B[5] = -detAReci*RDET2(A[0],A[2],A[3],A[5]); // A_23
|
---|
580 | B[6] = detAReci*RDET2(A[3],A[4],A[6],A[7]); // A_31
|
---|
581 | B[7] = -detAReci*RDET2(A[0],A[1],A[6],A[7]); // A_32
|
---|
582 | B[8] = detAReci*RDET2(A[0],A[1],A[3],A[4]); // A_33
|
---|
583 |
|
---|
584 | MatrixMultiplication(B);
|
---|
585 |
|
---|
586 | return true;
|
---|
587 | } else {
|
---|
588 | return false;
|
---|
589 | }
|
---|
590 | };
|
---|
591 |
|
---|
592 |
|
---|
593 | /** Creates this vector as the b y *factors' components scaled linear combination of the given three.
|
---|
594 | * this vector = x1*factors[0] + x2* factors[1] + x3*factors[2]
|
---|
595 | * \param *x1 first vector
|
---|
596 | * \param *x2 second vector
|
---|
597 | * \param *x3 third vector
|
---|
598 | * \param *factors three-component vector with the factor for each given vector
|
---|
599 | */
|
---|
600 | void Vector::LinearCombinationOfVectors(const Vector &x1, const Vector &x2, const Vector &x3, const double * const factors)
|
---|
601 | {
|
---|
602 | (*this) = (factors[0]*x1) +
|
---|
603 | (factors[1]*x2) +
|
---|
604 | (factors[2]*x3);
|
---|
605 | };
|
---|
606 |
|
---|
607 | /** Calculates orthonormal vector to one given vectors.
|
---|
608 | * Just subtracts the projection onto the given vector from this vector.
|
---|
609 | * The removed part of the vector is Vector::Projection()
|
---|
610 | * \param *x1 vector
|
---|
611 | * \return true - success, false - vector is zero
|
---|
612 | */
|
---|
613 | bool Vector::MakeNormalTo(const Vector &y1)
|
---|
614 | {
|
---|
615 | bool result = false;
|
---|
616 | double factor = y1.ScalarProduct(*this)/y1.NormSquared();
|
---|
617 | Vector x1 = factor * y1;
|
---|
618 | SubtractVector(x1);
|
---|
619 | for (int i=NDIM;i--;)
|
---|
620 | result = result || (fabs(at(i)) > MYEPSILON);
|
---|
621 |
|
---|
622 | return result;
|
---|
623 | };
|
---|
624 |
|
---|
625 | /** Creates this vector as one of the possible orthonormal ones to the given one.
|
---|
626 | * Just scan how many components of given *vector are unequal to zero and
|
---|
627 | * try to get the skp of both to be zero accordingly.
|
---|
628 | * \param *vector given vector
|
---|
629 | * \return true - success, false - failure (null vector given)
|
---|
630 | */
|
---|
631 | bool Vector::GetOneNormalVector(const Vector &GivenVector)
|
---|
632 | {
|
---|
633 | int Components[NDIM]; // contains indices of non-zero components
|
---|
634 | int Last = 0; // count the number of non-zero entries in vector
|
---|
635 | int j; // loop variables
|
---|
636 | double norm;
|
---|
637 |
|
---|
638 | for (j=NDIM;j--;)
|
---|
639 | Components[j] = -1;
|
---|
640 |
|
---|
641 | // in two component-systems we need to find the one position that is zero
|
---|
642 | int zeroPos = -1;
|
---|
643 | // find two components != 0
|
---|
644 | for (j=0;j<NDIM;j++){
|
---|
645 | if (fabs(GivenVector[j]) > MYEPSILON)
|
---|
646 | Components[Last++] = j;
|
---|
647 | else
|
---|
648 | // this our zero Position
|
---|
649 | zeroPos = j;
|
---|
650 | }
|
---|
651 |
|
---|
652 | switch(Last) {
|
---|
653 | case 3: // threecomponent system
|
---|
654 | // the position of the zero is arbitrary in three component systems
|
---|
655 | zeroPos = Components[2];
|
---|
656 | case 2: // two component system
|
---|
657 | norm = sqrt(1./(GivenVector[Components[1]]*GivenVector[Components[1]]) + 1./(GivenVector[Components[0]]*GivenVector[Components[0]]));
|
---|
658 | at(zeroPos) = 0.;
|
---|
659 | // in skp both remaining parts shall become zero but with opposite sign and third is zero
|
---|
660 | at(Components[1]) = -1./GivenVector[Components[1]] / norm;
|
---|
661 | at(Components[0]) = 1./GivenVector[Components[0]] / norm;
|
---|
662 | return true;
|
---|
663 | break;
|
---|
664 | case 1: // one component system
|
---|
665 | // set sole non-zero component to 0, and one of the other zero component pendants to 1
|
---|
666 | at((Components[0]+2)%NDIM) = 0.;
|
---|
667 | at((Components[0]+1)%NDIM) = 1.;
|
---|
668 | at(Components[0]) = 0.;
|
---|
669 | return true;
|
---|
670 | break;
|
---|
671 | default:
|
---|
672 | return false;
|
---|
673 | }
|
---|
674 | };
|
---|
675 |
|
---|
676 | /** Adds vector \a *y componentwise.
|
---|
677 | * \param *y vector
|
---|
678 | */
|
---|
679 | void Vector::AddVector(const Vector &y)
|
---|
680 | {
|
---|
681 | for(int i=NDIM;i--;)
|
---|
682 | at(i) += y[i];
|
---|
683 | }
|
---|
684 |
|
---|
685 | /** Adds vector \a *y componentwise.
|
---|
686 | * \param *y vector
|
---|
687 | */
|
---|
688 | void Vector::SubtractVector(const Vector &y)
|
---|
689 | {
|
---|
690 | for(int i=NDIM;i--;)
|
---|
691 | at(i) -= y[i];
|
---|
692 | }
|
---|
693 |
|
---|
694 | /**
|
---|
695 | * Checks whether this vector is within the parallelepiped defined by the given three vectors and
|
---|
696 | * their offset.
|
---|
697 | *
|
---|
698 | * @param offest for the origin of the parallelepiped
|
---|
699 | * @param three vectors forming the matrix that defines the shape of the parallelpiped
|
---|
700 | */
|
---|
701 | bool Vector::IsInParallelepiped(const Vector &offset, const double * const parallelepiped) const
|
---|
702 | {
|
---|
703 | Vector a = (*this)-offset;
|
---|
704 | a.InverseMatrixMultiplication(parallelepiped);
|
---|
705 | bool isInside = true;
|
---|
706 |
|
---|
707 | for (int i=NDIM;i--;)
|
---|
708 | isInside = isInside && ((a[i] <= 1) && (a[i] >= 0));
|
---|
709 |
|
---|
710 | return isInside;
|
---|
711 | }
|
---|
712 |
|
---|
713 |
|
---|
714 | // some comonly used vectors
|
---|
715 | const Vector zeroVec(0,0,0);
|
---|
716 | const Vector e1(1,0,0);
|
---|
717 | const Vector e2(0,1,0);
|
---|
718 | const Vector e3(0,0,1);
|
---|