source: src/vector.cpp@ b47bfc

Action_Thermostats Add_AtomRandomPerturbation Add_FitFragmentPartialChargesAction Add_RotateAroundBondAction Add_SelectAtomByNameAction Added_ParseSaveFragmentResults AddingActions_SaveParseParticleParameters Adding_Graph_to_ChangeBondActions Adding_MD_integration_tests Adding_ParticleName_to_Atom Adding_StructOpt_integration_tests AtomFragments Automaking_mpqc_open AutomationFragmentation_failures Candidate_v1.5.4 Candidate_v1.6.0 Candidate_v1.6.1 ChangeBugEmailaddress ChangingTestPorts ChemicalSpaceEvaluator CombiningParticlePotentialParsing Combining_Subpackages Debian_Package_split Debian_package_split_molecuildergui_only Disabling_MemDebug Docu_Python_wait EmpiricalPotential_contain_HomologyGraph EmpiricalPotential_contain_HomologyGraph_documentation Enable_parallel_make_install Enhance_userguide Enhanced_StructuralOptimization Enhanced_StructuralOptimization_continued Example_ManyWaysToTranslateAtom Exclude_Hydrogens_annealWithBondGraph FitPartialCharges_GlobalError Fix_BoundInBox_CenterInBox_MoleculeActions Fix_ChargeSampling_PBC Fix_ChronosMutex Fix_FitPartialCharges Fix_FitPotential_needs_atomicnumbers Fix_ForceAnnealing Fix_IndependentFragmentGrids Fix_ParseParticles Fix_ParseParticles_split_forward_backward_Actions Fix_PopActions Fix_QtFragmentList_sorted_selection Fix_Restrictedkeyset_FragmentMolecule Fix_StatusMsg Fix_StepWorldTime_single_argument Fix_Verbose_Codepatterns Fix_fitting_potentials Fixes ForceAnnealing_goodresults ForceAnnealing_oldresults ForceAnnealing_tocheck ForceAnnealing_with_BondGraph ForceAnnealing_with_BondGraph_continued ForceAnnealing_with_BondGraph_continued_betteresults ForceAnnealing_with_BondGraph_contraction-expansion FragmentAction_writes_AtomFragments FragmentMolecule_checks_bonddegrees GeometryObjects Gui_Fixes Gui_displays_atomic_force_velocity ImplicitCharges IndependentFragmentGrids IndependentFragmentGrids_IndividualZeroInstances IndependentFragmentGrids_IntegrationTest IndependentFragmentGrids_Sole_NN_Calculation JobMarket_RobustOnKillsSegFaults JobMarket_StableWorkerPool JobMarket_unresolvable_hostname_fix MoreRobust_FragmentAutomation ODR_violation_mpqc_open PartialCharges_OrthogonalSummation PdbParser_setsAtomName PythonUI_with_named_parameters QtGui_reactivate_TimeChanged_changes Recreated_GuiChecks Rewrite_FitPartialCharges RotateToPrincipalAxisSystem_UndoRedo SaturateAtoms_findBestMatching SaturateAtoms_singleDegree StoppableMakroAction Subpackage_CodePatterns Subpackage_JobMarket Subpackage_LinearAlgebra Subpackage_levmar Subpackage_mpqc_open Subpackage_vmg Switchable_LogView ThirdParty_MPQC_rebuilt_buildsystem TrajectoryDependenant_MaxOrder TremoloParser_IncreasedPrecision TremoloParser_MultipleTimesteps TremoloParser_setsAtomName Ubuntu_1604_changes stable
Last change on this file since b47bfc was 112b09, checked in by Tillmann Crueger <crueger@…>, 15 years ago

Added #include "Helpers/MemDebug.hpp" to all .cpp files

  • Property mode set to 100644
File size: 18.1 KB
Line 
1/** \file vector.cpp
2 *
3 * Function implementations for the class vector.
4 *
5 */
6
7#include "Helpers/MemDebug.hpp"
8
9#include "vector.hpp"
10#include "verbose.hpp"
11#include "World.hpp"
12#include "Helpers/Assert.hpp"
13#include "Helpers/fast_functions.hpp"
14
15#include <iostream>
16
17using namespace std;
18
19
20/************************************ Functions for class vector ************************************/
21
22/** Constructor of class vector.
23 */
24Vector::Vector()
25{
26 x[0] = x[1] = x[2] = 0.;
27};
28
29/**
30 * Copy constructor
31 */
32
33Vector::Vector(const Vector& src)
34{
35 x[0] = src[0];
36 x[1] = src[1];
37 x[2] = src[2];
38}
39
40/** Constructor of class vector.
41 */
42Vector::Vector(const double x1, const double x2, const double x3)
43{
44 x[0] = x1;
45 x[1] = x2;
46 x[2] = x3;
47};
48
49/**
50 * Assignment operator
51 */
52Vector& Vector::operator=(const Vector& src){
53 // check for self assignment
54 if(&src!=this){
55 x[0] = src[0];
56 x[1] = src[1];
57 x[2] = src[2];
58 }
59 return *this;
60}
61
62/** Desctructor of class vector.
63 */
64Vector::~Vector() {};
65
66/** Calculates square of distance between this and another vector.
67 * \param *y array to second vector
68 * \return \f$| x - y |^2\f$
69 */
70double Vector::DistanceSquared(const Vector &y) const
71{
72 double res = 0.;
73 for (int i=NDIM;i--;)
74 res += (x[i]-y[i])*(x[i]-y[i]);
75 return (res);
76};
77
78/** Calculates distance between this and another vector.
79 * \param *y array to second vector
80 * \return \f$| x - y |\f$
81 */
82double Vector::distance(const Vector &y) const
83{
84 return (sqrt(DistanceSquared(y)));
85};
86
87Vector Vector::getClosestPoint(const Vector &point) const{
88 // the closest point to a single point space is always the single point itself
89 return *this;
90}
91
92/** Calculates distance between this and another vector in a periodic cell.
93 * \param *y array to second vector
94 * \param *cell_size 6-dimensional array with (xx, xy, yy, xz, yz, zz) entries specifying the periodic cell
95 * \return \f$| x - y |\f$
96 */
97double Vector::PeriodicDistance(const Vector &y, const double * const cell_size) const
98{
99 double res = distance(y), tmp, matrix[NDIM*NDIM];
100 Vector Shiftedy, TranslationVector;
101 int N[NDIM];
102 matrix[0] = cell_size[0];
103 matrix[1] = cell_size[1];
104 matrix[2] = cell_size[3];
105 matrix[3] = cell_size[1];
106 matrix[4] = cell_size[2];
107 matrix[5] = cell_size[4];
108 matrix[6] = cell_size[3];
109 matrix[7] = cell_size[4];
110 matrix[8] = cell_size[5];
111 // in order to check the periodic distance, translate one of the vectors into each of the 27 neighbouring cells
112 for (N[0]=-1;N[0]<=1;N[0]++)
113 for (N[1]=-1;N[1]<=1;N[1]++)
114 for (N[2]=-1;N[2]<=1;N[2]++) {
115 // create the translation vector
116 TranslationVector.Zero();
117 for (int i=NDIM;i--;)
118 TranslationVector[i] = (double)N[i];
119 TranslationVector.MatrixMultiplication(matrix);
120 // add onto the original vector to compare with
121 Shiftedy = y + TranslationVector;
122 // get distance and compare with minimum so far
123 tmp = distance(Shiftedy);
124 if (tmp < res) res = tmp;
125 }
126 return (res);
127};
128
129/** Calculates distance between this and another vector in a periodic cell.
130 * \param *y array to second vector
131 * \param *cell_size 6-dimensional array with (xx, xy, yy, xz, yz, zz) entries specifying the periodic cell
132 * \return \f$| x - y |^2\f$
133 */
134double Vector::PeriodicDistanceSquared(const Vector &y, const double * const cell_size) const
135{
136 double res = DistanceSquared(y), tmp, matrix[NDIM*NDIM];
137 Vector Shiftedy, TranslationVector;
138 int N[NDIM];
139 matrix[0] = cell_size[0];
140 matrix[1] = cell_size[1];
141 matrix[2] = cell_size[3];
142 matrix[3] = cell_size[1];
143 matrix[4] = cell_size[2];
144 matrix[5] = cell_size[4];
145 matrix[6] = cell_size[3];
146 matrix[7] = cell_size[4];
147 matrix[8] = cell_size[5];
148 // in order to check the periodic distance, translate one of the vectors into each of the 27 neighbouring cells
149 for (N[0]=-1;N[0]<=1;N[0]++)
150 for (N[1]=-1;N[1]<=1;N[1]++)
151 for (N[2]=-1;N[2]<=1;N[2]++) {
152 // create the translation vector
153 TranslationVector.Zero();
154 for (int i=NDIM;i--;)
155 TranslationVector[i] = (double)N[i];
156 TranslationVector.MatrixMultiplication(matrix);
157 // add onto the original vector to compare with
158 Shiftedy = y + TranslationVector;
159 // get distance and compare with minimum so far
160 tmp = DistanceSquared(Shiftedy);
161 if (tmp < res) res = tmp;
162 }
163 return (res);
164};
165
166/** Keeps the vector in a periodic cell, defined by the symmetric \a *matrix.
167 * \param *out ofstream for debugging messages
168 * Tries to translate a vector into each adjacent neighbouring cell.
169 */
170void Vector::KeepPeriodic(const double * const matrix)
171{
172 // int N[NDIM];
173 // bool flag = false;
174 //vector Shifted, TranslationVector;
175 // Log() << Verbose(1) << "Begin of KeepPeriodic." << endl;
176 // Log() << Verbose(2) << "Vector is: ";
177 // Output(out);
178 // Log() << Verbose(0) << endl;
179 InverseMatrixMultiplication(matrix);
180 for(int i=NDIM;i--;) { // correct periodically
181 if (at(i) < 0) { // get every coefficient into the interval [0,1)
182 at(i) += ceil(at(i));
183 } else {
184 at(i) -= floor(at(i));
185 }
186 }
187 MatrixMultiplication(matrix);
188 // Log() << Verbose(2) << "New corrected vector is: ";
189 // Output(out);
190 // Log() << Verbose(0) << endl;
191 // Log() << Verbose(1) << "End of KeepPeriodic." << endl;
192};
193
194/** Calculates scalar product between this and another vector.
195 * \param *y array to second vector
196 * \return \f$\langle x, y \rangle\f$
197 */
198double Vector::ScalarProduct(const Vector &y) const
199{
200 double res = 0.;
201 for (int i=NDIM;i--;)
202 res += x[i]*y[i];
203 return (res);
204};
205
206
207/** Calculates VectorProduct between this and another vector.
208 * -# returns the Product in place of vector from which it was initiated
209 * -# ATTENTION: Only three dim.
210 * \param *y array to vector with which to calculate crossproduct
211 * \return \f$ x \times y \f&
212 */
213void Vector::VectorProduct(const Vector &y)
214{
215 Vector tmp;
216 tmp[0] = x[1]* y[2] - x[2]* y[1];
217 tmp[1] = x[2]* y[0] - x[0]* y[2];
218 tmp[2] = x[0]* y[1] - x[1]* y[0];
219 (*this) = tmp;
220};
221
222
223/** projects this vector onto plane defined by \a *y.
224 * \param *y normal vector of plane
225 * \return \f$\langle x, y \rangle\f$
226 */
227void Vector::ProjectOntoPlane(const Vector &y)
228{
229 Vector tmp;
230 tmp = y;
231 tmp.Normalize();
232 tmp.Scale(ScalarProduct(tmp));
233 *this -= tmp;
234};
235
236/** Calculates the minimum distance of this vector to the plane.
237 * \sa Vector::GetDistanceVectorToPlane()
238 * \param *out output stream for debugging
239 * \param *PlaneNormal normal of plane
240 * \param *PlaneOffset offset of plane
241 * \return distance to plane
242 */
243double Vector::DistanceToSpace(const Space &space) const
244{
245 return space.distance(*this);
246};
247
248/** Calculates the projection of a vector onto another \a *y.
249 * \param *y array to second vector
250 */
251void Vector::ProjectIt(const Vector &y)
252{
253 (*this) += (-ScalarProduct(y))*y;
254};
255
256/** Calculates the projection of a vector onto another \a *y.
257 * \param *y array to second vector
258 * \return Vector
259 */
260Vector Vector::Projection(const Vector &y) const
261{
262 Vector helper = y;
263 helper.Scale((ScalarProduct(y)/y.NormSquared()));
264
265 return helper;
266};
267
268/** Calculates norm of this vector.
269 * \return \f$|x|\f$
270 */
271double Vector::Norm() const
272{
273 return (sqrt(NormSquared()));
274};
275
276/** Calculates squared norm of this vector.
277 * \return \f$|x|^2\f$
278 */
279double Vector::NormSquared() const
280{
281 return (ScalarProduct(*this));
282};
283
284/** Normalizes this vector.
285 */
286void Vector::Normalize()
287{
288 double factor = Norm();
289 (*this) *= 1/factor;
290};
291
292/** Zeros all components of this vector.
293 */
294void Vector::Zero()
295{
296 at(0)=at(1)=at(2)=0;
297};
298
299/** Zeros all components of this vector.
300 */
301void Vector::One(const double one)
302{
303 at(0)=at(1)=at(2)=one;
304};
305
306/** Checks whether vector has all components zero.
307 * @return true - vector is zero, false - vector is not
308 */
309bool Vector::IsZero() const
310{
311 return (fabs(x[0])+fabs(x[1])+fabs(x[2]) < MYEPSILON);
312};
313
314/** Checks whether vector has length of 1.
315 * @return true - vector is normalized, false - vector is not
316 */
317bool Vector::IsOne() const
318{
319 return (fabs(Norm() - 1.) < MYEPSILON);
320};
321
322/** Checks whether vector is normal to \a *normal.
323 * @return true - vector is normalized, false - vector is not
324 */
325bool Vector::IsNormalTo(const Vector &normal) const
326{
327 if (ScalarProduct(normal) < MYEPSILON)
328 return true;
329 else
330 return false;
331};
332
333/** Checks whether vector is normal to \a *normal.
334 * @return true - vector is normalized, false - vector is not
335 */
336bool Vector::IsEqualTo(const Vector &a) const
337{
338 bool status = true;
339 for (int i=0;i<NDIM;i++) {
340 if (fabs(x[i] - a[i]) > MYEPSILON)
341 status = false;
342 }
343 return status;
344};
345
346/** Calculates the angle between this and another vector.
347 * \param *y array to second vector
348 * \return \f$\acos\bigl(frac{\langle x, y \rangle}{|x||y|}\bigr)\f$
349 */
350double Vector::Angle(const Vector &y) const
351{
352 double norm1 = Norm(), norm2 = y.Norm();
353 double angle = -1;
354 if ((fabs(norm1) > MYEPSILON) && (fabs(norm2) > MYEPSILON))
355 angle = this->ScalarProduct(y)/norm1/norm2;
356 // -1-MYEPSILON occured due to numerical imprecision, catch ...
357 //Log() << Verbose(2) << "INFO: acos(-1) = " << acos(-1) << ", acos(-1+MYEPSILON) = " << acos(-1+MYEPSILON) << ", acos(-1-MYEPSILON) = " << acos(-1-MYEPSILON) << "." << endl;
358 if (angle < -1)
359 angle = -1;
360 if (angle > 1)
361 angle = 1;
362 return acos(angle);
363};
364
365
366double& Vector::operator[](size_t i){
367 ASSERT(i<=NDIM && i>=0,"Vector Index out of Range");
368 return x[i];
369}
370
371const double& Vector::operator[](size_t i) const{
372 ASSERT(i<=NDIM && i>=0,"Vector Index out of Range");
373 return x[i];
374}
375
376double& Vector::at(size_t i){
377 return (*this)[i];
378}
379
380const double& Vector::at(size_t i) const{
381 return (*this)[i];
382}
383
384double* Vector::get(){
385 return x;
386}
387
388/** Compares vector \a to vector \a b component-wise.
389 * \param a base vector
390 * \param b vector components to add
391 * \return a == b
392 */
393bool Vector::operator==(const Vector& b) const
394{
395 return IsEqualTo(b);
396};
397
398bool Vector::operator!=(const Vector& b) const
399{
400 return !IsEqualTo(b);
401}
402
403/** Sums vector \a to this lhs component-wise.
404 * \param a base vector
405 * \param b vector components to add
406 * \return lhs + a
407 */
408const Vector& Vector::operator+=(const Vector& b)
409{
410 this->AddVector(b);
411 return *this;
412};
413
414/** Subtracts vector \a from this lhs component-wise.
415 * \param a base vector
416 * \param b vector components to add
417 * \return lhs - a
418 */
419const Vector& Vector::operator-=(const Vector& b)
420{
421 this->SubtractVector(b);
422 return *this;
423};
424
425/** factor each component of \a a times a double \a m.
426 * \param a base vector
427 * \param m factor
428 * \return lhs.x[i] * m
429 */
430const Vector& operator*=(Vector& a, const double m)
431{
432 a.Scale(m);
433 return a;
434};
435
436/** Sums two vectors \a and \b component-wise.
437 * \param a first vector
438 * \param b second vector
439 * \return a + b
440 */
441Vector const Vector::operator+(const Vector& b) const
442{
443 Vector x = *this;
444 x.AddVector(b);
445 return x;
446};
447
448/** Subtracts vector \a from \b component-wise.
449 * \param a first vector
450 * \param b second vector
451 * \return a - b
452 */
453Vector const Vector::operator-(const Vector& b) const
454{
455 Vector x = *this;
456 x.SubtractVector(b);
457 return x;
458};
459
460/** Factors given vector \a a times \a m.
461 * \param a vector
462 * \param m factor
463 * \return m * a
464 */
465Vector const operator*(const Vector& a, const double m)
466{
467 Vector x(a);
468 x.Scale(m);
469 return x;
470};
471
472/** Factors given vector \a a times \a m.
473 * \param m factor
474 * \param a vector
475 * \return m * a
476 */
477Vector const operator*(const double m, const Vector& a )
478{
479 Vector x(a);
480 x.Scale(m);
481 return x;
482};
483
484ostream& operator<<(ostream& ost, const Vector& m)
485{
486 ost << "(";
487 for (int i=0;i<NDIM;i++) {
488 ost << m[i];
489 if (i != 2)
490 ost << ",";
491 }
492 ost << ")";
493 return ost;
494};
495
496
497void Vector::ScaleAll(const double *factor)
498{
499 for (int i=NDIM;i--;)
500 x[i] *= factor[i];
501};
502
503
504
505void Vector::Scale(const double factor)
506{
507 for (int i=NDIM;i--;)
508 x[i] *= factor;
509};
510
511/** Given a box by its matrix \a *M and its inverse *Minv the vector is made to point within that box.
512 * \param *M matrix of box
513 * \param *Minv inverse matrix
514 */
515void Vector::WrapPeriodically(const double * const M, const double * const Minv)
516{
517 MatrixMultiplication(Minv);
518 // truncate to [0,1] for each axis
519 for (int i=0;i<NDIM;i++) {
520 //x[i] += 0.5; // set to center of box
521 while (x[i] >= 1.)
522 x[i] -= 1.;
523 while (x[i] < 0.)
524 x[i] += 1.;
525 }
526 MatrixMultiplication(M);
527};
528
529std::pair<Vector,Vector> Vector::partition(const Vector &rhs) const{
530 double factor = ScalarProduct(rhs)/rhs.NormSquared();
531 Vector res= factor * rhs;
532 return make_pair(res,(*this)-res);
533}
534
535std::pair<pointset,Vector> Vector::partition(const pointset &points) const{
536 Vector helper = *this;
537 pointset res;
538 for(pointset::const_iterator iter=points.begin();iter!=points.end();++iter){
539 pair<Vector,Vector> currPart = helper.partition(*iter);
540 res.push_back(currPart.first);
541 helper = currPart.second;
542 }
543 return make_pair(res,helper);
544}
545
546/** Do a matrix multiplication.
547 * \param *matrix NDIM_NDIM array
548 */
549void Vector::MatrixMultiplication(const double * const M)
550{
551 // do the matrix multiplication
552 at(0) = M[0]*x[0]+M[3]*x[1]+M[6]*x[2];
553 at(1) = M[1]*x[0]+M[4]*x[1]+M[7]*x[2];
554 at(2) = M[2]*x[0]+M[5]*x[1]+M[8]*x[2];
555};
556
557/** Do a matrix multiplication with the \a *A' inverse.
558 * \param *matrix NDIM_NDIM array
559 */
560bool Vector::InverseMatrixMultiplication(const double * const A)
561{
562 double B[NDIM*NDIM];
563 double detA = RDET3(A);
564 double detAReci;
565
566 // calculate the inverse B
567 if (fabs(detA) > MYEPSILON) {; // RDET3(A) yields precisely zero if A irregular
568 detAReci = 1./detA;
569 B[0] = detAReci*RDET2(A[4],A[5],A[7],A[8]); // A_11
570 B[1] = -detAReci*RDET2(A[1],A[2],A[7],A[8]); // A_12
571 B[2] = detAReci*RDET2(A[1],A[2],A[4],A[5]); // A_13
572 B[3] = -detAReci*RDET2(A[3],A[5],A[6],A[8]); // A_21
573 B[4] = detAReci*RDET2(A[0],A[2],A[6],A[8]); // A_22
574 B[5] = -detAReci*RDET2(A[0],A[2],A[3],A[5]); // A_23
575 B[6] = detAReci*RDET2(A[3],A[4],A[6],A[7]); // A_31
576 B[7] = -detAReci*RDET2(A[0],A[1],A[6],A[7]); // A_32
577 B[8] = detAReci*RDET2(A[0],A[1],A[3],A[4]); // A_33
578
579 // do the matrix multiplication
580 at(0) = B[0]*x[0]+B[3]*x[1]+B[6]*x[2];
581 at(1) = B[1]*x[0]+B[4]*x[1]+B[7]*x[2];
582 at(2) = B[2]*x[0]+B[5]*x[1]+B[8]*x[2];
583
584 return true;
585 } else {
586 return false;
587 }
588};
589
590
591/** Creates this vector as the b y *factors' components scaled linear combination of the given three.
592 * this vector = x1*factors[0] + x2* factors[1] + x3*factors[2]
593 * \param *x1 first vector
594 * \param *x2 second vector
595 * \param *x3 third vector
596 * \param *factors three-component vector with the factor for each given vector
597 */
598void Vector::LinearCombinationOfVectors(const Vector &x1, const Vector &x2, const Vector &x3, const double * const factors)
599{
600 (*this) = (factors[0]*x1) +
601 (factors[1]*x2) +
602 (factors[2]*x3);
603};
604
605/** Calculates orthonormal vector to one given vectors.
606 * Just subtracts the projection onto the given vector from this vector.
607 * The removed part of the vector is Vector::Projection()
608 * \param *x1 vector
609 * \return true - success, false - vector is zero
610 */
611bool Vector::MakeNormalTo(const Vector &y1)
612{
613 bool result = false;
614 double factor = y1.ScalarProduct(*this)/y1.NormSquared();
615 Vector x1 = factor * y1;
616 SubtractVector(x1);
617 for (int i=NDIM;i--;)
618 result = result || (fabs(x[i]) > MYEPSILON);
619
620 return result;
621};
622
623/** Creates this vector as one of the possible orthonormal ones to the given one.
624 * Just scan how many components of given *vector are unequal to zero and
625 * try to get the skp of both to be zero accordingly.
626 * \param *vector given vector
627 * \return true - success, false - failure (null vector given)
628 */
629bool Vector::GetOneNormalVector(const Vector &GivenVector)
630{
631 int Components[NDIM]; // contains indices of non-zero components
632 int Last = 0; // count the number of non-zero entries in vector
633 int j; // loop variables
634 double norm;
635
636 for (j=NDIM;j--;)
637 Components[j] = -1;
638
639 // in two component-systems we need to find the one position that is zero
640 int zeroPos = -1;
641 // find two components != 0
642 for (j=0;j<NDIM;j++){
643 if (fabs(GivenVector[j]) > MYEPSILON)
644 Components[Last++] = j;
645 else
646 // this our zero Position
647 zeroPos = j;
648 }
649
650 switch(Last) {
651 case 3: // threecomponent system
652 // the position of the zero is arbitrary in three component systems
653 zeroPos = Components[2];
654 case 2: // two component system
655 norm = sqrt(1./(GivenVector[Components[1]]*GivenVector[Components[1]]) + 1./(GivenVector[Components[0]]*GivenVector[Components[0]]));
656 at(zeroPos) = 0.;
657 // in skp both remaining parts shall become zero but with opposite sign and third is zero
658 at(Components[1]) = -1./GivenVector[Components[1]] / norm;
659 at(Components[0]) = 1./GivenVector[Components[0]] / norm;
660 return true;
661 break;
662 case 1: // one component system
663 // set sole non-zero component to 0, and one of the other zero component pendants to 1
664 at((Components[0]+2)%NDIM) = 0.;
665 at((Components[0]+1)%NDIM) = 1.;
666 at(Components[0]) = 0.;
667 return true;
668 break;
669 default:
670 return false;
671 }
672};
673
674/** Adds vector \a *y componentwise.
675 * \param *y vector
676 */
677void Vector::AddVector(const Vector &y)
678{
679 for(int i=NDIM;i--;)
680 x[i] += y[i];
681}
682
683/** Adds vector \a *y componentwise.
684 * \param *y vector
685 */
686void Vector::SubtractVector(const Vector &y)
687{
688 for(int i=NDIM;i--;)
689 x[i] -= y[i];
690}
691
692/**
693 * Checks whether this vector is within the parallelepiped defined by the given three vectors and
694 * their offset.
695 *
696 * @param offest for the origin of the parallelepiped
697 * @param three vectors forming the matrix that defines the shape of the parallelpiped
698 */
699bool Vector::IsInParallelepiped(const Vector &offset, const double * const parallelepiped) const
700{
701 Vector a = (*this)-offset;
702 a.InverseMatrixMultiplication(parallelepiped);
703 bool isInside = true;
704
705 for (int i=NDIM;i--;)
706 isInside = isInside && ((a[i] <= 1) && (a[i] >= 0));
707
708 return isInside;
709}
710
711
712// some comonly used vectors
713const Vector zeroVec(0,0,0);
714const Vector e1(1,0,0);
715const Vector e2(0,1,0);
716const Vector e3(0,0,1);
Note: See TracBrowser for help on using the repository browser.