source: src/vector.cpp@ 906822

Action_Thermostats Add_AtomRandomPerturbation Add_FitFragmentPartialChargesAction Add_RotateAroundBondAction Add_SelectAtomByNameAction Added_ParseSaveFragmentResults AddingActions_SaveParseParticleParameters Adding_Graph_to_ChangeBondActions Adding_MD_integration_tests Adding_ParticleName_to_Atom Adding_StructOpt_integration_tests AtomFragments Automaking_mpqc_open AutomationFragmentation_failures Candidate_v1.5.4 Candidate_v1.6.0 Candidate_v1.6.1 ChangeBugEmailaddress ChangingTestPorts ChemicalSpaceEvaluator CombiningParticlePotentialParsing Combining_Subpackages Debian_Package_split Debian_package_split_molecuildergui_only Disabling_MemDebug Docu_Python_wait EmpiricalPotential_contain_HomologyGraph EmpiricalPotential_contain_HomologyGraph_documentation Enable_parallel_make_install Enhance_userguide Enhanced_StructuralOptimization Enhanced_StructuralOptimization_continued Example_ManyWaysToTranslateAtom Exclude_Hydrogens_annealWithBondGraph FitPartialCharges_GlobalError Fix_BoundInBox_CenterInBox_MoleculeActions Fix_ChargeSampling_PBC Fix_ChronosMutex Fix_FitPartialCharges Fix_FitPotential_needs_atomicnumbers Fix_ForceAnnealing Fix_IndependentFragmentGrids Fix_ParseParticles Fix_ParseParticles_split_forward_backward_Actions Fix_PopActions Fix_QtFragmentList_sorted_selection Fix_Restrictedkeyset_FragmentMolecule Fix_StatusMsg Fix_StepWorldTime_single_argument Fix_Verbose_Codepatterns Fix_fitting_potentials Fixes ForceAnnealing_goodresults ForceAnnealing_oldresults ForceAnnealing_tocheck ForceAnnealing_with_BondGraph ForceAnnealing_with_BondGraph_continued ForceAnnealing_with_BondGraph_continued_betteresults ForceAnnealing_with_BondGraph_contraction-expansion FragmentAction_writes_AtomFragments FragmentMolecule_checks_bonddegrees GeometryObjects Gui_Fixes Gui_displays_atomic_force_velocity ImplicitCharges IndependentFragmentGrids IndependentFragmentGrids_IndividualZeroInstances IndependentFragmentGrids_IntegrationTest IndependentFragmentGrids_Sole_NN_Calculation JobMarket_RobustOnKillsSegFaults JobMarket_StableWorkerPool JobMarket_unresolvable_hostname_fix MoreRobust_FragmentAutomation ODR_violation_mpqc_open PartialCharges_OrthogonalSummation PdbParser_setsAtomName PythonUI_with_named_parameters QtGui_reactivate_TimeChanged_changes Recreated_GuiChecks Rewrite_FitPartialCharges RotateToPrincipalAxisSystem_UndoRedo SaturateAtoms_findBestMatching SaturateAtoms_singleDegree StoppableMakroAction Subpackage_CodePatterns Subpackage_JobMarket Subpackage_LinearAlgebra Subpackage_levmar Subpackage_mpqc_open Subpackage_vmg Switchable_LogView ThirdParty_MPQC_rebuilt_buildsystem TrajectoryDependenant_MaxOrder TremoloParser_IncreasedPrecision TremoloParser_MultipleTimesteps TremoloParser_setsAtomName Ubuntu_1604_changes stable
Last change on this file since 906822 was 1dc9ec, checked in by Tillmann Crueger <crueger@…>, 15 years ago

Merge branch 'VectorRefactoring' into stable

Conflicts:

molecuilder/src/vector.cpp

  • Property mode set to 100644
File size: 18.3 KB
Line 
1/** \file vector.cpp
2 *
3 * Function implementations for the class vector.
4 *
5 */
6
7#include "Helpers/MemDebug.hpp"
8
9#include "vector.hpp"
10#include "verbose.hpp"
11#include "World.hpp"
12#include "Helpers/Assert.hpp"
13#include "Helpers/fast_functions.hpp"
14
15#include <iostream>
16
17using namespace std;
18
19
20/************************************ Functions for class vector ************************************/
21
22/** Constructor of class vector.
23 */
24Vector::Vector()
25{
26 content = gsl_vector_calloc (NDIM);
27};
28
29/**
30 * Copy constructor
31 */
32
33Vector::Vector(const Vector& src)
34{
35 content = gsl_vector_alloc(NDIM);
36 gsl_vector_set(content,0,src[0]);
37 gsl_vector_set(content,1,src[1]);
38 gsl_vector_set(content,2,src[2]);
39}
40
41/** Constructor of class vector.
42 */
43Vector::Vector(const double x1, const double x2, const double x3)
44{
45 content = gsl_vector_alloc(NDIM);
46 gsl_vector_set(content,0,x1);
47 gsl_vector_set(content,1,x2);
48 gsl_vector_set(content,2,x3);
49};
50
51/**
52 * Assignment operator
53 */
54Vector& Vector::operator=(const Vector& src){
55 // check for self assignment
56 if(&src!=this){
57 gsl_vector_set(content,0,src[0]);
58 gsl_vector_set(content,1,src[1]);
59 gsl_vector_set(content,2,src[2]);
60 }
61 return *this;
62}
63
64/** Desctructor of class vector.
65 */
66Vector::~Vector() {
67 gsl_vector_free(content);
68};
69
70/** Calculates square of distance between this and another vector.
71 * \param *y array to second vector
72 * \return \f$| x - y |^2\f$
73 */
74double Vector::DistanceSquared(const Vector &y) const
75{
76 double res = 0.;
77 for (int i=NDIM;i--;)
78 res += (at(i)-y[i])*(at(i)-y[i]);
79 return (res);
80};
81
82/** Calculates distance between this and another vector.
83 * \param *y array to second vector
84 * \return \f$| x - y |\f$
85 */
86double Vector::distance(const Vector &y) const
87{
88 return (sqrt(DistanceSquared(y)));
89};
90
91Vector Vector::getClosestPoint(const Vector &point) const{
92 // the closest point to a single point space is always the single point itself
93 return *this;
94}
95
96/** Calculates distance between this and another vector in a periodic cell.
97 * \param *y array to second vector
98 * \param *cell_size 6-dimensional array with (xx, xy, yy, xz, yz, zz) entries specifying the periodic cell
99 * \return \f$| x - y |\f$
100 */
101double Vector::PeriodicDistance(const Vector &y, const double * const cell_size) const
102{
103 double res = distance(y), tmp, matrix[NDIM*NDIM];
104 Vector Shiftedy, TranslationVector;
105 int N[NDIM];
106 matrix[0] = cell_size[0];
107 matrix[1] = cell_size[1];
108 matrix[2] = cell_size[3];
109 matrix[3] = cell_size[1];
110 matrix[4] = cell_size[2];
111 matrix[5] = cell_size[4];
112 matrix[6] = cell_size[3];
113 matrix[7] = cell_size[4];
114 matrix[8] = cell_size[5];
115 // in order to check the periodic distance, translate one of the vectors into each of the 27 neighbouring cells
116 for (N[0]=-1;N[0]<=1;N[0]++)
117 for (N[1]=-1;N[1]<=1;N[1]++)
118 for (N[2]=-1;N[2]<=1;N[2]++) {
119 // create the translation vector
120 TranslationVector.Zero();
121 for (int i=NDIM;i--;)
122 TranslationVector[i] = (double)N[i];
123 TranslationVector.MatrixMultiplication(matrix);
124 // add onto the original vector to compare with
125 Shiftedy = y + TranslationVector;
126 // get distance and compare with minimum so far
127 tmp = distance(Shiftedy);
128 if (tmp < res) res = tmp;
129 }
130 return (res);
131};
132
133/** Calculates distance between this and another vector in a periodic cell.
134 * \param *y array to second vector
135 * \param *cell_size 6-dimensional array with (xx, xy, yy, xz, yz, zz) entries specifying the periodic cell
136 * \return \f$| x - y |^2\f$
137 */
138double Vector::PeriodicDistanceSquared(const Vector &y, const double * const cell_size) const
139{
140 double res = DistanceSquared(y), tmp, matrix[NDIM*NDIM];
141 Vector Shiftedy, TranslationVector;
142 int N[NDIM];
143 matrix[0] = cell_size[0];
144 matrix[1] = cell_size[1];
145 matrix[2] = cell_size[3];
146 matrix[3] = cell_size[1];
147 matrix[4] = cell_size[2];
148 matrix[5] = cell_size[4];
149 matrix[6] = cell_size[3];
150 matrix[7] = cell_size[4];
151 matrix[8] = cell_size[5];
152 // in order to check the periodic distance, translate one of the vectors into each of the 27 neighbouring cells
153 for (N[0]=-1;N[0]<=1;N[0]++)
154 for (N[1]=-1;N[1]<=1;N[1]++)
155 for (N[2]=-1;N[2]<=1;N[2]++) {
156 // create the translation vector
157 TranslationVector.Zero();
158 for (int i=NDIM;i--;)
159 TranslationVector[i] = (double)N[i];
160 TranslationVector.MatrixMultiplication(matrix);
161 // add onto the original vector to compare with
162 Shiftedy = y + TranslationVector;
163 // get distance and compare with minimum so far
164 tmp = DistanceSquared(Shiftedy);
165 if (tmp < res) res = tmp;
166 }
167 return (res);
168};
169
170/** Keeps the vector in a periodic cell, defined by the symmetric \a *matrix.
171 * \param *out ofstream for debugging messages
172 * Tries to translate a vector into each adjacent neighbouring cell.
173 */
174void Vector::KeepPeriodic(const double * const matrix)
175{
176 // int N[NDIM];
177 // bool flag = false;
178 //vector Shifted, TranslationVector;
179 // Log() << Verbose(1) << "Begin of KeepPeriodic." << endl;
180 // Log() << Verbose(2) << "Vector is: ";
181 // Output(out);
182 // Log() << Verbose(0) << endl;
183 InverseMatrixMultiplication(matrix);
184 for(int i=NDIM;i--;) { // correct periodically
185 if (at(i) < 0) { // get every coefficient into the interval [0,1)
186 at(i) += ceil(at(i));
187 } else {
188 at(i) -= floor(at(i));
189 }
190 }
191 MatrixMultiplication(matrix);
192 // Log() << Verbose(2) << "New corrected vector is: ";
193 // Output(out);
194 // Log() << Verbose(0) << endl;
195 // Log() << Verbose(1) << "End of KeepPeriodic." << endl;
196};
197
198/** Calculates scalar product between this and another vector.
199 * \param *y array to second vector
200 * \return \f$\langle x, y \rangle\f$
201 */
202double Vector::ScalarProduct(const Vector &y) const
203{
204 double res = 0.;
205 for (int i=NDIM;i--;)
206 res += at(i)*y[i];
207 return (res);
208};
209
210
211/** Calculates VectorProduct between this and another vector.
212 * -# returns the Product in place of vector from which it was initiated
213 * -# ATTENTION: Only three dim.
214 * \param *y array to vector with which to calculate crossproduct
215 * \return \f$ x \times y \f&
216 */
217void Vector::VectorProduct(const Vector &y)
218{
219 Vector tmp;
220 for(int i=NDIM;i--;)
221 tmp[i] = at((i+1)%NDIM)*y[(i+2)%NDIM] - at((i+2)%NDIM)*y[(i+1)%NDIM];
222 (*this) = tmp;
223};
224
225
226/** projects this vector onto plane defined by \a *y.
227 * \param *y normal vector of plane
228 * \return \f$\langle x, y \rangle\f$
229 */
230void Vector::ProjectOntoPlane(const Vector &y)
231{
232 Vector tmp;
233 tmp = y;
234 tmp.Normalize();
235 tmp.Scale(ScalarProduct(tmp));
236 *this -= tmp;
237};
238
239/** Calculates the minimum distance of this vector to the plane.
240 * \sa Vector::GetDistanceVectorToPlane()
241 * \param *out output stream for debugging
242 * \param *PlaneNormal normal of plane
243 * \param *PlaneOffset offset of plane
244 * \return distance to plane
245 */
246double Vector::DistanceToSpace(const Space &space) const
247{
248 return space.distance(*this);
249};
250
251/** Calculates the projection of a vector onto another \a *y.
252 * \param *y array to second vector
253 */
254void Vector::ProjectIt(const Vector &y)
255{
256 (*this) += (-ScalarProduct(y))*y;
257};
258
259/** Calculates the projection of a vector onto another \a *y.
260 * \param *y array to second vector
261 * \return Vector
262 */
263Vector Vector::Projection(const Vector &y) const
264{
265 Vector helper = y;
266 helper.Scale((ScalarProduct(y)/y.NormSquared()));
267
268 return helper;
269};
270
271/** Calculates norm of this vector.
272 * \return \f$|x|\f$
273 */
274double Vector::Norm() const
275{
276 return (sqrt(NormSquared()));
277};
278
279/** Calculates squared norm of this vector.
280 * \return \f$|x|^2\f$
281 */
282double Vector::NormSquared() const
283{
284 return (ScalarProduct(*this));
285};
286
287/** Normalizes this vector.
288 */
289void Vector::Normalize()
290{
291 double factor = Norm();
292 (*this) *= 1/factor;
293};
294
295/** Zeros all components of this vector.
296 */
297void Vector::Zero()
298{
299 at(0)=at(1)=at(2)=0;
300};
301
302/** Zeros all components of this vector.
303 */
304void Vector::One(const double one)
305{
306 at(0)=at(1)=at(2)=one;
307};
308
309/** Checks whether vector has all components zero.
310 * @return true - vector is zero, false - vector is not
311 */
312bool Vector::IsZero() const
313{
314 return (fabs(at(0))+fabs(at(1))+fabs(at(2)) < MYEPSILON);
315};
316
317/** Checks whether vector has length of 1.
318 * @return true - vector is normalized, false - vector is not
319 */
320bool Vector::IsOne() const
321{
322 return (fabs(Norm() - 1.) < MYEPSILON);
323};
324
325/** Checks whether vector is normal to \a *normal.
326 * @return true - vector is normalized, false - vector is not
327 */
328bool Vector::IsNormalTo(const Vector &normal) const
329{
330 if (ScalarProduct(normal) < MYEPSILON)
331 return true;
332 else
333 return false;
334};
335
336/** Checks whether vector is normal to \a *normal.
337 * @return true - vector is normalized, false - vector is not
338 */
339bool Vector::IsEqualTo(const Vector &a) const
340{
341 bool status = true;
342 for (int i=0;i<NDIM;i++) {
343 if (fabs(at(i) - a[i]) > MYEPSILON)
344 status = false;
345 }
346 return status;
347};
348
349/** Calculates the angle between this and another vector.
350 * \param *y array to second vector
351 * \return \f$\acos\bigl(frac{\langle x, y \rangle}{|x||y|}\bigr)\f$
352 */
353double Vector::Angle(const Vector &y) const
354{
355 double norm1 = Norm(), norm2 = y.Norm();
356 double angle = -1;
357 if ((fabs(norm1) > MYEPSILON) && (fabs(norm2) > MYEPSILON))
358 angle = this->ScalarProduct(y)/norm1/norm2;
359 // -1-MYEPSILON occured due to numerical imprecision, catch ...
360 //Log() << Verbose(2) << "INFO: acos(-1) = " << acos(-1) << ", acos(-1+MYEPSILON) = " << acos(-1+MYEPSILON) << ", acos(-1-MYEPSILON) = " << acos(-1-MYEPSILON) << "." << endl;
361 if (angle < -1)
362 angle = -1;
363 if (angle > 1)
364 angle = 1;
365 return acos(angle);
366};
367
368
369double& Vector::operator[](size_t i){
370 ASSERT(i<=NDIM && i>=0,"Vector Index out of Range");
371 return *gsl_vector_ptr (content, i);
372}
373
374const double& Vector::operator[](size_t i) const{
375 ASSERT(i<=NDIM && i>=0,"Vector Index out of Range");
376 return *gsl_vector_ptr (content, i);
377}
378
379double& Vector::at(size_t i){
380 return (*this)[i];
381}
382
383const double& Vector::at(size_t i) const{
384 return (*this)[i];
385}
386
387gsl_vector* Vector::get(){
388 return content;
389}
390
391/** Compares vector \a to vector \a b component-wise.
392 * \param a base vector
393 * \param b vector components to add
394 * \return a == b
395 */
396bool Vector::operator==(const Vector& b) const
397{
398 return IsEqualTo(b);
399};
400
401bool Vector::operator!=(const Vector& b) const
402{
403 return !IsEqualTo(b);
404}
405
406/** Sums vector \a to this lhs component-wise.
407 * \param a base vector
408 * \param b vector components to add
409 * \return lhs + a
410 */
411const Vector& Vector::operator+=(const Vector& b)
412{
413 this->AddVector(b);
414 return *this;
415};
416
417/** Subtracts vector \a from this lhs component-wise.
418 * \param a base vector
419 * \param b vector components to add
420 * \return lhs - a
421 */
422const Vector& Vector::operator-=(const Vector& b)
423{
424 this->SubtractVector(b);
425 return *this;
426};
427
428/** factor each component of \a a times a double \a m.
429 * \param a base vector
430 * \param m factor
431 * \return lhs.x[i] * m
432 */
433const Vector& operator*=(Vector& a, const double m)
434{
435 a.Scale(m);
436 return a;
437};
438
439/** Sums two vectors \a and \b component-wise.
440 * \param a first vector
441 * \param b second vector
442 * \return a + b
443 */
444Vector const Vector::operator+(const Vector& b) const
445{
446 Vector x = *this;
447 x.AddVector(b);
448 return x;
449};
450
451/** Subtracts vector \a from \b component-wise.
452 * \param a first vector
453 * \param b second vector
454 * \return a - b
455 */
456Vector const Vector::operator-(const Vector& b) const
457{
458 Vector x = *this;
459 x.SubtractVector(b);
460 return x;
461};
462
463/** Factors given vector \a a times \a m.
464 * \param a vector
465 * \param m factor
466 * \return m * a
467 */
468Vector const operator*(const Vector& a, const double m)
469{
470 Vector x(a);
471 x.Scale(m);
472 return x;
473};
474
475/** Factors given vector \a a times \a m.
476 * \param m factor
477 * \param a vector
478 * \return m * a
479 */
480Vector const operator*(const double m, const Vector& a )
481{
482 Vector x(a);
483 x.Scale(m);
484 return x;
485};
486
487ostream& operator<<(ostream& ost, const Vector& m)
488{
489 ost << "(";
490 for (int i=0;i<NDIM;i++) {
491 ost << m[i];
492 if (i != 2)
493 ost << ",";
494 }
495 ost << ")";
496 return ost;
497};
498
499
500void Vector::ScaleAll(const double *factor)
501{
502 for (int i=NDIM;i--;)
503 at(i) *= factor[i];
504};
505
506
507
508void Vector::Scale(const double factor)
509{
510 for (int i=NDIM;i--;)
511 at(i) *= factor;
512};
513
514/** Given a box by its matrix \a *M and its inverse *Minv the vector is made to point within that box.
515 * \param *M matrix of box
516 * \param *Minv inverse matrix
517 */
518void Vector::WrapPeriodically(const double * const M, const double * const Minv)
519{
520 MatrixMultiplication(Minv);
521 // truncate to [0,1] for each axis
522 for (int i=0;i<NDIM;i++) {
523 //at(i) += 0.5; // set to center of box
524 while (at(i) >= 1.)
525 at(i) -= 1.;
526 while (at(i) < 0.)
527 at(i) += 1.;
528 }
529 MatrixMultiplication(M);
530};
531
532std::pair<Vector,Vector> Vector::partition(const Vector &rhs) const{
533 double factor = ScalarProduct(rhs)/rhs.NormSquared();
534 Vector res= factor * rhs;
535 return make_pair(res,(*this)-res);
536}
537
538std::pair<pointset,Vector> Vector::partition(const pointset &points) const{
539 Vector helper = *this;
540 pointset res;
541 for(pointset::const_iterator iter=points.begin();iter!=points.end();++iter){
542 pair<Vector,Vector> currPart = helper.partition(*iter);
543 res.push_back(currPart.first);
544 helper = currPart.second;
545 }
546 return make_pair(res,helper);
547}
548
549/** Do a matrix multiplication.
550 * \param *matrix NDIM_NDIM array
551 */
552void Vector::MatrixMultiplication(const double * const M)
553{
554 Vector tmp;
555 // do the matrix multiplication
556 for(int i=NDIM;i--;)
557 tmp[i] = M[i]*at(0)+M[i+3]*at(1)+M[i+6]*at(2);
558
559 (*this) = tmp;
560};
561
562/** Do a matrix multiplication with the \a *A' inverse.
563 * \param *matrix NDIM_NDIM array
564 */
565bool Vector::InverseMatrixMultiplication(const double * const A)
566{
567 double B[NDIM*NDIM];
568 double detA = RDET3(A);
569 double detAReci;
570
571 // calculate the inverse B
572 if (fabs(detA) > MYEPSILON) {; // RDET3(A) yields precisely zero if A irregular
573 detAReci = 1./detA;
574 B[0] = detAReci*RDET2(A[4],A[5],A[7],A[8]); // A_11
575 B[1] = -detAReci*RDET2(A[1],A[2],A[7],A[8]); // A_12
576 B[2] = detAReci*RDET2(A[1],A[2],A[4],A[5]); // A_13
577 B[3] = -detAReci*RDET2(A[3],A[5],A[6],A[8]); // A_21
578 B[4] = detAReci*RDET2(A[0],A[2],A[6],A[8]); // A_22
579 B[5] = -detAReci*RDET2(A[0],A[2],A[3],A[5]); // A_23
580 B[6] = detAReci*RDET2(A[3],A[4],A[6],A[7]); // A_31
581 B[7] = -detAReci*RDET2(A[0],A[1],A[6],A[7]); // A_32
582 B[8] = detAReci*RDET2(A[0],A[1],A[3],A[4]); // A_33
583
584 MatrixMultiplication(B);
585
586 return true;
587 } else {
588 return false;
589 }
590};
591
592
593/** Creates this vector as the b y *factors' components scaled linear combination of the given three.
594 * this vector = x1*factors[0] + x2* factors[1] + x3*factors[2]
595 * \param *x1 first vector
596 * \param *x2 second vector
597 * \param *x3 third vector
598 * \param *factors three-component vector with the factor for each given vector
599 */
600void Vector::LinearCombinationOfVectors(const Vector &x1, const Vector &x2, const Vector &x3, const double * const factors)
601{
602 (*this) = (factors[0]*x1) +
603 (factors[1]*x2) +
604 (factors[2]*x3);
605};
606
607/** Calculates orthonormal vector to one given vectors.
608 * Just subtracts the projection onto the given vector from this vector.
609 * The removed part of the vector is Vector::Projection()
610 * \param *x1 vector
611 * \return true - success, false - vector is zero
612 */
613bool Vector::MakeNormalTo(const Vector &y1)
614{
615 bool result = false;
616 double factor = y1.ScalarProduct(*this)/y1.NormSquared();
617 Vector x1 = factor * y1;
618 SubtractVector(x1);
619 for (int i=NDIM;i--;)
620 result = result || (fabs(at(i)) > MYEPSILON);
621
622 return result;
623};
624
625/** Creates this vector as one of the possible orthonormal ones to the given one.
626 * Just scan how many components of given *vector are unequal to zero and
627 * try to get the skp of both to be zero accordingly.
628 * \param *vector given vector
629 * \return true - success, false - failure (null vector given)
630 */
631bool Vector::GetOneNormalVector(const Vector &GivenVector)
632{
633 int Components[NDIM]; // contains indices of non-zero components
634 int Last = 0; // count the number of non-zero entries in vector
635 int j; // loop variables
636 double norm;
637
638 for (j=NDIM;j--;)
639 Components[j] = -1;
640
641 // in two component-systems we need to find the one position that is zero
642 int zeroPos = -1;
643 // find two components != 0
644 for (j=0;j<NDIM;j++){
645 if (fabs(GivenVector[j]) > MYEPSILON)
646 Components[Last++] = j;
647 else
648 // this our zero Position
649 zeroPos = j;
650 }
651
652 switch(Last) {
653 case 3: // threecomponent system
654 // the position of the zero is arbitrary in three component systems
655 zeroPos = Components[2];
656 case 2: // two component system
657 norm = sqrt(1./(GivenVector[Components[1]]*GivenVector[Components[1]]) + 1./(GivenVector[Components[0]]*GivenVector[Components[0]]));
658 at(zeroPos) = 0.;
659 // in skp both remaining parts shall become zero but with opposite sign and third is zero
660 at(Components[1]) = -1./GivenVector[Components[1]] / norm;
661 at(Components[0]) = 1./GivenVector[Components[0]] / norm;
662 return true;
663 break;
664 case 1: // one component system
665 // set sole non-zero component to 0, and one of the other zero component pendants to 1
666 at((Components[0]+2)%NDIM) = 0.;
667 at((Components[0]+1)%NDIM) = 1.;
668 at(Components[0]) = 0.;
669 return true;
670 break;
671 default:
672 return false;
673 }
674};
675
676/** Adds vector \a *y componentwise.
677 * \param *y vector
678 */
679void Vector::AddVector(const Vector &y)
680{
681 for(int i=NDIM;i--;)
682 at(i) += y[i];
683}
684
685/** Adds vector \a *y componentwise.
686 * \param *y vector
687 */
688void Vector::SubtractVector(const Vector &y)
689{
690 for(int i=NDIM;i--;)
691 at(i) -= y[i];
692}
693
694/**
695 * Checks whether this vector is within the parallelepiped defined by the given three vectors and
696 * their offset.
697 *
698 * @param offest for the origin of the parallelepiped
699 * @param three vectors forming the matrix that defines the shape of the parallelpiped
700 */
701bool Vector::IsInParallelepiped(const Vector &offset, const double * const parallelepiped) const
702{
703 Vector a = (*this)-offset;
704 a.InverseMatrixMultiplication(parallelepiped);
705 bool isInside = true;
706
707 for (int i=NDIM;i--;)
708 isInside = isInside && ((a[i] <= 1) && (a[i] >= 0));
709
710 return isInside;
711}
712
713
714// some comonly used vectors
715const Vector zeroVec(0,0,0);
716const Vector e1(1,0,0);
717const Vector e2(0,1,0);
718const Vector e3(0,0,1);
Note: See TracBrowser for help on using the repository browser.