| [6ac7ee] | 1 | /** \file vector.cpp
 | 
|---|
 | 2 |  *
 | 
|---|
 | 3 |  * Function implementations for the class vector.
 | 
|---|
 | 4 |  *
 | 
|---|
 | 5 |  */
 | 
|---|
 | 6 | 
 | 
|---|
| [112b09] | 7 | #include "Helpers/MemDebug.hpp"
 | 
|---|
| [edb93c] | 8 | 
 | 
|---|
| [54a746] | 9 | #include "vector.hpp"
 | 
|---|
 | 10 | #include "verbose.hpp"
 | 
|---|
| [b34306] | 11 | #include "World.hpp"
 | 
|---|
| [0a4f7f] | 12 | #include "Helpers/Assert.hpp"
 | 
|---|
| [753f02] | 13 | #include "Helpers/fast_functions.hpp"
 | 
|---|
| [6ac7ee] | 14 | 
 | 
|---|
| [1bd79e] | 15 | #include <iostream>
 | 
|---|
 | 16 | 
 | 
|---|
 | 17 | using namespace std;
 | 
|---|
| [6ac7ee] | 18 | 
 | 
|---|
| [97498a] | 19 | 
 | 
|---|
| [6ac7ee] | 20 | /************************************ Functions for class vector ************************************/
 | 
|---|
 | 21 | 
 | 
|---|
 | 22 | /** Constructor of class vector.
 | 
|---|
 | 23 |  */
 | 
|---|
| [753f02] | 24 | Vector::Vector()
 | 
|---|
 | 25 | {
 | 
|---|
 | 26 |   x[0] = x[1] = x[2] = 0.;
 | 
|---|
 | 27 | };
 | 
|---|
| [6ac7ee] | 28 | 
 | 
|---|
| [753f02] | 29 | /**
 | 
|---|
 | 30 |  * Copy constructor
 | 
|---|
| [821907] | 31 |  */
 | 
|---|
| [1bd79e] | 32 | 
 | 
|---|
| [753f02] | 33 | Vector::Vector(const Vector& src)
 | 
|---|
| [821907] | 34 | {
 | 
|---|
| [753f02] | 35 |   x[0] = src[0];
 | 
|---|
 | 36 |   x[1] = src[1];
 | 
|---|
 | 37 |   x[2] = src[2];
 | 
|---|
| [1bd79e] | 38 | }
 | 
|---|
| [821907] | 39 | 
 | 
|---|
 | 40 | /** Constructor of class vector.
 | 
|---|
 | 41 |  */
 | 
|---|
| [753f02] | 42 | Vector::Vector(const double x1, const double x2, const double x3)
 | 
|---|
| [821907] | 43 | {
 | 
|---|
| [753f02] | 44 |   x[0] = x1;
 | 
|---|
 | 45 |   x[1] = x2;
 | 
|---|
 | 46 |   x[2] = x3;
 | 
|---|
| [821907] | 47 | };
 | 
|---|
 | 48 | 
 | 
|---|
| [0a4f7f] | 49 | /**
 | 
|---|
 | 50 |  * Assignment operator
 | 
|---|
| [6ac7ee] | 51 |  */
 | 
|---|
| [0a4f7f] | 52 | Vector& Vector::operator=(const Vector& src){
 | 
|---|
 | 53 |   // check for self assignment
 | 
|---|
 | 54 |   if(&src!=this){
 | 
|---|
| [753f02] | 55 |     x[0] = src[0];
 | 
|---|
 | 56 |     x[1] = src[1];
 | 
|---|
 | 57 |     x[2] = src[2];
 | 
|---|
| [0a4f7f] | 58 |   }
 | 
|---|
 | 59 |   return *this;
 | 
|---|
 | 60 | }
 | 
|---|
| [6ac7ee] | 61 | 
 | 
|---|
 | 62 | /** Desctructor of class vector.
 | 
|---|
 | 63 |  */
 | 
|---|
 | 64 | Vector::~Vector() {};
 | 
|---|
 | 65 | 
 | 
|---|
 | 66 | /** Calculates square of distance between this and another vector.
 | 
|---|
 | 67 |  * \param *y array to second vector
 | 
|---|
 | 68 |  * \return \f$| x - y |^2\f$
 | 
|---|
 | 69 |  */
 | 
|---|
| [273382] | 70 | double Vector::DistanceSquared(const Vector &y) const
 | 
|---|
| [6ac7ee] | 71 | {
 | 
|---|
| [042f82] | 72 |   double res = 0.;
 | 
|---|
 | 73 |   for (int i=NDIM;i--;)
 | 
|---|
| [753f02] | 74 |     res += (x[i]-y[i])*(x[i]-y[i]);
 | 
|---|
| [042f82] | 75 |   return (res);
 | 
|---|
| [6ac7ee] | 76 | };
 | 
|---|
 | 77 | 
 | 
|---|
 | 78 | /** Calculates distance between this and another vector.
 | 
|---|
 | 79 |  * \param *y array to second vector
 | 
|---|
 | 80 |  * \return \f$| x - y |\f$
 | 
|---|
 | 81 |  */
 | 
|---|
| [1513a74] | 82 | double Vector::distance(const Vector &y) const
 | 
|---|
| [6ac7ee] | 83 | {
 | 
|---|
| [273382] | 84 |   return (sqrt(DistanceSquared(y)));
 | 
|---|
| [6ac7ee] | 85 | };
 | 
|---|
 | 86 | 
 | 
|---|
| [1513a74] | 87 | Vector Vector::getClosestPoint(const Vector &point) const{
 | 
|---|
 | 88 |   // the closest point to a single point space is always the single point itself
 | 
|---|
 | 89 |   return *this;
 | 
|---|
 | 90 | }
 | 
|---|
 | 91 | 
 | 
|---|
| [6ac7ee] | 92 | /** Calculates distance between this and another vector in a periodic cell.
 | 
|---|
 | 93 |  * \param *y array to second vector
 | 
|---|
 | 94 |  * \param *cell_size 6-dimensional array with (xx, xy, yy, xz, yz, zz) entries specifying the periodic cell
 | 
|---|
 | 95 |  * \return \f$| x - y |\f$
 | 
|---|
 | 96 |  */
 | 
|---|
| [273382] | 97 | double Vector::PeriodicDistance(const Vector &y, const double * const cell_size) const
 | 
|---|
| [6ac7ee] | 98 | {
 | 
|---|
| [1513a74] | 99 |   double res = distance(y), tmp, matrix[NDIM*NDIM];
 | 
|---|
| [753f02] | 100 |     Vector Shiftedy, TranslationVector;
 | 
|---|
 | 101 |     int N[NDIM];
 | 
|---|
 | 102 |     matrix[0] = cell_size[0];
 | 
|---|
 | 103 |     matrix[1] = cell_size[1];
 | 
|---|
 | 104 |     matrix[2] = cell_size[3];
 | 
|---|
 | 105 |     matrix[3] = cell_size[1];
 | 
|---|
 | 106 |     matrix[4] = cell_size[2];
 | 
|---|
 | 107 |     matrix[5] = cell_size[4];
 | 
|---|
 | 108 |     matrix[6] = cell_size[3];
 | 
|---|
 | 109 |     matrix[7] = cell_size[4];
 | 
|---|
 | 110 |     matrix[8] = cell_size[5];
 | 
|---|
 | 111 |     // in order to check the periodic distance, translate one of the vectors into each of the 27 neighbouring cells
 | 
|---|
 | 112 |     for (N[0]=-1;N[0]<=1;N[0]++)
 | 
|---|
 | 113 |       for (N[1]=-1;N[1]<=1;N[1]++)
 | 
|---|
 | 114 |         for (N[2]=-1;N[2]<=1;N[2]++) {
 | 
|---|
 | 115 |           // create the translation vector
 | 
|---|
 | 116 |           TranslationVector.Zero();
 | 
|---|
 | 117 |           for (int i=NDIM;i--;)
 | 
|---|
 | 118 |             TranslationVector[i] = (double)N[i];
 | 
|---|
 | 119 |           TranslationVector.MatrixMultiplication(matrix);
 | 
|---|
 | 120 |           // add onto the original vector to compare with
 | 
|---|
 | 121 |           Shiftedy = y + TranslationVector;
 | 
|---|
 | 122 |           // get distance and compare with minimum so far
 | 
|---|
| [1513a74] | 123 |           tmp = distance(Shiftedy);
 | 
|---|
| [753f02] | 124 |           if (tmp < res) res = tmp;
 | 
|---|
 | 125 |         }
 | 
|---|
 | 126 |     return (res);
 | 
|---|
| [6ac7ee] | 127 | };
 | 
|---|
 | 128 | 
 | 
|---|
 | 129 | /** Calculates distance between this and another vector in a periodic cell.
 | 
|---|
 | 130 |  * \param *y array to second vector
 | 
|---|
 | 131 |  * \param *cell_size 6-dimensional array with (xx, xy, yy, xz, yz, zz) entries specifying the periodic cell
 | 
|---|
 | 132 |  * \return \f$| x - y |^2\f$
 | 
|---|
 | 133 |  */
 | 
|---|
| [273382] | 134 | double Vector::PeriodicDistanceSquared(const Vector &y, const double * const cell_size) const
 | 
|---|
| [6ac7ee] | 135 | {
 | 
|---|
| [042f82] | 136 |   double res = DistanceSquared(y), tmp, matrix[NDIM*NDIM];
 | 
|---|
| [753f02] | 137 |     Vector Shiftedy, TranslationVector;
 | 
|---|
 | 138 |     int N[NDIM];
 | 
|---|
 | 139 |     matrix[0] = cell_size[0];
 | 
|---|
 | 140 |     matrix[1] = cell_size[1];
 | 
|---|
 | 141 |     matrix[2] = cell_size[3];
 | 
|---|
 | 142 |     matrix[3] = cell_size[1];
 | 
|---|
 | 143 |     matrix[4] = cell_size[2];
 | 
|---|
 | 144 |     matrix[5] = cell_size[4];
 | 
|---|
 | 145 |     matrix[6] = cell_size[3];
 | 
|---|
 | 146 |     matrix[7] = cell_size[4];
 | 
|---|
 | 147 |     matrix[8] = cell_size[5];
 | 
|---|
 | 148 |     // in order to check the periodic distance, translate one of the vectors into each of the 27 neighbouring cells
 | 
|---|
 | 149 |     for (N[0]=-1;N[0]<=1;N[0]++)
 | 
|---|
 | 150 |       for (N[1]=-1;N[1]<=1;N[1]++)
 | 
|---|
 | 151 |         for (N[2]=-1;N[2]<=1;N[2]++) {
 | 
|---|
 | 152 |           // create the translation vector
 | 
|---|
 | 153 |           TranslationVector.Zero();
 | 
|---|
 | 154 |           for (int i=NDIM;i--;)
 | 
|---|
 | 155 |             TranslationVector[i] = (double)N[i];
 | 
|---|
 | 156 |           TranslationVector.MatrixMultiplication(matrix);
 | 
|---|
 | 157 |           // add onto the original vector to compare with
 | 
|---|
 | 158 |           Shiftedy = y + TranslationVector;
 | 
|---|
 | 159 |           // get distance and compare with minimum so far
 | 
|---|
 | 160 |           tmp = DistanceSquared(Shiftedy);
 | 
|---|
 | 161 |           if (tmp < res) res = tmp;
 | 
|---|
 | 162 |         }
 | 
|---|
 | 163 |     return (res);
 | 
|---|
| [6ac7ee] | 164 | };
 | 
|---|
 | 165 | 
 | 
|---|
 | 166 | /** Keeps the vector in a periodic cell, defined by the symmetric \a *matrix.
 | 
|---|
 | 167 |  * \param *out ofstream for debugging messages
 | 
|---|
 | 168 |  * Tries to translate a vector into each adjacent neighbouring cell.
 | 
|---|
 | 169 |  */
 | 
|---|
| [e138de] | 170 | void Vector::KeepPeriodic(const double * const matrix)
 | 
|---|
| [6ac7ee] | 171 | {
 | 
|---|
| [753f02] | 172 |   //  int N[NDIM];
 | 
|---|
 | 173 |   //  bool flag = false;
 | 
|---|
 | 174 |     //vector Shifted, TranslationVector;
 | 
|---|
 | 175 |   //  Log() << Verbose(1) << "Begin of KeepPeriodic." << endl;
 | 
|---|
 | 176 |   //  Log() << Verbose(2) << "Vector is: ";
 | 
|---|
 | 177 |   //  Output(out);
 | 
|---|
 | 178 |   //  Log() << Verbose(0) << endl;
 | 
|---|
 | 179 |     InverseMatrixMultiplication(matrix);
 | 
|---|
 | 180 |     for(int i=NDIM;i--;) { // correct periodically
 | 
|---|
 | 181 |       if (at(i) < 0) {  // get every coefficient into the interval [0,1)
 | 
|---|
 | 182 |         at(i) += ceil(at(i));
 | 
|---|
 | 183 |       } else {
 | 
|---|
 | 184 |         at(i) -= floor(at(i));
 | 
|---|
 | 185 |       }
 | 
|---|
| [042f82] | 186 |     }
 | 
|---|
| [753f02] | 187 |     MatrixMultiplication(matrix);
 | 
|---|
 | 188 |   //  Log() << Verbose(2) << "New corrected vector is: ";
 | 
|---|
 | 189 |   //  Output(out);
 | 
|---|
 | 190 |   //  Log() << Verbose(0) << endl;
 | 
|---|
 | 191 |   //  Log() << Verbose(1) << "End of KeepPeriodic." << endl;
 | 
|---|
| [6ac7ee] | 192 | };
 | 
|---|
 | 193 | 
 | 
|---|
 | 194 | /** Calculates scalar product between this and another vector.
 | 
|---|
 | 195 |  * \param *y array to second vector
 | 
|---|
 | 196 |  * \return \f$\langle x, y \rangle\f$
 | 
|---|
 | 197 |  */
 | 
|---|
| [273382] | 198 | double Vector::ScalarProduct(const Vector &y) const
 | 
|---|
| [6ac7ee] | 199 | {
 | 
|---|
| [042f82] | 200 |   double res = 0.;
 | 
|---|
 | 201 |   for (int i=NDIM;i--;)
 | 
|---|
| [753f02] | 202 |     res += x[i]*y[i];
 | 
|---|
| [042f82] | 203 |   return (res);
 | 
|---|
| [6ac7ee] | 204 | };
 | 
|---|
 | 205 | 
 | 
|---|
 | 206 | 
 | 
|---|
 | 207 | /** Calculates VectorProduct between this and another vector.
 | 
|---|
| [042f82] | 208 |  *  -# returns the Product in place of vector from which it was initiated
 | 
|---|
 | 209 |  *  -# ATTENTION: Only three dim.
 | 
|---|
 | 210 |  *  \param *y array to vector with which to calculate crossproduct
 | 
|---|
 | 211 |  *  \return \f$ x \times y \f&
 | 
|---|
| [6ac7ee] | 212 |  */
 | 
|---|
| [273382] | 213 | void Vector::VectorProduct(const Vector &y)
 | 
|---|
| [6ac7ee] | 214 | {
 | 
|---|
| [042f82] | 215 |   Vector tmp;
 | 
|---|
| [42a101] | 216 |   tmp[0] = x[1]* y[2] - x[2]* y[1];
 | 
|---|
 | 217 |   tmp[1] = x[2]* y[0] - x[0]* y[2];
 | 
|---|
 | 218 |   tmp[2] = x[0]* y[1] - x[1]* y[0];
 | 
|---|
| [753f02] | 219 |   (*this) = tmp;
 | 
|---|
| [6ac7ee] | 220 | };
 | 
|---|
 | 221 | 
 | 
|---|
 | 222 | 
 | 
|---|
 | 223 | /** projects this vector onto plane defined by \a *y.
 | 
|---|
 | 224 |  * \param *y normal vector of plane
 | 
|---|
 | 225 |  * \return \f$\langle x, y \rangle\f$
 | 
|---|
 | 226 |  */
 | 
|---|
| [273382] | 227 | void Vector::ProjectOntoPlane(const Vector &y)
 | 
|---|
| [6ac7ee] | 228 | {
 | 
|---|
| [042f82] | 229 |   Vector tmp;
 | 
|---|
| [753f02] | 230 |   tmp = y;
 | 
|---|
| [042f82] | 231 |   tmp.Normalize();
 | 
|---|
| [753f02] | 232 |   tmp.Scale(ScalarProduct(tmp));
 | 
|---|
 | 233 |   *this -= tmp;
 | 
|---|
| [2319ed] | 234 | };
 | 
|---|
 | 235 | 
 | 
|---|
| [821907] | 236 | /** Calculates the minimum distance of this vector to the plane.
 | 
|---|
 | 237 |  * \sa Vector::GetDistanceVectorToPlane()
 | 
|---|
 | 238 |  * \param *out output stream for debugging
 | 
|---|
 | 239 |  * \param *PlaneNormal normal of plane
 | 
|---|
 | 240 |  * \param *PlaneOffset offset of plane
 | 
|---|
 | 241 |  * \return distance to plane
 | 
|---|
 | 242 |  */
 | 
|---|
| [d4c9ae] | 243 | double Vector::DistanceToSpace(const Space &space) const
 | 
|---|
| [821907] | 244 | {
 | 
|---|
| [d4c9ae] | 245 |   return space.distance(*this);
 | 
|---|
| [c4d4df] | 246 | };
 | 
|---|
 | 247 | 
 | 
|---|
| [6ac7ee] | 248 | /** Calculates the projection of a vector onto another \a *y.
 | 
|---|
 | 249 |  * \param *y array to second vector
 | 
|---|
 | 250 |  */
 | 
|---|
| [273382] | 251 | void Vector::ProjectIt(const Vector &y)
 | 
|---|
| [6ac7ee] | 252 | {
 | 
|---|
| [753f02] | 253 |   (*this) += (-ScalarProduct(y))*y;
 | 
|---|
| [ef9df36] | 254 | };
 | 
|---|
 | 255 | 
 | 
|---|
 | 256 | /** Calculates the projection of a vector onto another \a *y.
 | 
|---|
 | 257 |  * \param *y array to second vector
 | 
|---|
 | 258 |  * \return Vector
 | 
|---|
 | 259 |  */
 | 
|---|
| [273382] | 260 | Vector Vector::Projection(const Vector &y) const
 | 
|---|
| [ef9df36] | 261 | {
 | 
|---|
| [753f02] | 262 |   Vector helper = y;
 | 
|---|
 | 263 |   helper.Scale((ScalarProduct(y)/y.NormSquared()));
 | 
|---|
| [ef9df36] | 264 | 
 | 
|---|
 | 265 |   return helper;
 | 
|---|
| [6ac7ee] | 266 | };
 | 
|---|
 | 267 | 
 | 
|---|
 | 268 | /** Calculates norm of this vector.
 | 
|---|
 | 269 |  * \return \f$|x|\f$
 | 
|---|
 | 270 |  */
 | 
|---|
 | 271 | double Vector::Norm() const
 | 
|---|
 | 272 | {
 | 
|---|
| [273382] | 273 |   return (sqrt(NormSquared()));
 | 
|---|
| [6ac7ee] | 274 | };
 | 
|---|
 | 275 | 
 | 
|---|
| [d4d0dd] | 276 | /** Calculates squared norm of this vector.
 | 
|---|
 | 277 |  * \return \f$|x|^2\f$
 | 
|---|
 | 278 |  */
 | 
|---|
 | 279 | double Vector::NormSquared() const
 | 
|---|
 | 280 | {
 | 
|---|
| [273382] | 281 |   return (ScalarProduct(*this));
 | 
|---|
| [d4d0dd] | 282 | };
 | 
|---|
 | 283 | 
 | 
|---|
| [6ac7ee] | 284 | /** Normalizes this vector.
 | 
|---|
 | 285 |  */
 | 
|---|
 | 286 | void Vector::Normalize()
 | 
|---|
 | 287 | {
 | 
|---|
| [1bd79e] | 288 |   double factor = Norm();
 | 
|---|
 | 289 |   (*this) *= 1/factor;
 | 
|---|
| [6ac7ee] | 290 | };
 | 
|---|
 | 291 | 
 | 
|---|
 | 292 | /** Zeros all components of this vector.
 | 
|---|
 | 293 |  */
 | 
|---|
 | 294 | void Vector::Zero()
 | 
|---|
 | 295 | {
 | 
|---|
| [753f02] | 296 |   at(0)=at(1)=at(2)=0;
 | 
|---|
| [6ac7ee] | 297 | };
 | 
|---|
 | 298 | 
 | 
|---|
 | 299 | /** Zeros all components of this vector.
 | 
|---|
 | 300 |  */
 | 
|---|
| [776b64] | 301 | void Vector::One(const double one)
 | 
|---|
| [6ac7ee] | 302 | {
 | 
|---|
| [753f02] | 303 |   at(0)=at(1)=at(2)=one;
 | 
|---|
| [6ac7ee] | 304 | };
 | 
|---|
 | 305 | 
 | 
|---|
| [9c20aa] | 306 | /** Checks whether vector has all components zero.
 | 
|---|
 | 307 |  * @return true - vector is zero, false - vector is not
 | 
|---|
 | 308 |  */
 | 
|---|
| [54a746] | 309 | bool Vector::IsZero() const
 | 
|---|
| [9c20aa] | 310 | {
 | 
|---|
| [54a746] | 311 |   return (fabs(x[0])+fabs(x[1])+fabs(x[2]) < MYEPSILON);
 | 
|---|
 | 312 | };
 | 
|---|
 | 313 | 
 | 
|---|
 | 314 | /** Checks whether vector has length of 1.
 | 
|---|
 | 315 |  * @return true - vector is normalized, false - vector is not
 | 
|---|
 | 316 |  */
 | 
|---|
 | 317 | bool Vector::IsOne() const
 | 
|---|
 | 318 | {
 | 
|---|
 | 319 |   return (fabs(Norm() - 1.) < MYEPSILON);
 | 
|---|
| [9c20aa] | 320 | };
 | 
|---|
 | 321 | 
 | 
|---|
| [ef9df36] | 322 | /** Checks whether vector is normal to \a *normal.
 | 
|---|
 | 323 |  * @return true - vector is normalized, false - vector is not
 | 
|---|
 | 324 |  */
 | 
|---|
| [273382] | 325 | bool Vector::IsNormalTo(const Vector &normal) const
 | 
|---|
| [ef9df36] | 326 | {
 | 
|---|
 | 327 |   if (ScalarProduct(normal) < MYEPSILON)
 | 
|---|
 | 328 |     return true;
 | 
|---|
 | 329 |   else
 | 
|---|
 | 330 |     return false;
 | 
|---|
 | 331 | };
 | 
|---|
 | 332 | 
 | 
|---|
| [b998c3] | 333 | /** Checks whether vector is normal to \a *normal.
 | 
|---|
 | 334 |  * @return true - vector is normalized, false - vector is not
 | 
|---|
 | 335 |  */
 | 
|---|
| [273382] | 336 | bool Vector::IsEqualTo(const Vector &a) const
 | 
|---|
| [b998c3] | 337 | {
 | 
|---|
 | 338 |   bool status = true;
 | 
|---|
 | 339 |   for (int i=0;i<NDIM;i++) {
 | 
|---|
| [753f02] | 340 |     if (fabs(x[i] - a[i]) > MYEPSILON)
 | 
|---|
| [b998c3] | 341 |       status = false;
 | 
|---|
 | 342 |   }
 | 
|---|
 | 343 |   return status;
 | 
|---|
 | 344 | };
 | 
|---|
 | 345 | 
 | 
|---|
| [6ac7ee] | 346 | /** Calculates the angle between this and another vector.
 | 
|---|
 | 347 |  * \param *y array to second vector
 | 
|---|
 | 348 |  * \return \f$\acos\bigl(frac{\langle x, y \rangle}{|x||y|}\bigr)\f$
 | 
|---|
 | 349 |  */
 | 
|---|
| [273382] | 350 | double Vector::Angle(const Vector &y) const
 | 
|---|
| [6ac7ee] | 351 | {
 | 
|---|
| [753f02] | 352 |   double norm1 = Norm(), norm2 = y.Norm();
 | 
|---|
| [ef9df36] | 353 |   double angle = -1;
 | 
|---|
| [d4d0dd] | 354 |   if ((fabs(norm1) > MYEPSILON) && (fabs(norm2) > MYEPSILON))
 | 
|---|
 | 355 |     angle = this->ScalarProduct(y)/norm1/norm2;
 | 
|---|
| [02da9e] | 356 |   // -1-MYEPSILON occured due to numerical imprecision, catch ...
 | 
|---|
| [e138de] | 357 |   //Log() << Verbose(2) << "INFO: acos(-1) = " << acos(-1) << ", acos(-1+MYEPSILON) = " << acos(-1+MYEPSILON) << ", acos(-1-MYEPSILON) = " << acos(-1-MYEPSILON) << "." << endl;
 | 
|---|
| [02da9e] | 358 |   if (angle < -1)
 | 
|---|
 | 359 |     angle = -1;
 | 
|---|
 | 360 |   if (angle > 1)
 | 
|---|
 | 361 |     angle = 1;
 | 
|---|
| [042f82] | 362 |   return acos(angle);
 | 
|---|
| [6ac7ee] | 363 | };
 | 
|---|
 | 364 | 
 | 
|---|
| [0a4f7f] | 365 | 
 | 
|---|
 | 366 | double& Vector::operator[](size_t i){
 | 
|---|
| [753f02] | 367 |   ASSERT(i<=NDIM && i>=0,"Vector Index out of Range");
 | 
|---|
 | 368 |   return x[i];
 | 
|---|
| [0a4f7f] | 369 | }
 | 
|---|
 | 370 | 
 | 
|---|
 | 371 | const double& Vector::operator[](size_t i) const{
 | 
|---|
| [753f02] | 372 |   ASSERT(i<=NDIM && i>=0,"Vector Index out of Range");
 | 
|---|
 | 373 |   return x[i];
 | 
|---|
| [0a4f7f] | 374 | }
 | 
|---|
 | 375 | 
 | 
|---|
 | 376 | double& Vector::at(size_t i){
 | 
|---|
 | 377 |   return (*this)[i];
 | 
|---|
 | 378 | }
 | 
|---|
 | 379 | 
 | 
|---|
 | 380 | const double& Vector::at(size_t i) const{
 | 
|---|
 | 381 |   return (*this)[i];
 | 
|---|
 | 382 | }
 | 
|---|
 | 383 | 
 | 
|---|
 | 384 | double* Vector::get(){
 | 
|---|
| [753f02] | 385 |   return x;
 | 
|---|
| [0a4f7f] | 386 | }
 | 
|---|
| [6ac7ee] | 387 | 
 | 
|---|
| [ef9df36] | 388 | /** Compares vector \a to vector \a b component-wise.
 | 
|---|
 | 389 |  * \param a base vector
 | 
|---|
 | 390 |  * \param b vector components to add
 | 
|---|
 | 391 |  * \return a == b
 | 
|---|
 | 392 |  */
 | 
|---|
| [72e7fa] | 393 | bool Vector::operator==(const Vector& b) const
 | 
|---|
| [ef9df36] | 394 | {
 | 
|---|
| [1bd79e] | 395 |   return IsEqualTo(b);
 | 
|---|
| [ef9df36] | 396 | };
 | 
|---|
 | 397 | 
 | 
|---|
| [fa5a6a] | 398 | bool Vector::operator!=(const Vector& b) const
 | 
|---|
 | 399 | {
 | 
|---|
 | 400 |   return !IsEqualTo(b);
 | 
|---|
 | 401 | }
 | 
|---|
 | 402 | 
 | 
|---|
| [6ac7ee] | 403 | /** Sums vector \a to this lhs component-wise.
 | 
|---|
 | 404 |  * \param a base vector
 | 
|---|
 | 405 |  * \param b vector components to add
 | 
|---|
 | 406 |  * \return lhs + a
 | 
|---|
 | 407 |  */
 | 
|---|
| [72e7fa] | 408 | const Vector& Vector::operator+=(const Vector& b)
 | 
|---|
| [6ac7ee] | 409 | {
 | 
|---|
| [273382] | 410 |   this->AddVector(b);
 | 
|---|
| [72e7fa] | 411 |   return *this;
 | 
|---|
| [6ac7ee] | 412 | };
 | 
|---|
| [54a746] | 413 | 
 | 
|---|
 | 414 | /** Subtracts vector \a from this lhs component-wise.
 | 
|---|
 | 415 |  * \param a base vector
 | 
|---|
 | 416 |  * \param b vector components to add
 | 
|---|
 | 417 |  * \return lhs - a
 | 
|---|
 | 418 |  */
 | 
|---|
| [72e7fa] | 419 | const Vector& Vector::operator-=(const Vector& b)
 | 
|---|
| [54a746] | 420 | {
 | 
|---|
| [273382] | 421 |   this->SubtractVector(b);
 | 
|---|
| [72e7fa] | 422 |   return *this;
 | 
|---|
| [54a746] | 423 | };
 | 
|---|
 | 424 | 
 | 
|---|
| [6ac7ee] | 425 | /** factor each component of \a a times a double \a m.
 | 
|---|
 | 426 |  * \param a base vector
 | 
|---|
 | 427 |  * \param m factor
 | 
|---|
 | 428 |  * \return lhs.x[i] * m
 | 
|---|
 | 429 |  */
 | 
|---|
| [b84d5d] | 430 | const Vector& operator*=(Vector& a, const double m)
 | 
|---|
| [6ac7ee] | 431 | {
 | 
|---|
| [042f82] | 432 |   a.Scale(m);
 | 
|---|
 | 433 |   return a;
 | 
|---|
| [6ac7ee] | 434 | };
 | 
|---|
 | 435 | 
 | 
|---|
| [042f82] | 436 | /** Sums two vectors \a  and \b component-wise.
 | 
|---|
| [6ac7ee] | 437 |  * \param a first vector
 | 
|---|
 | 438 |  * \param b second vector
 | 
|---|
 | 439 |  * \return a + b
 | 
|---|
 | 440 |  */
 | 
|---|
| [72e7fa] | 441 | Vector const Vector::operator+(const Vector& b) const
 | 
|---|
| [6ac7ee] | 442 | {
 | 
|---|
| [72e7fa] | 443 |   Vector x = *this;
 | 
|---|
| [273382] | 444 |   x.AddVector(b);
 | 
|---|
| [b84d5d] | 445 |   return x;
 | 
|---|
| [6ac7ee] | 446 | };
 | 
|---|
 | 447 | 
 | 
|---|
| [54a746] | 448 | /** Subtracts vector \a from \b component-wise.
 | 
|---|
 | 449 |  * \param a first vector
 | 
|---|
 | 450 |  * \param b second vector
 | 
|---|
 | 451 |  * \return a - b
 | 
|---|
 | 452 |  */
 | 
|---|
| [72e7fa] | 453 | Vector const Vector::operator-(const Vector& b) const
 | 
|---|
| [54a746] | 454 | {
 | 
|---|
| [72e7fa] | 455 |   Vector x = *this;
 | 
|---|
| [273382] | 456 |   x.SubtractVector(b);
 | 
|---|
| [b84d5d] | 457 |   return x;
 | 
|---|
| [54a746] | 458 | };
 | 
|---|
 | 459 | 
 | 
|---|
| [6ac7ee] | 460 | /** Factors given vector \a a times \a m.
 | 
|---|
 | 461 |  * \param a vector
 | 
|---|
 | 462 |  * \param m factor
 | 
|---|
| [54a746] | 463 |  * \return m * a
 | 
|---|
| [6ac7ee] | 464 |  */
 | 
|---|
| [b84d5d] | 465 | Vector const operator*(const Vector& a, const double m)
 | 
|---|
| [6ac7ee] | 466 | {
 | 
|---|
| [b84d5d] | 467 |   Vector x(a);
 | 
|---|
 | 468 |   x.Scale(m);
 | 
|---|
 | 469 |   return x;
 | 
|---|
| [6ac7ee] | 470 | };
 | 
|---|
 | 471 | 
 | 
|---|
| [54a746] | 472 | /** Factors given vector \a a times \a m.
 | 
|---|
 | 473 |  * \param m factor
 | 
|---|
 | 474 |  * \param a vector
 | 
|---|
 | 475 |  * \return m * a
 | 
|---|
 | 476 |  */
 | 
|---|
| [b84d5d] | 477 | Vector const operator*(const double m, const Vector& a )
 | 
|---|
| [54a746] | 478 | {
 | 
|---|
| [b84d5d] | 479 |   Vector x(a);
 | 
|---|
 | 480 |   x.Scale(m);
 | 
|---|
 | 481 |   return x;
 | 
|---|
| [54a746] | 482 | };
 | 
|---|
 | 483 | 
 | 
|---|
| [9c20aa] | 484 | ostream& operator<<(ostream& ost, const Vector& m)
 | 
|---|
| [6ac7ee] | 485 | {
 | 
|---|
| [042f82] | 486 |   ost << "(";
 | 
|---|
 | 487 |   for (int i=0;i<NDIM;i++) {
 | 
|---|
| [0a4f7f] | 488 |     ost << m[i];
 | 
|---|
| [042f82] | 489 |     if (i != 2)
 | 
|---|
 | 490 |       ost << ",";
 | 
|---|
 | 491 |   }
 | 
|---|
 | 492 |   ost << ")";
 | 
|---|
 | 493 |   return ost;
 | 
|---|
| [6ac7ee] | 494 | };
 | 
|---|
 | 495 | 
 | 
|---|
 | 496 | 
 | 
|---|
| [1bd79e] | 497 | void Vector::ScaleAll(const double *factor)
 | 
|---|
| [6ac7ee] | 498 | {
 | 
|---|
| [042f82] | 499 |   for (int i=NDIM;i--;)
 | 
|---|
| [753f02] | 500 |     x[i] *= factor[i];
 | 
|---|
| [6ac7ee] | 501 | };
 | 
|---|
 | 502 | 
 | 
|---|
 | 503 | 
 | 
|---|
| [1bd79e] | 504 | 
 | 
|---|
| [776b64] | 505 | void Vector::Scale(const double factor)
 | 
|---|
| [6ac7ee] | 506 | {
 | 
|---|
| [042f82] | 507 |   for (int i=NDIM;i--;)
 | 
|---|
 | 508 |     x[i] *= factor;
 | 
|---|
| [6ac7ee] | 509 | };
 | 
|---|
 | 510 | 
 | 
|---|
| [d09ff7] | 511 | /** Given a box by its matrix \a *M and its inverse *Minv the vector is made to point within that box.
 | 
|---|
 | 512 |  * \param *M matrix of box
 | 
|---|
 | 513 |  * \param *Minv inverse matrix
 | 
|---|
 | 514 |  */
 | 
|---|
| [776b64] | 515 | void Vector::WrapPeriodically(const double * const M, const double * const Minv)
 | 
|---|
| [d09ff7] | 516 | {
 | 
|---|
 | 517 |   MatrixMultiplication(Minv);
 | 
|---|
 | 518 |   // truncate to [0,1] for each axis
 | 
|---|
 | 519 |   for (int i=0;i<NDIM;i++) {
 | 
|---|
| [eddea2] | 520 |     //x[i] += 0.5;  // set to center of box
 | 
|---|
| [d09ff7] | 521 |     while (x[i] >= 1.)
 | 
|---|
 | 522 |       x[i] -= 1.;
 | 
|---|
 | 523 |     while (x[i] < 0.)
 | 
|---|
 | 524 |       x[i] += 1.;
 | 
|---|
 | 525 |   }
 | 
|---|
 | 526 |   MatrixMultiplication(M);
 | 
|---|
 | 527 | };
 | 
|---|
 | 528 | 
 | 
|---|
| [45ef76] | 529 | std::pair<Vector,Vector> Vector::partition(const Vector &rhs) const{
 | 
|---|
 | 530 |   double factor = ScalarProduct(rhs)/rhs.NormSquared();
 | 
|---|
 | 531 |   Vector res= factor * rhs;
 | 
|---|
 | 532 |   return make_pair(res,(*this)-res);
 | 
|---|
 | 533 | }
 | 
|---|
 | 534 | 
 | 
|---|
 | 535 | std::pair<pointset,Vector> Vector::partition(const pointset &points) const{
 | 
|---|
 | 536 |   Vector helper = *this;
 | 
|---|
 | 537 |   pointset res;
 | 
|---|
 | 538 |   for(pointset::const_iterator iter=points.begin();iter!=points.end();++iter){
 | 
|---|
 | 539 |     pair<Vector,Vector> currPart = helper.partition(*iter);
 | 
|---|
 | 540 |     res.push_back(currPart.first);
 | 
|---|
 | 541 |     helper = currPart.second;
 | 
|---|
 | 542 |   }
 | 
|---|
 | 543 |   return make_pair(res,helper);
 | 
|---|
 | 544 | }
 | 
|---|
 | 545 | 
 | 
|---|
| [6ac7ee] | 546 | /** Do a matrix multiplication.
 | 
|---|
 | 547 |  * \param *matrix NDIM_NDIM array
 | 
|---|
 | 548 |  */
 | 
|---|
| [776b64] | 549 | void Vector::MatrixMultiplication(const double * const M)
 | 
|---|
| [6ac7ee] | 550 | {
 | 
|---|
| [042f82] | 551 |   // do the matrix multiplication
 | 
|---|
| [753f02] | 552 |   at(0) = M[0]*x[0]+M[3]*x[1]+M[6]*x[2];
 | 
|---|
 | 553 |   at(1) = M[1]*x[0]+M[4]*x[1]+M[7]*x[2];
 | 
|---|
 | 554 |   at(2) = M[2]*x[0]+M[5]*x[1]+M[8]*x[2];
 | 
|---|
| [6ac7ee] | 555 | };
 | 
|---|
 | 556 | 
 | 
|---|
| [2319ed] | 557 | /** Do a matrix multiplication with the \a *A' inverse.
 | 
|---|
| [6ac7ee] | 558 |  * \param *matrix NDIM_NDIM array
 | 
|---|
 | 559 |  */
 | 
|---|
| [0a4f7f] | 560 | bool Vector::InverseMatrixMultiplication(const double * const A)
 | 
|---|
| [6ac7ee] | 561 | {
 | 
|---|
| [042f82] | 562 |   double B[NDIM*NDIM];
 | 
|---|
 | 563 |   double detA = RDET3(A);
 | 
|---|
 | 564 |   double detAReci;
 | 
|---|
 | 565 | 
 | 
|---|
 | 566 |   // calculate the inverse B
 | 
|---|
 | 567 |   if (fabs(detA) > MYEPSILON) {;  // RDET3(A) yields precisely zero if A irregular
 | 
|---|
 | 568 |     detAReci = 1./detA;
 | 
|---|
 | 569 |     B[0] =  detAReci*RDET2(A[4],A[5],A[7],A[8]);    // A_11
 | 
|---|
 | 570 |     B[1] = -detAReci*RDET2(A[1],A[2],A[7],A[8]);    // A_12
 | 
|---|
 | 571 |     B[2] =  detAReci*RDET2(A[1],A[2],A[4],A[5]);    // A_13
 | 
|---|
 | 572 |     B[3] = -detAReci*RDET2(A[3],A[5],A[6],A[8]);    // A_21
 | 
|---|
 | 573 |     B[4] =  detAReci*RDET2(A[0],A[2],A[6],A[8]);    // A_22
 | 
|---|
 | 574 |     B[5] = -detAReci*RDET2(A[0],A[2],A[3],A[5]);    // A_23
 | 
|---|
 | 575 |     B[6] =  detAReci*RDET2(A[3],A[4],A[6],A[7]);    // A_31
 | 
|---|
 | 576 |     B[7] = -detAReci*RDET2(A[0],A[1],A[6],A[7]);    // A_32
 | 
|---|
 | 577 |     B[8] =  detAReci*RDET2(A[0],A[1],A[3],A[4]);    // A_33
 | 
|---|
 | 578 | 
 | 
|---|
 | 579 |     // do the matrix multiplication
 | 
|---|
| [753f02] | 580 |     at(0) = B[0]*x[0]+B[3]*x[1]+B[6]*x[2];
 | 
|---|
 | 581 |     at(1) = B[1]*x[0]+B[4]*x[1]+B[7]*x[2];
 | 
|---|
 | 582 |     at(2) = B[2]*x[0]+B[5]*x[1]+B[8]*x[2];
 | 
|---|
 | 583 | 
 | 
|---|
 | 584 |     return true;
 | 
|---|
| [042f82] | 585 |   } else {
 | 
|---|
| [753f02] | 586 |     return false;
 | 
|---|
| [042f82] | 587 |   }
 | 
|---|
| [6ac7ee] | 588 | };
 | 
|---|
 | 589 | 
 | 
|---|
 | 590 | 
 | 
|---|
 | 591 | /** Creates this vector as the b y *factors' components scaled linear combination of the given three.
 | 
|---|
 | 592 |  * this vector = x1*factors[0] + x2* factors[1] + x3*factors[2]
 | 
|---|
 | 593 |  * \param *x1 first vector
 | 
|---|
 | 594 |  * \param *x2 second vector
 | 
|---|
 | 595 |  * \param *x3 third vector
 | 
|---|
 | 596 |  * \param *factors three-component vector with the factor for each given vector
 | 
|---|
 | 597 |  */
 | 
|---|
| [273382] | 598 | void Vector::LinearCombinationOfVectors(const Vector &x1, const Vector &x2, const Vector &x3, const double * const factors)
 | 
|---|
| [6ac7ee] | 599 | {
 | 
|---|
| [273382] | 600 |   (*this) = (factors[0]*x1) +
 | 
|---|
 | 601 |             (factors[1]*x2) +
 | 
|---|
 | 602 |             (factors[2]*x3);
 | 
|---|
| [6ac7ee] | 603 | };
 | 
|---|
 | 604 | 
 | 
|---|
 | 605 | /** Calculates orthonormal vector to one given vectors.
 | 
|---|
 | 606 |  * Just subtracts the projection onto the given vector from this vector.
 | 
|---|
| [ef9df36] | 607 |  * The removed part of the vector is Vector::Projection()
 | 
|---|
| [6ac7ee] | 608 |  * \param *x1 vector
 | 
|---|
 | 609 |  * \return true - success, false - vector is zero
 | 
|---|
 | 610 |  */
 | 
|---|
| [0a4f7f] | 611 | bool Vector::MakeNormalTo(const Vector &y1)
 | 
|---|
| [6ac7ee] | 612 | {
 | 
|---|
| [042f82] | 613 |   bool result = false;
 | 
|---|
| [753f02] | 614 |   double factor = y1.ScalarProduct(*this)/y1.NormSquared();
 | 
|---|
| [45ef76] | 615 |   Vector x1 = factor * y1;
 | 
|---|
| [753f02] | 616 |   SubtractVector(x1);
 | 
|---|
| [042f82] | 617 |   for (int i=NDIM;i--;)
 | 
|---|
 | 618 |     result = result || (fabs(x[i]) > MYEPSILON);
 | 
|---|
| [6ac7ee] | 619 | 
 | 
|---|
| [042f82] | 620 |   return result;
 | 
|---|
| [6ac7ee] | 621 | };
 | 
|---|
 | 622 | 
 | 
|---|
 | 623 | /** Creates this vector as one of the possible orthonormal ones to the given one.
 | 
|---|
 | 624 |  * Just scan how many components of given *vector are unequal to zero and
 | 
|---|
 | 625 |  * try to get the skp of both to be zero accordingly.
 | 
|---|
 | 626 |  * \param *vector given vector
 | 
|---|
 | 627 |  * \return true - success, false - failure (null vector given)
 | 
|---|
 | 628 |  */
 | 
|---|
| [273382] | 629 | bool Vector::GetOneNormalVector(const Vector &GivenVector)
 | 
|---|
| [6ac7ee] | 630 | {
 | 
|---|
| [042f82] | 631 |   int Components[NDIM]; // contains indices of non-zero components
 | 
|---|
 | 632 |   int Last = 0;   // count the number of non-zero entries in vector
 | 
|---|
 | 633 |   int j;  // loop variables
 | 
|---|
 | 634 |   double norm;
 | 
|---|
 | 635 | 
 | 
|---|
 | 636 |   for (j=NDIM;j--;)
 | 
|---|
 | 637 |     Components[j] = -1;
 | 
|---|
| [1829c4] | 638 | 
 | 
|---|
 | 639 |   // in two component-systems we need to find the one position that is zero
 | 
|---|
 | 640 |   int zeroPos = -1;
 | 
|---|
| [042f82] | 641 |   // find two components != 0
 | 
|---|
| [1829c4] | 642 |   for (j=0;j<NDIM;j++){
 | 
|---|
| [753f02] | 643 |     if (fabs(GivenVector[j]) > MYEPSILON)
 | 
|---|
| [042f82] | 644 |       Components[Last++] = j;
 | 
|---|
| [1829c4] | 645 |     else
 | 
|---|
 | 646 |       // this our zero Position
 | 
|---|
 | 647 |       zeroPos = j;
 | 
|---|
 | 648 |   }
 | 
|---|
| [042f82] | 649 | 
 | 
|---|
 | 650 |   switch(Last) {
 | 
|---|
 | 651 |     case 3:  // threecomponent system
 | 
|---|
| [1829c4] | 652 |       // the position of the zero is arbitrary in three component systems
 | 
|---|
 | 653 |       zeroPos = Components[2];
 | 
|---|
| [042f82] | 654 |     case 2:  // two component system
 | 
|---|
| [753f02] | 655 |       norm = sqrt(1./(GivenVector[Components[1]]*GivenVector[Components[1]]) + 1./(GivenVector[Components[0]]*GivenVector[Components[0]]));
 | 
|---|
| [1829c4] | 656 |       at(zeroPos) = 0.;
 | 
|---|
| [042f82] | 657 |       // in skp both remaining parts shall become zero but with opposite sign and third is zero
 | 
|---|
| [1829c4] | 658 |       at(Components[1]) = -1./GivenVector[Components[1]] / norm;
 | 
|---|
 | 659 |       at(Components[0]) = 1./GivenVector[Components[0]] / norm;
 | 
|---|
| [042f82] | 660 |       return true;
 | 
|---|
 | 661 |       break;
 | 
|---|
 | 662 |     case 1: // one component system
 | 
|---|
 | 663 |       // set sole non-zero component to 0, and one of the other zero component pendants to 1
 | 
|---|
| [1829c4] | 664 |       at((Components[0]+2)%NDIM) = 0.;
 | 
|---|
 | 665 |       at((Components[0]+1)%NDIM) = 1.;
 | 
|---|
 | 666 |       at(Components[0]) = 0.;
 | 
|---|
| [042f82] | 667 |       return true;
 | 
|---|
 | 668 |       break;
 | 
|---|
 | 669 |     default:
 | 
|---|
 | 670 |       return false;
 | 
|---|
 | 671 |   }
 | 
|---|
| [6ac7ee] | 672 | };
 | 
|---|
 | 673 | 
 | 
|---|
 | 674 | /** Adds vector \a *y componentwise.
 | 
|---|
 | 675 |  * \param *y vector
 | 
|---|
 | 676 |  */
 | 
|---|
| [273382] | 677 | void Vector::AddVector(const Vector &y)
 | 
|---|
| [6ac7ee] | 678 | {
 | 
|---|
| [753f02] | 679 |   for(int i=NDIM;i--;)
 | 
|---|
 | 680 |     x[i] += y[i];
 | 
|---|
| [6ac7ee] | 681 | }
 | 
|---|
 | 682 | 
 | 
|---|
 | 683 | /** Adds vector \a *y componentwise.
 | 
|---|
 | 684 |  * \param *y vector
 | 
|---|
 | 685 |  */
 | 
|---|
| [273382] | 686 | void Vector::SubtractVector(const Vector &y)
 | 
|---|
| [6ac7ee] | 687 | {
 | 
|---|
| [753f02] | 688 |   for(int i=NDIM;i--;)
 | 
|---|
 | 689 |     x[i] -= y[i];
 | 
|---|
| [ef9df36] | 690 | }
 | 
|---|
 | 691 | 
 | 
|---|
| [89c8b2] | 692 | /**
 | 
|---|
 | 693 |  * Checks whether this vector is within the parallelepiped defined by the given three vectors and
 | 
|---|
 | 694 |  * their offset.
 | 
|---|
 | 695 |  *
 | 
|---|
 | 696 |  * @param offest for the origin of the parallelepiped
 | 
|---|
 | 697 |  * @param three vectors forming the matrix that defines the shape of the parallelpiped
 | 
|---|
 | 698 |  */
 | 
|---|
| [776b64] | 699 | bool Vector::IsInParallelepiped(const Vector &offset, const double * const parallelepiped) const
 | 
|---|
| [89c8b2] | 700 | {
 | 
|---|
| [753f02] | 701 |   Vector a = (*this)-offset;
 | 
|---|
| [89c8b2] | 702 |   a.InverseMatrixMultiplication(parallelepiped);
 | 
|---|
 | 703 |   bool isInside = true;
 | 
|---|
 | 704 | 
 | 
|---|
 | 705 |   for (int i=NDIM;i--;)
 | 
|---|
| [753f02] | 706 |     isInside = isInside && ((a[i] <= 1) && (a[i] >= 0));
 | 
|---|
| [89c8b2] | 707 | 
 | 
|---|
 | 708 |   return isInside;
 | 
|---|
 | 709 | }
 | 
|---|
| [005e18] | 710 | 
 | 
|---|
 | 711 | 
 | 
|---|
 | 712 | // some comonly used vectors
 | 
|---|
 | 713 | const Vector zeroVec(0,0,0);
 | 
|---|
 | 714 | const Vector e1(1,0,0);
 | 
|---|
 | 715 | const Vector e2(0,1,0);
 | 
|---|
 | 716 | const Vector e3(0,0,1);
 | 
|---|