source: src/vector.cpp@ 093645

Action_Thermostats Add_AtomRandomPerturbation Add_FitFragmentPartialChargesAction Add_RotateAroundBondAction Add_SelectAtomByNameAction Added_ParseSaveFragmentResults AddingActions_SaveParseParticleParameters Adding_Graph_to_ChangeBondActions Adding_MD_integration_tests Adding_ParticleName_to_Atom Adding_StructOpt_integration_tests AtomFragments Automaking_mpqc_open AutomationFragmentation_failures Candidate_v1.5.4 Candidate_v1.6.0 Candidate_v1.6.1 ChangeBugEmailaddress ChangingTestPorts ChemicalSpaceEvaluator CombiningParticlePotentialParsing Combining_Subpackages Debian_Package_split Debian_package_split_molecuildergui_only Disabling_MemDebug Docu_Python_wait EmpiricalPotential_contain_HomologyGraph EmpiricalPotential_contain_HomologyGraph_documentation Enable_parallel_make_install Enhance_userguide Enhanced_StructuralOptimization Enhanced_StructuralOptimization_continued Example_ManyWaysToTranslateAtom Exclude_Hydrogens_annealWithBondGraph FitPartialCharges_GlobalError Fix_BoundInBox_CenterInBox_MoleculeActions Fix_ChargeSampling_PBC Fix_ChronosMutex Fix_FitPartialCharges Fix_FitPotential_needs_atomicnumbers Fix_ForceAnnealing Fix_IndependentFragmentGrids Fix_ParseParticles Fix_ParseParticles_split_forward_backward_Actions Fix_PopActions Fix_QtFragmentList_sorted_selection Fix_Restrictedkeyset_FragmentMolecule Fix_StatusMsg Fix_StepWorldTime_single_argument Fix_Verbose_Codepatterns Fix_fitting_potentials Fixes ForceAnnealing_goodresults ForceAnnealing_oldresults ForceAnnealing_tocheck ForceAnnealing_with_BondGraph ForceAnnealing_with_BondGraph_continued ForceAnnealing_with_BondGraph_continued_betteresults ForceAnnealing_with_BondGraph_contraction-expansion FragmentAction_writes_AtomFragments FragmentMolecule_checks_bonddegrees GeometryObjects Gui_Fixes Gui_displays_atomic_force_velocity ImplicitCharges IndependentFragmentGrids IndependentFragmentGrids_IndividualZeroInstances IndependentFragmentGrids_IntegrationTest IndependentFragmentGrids_Sole_NN_Calculation JobMarket_RobustOnKillsSegFaults JobMarket_StableWorkerPool JobMarket_unresolvable_hostname_fix MoreRobust_FragmentAutomation ODR_violation_mpqc_open PartialCharges_OrthogonalSummation PdbParser_setsAtomName PythonUI_with_named_parameters QtGui_reactivate_TimeChanged_changes Recreated_GuiChecks Rewrite_FitPartialCharges RotateToPrincipalAxisSystem_UndoRedo SaturateAtoms_findBestMatching SaturateAtoms_singleDegree StoppableMakroAction Subpackage_CodePatterns Subpackage_JobMarket Subpackage_LinearAlgebra Subpackage_levmar Subpackage_mpqc_open Subpackage_vmg Switchable_LogView ThirdParty_MPQC_rebuilt_buildsystem TrajectoryDependenant_MaxOrder TremoloParser_IncreasedPrecision TremoloParser_MultipleTimesteps TremoloParser_setsAtomName Ubuntu_1604_changes stable
Last change on this file since 093645 was 46670d, checked in by Frederik Heber <heber@…>, 16 years ago

BUGFIXES to some vector functions.

  • Property mode set to 100755
File size: 32.8 KB
Line 
1/** \file vector.cpp
2 *
3 * Function implementations for the class vector.
4 *
5 */
6
7
8#include "molecules.hpp"
9
10
11/************************************ Functions for class vector ************************************/
12
13/** Constructor of class vector.
14 */
15Vector::Vector() { x[0] = x[1] = x[2] = 0.; };
16
17/** Constructor of class vector.
18 */
19Vector::Vector(double x1, double x2, double x3) { x[0] = x1; x[1] = x2; x[2] = x3; };
20
21/** Desctructor of class vector.
22 */
23Vector::~Vector() {};
24
25/** Calculates square of distance between this and another vector.
26 * \param *y array to second vector
27 * \return \f$| x - y |^2\f$
28 */
29double Vector::DistanceSquared(const Vector *y) const
30{
31 double res = 0.;
32 for (int i=NDIM;i--;)
33 res += (x[i]-y->x[i])*(x[i]-y->x[i]);
34 return (res);
35};
36
37/** Calculates distance between this and another vector.
38 * \param *y array to second vector
39 * \return \f$| x - y |\f$
40 */
41double Vector::Distance(const Vector *y) const
42{
43 double res = 0.;
44 for (int i=NDIM;i--;)
45 res += (x[i]-y->x[i])*(x[i]-y->x[i]);
46 return (sqrt(res));
47};
48
49/** Calculates distance between this and another vector in a periodic cell.
50 * \param *y array to second vector
51 * \param *cell_size 6-dimensional array with (xx, xy, yy, xz, yz, zz) entries specifying the periodic cell
52 * \return \f$| x - y |\f$
53 */
54double Vector::PeriodicDistance(const Vector *y, const double *cell_size) const
55{
56 double res = Distance(y), tmp, matrix[NDIM*NDIM];
57 Vector Shiftedy, TranslationVector;
58 int N[NDIM];
59 matrix[0] = cell_size[0];
60 matrix[1] = cell_size[1];
61 matrix[2] = cell_size[3];
62 matrix[3] = cell_size[1];
63 matrix[4] = cell_size[2];
64 matrix[5] = cell_size[4];
65 matrix[6] = cell_size[3];
66 matrix[7] = cell_size[4];
67 matrix[8] = cell_size[5];
68 // in order to check the periodic distance, translate one of the vectors into each of the 27 neighbouring cells
69 for (N[0]=-1;N[0]<=1;N[0]++)
70 for (N[1]=-1;N[1]<=1;N[1]++)
71 for (N[2]=-1;N[2]<=1;N[2]++) {
72 // create the translation vector
73 TranslationVector.Zero();
74 for (int i=NDIM;i--;)
75 TranslationVector.x[i] = (double)N[i];
76 TranslationVector.MatrixMultiplication(matrix);
77 // add onto the original vector to compare with
78 Shiftedy.CopyVector(y);
79 Shiftedy.AddVector(&TranslationVector);
80 // get distance and compare with minimum so far
81 tmp = Distance(&Shiftedy);
82 if (tmp < res) res = tmp;
83 }
84 return (res);
85};
86
87/** Calculates distance between this and another vector in a periodic cell.
88 * \param *y array to second vector
89 * \param *cell_size 6-dimensional array with (xx, xy, yy, xz, yz, zz) entries specifying the periodic cell
90 * \return \f$| x - y |^2\f$
91 */
92double Vector::PeriodicDistanceSquared(const Vector *y, const double *cell_size) const
93{
94 double res = DistanceSquared(y), tmp, matrix[NDIM*NDIM];
95 Vector Shiftedy, TranslationVector;
96 int N[NDIM];
97 matrix[0] = cell_size[0];
98 matrix[1] = cell_size[1];
99 matrix[2] = cell_size[3];
100 matrix[3] = cell_size[1];
101 matrix[4] = cell_size[2];
102 matrix[5] = cell_size[4];
103 matrix[6] = cell_size[3];
104 matrix[7] = cell_size[4];
105 matrix[8] = cell_size[5];
106 // in order to check the periodic distance, translate one of the vectors into each of the 27 neighbouring cells
107 for (N[0]=-1;N[0]<=1;N[0]++)
108 for (N[1]=-1;N[1]<=1;N[1]++)
109 for (N[2]=-1;N[2]<=1;N[2]++) {
110 // create the translation vector
111 TranslationVector.Zero();
112 for (int i=NDIM;i--;)
113 TranslationVector.x[i] = (double)N[i];
114 TranslationVector.MatrixMultiplication(matrix);
115 // add onto the original vector to compare with
116 Shiftedy.CopyVector(y);
117 Shiftedy.AddVector(&TranslationVector);
118 // get distance and compare with minimum so far
119 tmp = DistanceSquared(&Shiftedy);
120 if (tmp < res) res = tmp;
121 }
122 return (res);
123};
124
125/** Keeps the vector in a periodic cell, defined by the symmetric \a *matrix.
126 * \param *out ofstream for debugging messages
127 * Tries to translate a vector into each adjacent neighbouring cell.
128 */
129void Vector::KeepPeriodic(ofstream *out, double *matrix)
130{
131// int N[NDIM];
132// bool flag = false;
133 //vector Shifted, TranslationVector;
134 Vector TestVector;
135// *out << Verbose(1) << "Begin of KeepPeriodic." << endl;
136// *out << Verbose(2) << "Vector is: ";
137// Output(out);
138// *out << endl;
139 TestVector.CopyVector(this);
140 TestVector.InverseMatrixMultiplication(matrix);
141 for(int i=NDIM;i--;) { // correct periodically
142 if (TestVector.x[i] < 0) { // get every coefficient into the interval [0,1)
143 TestVector.x[i] += ceil(TestVector.x[i]);
144 } else {
145 TestVector.x[i] -= floor(TestVector.x[i]);
146 }
147 }
148 TestVector.MatrixMultiplication(matrix);
149 CopyVector(&TestVector);
150// *out << Verbose(2) << "New corrected vector is: ";
151// Output(out);
152// *out << endl;
153// *out << Verbose(1) << "End of KeepPeriodic." << endl;
154};
155
156/** Calculates scalar product between this and another vector.
157 * \param *y array to second vector
158 * \return \f$\langle x, y \rangle\f$
159 */
160double Vector::ScalarProduct(const Vector *y) const
161{
162 double res = 0.;
163 for (int i=NDIM;i--;)
164 res += x[i]*y->x[i];
165 return (res);
166};
167
168
169/** Calculates VectorProduct between this and another vector.
170 * -# returns the Product in place of vector from which it was initiated
171 * -# ATTENTION: Only three dim.
172 * \param *y array to vector with which to calculate crossproduct
173 * \return \f$ x \times y \f&
174 */
175void Vector::VectorProduct(const Vector *y)
176{
177 Vector tmp;
178 tmp.x[0] = x[1]* (y->x[2]) - x[2]* (y->x[1]);
179 tmp.x[1] = x[2]* (y->x[0]) - x[0]* (y->x[2]);
180 tmp.x[2] = x[0]* (y->x[1]) - x[1]* (y->x[0]);
181 this->CopyVector(&tmp);
182
183};
184
185
186/** projects this vector onto plane defined by \a *y.
187 * \param *y normal vector of plane
188 * \return \f$\langle x, y \rangle\f$
189 */
190void Vector::ProjectOntoPlane(const Vector *y)
191{
192 Vector tmp;
193 tmp.CopyVector(y);
194 tmp.Normalize();
195 tmp.Scale(ScalarProduct(&tmp));
196 this->SubtractVector(&tmp);
197};
198
199/** Calculates the intersection point between a line defined by \a *LineVector and \a *LineVector2 and a plane defined by \a *Normal and \a *PlaneOffset.
200 * According to [Bronstein] the vectorial plane equation is:
201 * -# \f$\stackrel{r}{\rightarrow} \cdot \stackrel{N}{\rightarrow} + D = 0\f$,
202 * where \f$\stackrel{r}{\rightarrow}\f$ is the vector to be testet, \f$\stackrel{N}{\rightarrow}\f$ is the plane's normal vector and
203 * \f$D = - \stackrel{a}{\rightarrow} \stackrel{N}{\rightarrow}\f$, the offset with respect to origin, if \f$\stackrel{a}{\rightarrow}\f$,
204 * is an offset vector onto the plane. The line is parametrized by \f$\stackrel{x}{\rightarrow} + k \stackrel{t}{\rightarrow}\f$, where
205 * \f$\stackrel{x}{\rightarrow}\f$ is the offset and \f$\stackrel{t}{\rightarrow}\f$ the directional vector (NOTE: No need to normalize
206 * the latter). Inserting the parametrized form into the plane equation and solving for \f$k\f$, which we insert then into the parametrization
207 * of the line yields the intersection point on the plane.
208 * \param *out output stream for debugging
209 * \param *PlaneNormal Plane's normal vector
210 * \param *PlaneOffset Plane's offset vector
211 * \param *LineVector first vector of line
212 * \param *LineVector2 second vector of line
213 * \return true - \a this contains intersection point on return, false - line is parallel to plane
214 */
215bool Vector::GetIntersectionWithPlane(ofstream *out, Vector *PlaneNormal, Vector *PlaneOffset, Vector *Origin, Vector *LineVector)
216{
217 double factor;
218 Vector Direction, helper;
219
220 // find intersection of a line defined by Offset and Direction with a plane defined by triangle
221 Direction.CopyVector(LineVector);
222 Direction.SubtractVector(Origin);
223 factor = Direction.ScalarProduct(PlaneNormal);
224 if (factor < MYEPSILON) { // Uniqueness: line parallel to plane?
225 *out << Verbose(2) << "WARNING: Line is parallel to plane, no intersection." << endl;
226 return false;
227 }
228 helper.CopyVector(PlaneOffset);
229 helper.SubtractVector(LineVector);
230 factor = helper.ScalarProduct(PlaneNormal)/factor;
231 //factor = Origin->ScalarProduct(PlaneNormal)*(-PlaneOffset->ScalarProduct(PlaneNormal))/(Direction.ScalarProduct(PlaneNormal));
232 Direction.Scale(factor);
233 CopyVector(LineVector);
234 AddVector(&Direction);
235
236 // test whether resulting vector really is on plane
237 helper.CopyVector(this);
238 helper.SubtractVector(PlaneOffset);
239 if (helper.ScalarProduct(PlaneNormal) < MYEPSILON) {
240 *out << Verbose(2) << "INFO: Intersection at " << *this << " is good." << endl;
241 return true;
242 } else {
243 *out << Verbose(2) << "WARNING: Intersection point " << *this << " is not on plane." << endl;
244 return false;
245 }
246};
247
248/** Calculates the intersection of the two lines that are both on the same plane.
249 * Note that we do not check whether they are on the same plane.
250 * \param *out output stream for debugging
251 * \param *Line1a first vector of first line
252 * \param *Line1b second vector of first line
253 * \param *Line2a first vector of second line
254 * \param *Line2b second vector of second line
255 * \param *PlaneNormal normal of plane, is supplemental/arbitrary
256 * \return true - \a this will contain the intersection on return, false - lines are parallel
257 */
258bool Vector::GetIntersectionOfTwoLinesOnPlane(ofstream *out, Vector *Line1a, Vector *Line1b, Vector *Line2a, Vector *Line2b, const Vector *PlaneNormal)
259{
260 double factor1, factor2;
261 Vector helper, Line, LineNormal, *OtherNormal = NULL;
262 const Vector *Normal;
263 bool result = false;
264
265 // create Plane normal vector
266 if (PlaneNormal == NULL) {
267 OtherNormal = new Vector(0.,0.,0.);
268 if (!OtherNormal->MakeNormalVector(Line1a, Line1b, Line2a))
269 if (!OtherNormal->MakeNormalVector(Line1a, Line1b, Line2b)) {
270 *out << Verbose(1) << "ERROR: GetIntersectionOfTwoLinesOnPlane() cannot create a normal of the plane, everything is linear dependent." << endl;
271 return false;
272 }
273 Normal = OtherNormal;
274 } else
275 Normal = PlaneNormal;
276 *out << Verbose(3) << "INFO: Normal of plane is " << *Normal << "." << endl;
277
278 // create normal vector to one line
279 Line.CopyVector(Line1b);
280 Line.SubtractVector(Line1a);
281 LineNormal.MakeNormalVector(&Line, Normal);
282 *out << Verbose(3) << "INFO: Normal of first line is " << LineNormal << "." << endl;
283
284 // check if lines are parallel
285 helper.CopyVector(Line2b);
286 helper.SubtractVector(Line2a);
287 if (fabs(helper.ScalarProduct(&LineNormal)) < MYEPSILON) {
288 *out << Verbose(1) << "Lines " << helper << " and " << Line << " are parallel, no cross point!" << endl;
289 result = false;
290 } else {
291 helper.CopyVector(Line2a);
292 helper.SubtractVector(Line1a);
293 factor1 = helper.ScalarProduct(&LineNormal);
294 helper.CopyVector(Line2b);
295 helper.SubtractVector(Line1a);
296 factor2 = helper.ScalarProduct(&LineNormal);
297 if (fabs(factor2) > MYEPSILON) {
298 CopyVector(Line2a);
299 helper.Scale(factor1/factor2);
300 AddVector(&helper);
301 result = true;
302 } else {
303 Zero();
304 result = false;
305 }
306 }
307
308 if (OtherNormal != NULL)
309 delete(OtherNormal);
310
311 return result;
312};
313
314/** Calculates the projection of a vector onto another \a *y.
315 * \param *y array to second vector
316 * \return \f$\langle x, y \rangle\f$
317 */
318double Vector::Projection(const Vector *y) const
319{
320 return (ScalarProduct(y));
321};
322
323/** Calculates norm of this vector.
324 * \return \f$|x|\f$
325 */
326double Vector::Norm() const
327{
328 double res = 0.;
329 for (int i=NDIM;i--;)
330 res += this->x[i]*this->x[i];
331 return (sqrt(res));
332};
333
334/** Calculates squared norm of this vector.
335 * \return \f$|x|^2\f$
336 */
337double Vector::NormSquared() const
338{
339 return (ScalarProduct(this));
340};
341
342/** Normalizes this vector.
343 */
344void Vector::Normalize()
345{
346 double res = 0.;
347 for (int i=NDIM;i--;)
348 res += this->x[i]*this->x[i];
349 if (fabs(res) > MYEPSILON)
350 res = 1./sqrt(res);
351 Scale(&res);
352};
353
354/** Zeros all components of this vector.
355 */
356void Vector::Zero()
357{
358 for (int i=NDIM;i--;)
359 this->x[i] = 0.;
360};
361
362/** Zeros all components of this vector.
363 */
364void Vector::One(double one)
365{
366 for (int i=NDIM;i--;)
367 this->x[i] = one;
368};
369
370/** Initialises all components of this vector.
371 */
372void Vector::Init(double x1, double x2, double x3)
373{
374 x[0] = x1;
375 x[1] = x2;
376 x[2] = x3;
377};
378
379/** Checks whether vector has all components zero.
380 * @return true - vector is zero, false - vector is not
381 */
382bool Vector::IsNull() const
383{
384 return (fabs(x[0]+x[1]+x[2]) < MYEPSILON);
385};
386
387/** Calculates the angle between this and another vector.
388 * \param *y array to second vector
389 * \return \f$\acos\bigl(frac{\langle x, y \rangle}{|x||y|}\bigr)\f$
390 */
391double Vector::Angle(const Vector *y) const
392{
393 double norm1 = Norm(), norm2 = y->Norm();
394 double angle = 1;
395 if ((fabs(norm1) > MYEPSILON) && (fabs(norm2) > MYEPSILON))
396 angle = this->ScalarProduct(y)/norm1/norm2;
397 // -1-MYEPSILON occured due to numerical imprecision, catch ...
398 //cout << Verbose(2) << "INFO: acos(-1) = " << acos(-1) << ", acos(-1+MYEPSILON) = " << acos(-1+MYEPSILON) << ", acos(-1-MYEPSILON) = " << acos(-1-MYEPSILON) << "." << endl;
399 if (angle < -1)
400 angle = -1;
401 if (angle > 1)
402 angle = 1;
403 return acos(angle);
404};
405
406/** Rotates the vector around the axis given by \a *axis by an angle of \a alpha.
407 * \param *axis rotation axis
408 * \param alpha rotation angle in radian
409 */
410void Vector::RotateVector(const Vector *axis, const double alpha)
411{
412 Vector a,y;
413 // normalise this vector with respect to axis
414 a.CopyVector(this);
415 a.Scale(Projection(axis));
416 SubtractVector(&a);
417 // construct normal vector
418 y.MakeNormalVector(axis,this);
419 y.Scale(Norm());
420 // scale normal vector by sine and this vector by cosine
421 y.Scale(sin(alpha));
422 Scale(cos(alpha));
423 // add scaled normal vector onto this vector
424 AddVector(&y);
425 // add part in axis direction
426 AddVector(&a);
427};
428
429/** Sums vector \a to this lhs component-wise.
430 * \param a base vector
431 * \param b vector components to add
432 * \return lhs + a
433 */
434Vector& operator+=(Vector& a, const Vector& b)
435{
436 a.AddVector(&b);
437 return a;
438};
439/** factor each component of \a a times a double \a m.
440 * \param a base vector
441 * \param m factor
442 * \return lhs.x[i] * m
443 */
444Vector& operator*=(Vector& a, const double m)
445{
446 a.Scale(m);
447 return a;
448};
449
450/** Sums two vectors \a and \b component-wise.
451 * \param a first vector
452 * \param b second vector
453 * \return a + b
454 */
455Vector& operator+(const Vector& a, const Vector& b)
456{
457 Vector *x = new Vector;
458 x->CopyVector(&a);
459 x->AddVector(&b);
460 return *x;
461};
462
463/** Factors given vector \a a times \a m.
464 * \param a vector
465 * \param m factor
466 * \return a + b
467 */
468Vector& operator*(const Vector& a, const double m)
469{
470 Vector *x = new Vector;
471 x->CopyVector(&a);
472 x->Scale(m);
473 return *x;
474};
475
476/** Prints a 3dim vector.
477 * prints no end of line.
478 * \param *out output stream
479 */
480bool Vector::Output(ofstream *out) const
481{
482 if (out != NULL) {
483 *out << "(";
484 for (int i=0;i<NDIM;i++) {
485 *out << x[i];
486 if (i != 2)
487 *out << ",";
488 }
489 *out << ")";
490 return true;
491 } else
492 return false;
493};
494
495ostream& operator<<(ostream& ost, const Vector& m)
496{
497 ost << "(";
498 for (int i=0;i<NDIM;i++) {
499 ost << m.x[i];
500 if (i != 2)
501 ost << ",";
502 }
503 ost << ")";
504 return ost;
505};
506
507/** Scales each atom coordinate by an individual \a factor.
508 * \param *factor pointer to scaling factor
509 */
510void Vector::Scale(double **factor)
511{
512 for (int i=NDIM;i--;)
513 x[i] *= (*factor)[i];
514};
515
516void Vector::Scale(double *factor)
517{
518 for (int i=NDIM;i--;)
519 x[i] *= *factor;
520};
521
522void Vector::Scale(double factor)
523{
524 for (int i=NDIM;i--;)
525 x[i] *= factor;
526};
527
528/** Translate atom by given vector.
529 * \param trans[] translation vector.
530 */
531void Vector::Translate(const Vector *trans)
532{
533 for (int i=NDIM;i--;)
534 x[i] += trans->x[i];
535};
536
537/** Do a matrix multiplication.
538 * \param *matrix NDIM_NDIM array
539 */
540void Vector::MatrixMultiplication(double *M)
541{
542 Vector C;
543 // do the matrix multiplication
544 C.x[0] = M[0]*x[0]+M[3]*x[1]+M[6]*x[2];
545 C.x[1] = M[1]*x[0]+M[4]*x[1]+M[7]*x[2];
546 C.x[2] = M[2]*x[0]+M[5]*x[1]+M[8]*x[2];
547 // transfer the result into this
548 for (int i=NDIM;i--;)
549 x[i] = C.x[i];
550};
551
552/** Calculate the inverse of a 3x3 matrix.
553 * \param *matrix NDIM_NDIM array
554 */
555double * Vector::InverseMatrix(double *A)
556{
557 double *B = (double *) Malloc(sizeof(double)*NDIM*NDIM, "Vector::InverseMatrix: *B");
558 double detA = RDET3(A);
559 double detAReci;
560
561 for (int i=0;i<NDIM*NDIM;++i)
562 B[i] = 0.;
563 // calculate the inverse B
564 if (fabs(detA) > MYEPSILON) {; // RDET3(A) yields precisely zero if A irregular
565 detAReci = 1./detA;
566 B[0] = detAReci*RDET2(A[4],A[5],A[7],A[8]); // A_11
567 B[1] = -detAReci*RDET2(A[1],A[2],A[7],A[8]); // A_12
568 B[2] = detAReci*RDET2(A[1],A[2],A[4],A[5]); // A_13
569 B[3] = -detAReci*RDET2(A[3],A[5],A[6],A[8]); // A_21
570 B[4] = detAReci*RDET2(A[0],A[2],A[6],A[8]); // A_22
571 B[5] = -detAReci*RDET2(A[0],A[2],A[3],A[5]); // A_23
572 B[6] = detAReci*RDET2(A[3],A[4],A[6],A[7]); // A_31
573 B[7] = -detAReci*RDET2(A[0],A[1],A[6],A[7]); // A_32
574 B[8] = detAReci*RDET2(A[0],A[1],A[3],A[4]); // A_33
575 }
576 return B;
577};
578
579/** Do a matrix multiplication with the \a *A' inverse.
580 * \param *matrix NDIM_NDIM array
581 */
582void Vector::InverseMatrixMultiplication(double *A)
583{
584 Vector C;
585 double B[NDIM*NDIM];
586 double detA = RDET3(A);
587 double detAReci;
588
589 // calculate the inverse B
590 if (fabs(detA) > MYEPSILON) {; // RDET3(A) yields precisely zero if A irregular
591 detAReci = 1./detA;
592 B[0] = detAReci*RDET2(A[4],A[5],A[7],A[8]); // A_11
593 B[1] = -detAReci*RDET2(A[1],A[2],A[7],A[8]); // A_12
594 B[2] = detAReci*RDET2(A[1],A[2],A[4],A[5]); // A_13
595 B[3] = -detAReci*RDET2(A[3],A[5],A[6],A[8]); // A_21
596 B[4] = detAReci*RDET2(A[0],A[2],A[6],A[8]); // A_22
597 B[5] = -detAReci*RDET2(A[0],A[2],A[3],A[5]); // A_23
598 B[6] = detAReci*RDET2(A[3],A[4],A[6],A[7]); // A_31
599 B[7] = -detAReci*RDET2(A[0],A[1],A[6],A[7]); // A_32
600 B[8] = detAReci*RDET2(A[0],A[1],A[3],A[4]); // A_33
601
602 // do the matrix multiplication
603 C.x[0] = B[0]*x[0]+B[3]*x[1]+B[6]*x[2];
604 C.x[1] = B[1]*x[0]+B[4]*x[1]+B[7]*x[2];
605 C.x[2] = B[2]*x[0]+B[5]*x[1]+B[8]*x[2];
606 // transfer the result into this
607 for (int i=NDIM;i--;)
608 x[i] = C.x[i];
609 } else {
610 cerr << "ERROR: inverse of matrix does not exists: det A = " << detA << "." << endl;
611 }
612};
613
614
615/** Creates this vector as the b y *factors' components scaled linear combination of the given three.
616 * this vector = x1*factors[0] + x2* factors[1] + x3*factors[2]
617 * \param *x1 first vector
618 * \param *x2 second vector
619 * \param *x3 third vector
620 * \param *factors three-component vector with the factor for each given vector
621 */
622void Vector::LinearCombinationOfVectors(const Vector *x1, const Vector *x2, const Vector *x3, double *factors)
623{
624 for(int i=NDIM;i--;)
625 x[i] = factors[0]*x1->x[i] + factors[1]*x2->x[i] + factors[2]*x3->x[i];
626};
627
628/** Mirrors atom against a given plane.
629 * \param n[] normal vector of mirror plane.
630 */
631void Vector::Mirror(const Vector *n)
632{
633 double projection;
634 projection = ScalarProduct(n)/n->ScalarProduct(n); // remove constancy from n (keep as logical one)
635 // withdraw projected vector twice from original one
636 cout << Verbose(1) << "Vector: ";
637 Output((ofstream *)&cout);
638 cout << "\t";
639 for (int i=NDIM;i--;)
640 x[i] -= 2.*projection*n->x[i];
641 cout << "Projected vector: ";
642 Output((ofstream *)&cout);
643 cout << endl;
644};
645
646/** Calculates normal vector for three given vectors (being three points in space).
647 * Makes this vector orthonormal to the three given points, making up a place in 3d space.
648 * \param *y1 first vector
649 * \param *y2 second vector
650 * \param *y3 third vector
651 * \return true - success, vectors are linear independent, false - failure due to linear dependency
652 */
653bool Vector::MakeNormalVector(const Vector *y1, const Vector *y2, const Vector *y3)
654{
655 Vector x1, x2;
656
657 x1.CopyVector(y1);
658 x1.SubtractVector(y2);
659 x2.CopyVector(y3);
660 x2.SubtractVector(y2);
661 if ((fabs(x1.Norm()) < MYEPSILON) || (fabs(x2.Norm()) < MYEPSILON) || (fabs(x1.Angle(&x2)) < MYEPSILON)) {
662 cout << Verbose(4) << "Given vectors are linear dependent." << endl;
663 return false;
664 }
665// cout << Verbose(4) << "relative, first plane coordinates:";
666// x1.Output((ofstream *)&cout);
667// cout << endl;
668// cout << Verbose(4) << "second plane coordinates:";
669// x2.Output((ofstream *)&cout);
670// cout << endl;
671
672 this->x[0] = (x1.x[1]*x2.x[2] - x1.x[2]*x2.x[1]);
673 this->x[1] = (x1.x[2]*x2.x[0] - x1.x[0]*x2.x[2]);
674 this->x[2] = (x1.x[0]*x2.x[1] - x1.x[1]*x2.x[0]);
675 Normalize();
676
677 return true;
678};
679
680
681/** Calculates orthonormal vector to two given vectors.
682 * Makes this vector orthonormal to two given vectors. This is very similar to the other
683 * vector::MakeNormalVector(), only there three points whereas here two difference
684 * vectors are given.
685 * \param *x1 first vector
686 * \param *x2 second vector
687 * \return true - success, vectors are linear independent, false - failure due to linear dependency
688 */
689bool Vector::MakeNormalVector(const Vector *y1, const Vector *y2)
690{
691 Vector x1,x2;
692 x1.CopyVector(y1);
693 x2.CopyVector(y2);
694 Zero();
695 if ((fabs(x1.Norm()) < MYEPSILON) || (fabs(x2.Norm()) < MYEPSILON) || (fabs(x1.Angle(&x2)) < MYEPSILON)) {
696 cout << Verbose(4) << "Given vectors are linear dependent." << endl;
697 return false;
698 }
699// cout << Verbose(4) << "relative, first plane coordinates:";
700// x1.Output((ofstream *)&cout);
701// cout << endl;
702// cout << Verbose(4) << "second plane coordinates:";
703// x2.Output((ofstream *)&cout);
704// cout << endl;
705
706 this->x[0] = (x1.x[1]*x2.x[2] - x1.x[2]*x2.x[1]);
707 this->x[1] = (x1.x[2]*x2.x[0] - x1.x[0]*x2.x[2]);
708 this->x[2] = (x1.x[0]*x2.x[1] - x1.x[1]*x2.x[0]);
709 Normalize();
710
711 return true;
712};
713
714/** Calculates orthonormal vector to one given vectors.
715 * Just subtracts the projection onto the given vector from this vector.
716 * \param *x1 vector
717 * \return true - success, false - vector is zero
718 */
719bool Vector::MakeNormalVector(const Vector *y1)
720{
721 bool result = false;
722 double factor = y1->Projection(this)/y1->Norm()/y1->Norm();
723 Vector x1;
724 x1.CopyVector(y1);
725 x1.Scale(factor);
726 SubtractVector(&x1);
727 for (int i=NDIM;i--;)
728 result = result || (fabs(x[i]) > MYEPSILON);
729
730 return result;
731};
732
733/** Creates this vector as one of the possible orthonormal ones to the given one.
734 * Just scan how many components of given *vector are unequal to zero and
735 * try to get the skp of both to be zero accordingly.
736 * \param *vector given vector
737 * \return true - success, false - failure (null vector given)
738 */
739bool Vector::GetOneNormalVector(const Vector *GivenVector)
740{
741 int Components[NDIM]; // contains indices of non-zero components
742 int Last = 0; // count the number of non-zero entries in vector
743 int j; // loop variables
744 double norm;
745
746 cout << Verbose(4);
747 GivenVector->Output((ofstream *)&cout);
748 cout << endl;
749 for (j=NDIM;j--;)
750 Components[j] = -1;
751 // find two components != 0
752 for (j=0;j<NDIM;j++)
753 if (fabs(GivenVector->x[j]) > MYEPSILON)
754 Components[Last++] = j;
755 cout << Verbose(4) << Last << " Components != 0: (" << Components[0] << "," << Components[1] << "," << Components[2] << ")" << endl;
756
757 switch(Last) {
758 case 3: // threecomponent system
759 case 2: // two component system
760 norm = sqrt(1./(GivenVector->x[Components[1]]*GivenVector->x[Components[1]]) + 1./(GivenVector->x[Components[0]]*GivenVector->x[Components[0]]));
761 x[Components[2]] = 0.;
762 // in skp both remaining parts shall become zero but with opposite sign and third is zero
763 x[Components[1]] = -1./GivenVector->x[Components[1]] / norm;
764 x[Components[0]] = 1./GivenVector->x[Components[0]] / norm;
765 return true;
766 break;
767 case 1: // one component system
768 // set sole non-zero component to 0, and one of the other zero component pendants to 1
769 x[(Components[0]+2)%NDIM] = 0.;
770 x[(Components[0]+1)%NDIM] = 1.;
771 x[Components[0]] = 0.;
772 return true;
773 break;
774 default:
775 return false;
776 }
777};
778
779/** Determines paramter needed to multiply this vector to obtain intersection point with plane defined by \a *A, \a *B and \a *C.
780 * \param *A first plane vector
781 * \param *B second plane vector
782 * \param *C third plane vector
783 * \return scaling parameter for this vector
784 */
785double Vector::CutsPlaneAt(Vector *A, Vector *B, Vector *C)
786{
787// cout << Verbose(3) << "For comparison: ";
788// cout << "A " << A->Projection(this) << "\t";
789// cout << "B " << B->Projection(this) << "\t";
790// cout << "C " << C->Projection(this) << "\t";
791// cout << endl;
792 return A->Projection(this);
793};
794
795/** Creates a new vector as the one with least square distance to a given set of \a vectors.
796 * \param *vectors set of vectors
797 * \param num number of vectors
798 * \return true if success, false if failed due to linear dependency
799 */
800bool Vector::LSQdistance(Vector **vectors, int num)
801{
802 int j;
803
804 for (j=0;j<num;j++) {
805 cout << Verbose(1) << j << "th atom's vector: ";
806 (vectors[j])->Output((ofstream *)&cout);
807 cout << endl;
808 }
809
810 int np = 3;
811 struct LSQ_params par;
812
813 const gsl_multimin_fminimizer_type *T =
814 gsl_multimin_fminimizer_nmsimplex;
815 gsl_multimin_fminimizer *s = NULL;
816 gsl_vector *ss, *y;
817 gsl_multimin_function minex_func;
818
819 size_t iter = 0, i;
820 int status;
821 double size;
822
823 /* Initial vertex size vector */
824 ss = gsl_vector_alloc (np);
825 y = gsl_vector_alloc (np);
826
827 /* Set all step sizes to 1 */
828 gsl_vector_set_all (ss, 1.0);
829
830 /* Starting point */
831 par.vectors = vectors;
832 par.num = num;
833
834 for (i=NDIM;i--;)
835 gsl_vector_set(y, i, (vectors[0]->x[i] - vectors[1]->x[i])/2.);
836
837 /* Initialize method and iterate */
838 minex_func.f = &LSQ;
839 minex_func.n = np;
840 minex_func.params = (void *)&par;
841
842 s = gsl_multimin_fminimizer_alloc (T, np);
843 gsl_multimin_fminimizer_set (s, &minex_func, y, ss);
844
845 do
846 {
847 iter++;
848 status = gsl_multimin_fminimizer_iterate(s);
849
850 if (status)
851 break;
852
853 size = gsl_multimin_fminimizer_size (s);
854 status = gsl_multimin_test_size (size, 1e-2);
855
856 if (status == GSL_SUCCESS)
857 {
858 printf ("converged to minimum at\n");
859 }
860
861 printf ("%5d ", (int)iter);
862 for (i = 0; i < (size_t)np; i++)
863 {
864 printf ("%10.3e ", gsl_vector_get (s->x, i));
865 }
866 printf ("f() = %7.3f size = %.3f\n", s->fval, size);
867 }
868 while (status == GSL_CONTINUE && iter < 100);
869
870 for (i=(size_t)np;i--;)
871 this->x[i] = gsl_vector_get(s->x, i);
872 gsl_vector_free(y);
873 gsl_vector_free(ss);
874 gsl_multimin_fminimizer_free (s);
875
876 return true;
877};
878
879/** Adds vector \a *y componentwise.
880 * \param *y vector
881 */
882void Vector::AddVector(const Vector *y)
883{
884 for (int i=NDIM;i--;)
885 this->x[i] += y->x[i];
886}
887
888/** Adds vector \a *y componentwise.
889 * \param *y vector
890 */
891void Vector::SubtractVector(const Vector *y)
892{
893 for (int i=NDIM;i--;)
894 this->x[i] -= y->x[i];
895}
896
897/** Copy vector \a *y componentwise.
898 * \param *y vector
899 */
900void Vector::CopyVector(const Vector *y)
901{
902 for (int i=NDIM;i--;)
903 this->x[i] = y->x[i];
904}
905
906
907/** Asks for position, checks for boundary.
908 * \param cell_size unitary size of cubic cell, coordinates must be within 0...cell_size
909 * \param check whether bounds shall be checked (true) or not (false)
910 */
911void Vector::AskPosition(double *cell_size, bool check)
912{
913 char coords[3] = {'x','y','z'};
914 int j = -1;
915 for (int i=0;i<3;i++) {
916 j += i+1;
917 do {
918 cout << Verbose(0) << coords[i] << "[0.." << cell_size[j] << "]: ";
919 cin >> x[i];
920 } while (((x[i] < 0) || (x[i] >= cell_size[j])) && (check));
921 }
922};
923
924/** Solves a vectorial system consisting of two orthogonal statements and a norm statement.
925 * This is linear system of equations to be solved, however of the three given (skp of this vector\
926 * with either of the three hast to be zero) only two are linear independent. The third equation
927 * is that the vector should be of magnitude 1 (orthonormal). This all leads to a case-based solution
928 * where very often it has to be checked whether a certain value is zero or not and thus forked into
929 * another case.
930 * \param *x1 first vector
931 * \param *x2 second vector
932 * \param *y third vector
933 * \param alpha first angle
934 * \param beta second angle
935 * \param c norm of final vector
936 * \return a vector with \f$\langle x1,x2 \rangle=A\f$, \f$\langle x1,y \rangle = B\f$ and with norm \a c.
937 * \bug this is not yet working properly
938 */
939bool Vector::SolveSystem(Vector *x1, Vector *x2, Vector *y, double alpha, double beta, double c)
940{
941 double D1,D2,D3,E1,E2,F1,F2,F3,p,q=0., A, B1, B2, C;
942 double ang; // angle on testing
943 double sign[3];
944 int i,j,k;
945 A = cos(alpha) * x1->Norm() * c;
946 B1 = cos(beta + M_PI/2.) * y->Norm() * c;
947 B2 = cos(beta) * x2->Norm() * c;
948 C = c * c;
949 cout << Verbose(2) << "A " << A << "\tB " << B1 << "\tC " << C << endl;
950 int flag = 0;
951 if (fabs(x1->x[0]) < MYEPSILON) { // check for zero components for the later flipping and back-flipping
952 if (fabs(x1->x[1]) > MYEPSILON) {
953 flag = 1;
954 } else if (fabs(x1->x[2]) > MYEPSILON) {
955 flag = 2;
956 } else {
957 return false;
958 }
959 }
960 switch (flag) {
961 default:
962 case 0:
963 break;
964 case 2:
965 flip(&x1->x[0],&x1->x[1]);
966 flip(&x2->x[0],&x2->x[1]);
967 flip(&y->x[0],&y->x[1]);
968 //flip(&x[0],&x[1]);
969 flip(&x1->x[1],&x1->x[2]);
970 flip(&x2->x[1],&x2->x[2]);
971 flip(&y->x[1],&y->x[2]);
972 //flip(&x[1],&x[2]);
973 case 1:
974 flip(&x1->x[0],&x1->x[1]);
975 flip(&x2->x[0],&x2->x[1]);
976 flip(&y->x[0],&y->x[1]);
977 //flip(&x[0],&x[1]);
978 flip(&x1->x[1],&x1->x[2]);
979 flip(&x2->x[1],&x2->x[2]);
980 flip(&y->x[1],&y->x[2]);
981 //flip(&x[1],&x[2]);
982 break;
983 }
984 // now comes the case system
985 D1 = -y->x[0]/x1->x[0]*x1->x[1]+y->x[1];
986 D2 = -y->x[0]/x1->x[0]*x1->x[2]+y->x[2];
987 D3 = y->x[0]/x1->x[0]*A-B1;
988 cout << Verbose(2) << "D1 " << D1 << "\tD2 " << D2 << "\tD3 " << D3 << "\n";
989 if (fabs(D1) < MYEPSILON) {
990 cout << Verbose(2) << "D1 == 0!\n";
991 if (fabs(D2) > MYEPSILON) {
992 cout << Verbose(3) << "D2 != 0!\n";
993 x[2] = -D3/D2;
994 E1 = A/x1->x[0] + x1->x[2]/x1->x[0]*D3/D2;
995 E2 = -x1->x[1]/x1->x[0];
996 cout << Verbose(3) << "E1 " << E1 << "\tE2 " << E2 << "\n";
997 F1 = E1*E1 + 1.;
998 F2 = -E1*E2;
999 F3 = E1*E1 + D3*D3/(D2*D2) - C;
1000 cout << Verbose(3) << "F1 " << F1 << "\tF2 " << F2 << "\tF3 " << F3 << "\n";
1001 if (fabs(F1) < MYEPSILON) {
1002 cout << Verbose(4) << "F1 == 0!\n";
1003 cout << Verbose(4) << "Gleichungssystem linear\n";
1004 x[1] = F3/(2.*F2);
1005 } else {
1006 p = F2/F1;
1007 q = p*p - F3/F1;
1008 cout << Verbose(4) << "p " << p << "\tq " << q << endl;
1009 if (q < 0) {
1010 cout << Verbose(4) << "q < 0" << endl;
1011 return false;
1012 }
1013 x[1] = p + sqrt(q);
1014 }
1015 x[0] = A/x1->x[0] - x1->x[1]/x1->x[0]*x[1] + x1->x[2]/x1->x[0]*x[2];
1016 } else {
1017 cout << Verbose(2) << "Gleichungssystem unterbestimmt\n";
1018 return false;
1019 }
1020 } else {
1021 E1 = A/x1->x[0]+x1->x[1]/x1->x[0]*D3/D1;
1022 E2 = x1->x[1]/x1->x[0]*D2/D1 - x1->x[2];
1023 cout << Verbose(2) << "E1 " << E1 << "\tE2 " << E2 << "\n";
1024 F1 = E2*E2 + D2*D2/(D1*D1) + 1.;
1025 F2 = -(E1*E2 + D2*D3/(D1*D1));
1026 F3 = E1*E1 + D3*D3/(D1*D1) - C;
1027 cout << Verbose(2) << "F1 " << F1 << "\tF2 " << F2 << "\tF3 " << F3 << "\n";
1028 if (fabs(F1) < MYEPSILON) {
1029 cout << Verbose(3) << "F1 == 0!\n";
1030 cout << Verbose(3) << "Gleichungssystem linear\n";
1031 x[2] = F3/(2.*F2);
1032 } else {
1033 p = F2/F1;
1034 q = p*p - F3/F1;
1035 cout << Verbose(3) << "p " << p << "\tq " << q << endl;
1036 if (q < 0) {
1037 cout << Verbose(3) << "q < 0" << endl;
1038 return false;
1039 }
1040 x[2] = p + sqrt(q);
1041 }
1042 x[1] = (-D2 * x[2] - D3)/D1;
1043 x[0] = A/x1->x[0] - x1->x[1]/x1->x[0]*x[1] + x1->x[2]/x1->x[0]*x[2];
1044 }
1045 switch (flag) { // back-flipping
1046 default:
1047 case 0:
1048 break;
1049 case 2:
1050 flip(&x1->x[0],&x1->x[1]);
1051 flip(&x2->x[0],&x2->x[1]);
1052 flip(&y->x[0],&y->x[1]);
1053 flip(&x[0],&x[1]);
1054 flip(&x1->x[1],&x1->x[2]);
1055 flip(&x2->x[1],&x2->x[2]);
1056 flip(&y->x[1],&y->x[2]);
1057 flip(&x[1],&x[2]);
1058 case 1:
1059 flip(&x1->x[0],&x1->x[1]);
1060 flip(&x2->x[0],&x2->x[1]);
1061 flip(&y->x[0],&y->x[1]);
1062 //flip(&x[0],&x[1]);
1063 flip(&x1->x[1],&x1->x[2]);
1064 flip(&x2->x[1],&x2->x[2]);
1065 flip(&y->x[1],&y->x[2]);
1066 flip(&x[1],&x[2]);
1067 break;
1068 }
1069 // one z component is only determined by its radius (without sign)
1070 // thus check eight possible sign flips and determine by checking angle with second vector
1071 for (i=0;i<8;i++) {
1072 // set sign vector accordingly
1073 for (j=2;j>=0;j--) {
1074 k = (i & pot(2,j)) << j;
1075 cout << Verbose(2) << "k " << k << "\tpot(2,j) " << pot(2,j) << endl;
1076 sign[j] = (k == 0) ? 1. : -1.;
1077 }
1078 cout << Verbose(2) << i << ": sign matrix is " << sign[0] << "\t" << sign[1] << "\t" << sign[2] << "\n";
1079 // apply sign matrix
1080 for (j=NDIM;j--;)
1081 x[j] *= sign[j];
1082 // calculate angle and check
1083 ang = x2->Angle (this);
1084 cout << Verbose(1) << i << "th angle " << ang << "\tbeta " << cos(beta) << " :\t";
1085 if (fabs(ang - cos(beta)) < MYEPSILON) {
1086 break;
1087 }
1088 // unapply sign matrix (is its own inverse)
1089 for (j=NDIM;j--;)
1090 x[j] *= sign[j];
1091 }
1092 return true;
1093};
Note: See TracBrowser for help on using the repository browser.