| [6ac7ee] | 1 | /** \file vector.cpp
 | 
|---|
 | 2 |  *
 | 
|---|
 | 3 |  * Function implementations for the class vector.
 | 
|---|
 | 4 |  *
 | 
|---|
 | 5 |  */
 | 
|---|
 | 6 | 
 | 
|---|
| [edb93c] | 7 | 
 | 
|---|
| [54a746] | 8 | #include "defs.hpp"
 | 
|---|
 | 9 | #include "helpers.hpp"
 | 
|---|
| [97498a] | 10 | #include "info.hpp"
 | 
|---|
| [9d6308] | 11 | #include "gslmatrix.hpp"
 | 
|---|
| [54a746] | 12 | #include "leastsquaremin.hpp"
 | 
|---|
| [e138de] | 13 | #include "log.hpp"
 | 
|---|
| [97498a] | 14 | #include "memoryallocator.hpp"
 | 
|---|
| [54a746] | 15 | #include "vector.hpp"
 | 
|---|
 | 16 | #include "verbose.hpp"
 | 
|---|
| [b34306] | 17 | #include "World.hpp"
 | 
|---|
| [6ac7ee] | 18 | 
 | 
|---|
| [97498a] | 19 | #include <gsl/gsl_linalg.h>
 | 
|---|
 | 20 | #include <gsl/gsl_matrix.h>
 | 
|---|
 | 21 | #include <gsl/gsl_permutation.h>
 | 
|---|
 | 22 | #include <gsl/gsl_vector.h>
 | 
|---|
 | 23 | 
 | 
|---|
| [6ac7ee] | 24 | /************************************ Functions for class vector ************************************/
 | 
|---|
 | 25 | 
 | 
|---|
 | 26 | /** Constructor of class vector.
 | 
|---|
 | 27 |  */
 | 
|---|
 | 28 | Vector::Vector() { x[0] = x[1] = x[2] = 0.; };
 | 
|---|
 | 29 | 
 | 
|---|
| [821907] | 30 | /** Constructor of class vector.
 | 
|---|
 | 31 |  */
 | 
|---|
 | 32 | Vector::Vector(const Vector * const a)
 | 
|---|
 | 33 | {
 | 
|---|
 | 34 |   x[0] = a->x[0];
 | 
|---|
 | 35 |   x[1] = a->x[1];
 | 
|---|
 | 36 |   x[2] = a->x[2];
 | 
|---|
 | 37 | };
 | 
|---|
 | 38 | 
 | 
|---|
 | 39 | /** Constructor of class vector.
 | 
|---|
 | 40 |  */
 | 
|---|
 | 41 | Vector::Vector(const Vector &a)
 | 
|---|
 | 42 | {
 | 
|---|
 | 43 |   x[0] = a.x[0];
 | 
|---|
 | 44 |   x[1] = a.x[1];
 | 
|---|
 | 45 |   x[2] = a.x[2];
 | 
|---|
 | 46 | };
 | 
|---|
 | 47 | 
 | 
|---|
| [6ac7ee] | 48 | /** Constructor of class vector.
 | 
|---|
 | 49 |  */
 | 
|---|
| [776b64] | 50 | Vector::Vector(const double x1, const double x2, const double x3) { x[0] = x1; x[1] = x2; x[2] = x3; };
 | 
|---|
| [6ac7ee] | 51 | 
 | 
|---|
 | 52 | /** Desctructor of class vector.
 | 
|---|
 | 53 |  */
 | 
|---|
 | 54 | Vector::~Vector() {};
 | 
|---|
 | 55 | 
 | 
|---|
 | 56 | /** Calculates square of distance between this and another vector.
 | 
|---|
 | 57 |  * \param *y array to second vector
 | 
|---|
 | 58 |  * \return \f$| x - y |^2\f$
 | 
|---|
 | 59 |  */
 | 
|---|
| [776b64] | 60 | double Vector::DistanceSquared(const Vector * const y) const
 | 
|---|
| [6ac7ee] | 61 | {
 | 
|---|
| [042f82] | 62 |   double res = 0.;
 | 
|---|
 | 63 |   for (int i=NDIM;i--;)
 | 
|---|
 | 64 |     res += (x[i]-y->x[i])*(x[i]-y->x[i]);
 | 
|---|
 | 65 |   return (res);
 | 
|---|
| [6ac7ee] | 66 | };
 | 
|---|
 | 67 | 
 | 
|---|
 | 68 | /** Calculates distance between this and another vector.
 | 
|---|
 | 69 |  * \param *y array to second vector
 | 
|---|
 | 70 |  * \return \f$| x - y |\f$
 | 
|---|
 | 71 |  */
 | 
|---|
| [776b64] | 72 | double Vector::Distance(const Vector * const y) const
 | 
|---|
| [6ac7ee] | 73 | {
 | 
|---|
| [042f82] | 74 |   double res = 0.;
 | 
|---|
 | 75 |   for (int i=NDIM;i--;)
 | 
|---|
 | 76 |     res += (x[i]-y->x[i])*(x[i]-y->x[i]);
 | 
|---|
 | 77 |   return (sqrt(res));
 | 
|---|
| [6ac7ee] | 78 | };
 | 
|---|
 | 79 | 
 | 
|---|
 | 80 | /** Calculates distance between this and another vector in a periodic cell.
 | 
|---|
 | 81 |  * \param *y array to second vector
 | 
|---|
 | 82 |  * \param *cell_size 6-dimensional array with (xx, xy, yy, xz, yz, zz) entries specifying the periodic cell
 | 
|---|
 | 83 |  * \return \f$| x - y |\f$
 | 
|---|
 | 84 |  */
 | 
|---|
| [776b64] | 85 | double Vector::PeriodicDistance(const Vector * const y, const double * const cell_size) const
 | 
|---|
| [6ac7ee] | 86 | {
 | 
|---|
| [042f82] | 87 |   double res = Distance(y), tmp, matrix[NDIM*NDIM];
 | 
|---|
 | 88 |   Vector Shiftedy, TranslationVector;
 | 
|---|
 | 89 |   int N[NDIM];
 | 
|---|
 | 90 |   matrix[0] = cell_size[0];
 | 
|---|
 | 91 |   matrix[1] = cell_size[1];
 | 
|---|
 | 92 |   matrix[2] = cell_size[3];
 | 
|---|
 | 93 |   matrix[3] = cell_size[1];
 | 
|---|
 | 94 |   matrix[4] = cell_size[2];
 | 
|---|
 | 95 |   matrix[5] = cell_size[4];
 | 
|---|
 | 96 |   matrix[6] = cell_size[3];
 | 
|---|
 | 97 |   matrix[7] = cell_size[4];
 | 
|---|
 | 98 |   matrix[8] = cell_size[5];
 | 
|---|
 | 99 |   // in order to check the periodic distance, translate one of the vectors into each of the 27 neighbouring cells
 | 
|---|
 | 100 |   for (N[0]=-1;N[0]<=1;N[0]++)
 | 
|---|
 | 101 |     for (N[1]=-1;N[1]<=1;N[1]++)
 | 
|---|
 | 102 |       for (N[2]=-1;N[2]<=1;N[2]++) {
 | 
|---|
 | 103 |         // create the translation vector
 | 
|---|
 | 104 |         TranslationVector.Zero();
 | 
|---|
 | 105 |         for (int i=NDIM;i--;)
 | 
|---|
 | 106 |           TranslationVector.x[i] = (double)N[i];
 | 
|---|
 | 107 |         TranslationVector.MatrixMultiplication(matrix);
 | 
|---|
 | 108 |         // add onto the original vector to compare with
 | 
|---|
 | 109 |         Shiftedy.CopyVector(y);
 | 
|---|
 | 110 |         Shiftedy.AddVector(&TranslationVector);
 | 
|---|
 | 111 |         // get distance and compare with minimum so far
 | 
|---|
 | 112 |         tmp = Distance(&Shiftedy);
 | 
|---|
 | 113 |         if (tmp < res) res = tmp;
 | 
|---|
 | 114 |       }
 | 
|---|
 | 115 |   return (res);
 | 
|---|
| [6ac7ee] | 116 | };
 | 
|---|
 | 117 | 
 | 
|---|
 | 118 | /** Calculates distance between this and another vector in a periodic cell.
 | 
|---|
 | 119 |  * \param *y array to second vector
 | 
|---|
 | 120 |  * \param *cell_size 6-dimensional array with (xx, xy, yy, xz, yz, zz) entries specifying the periodic cell
 | 
|---|
 | 121 |  * \return \f$| x - y |^2\f$
 | 
|---|
 | 122 |  */
 | 
|---|
| [776b64] | 123 | double Vector::PeriodicDistanceSquared(const Vector * const y, const double * const cell_size) const
 | 
|---|
| [6ac7ee] | 124 | {
 | 
|---|
| [042f82] | 125 |   double res = DistanceSquared(y), tmp, matrix[NDIM*NDIM];
 | 
|---|
 | 126 |   Vector Shiftedy, TranslationVector;
 | 
|---|
 | 127 |   int N[NDIM];
 | 
|---|
 | 128 |   matrix[0] = cell_size[0];
 | 
|---|
 | 129 |   matrix[1] = cell_size[1];
 | 
|---|
 | 130 |   matrix[2] = cell_size[3];
 | 
|---|
 | 131 |   matrix[3] = cell_size[1];
 | 
|---|
 | 132 |   matrix[4] = cell_size[2];
 | 
|---|
 | 133 |   matrix[5] = cell_size[4];
 | 
|---|
 | 134 |   matrix[6] = cell_size[3];
 | 
|---|
 | 135 |   matrix[7] = cell_size[4];
 | 
|---|
 | 136 |   matrix[8] = cell_size[5];
 | 
|---|
 | 137 |   // in order to check the periodic distance, translate one of the vectors into each of the 27 neighbouring cells
 | 
|---|
 | 138 |   for (N[0]=-1;N[0]<=1;N[0]++)
 | 
|---|
 | 139 |     for (N[1]=-1;N[1]<=1;N[1]++)
 | 
|---|
 | 140 |       for (N[2]=-1;N[2]<=1;N[2]++) {
 | 
|---|
 | 141 |         // create the translation vector
 | 
|---|
 | 142 |         TranslationVector.Zero();
 | 
|---|
 | 143 |         for (int i=NDIM;i--;)
 | 
|---|
 | 144 |           TranslationVector.x[i] = (double)N[i];
 | 
|---|
 | 145 |         TranslationVector.MatrixMultiplication(matrix);
 | 
|---|
 | 146 |         // add onto the original vector to compare with
 | 
|---|
 | 147 |         Shiftedy.CopyVector(y);
 | 
|---|
 | 148 |         Shiftedy.AddVector(&TranslationVector);
 | 
|---|
 | 149 |         // get distance and compare with minimum so far
 | 
|---|
 | 150 |         tmp = DistanceSquared(&Shiftedy);
 | 
|---|
 | 151 |         if (tmp < res) res = tmp;
 | 
|---|
 | 152 |       }
 | 
|---|
 | 153 |   return (res);
 | 
|---|
| [6ac7ee] | 154 | };
 | 
|---|
 | 155 | 
 | 
|---|
 | 156 | /** Keeps the vector in a periodic cell, defined by the symmetric \a *matrix.
 | 
|---|
 | 157 |  * \param *out ofstream for debugging messages
 | 
|---|
 | 158 |  * Tries to translate a vector into each adjacent neighbouring cell.
 | 
|---|
 | 159 |  */
 | 
|---|
| [e138de] | 160 | void Vector::KeepPeriodic(const double * const matrix)
 | 
|---|
| [6ac7ee] | 161 | {
 | 
|---|
| [042f82] | 162 | //  int N[NDIM];
 | 
|---|
 | 163 | //  bool flag = false;
 | 
|---|
 | 164 |   //vector Shifted, TranslationVector;
 | 
|---|
 | 165 |   Vector TestVector;
 | 
|---|
| [e138de] | 166 | //  Log() << Verbose(1) << "Begin of KeepPeriodic." << endl;
 | 
|---|
 | 167 | //  Log() << Verbose(2) << "Vector is: ";
 | 
|---|
| [042f82] | 168 | //  Output(out);
 | 
|---|
| [e138de] | 169 | //  Log() << Verbose(0) << endl;
 | 
|---|
| [042f82] | 170 |   TestVector.CopyVector(this);
 | 
|---|
 | 171 |   TestVector.InverseMatrixMultiplication(matrix);
 | 
|---|
 | 172 |   for(int i=NDIM;i--;) { // correct periodically
 | 
|---|
 | 173 |     if (TestVector.x[i] < 0) {  // get every coefficient into the interval [0,1)
 | 
|---|
 | 174 |       TestVector.x[i] += ceil(TestVector.x[i]);
 | 
|---|
 | 175 |     } else {
 | 
|---|
 | 176 |       TestVector.x[i] -= floor(TestVector.x[i]);
 | 
|---|
 | 177 |     }
 | 
|---|
 | 178 |   }
 | 
|---|
 | 179 |   TestVector.MatrixMultiplication(matrix);
 | 
|---|
 | 180 |   CopyVector(&TestVector);
 | 
|---|
| [e138de] | 181 | //  Log() << Verbose(2) << "New corrected vector is: ";
 | 
|---|
| [042f82] | 182 | //  Output(out);
 | 
|---|
| [e138de] | 183 | //  Log() << Verbose(0) << endl;
 | 
|---|
 | 184 | //  Log() << Verbose(1) << "End of KeepPeriodic." << endl;
 | 
|---|
| [6ac7ee] | 185 | };
 | 
|---|
 | 186 | 
 | 
|---|
 | 187 | /** Calculates scalar product between this and another vector.
 | 
|---|
 | 188 |  * \param *y array to second vector
 | 
|---|
 | 189 |  * \return \f$\langle x, y \rangle\f$
 | 
|---|
 | 190 |  */
 | 
|---|
| [776b64] | 191 | double Vector::ScalarProduct(const Vector * const y) const
 | 
|---|
| [6ac7ee] | 192 | {
 | 
|---|
| [042f82] | 193 |   double res = 0.;
 | 
|---|
 | 194 |   for (int i=NDIM;i--;)
 | 
|---|
 | 195 |     res += x[i]*y->x[i];
 | 
|---|
 | 196 |   return (res);
 | 
|---|
| [6ac7ee] | 197 | };
 | 
|---|
 | 198 | 
 | 
|---|
 | 199 | 
 | 
|---|
 | 200 | /** Calculates VectorProduct between this and another vector.
 | 
|---|
| [042f82] | 201 |  *  -# returns the Product in place of vector from which it was initiated
 | 
|---|
 | 202 |  *  -# ATTENTION: Only three dim.
 | 
|---|
 | 203 |  *  \param *y array to vector with which to calculate crossproduct
 | 
|---|
 | 204 |  *  \return \f$ x \times y \f&
 | 
|---|
| [6ac7ee] | 205 |  */
 | 
|---|
| [776b64] | 206 | void Vector::VectorProduct(const Vector * const y)
 | 
|---|
| [6ac7ee] | 207 | {
 | 
|---|
| [042f82] | 208 |   Vector tmp;
 | 
|---|
 | 209 |   tmp.x[0] = x[1]* (y->x[2]) - x[2]* (y->x[1]);
 | 
|---|
 | 210 |   tmp.x[1] = x[2]* (y->x[0]) - x[0]* (y->x[2]);
 | 
|---|
 | 211 |   tmp.x[2] = x[0]* (y->x[1]) - x[1]* (y->x[0]);
 | 
|---|
 | 212 |   this->CopyVector(&tmp);
 | 
|---|
| [6ac7ee] | 213 | };
 | 
|---|
 | 214 | 
 | 
|---|
 | 215 | 
 | 
|---|
 | 216 | /** projects this vector onto plane defined by \a *y.
 | 
|---|
 | 217 |  * \param *y normal vector of plane
 | 
|---|
 | 218 |  * \return \f$\langle x, y \rangle\f$
 | 
|---|
 | 219 |  */
 | 
|---|
| [776b64] | 220 | void Vector::ProjectOntoPlane(const Vector * const y)
 | 
|---|
| [6ac7ee] | 221 | {
 | 
|---|
| [042f82] | 222 |   Vector tmp;
 | 
|---|
 | 223 |   tmp.CopyVector(y);
 | 
|---|
 | 224 |   tmp.Normalize();
 | 
|---|
 | 225 |   tmp.Scale(ScalarProduct(&tmp));
 | 
|---|
 | 226 |   this->SubtractVector(&tmp);
 | 
|---|
| [6ac7ee] | 227 | };
 | 
|---|
 | 228 | 
 | 
|---|
| [2319ed] | 229 | /** Calculates the intersection point between a line defined by \a *LineVector and \a *LineVector2 and a plane defined by \a *Normal and \a *PlaneOffset.
 | 
|---|
 | 230 |  * According to [Bronstein] the vectorial plane equation is:
 | 
|---|
 | 231 |  *   -# \f$\stackrel{r}{\rightarrow} \cdot \stackrel{N}{\rightarrow} + D = 0\f$,
 | 
|---|
 | 232 |  * where \f$\stackrel{r}{\rightarrow}\f$ is the vector to be testet, \f$\stackrel{N}{\rightarrow}\f$ is the plane's normal vector and
 | 
|---|
 | 233 |  * \f$D = - \stackrel{a}{\rightarrow} \stackrel{N}{\rightarrow}\f$, the offset with respect to origin, if \f$\stackrel{a}{\rightarrow}\f$,
 | 
|---|
 | 234 |  * is an offset vector onto the plane. The line is parametrized by \f$\stackrel{x}{\rightarrow} + k \stackrel{t}{\rightarrow}\f$, where
 | 
|---|
 | 235 |  * \f$\stackrel{x}{\rightarrow}\f$ is the offset and \f$\stackrel{t}{\rightarrow}\f$ the directional vector (NOTE: No need to normalize
 | 
|---|
 | 236 |  * the latter). Inserting the parametrized form into the plane equation and solving for \f$k\f$, which we insert then into the parametrization
 | 
|---|
 | 237 |  * of the line yields the intersection point on the plane.
 | 
|---|
 | 238 |  * \param *out output stream for debugging
 | 
|---|
 | 239 |  * \param *PlaneNormal Plane's normal vector
 | 
|---|
 | 240 |  * \param *PlaneOffset Plane's offset vector
 | 
|---|
| [ef9df36] | 241 |  * \param *Origin first vector of line
 | 
|---|
 | 242 |  * \param *LineVector second vector of line
 | 
|---|
| [7b36fe] | 243 |  * \return true -  \a this contains intersection point on return, false - line is parallel to plane (even if in-plane)
 | 
|---|
| [2319ed] | 244 |  */
 | 
|---|
| [e138de] | 245 | bool Vector::GetIntersectionWithPlane(const Vector * const PlaneNormal, const Vector * const PlaneOffset, const Vector * const Origin, const Vector * const LineVector)
 | 
|---|
| [2319ed] | 246 | {
 | 
|---|
| [97498a] | 247 |   Info FunctionInfo(__func__);
 | 
|---|
| [2319ed] | 248 |   double factor;
 | 
|---|
| [46670d] | 249 |   Vector Direction, helper;
 | 
|---|
| [2319ed] | 250 | 
 | 
|---|
 | 251 |   // find intersection of a line defined by Offset and Direction with a  plane defined by triangle
 | 
|---|
| [46670d] | 252 |   Direction.CopyVector(LineVector);
 | 
|---|
 | 253 |   Direction.SubtractVector(Origin);
 | 
|---|
| [e4a379] | 254 |   Direction.Normalize();
 | 
|---|
| [97498a] | 255 |   Log() << Verbose(1) << "INFO: Direction is " << Direction << "." << endl;
 | 
|---|
| [7b36fe] | 256 |   //Log() << Verbose(1) << "INFO: PlaneNormal is " << *PlaneNormal << " and PlaneOffset is " << *PlaneOffset << "." << endl;
 | 
|---|
| [46670d] | 257 |   factor = Direction.ScalarProduct(PlaneNormal);
 | 
|---|
| [7b36fe] | 258 |   if (fabs(factor) < MYEPSILON) { // Uniqueness: line parallel to plane?
 | 
|---|
 | 259 |     Log() << Verbose(1) << "BAD: Line is parallel to plane, no intersection." << endl;
 | 
|---|
| [2319ed] | 260 |     return false;
 | 
|---|
| [46670d] | 261 |   }
 | 
|---|
 | 262 |   helper.CopyVector(PlaneOffset);
 | 
|---|
| [ef9df36] | 263 |   helper.SubtractVector(Origin);
 | 
|---|
| [46670d] | 264 |   factor = helper.ScalarProduct(PlaneNormal)/factor;
 | 
|---|
| [7b36fe] | 265 |   if (fabs(factor) < MYEPSILON) { // Origin is in-plane
 | 
|---|
 | 266 |     Log() << Verbose(1) << "GOOD: Origin of line is in-plane." << endl;
 | 
|---|
| [e4a379] | 267 |     CopyVector(Origin);
 | 
|---|
 | 268 |     return true;
 | 
|---|
 | 269 |   }
 | 
|---|
| [46670d] | 270 |   //factor = Origin->ScalarProduct(PlaneNormal)*(-PlaneOffset->ScalarProduct(PlaneNormal))/(Direction.ScalarProduct(PlaneNormal));
 | 
|---|
| [2319ed] | 271 |   Direction.Scale(factor);
 | 
|---|
| [ef9df36] | 272 |   CopyVector(Origin);
 | 
|---|
| [97498a] | 273 |   Log() << Verbose(1) << "INFO: Scaled direction is " << Direction << "." << endl;
 | 
|---|
| [46670d] | 274 |   AddVector(&Direction);
 | 
|---|
| [2319ed] | 275 | 
 | 
|---|
 | 276 |   // test whether resulting vector really is on plane
 | 
|---|
| [46670d] | 277 |   helper.CopyVector(this);
 | 
|---|
 | 278 |   helper.SubtractVector(PlaneOffset);
 | 
|---|
 | 279 |   if (helper.ScalarProduct(PlaneNormal) < MYEPSILON) {
 | 
|---|
| [7b36fe] | 280 |     Log() << Verbose(1) << "GOOD: Intersection is " << *this << "." << endl;
 | 
|---|
| [2319ed] | 281 |     return true;
 | 
|---|
| [46670d] | 282 |   } else {
 | 
|---|
| [58ed4a] | 283 |     DoeLog(2) && (eLog()<< Verbose(2) << "Intersection point " << *this << " is not on plane." << endl);
 | 
|---|
| [2319ed] | 284 |     return false;
 | 
|---|
| [46670d] | 285 |   }
 | 
|---|
| [2319ed] | 286 | };
 | 
|---|
 | 287 | 
 | 
|---|
| [821907] | 288 | /** Calculates the minimum distance vector of this vector to the plane.
 | 
|---|
| [c4d4df] | 289 |  * \param *out output stream for debugging
 | 
|---|
 | 290 |  * \param *PlaneNormal normal of plane
 | 
|---|
 | 291 |  * \param *PlaneOffset offset of plane
 | 
|---|
| [821907] | 292 |  * \return distance vector onto to plane
 | 
|---|
| [c4d4df] | 293 |  */
 | 
|---|
| [821907] | 294 | Vector Vector::GetDistanceVectorToPlane(const Vector * const PlaneNormal, const Vector * const PlaneOffset) const
 | 
|---|
| [c4d4df] | 295 | {
 | 
|---|
 | 296 |   Vector temp;
 | 
|---|
 | 297 | 
 | 
|---|
 | 298 |   // first create part that is orthonormal to PlaneNormal with withdraw
 | 
|---|
 | 299 |   temp.CopyVector(this);
 | 
|---|
 | 300 |   temp.SubtractVector(PlaneOffset);
 | 
|---|
 | 301 |   temp.MakeNormalVector(PlaneNormal);
 | 
|---|
 | 302 |   temp.Scale(-1.);
 | 
|---|
 | 303 |   // then add connecting vector from plane to point
 | 
|---|
 | 304 |   temp.AddVector(this);
 | 
|---|
 | 305 |   temp.SubtractVector(PlaneOffset);
 | 
|---|
| [99593f] | 306 |   double sign = temp.ScalarProduct(PlaneNormal);
 | 
|---|
| [7ea9e6] | 307 |   if (fabs(sign) > MYEPSILON)
 | 
|---|
 | 308 |     sign /= fabs(sign);
 | 
|---|
 | 309 |   else
 | 
|---|
 | 310 |     sign = 0.;
 | 
|---|
| [c4d4df] | 311 | 
 | 
|---|
| [821907] | 312 |   temp.Normalize();
 | 
|---|
 | 313 |   temp.Scale(sign);
 | 
|---|
 | 314 |   return temp;
 | 
|---|
 | 315 | };
 | 
|---|
 | 316 | 
 | 
|---|
 | 317 | /** Calculates the minimum distance of this vector to the plane.
 | 
|---|
 | 318 |  * \sa Vector::GetDistanceVectorToPlane()
 | 
|---|
 | 319 |  * \param *out output stream for debugging
 | 
|---|
 | 320 |  * \param *PlaneNormal normal of plane
 | 
|---|
 | 321 |  * \param *PlaneOffset offset of plane
 | 
|---|
 | 322 |  * \return distance to plane
 | 
|---|
 | 323 |  */
 | 
|---|
 | 324 | double Vector::DistanceToPlane(const Vector * const PlaneNormal, const Vector * const PlaneOffset) const
 | 
|---|
 | 325 | {
 | 
|---|
 | 326 |   return GetDistanceVectorToPlane(PlaneNormal,PlaneOffset).Norm();
 | 
|---|
| [c4d4df] | 327 | };
 | 
|---|
 | 328 | 
 | 
|---|
| [2319ed] | 329 | /** Calculates the intersection of the two lines that are both on the same plane.
 | 
|---|
| [9d6308] | 330 |  * This is taken from Weisstein, Eric W. "Line-Line Intersection." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/Line-LineIntersection.html 
 | 
|---|
| [2319ed] | 331 |  * \param *out output stream for debugging
 | 
|---|
 | 332 |  * \param *Line1a first vector of first line
 | 
|---|
 | 333 |  * \param *Line1b second vector of first line
 | 
|---|
 | 334 |  * \param *Line2a first vector of second line
 | 
|---|
 | 335 |  * \param *Line2b second vector of second line
 | 
|---|
| [46670d] | 336 |  * \param *PlaneNormal normal of plane, is supplemental/arbitrary
 | 
|---|
| [2319ed] | 337 |  * \return true - \a this will contain the intersection on return, false - lines are parallel
 | 
|---|
 | 338 |  */
 | 
|---|
| [e138de] | 339 | bool Vector::GetIntersectionOfTwoLinesOnPlane(const Vector * const Line1a, const Vector * const Line1b, const Vector * const Line2a, const Vector * const Line2b, const Vector *PlaneNormal)
 | 
|---|
| [2319ed] | 340 | {
 | 
|---|
| [97498a] | 341 |   Info FunctionInfo(__func__);
 | 
|---|
| [9d6308] | 342 | 
 | 
|---|
 | 343 |   GSLMatrix *M = new GSLMatrix(4,4);
 | 
|---|
 | 344 | 
 | 
|---|
 | 345 |   M->SetAll(1.);
 | 
|---|
 | 346 |   for (int i=0;i<3;i++) {
 | 
|---|
 | 347 |     M->Set(0, i, Line1a->x[i]);
 | 
|---|
 | 348 |     M->Set(1, i, Line1b->x[i]);
 | 
|---|
 | 349 |     M->Set(2, i, Line2a->x[i]);
 | 
|---|
 | 350 |     M->Set(3, i, Line2b->x[i]);
 | 
|---|
 | 351 |   }
 | 
|---|
| [fee69b] | 352 |   
 | 
|---|
 | 353 |   //Log() << Verbose(1) << "Coefficent matrix is:" << endl;
 | 
|---|
 | 354 |   //for (int i=0;i<4;i++) {
 | 
|---|
 | 355 |   //  for (int j=0;j<4;j++)
 | 
|---|
 | 356 |   //    cout << "\t" << M->Get(i,j);
 | 
|---|
 | 357 |   //  cout << endl;
 | 
|---|
 | 358 |   //}
 | 
|---|
| [fcad4b] | 359 |   if (fabs(M->Determinant()) > MYEPSILON) {
 | 
|---|
 | 360 |     Log() << Verbose(1) << "Determinant of coefficient matrix is NOT zero." << endl;
 | 
|---|
| [ef9df36] | 361 |     return false;
 | 
|---|
| [fcad4b] | 362 |   }
 | 
|---|
 | 363 |   Log() << Verbose(1) << "INFO: Line1a = " << *Line1a << ", Line1b = " << *Line1b << ", Line2a = " << *Line2a << ", Line2b = " << *Line2b << "." << endl;
 | 
|---|
 | 364 | 
 | 
|---|
| [2319ed] | 365 | 
 | 
|---|
| [9d6308] | 366 |   // constuct a,b,c
 | 
|---|
| [fee69b] | 367 |   Vector a;
 | 
|---|
 | 368 |   Vector b;
 | 
|---|
 | 369 |   Vector c;
 | 
|---|
 | 370 |   Vector d;
 | 
|---|
| [9d6308] | 371 |   a.CopyVector(Line1b);
 | 
|---|
 | 372 |   a.SubtractVector(Line1a);
 | 
|---|
 | 373 |   b.CopyVector(Line2b);
 | 
|---|
 | 374 |   b.SubtractVector(Line2a);
 | 
|---|
 | 375 |   c.CopyVector(Line2a);
 | 
|---|
 | 376 |   c.SubtractVector(Line1a);
 | 
|---|
| [fee69b] | 377 |   d.CopyVector(Line2b);
 | 
|---|
 | 378 |   d.SubtractVector(Line1b);
 | 
|---|
| [fcad4b] | 379 |   Log() << Verbose(1) << "INFO: a = " << a << ", b = " << b << ", c = " << c << "." << endl;
 | 
|---|
| [fee69b] | 380 |   if ((a.NormSquared() < MYEPSILON) || (b.NormSquared() < MYEPSILON)) {
 | 
|---|
 | 381 |    Zero();
 | 
|---|
 | 382 |    Log() << Verbose(1) << "At least one of the lines is ill-defined, i.e. offset equals second vector." << endl;
 | 
|---|
 | 383 |    return false;
 | 
|---|
 | 384 |   }
 | 
|---|
| [fcad4b] | 385 | 
 | 
|---|
 | 386 |   // check for parallelity
 | 
|---|
 | 387 |   Vector parallel;
 | 
|---|
| [fee69b] | 388 |   double factor = 0.;
 | 
|---|
 | 389 |   if (fabs(a.ScalarProduct(&b)*a.ScalarProduct(&b)/a.NormSquared()/b.NormSquared() - 1.) < MYEPSILON) {
 | 
|---|
 | 390 |     parallel.CopyVector(Line1a);
 | 
|---|
 | 391 |     parallel.SubtractVector(Line2a);
 | 
|---|
 | 392 |     factor = parallel.ScalarProduct(&a)/a.Norm();
 | 
|---|
 | 393 |     if ((factor >= -MYEPSILON) && (factor - 1. < MYEPSILON)) {
 | 
|---|
 | 394 |       CopyVector(Line2a);
 | 
|---|
 | 395 |       Log() << Verbose(1) << "Lines conincide." << endl;
 | 
|---|
 | 396 |       return true;
 | 
|---|
 | 397 |     } else {
 | 
|---|
 | 398 |       parallel.CopyVector(Line1a);
 | 
|---|
 | 399 |       parallel.SubtractVector(Line2b);
 | 
|---|
 | 400 |       factor = parallel.ScalarProduct(&a)/a.Norm();
 | 
|---|
 | 401 |       if ((factor >= -MYEPSILON) && (factor - 1. < MYEPSILON)) {
 | 
|---|
 | 402 |         CopyVector(Line2b);
 | 
|---|
 | 403 |         Log() << Verbose(1) << "Lines conincide." << endl;
 | 
|---|
 | 404 |         return true;
 | 
|---|
 | 405 |       }
 | 
|---|
 | 406 |     }
 | 
|---|
| [fcad4b] | 407 |     Log() << Verbose(1) << "Lines are parallel." << endl;
 | 
|---|
| [fee69b] | 408 |     Zero();
 | 
|---|
| [fcad4b] | 409 |     return false;
 | 
|---|
 | 410 |   }
 | 
|---|
| [9d6308] | 411 | 
 | 
|---|
 | 412 |   // obtain s
 | 
|---|
 | 413 |   double s;
 | 
|---|
 | 414 |   Vector temp1, temp2;
 | 
|---|
 | 415 |   temp1.CopyVector(&c);
 | 
|---|
 | 416 |   temp1.VectorProduct(&b);
 | 
|---|
 | 417 |   temp2.CopyVector(&a);
 | 
|---|
 | 418 |   temp2.VectorProduct(&b);
 | 
|---|
| [fcad4b] | 419 |   Log() << Verbose(1) << "INFO: temp1 = " << temp1 << ", temp2 = " << temp2 << "." << endl;
 | 
|---|
 | 420 |   if (fabs(temp2.NormSquared()) > MYEPSILON)
 | 
|---|
 | 421 |     s = temp1.ScalarProduct(&temp2)/temp2.NormSquared();
 | 
|---|
 | 422 |   else
 | 
|---|
 | 423 |     s = 0.;
 | 
|---|
 | 424 |   Log() << Verbose(1) << "Factor s is " << temp1.ScalarProduct(&temp2) << "/" << temp2.NormSquared() << " = " << s << "." << endl;
 | 
|---|
| [9d6308] | 425 | 
 | 
|---|
 | 426 |   // construct intersection
 | 
|---|
 | 427 |   CopyVector(&a);
 | 
|---|
 | 428 |   Scale(s);
 | 
|---|
| [97498a] | 429 |   AddVector(Line1a);
 | 
|---|
| [9d6308] | 430 |   Log() << Verbose(1) << "Intersection is at " << *this << "." << endl;
 | 
|---|
| [97498a] | 431 | 
 | 
|---|
| [fee69b] | 432 |   return true;
 | 
|---|
| [2319ed] | 433 | };
 | 
|---|
 | 434 | 
 | 
|---|
| [6ac7ee] | 435 | /** Calculates the projection of a vector onto another \a *y.
 | 
|---|
 | 436 |  * \param *y array to second vector
 | 
|---|
 | 437 |  */
 | 
|---|
| [776b64] | 438 | void Vector::ProjectIt(const Vector * const y)
 | 
|---|
| [6ac7ee] | 439 | {
 | 
|---|
| [ef9df36] | 440 |   Vector helper(*y);
 | 
|---|
 | 441 |   helper.Scale(-(ScalarProduct(y)));
 | 
|---|
 | 442 |   AddVector(&helper);
 | 
|---|
 | 443 | };
 | 
|---|
 | 444 | 
 | 
|---|
 | 445 | /** Calculates the projection of a vector onto another \a *y.
 | 
|---|
 | 446 |  * \param *y array to second vector
 | 
|---|
 | 447 |  * \return Vector
 | 
|---|
 | 448 |  */
 | 
|---|
| [776b64] | 449 | Vector Vector::Projection(const Vector * const y) const
 | 
|---|
| [ef9df36] | 450 | {
 | 
|---|
 | 451 |   Vector helper(*y);
 | 
|---|
 | 452 |   helper.Scale((ScalarProduct(y)/y->NormSquared()));
 | 
|---|
 | 453 | 
 | 
|---|
 | 454 |   return helper;
 | 
|---|
| [6ac7ee] | 455 | };
 | 
|---|
 | 456 | 
 | 
|---|
 | 457 | /** Calculates norm of this vector.
 | 
|---|
 | 458 |  * \return \f$|x|\f$
 | 
|---|
 | 459 |  */
 | 
|---|
 | 460 | double Vector::Norm() const
 | 
|---|
 | 461 | {
 | 
|---|
| [042f82] | 462 |   double res = 0.;
 | 
|---|
 | 463 |   for (int i=NDIM;i--;)
 | 
|---|
 | 464 |     res += this->x[i]*this->x[i];
 | 
|---|
 | 465 |   return (sqrt(res));
 | 
|---|
| [6ac7ee] | 466 | };
 | 
|---|
 | 467 | 
 | 
|---|
| [d4d0dd] | 468 | /** Calculates squared norm of this vector.
 | 
|---|
 | 469 |  * \return \f$|x|^2\f$
 | 
|---|
 | 470 |  */
 | 
|---|
 | 471 | double Vector::NormSquared() const
 | 
|---|
 | 472 | {
 | 
|---|
 | 473 |   return (ScalarProduct(this));
 | 
|---|
 | 474 | };
 | 
|---|
 | 475 | 
 | 
|---|
| [6ac7ee] | 476 | /** Normalizes this vector.
 | 
|---|
 | 477 |  */
 | 
|---|
 | 478 | void Vector::Normalize()
 | 
|---|
 | 479 | {
 | 
|---|
| [042f82] | 480 |   double res = 0.;
 | 
|---|
 | 481 |   for (int i=NDIM;i--;)
 | 
|---|
 | 482 |     res += this->x[i]*this->x[i];
 | 
|---|
 | 483 |   if (fabs(res) > MYEPSILON)
 | 
|---|
 | 484 |     res = 1./sqrt(res);
 | 
|---|
 | 485 |   Scale(&res);
 | 
|---|
| [6ac7ee] | 486 | };
 | 
|---|
 | 487 | 
 | 
|---|
 | 488 | /** Zeros all components of this vector.
 | 
|---|
 | 489 |  */
 | 
|---|
 | 490 | void Vector::Zero()
 | 
|---|
 | 491 | {
 | 
|---|
| [042f82] | 492 |   for (int i=NDIM;i--;)
 | 
|---|
 | 493 |     this->x[i] = 0.;
 | 
|---|
| [6ac7ee] | 494 | };
 | 
|---|
 | 495 | 
 | 
|---|
 | 496 | /** Zeros all components of this vector.
 | 
|---|
 | 497 |  */
 | 
|---|
| [776b64] | 498 | void Vector::One(const double one)
 | 
|---|
| [6ac7ee] | 499 | {
 | 
|---|
| [042f82] | 500 |   for (int i=NDIM;i--;)
 | 
|---|
 | 501 |     this->x[i] = one;
 | 
|---|
| [6ac7ee] | 502 | };
 | 
|---|
 | 503 | 
 | 
|---|
 | 504 | /** Initialises all components of this vector.
 | 
|---|
 | 505 |  */
 | 
|---|
| [776b64] | 506 | void Vector::Init(const double x1, const double x2, const double x3)
 | 
|---|
| [6ac7ee] | 507 | {
 | 
|---|
| [042f82] | 508 |   x[0] = x1;
 | 
|---|
 | 509 |   x[1] = x2;
 | 
|---|
 | 510 |   x[2] = x3;
 | 
|---|
| [6ac7ee] | 511 | };
 | 
|---|
 | 512 | 
 | 
|---|
| [9c20aa] | 513 | /** Checks whether vector has all components zero.
 | 
|---|
 | 514 |  * @return true - vector is zero, false - vector is not
 | 
|---|
 | 515 |  */
 | 
|---|
| [54a746] | 516 | bool Vector::IsZero() const
 | 
|---|
| [9c20aa] | 517 | {
 | 
|---|
| [54a746] | 518 |   return (fabs(x[0])+fabs(x[1])+fabs(x[2]) < MYEPSILON);
 | 
|---|
 | 519 | };
 | 
|---|
 | 520 | 
 | 
|---|
 | 521 | /** Checks whether vector has length of 1.
 | 
|---|
 | 522 |  * @return true - vector is normalized, false - vector is not
 | 
|---|
 | 523 |  */
 | 
|---|
 | 524 | bool Vector::IsOne() const
 | 
|---|
 | 525 | {
 | 
|---|
 | 526 |   return (fabs(Norm() - 1.) < MYEPSILON);
 | 
|---|
| [9c20aa] | 527 | };
 | 
|---|
 | 528 | 
 | 
|---|
| [ef9df36] | 529 | /** Checks whether vector is normal to \a *normal.
 | 
|---|
 | 530 |  * @return true - vector is normalized, false - vector is not
 | 
|---|
 | 531 |  */
 | 
|---|
| [776b64] | 532 | bool Vector::IsNormalTo(const Vector * const normal) const
 | 
|---|
| [ef9df36] | 533 | {
 | 
|---|
 | 534 |   if (ScalarProduct(normal) < MYEPSILON)
 | 
|---|
 | 535 |     return true;
 | 
|---|
 | 536 |   else
 | 
|---|
 | 537 |     return false;
 | 
|---|
 | 538 | };
 | 
|---|
 | 539 | 
 | 
|---|
| [b998c3] | 540 | /** Checks whether vector is normal to \a *normal.
 | 
|---|
 | 541 |  * @return true - vector is normalized, false - vector is not
 | 
|---|
 | 542 |  */
 | 
|---|
 | 543 | bool Vector::IsEqualTo(const Vector * const a) const
 | 
|---|
 | 544 | {
 | 
|---|
 | 545 |   bool status = true;
 | 
|---|
 | 546 |   for (int i=0;i<NDIM;i++) {
 | 
|---|
 | 547 |     if (fabs(x[i] - a->x[i]) > MYEPSILON)
 | 
|---|
 | 548 |       status = false;
 | 
|---|
 | 549 |   }
 | 
|---|
 | 550 |   return status;
 | 
|---|
 | 551 | };
 | 
|---|
 | 552 | 
 | 
|---|
| [6ac7ee] | 553 | /** Calculates the angle between this and another vector.
 | 
|---|
 | 554 |  * \param *y array to second vector
 | 
|---|
 | 555 |  * \return \f$\acos\bigl(frac{\langle x, y \rangle}{|x||y|}\bigr)\f$
 | 
|---|
 | 556 |  */
 | 
|---|
| [776b64] | 557 | double Vector::Angle(const Vector * const y) const
 | 
|---|
| [6ac7ee] | 558 | {
 | 
|---|
| [d4d0dd] | 559 |   double norm1 = Norm(), norm2 = y->Norm();
 | 
|---|
| [ef9df36] | 560 |   double angle = -1;
 | 
|---|
| [d4d0dd] | 561 |   if ((fabs(norm1) > MYEPSILON) && (fabs(norm2) > MYEPSILON))
 | 
|---|
 | 562 |     angle = this->ScalarProduct(y)/norm1/norm2;
 | 
|---|
| [02da9e] | 563 |   // -1-MYEPSILON occured due to numerical imprecision, catch ...
 | 
|---|
| [e138de] | 564 |   //Log() << Verbose(2) << "INFO: acos(-1) = " << acos(-1) << ", acos(-1+MYEPSILON) = " << acos(-1+MYEPSILON) << ", acos(-1-MYEPSILON) = " << acos(-1-MYEPSILON) << "." << endl;
 | 
|---|
| [02da9e] | 565 |   if (angle < -1)
 | 
|---|
 | 566 |     angle = -1;
 | 
|---|
 | 567 |   if (angle > 1)
 | 
|---|
 | 568 |     angle = 1;
 | 
|---|
| [042f82] | 569 |   return acos(angle);
 | 
|---|
| [6ac7ee] | 570 | };
 | 
|---|
 | 571 | 
 | 
|---|
| [78b73c] | 572 | /** Rotates the vector relative to the origin around the axis given by \a *axis by an angle of \a alpha.
 | 
|---|
| [6ac7ee] | 573 |  * \param *axis rotation axis
 | 
|---|
 | 574 |  * \param alpha rotation angle in radian
 | 
|---|
 | 575 |  */
 | 
|---|
| [776b64] | 576 | void Vector::RotateVector(const Vector * const axis, const double alpha)
 | 
|---|
| [6ac7ee] | 577 | {
 | 
|---|
| [042f82] | 578 |   Vector a,y;
 | 
|---|
 | 579 |   // normalise this vector with respect to axis
 | 
|---|
 | 580 |   a.CopyVector(this);
 | 
|---|
| [ef9df36] | 581 |   a.ProjectOntoPlane(axis);
 | 
|---|
| [042f82] | 582 |   // construct normal vector
 | 
|---|
| [78b73c] | 583 |   bool rotatable = y.MakeNormalVector(axis,&a);
 | 
|---|
 | 584 |   // The normal vector cannot be created if there is linar dependency.
 | 
|---|
 | 585 |   // Then the vector to rotate is on the axis and any rotation leads to the vector itself.
 | 
|---|
 | 586 |   if (!rotatable) {
 | 
|---|
 | 587 |     return;
 | 
|---|
 | 588 |   }
 | 
|---|
| [042f82] | 589 |   y.Scale(Norm());
 | 
|---|
 | 590 |   // scale normal vector by sine and this vector by cosine
 | 
|---|
 | 591 |   y.Scale(sin(alpha));
 | 
|---|
| [78b73c] | 592 |   a.Scale(cos(alpha));
 | 
|---|
 | 593 |   CopyVector(Projection(axis));
 | 
|---|
| [042f82] | 594 |   // add scaled normal vector onto this vector
 | 
|---|
 | 595 |   AddVector(&y);
 | 
|---|
 | 596 |   // add part in axis direction
 | 
|---|
 | 597 |   AddVector(&a);
 | 
|---|
| [6ac7ee] | 598 | };
 | 
|---|
 | 599 | 
 | 
|---|
| [ef9df36] | 600 | /** Compares vector \a to vector \a b component-wise.
 | 
|---|
 | 601 |  * \param a base vector
 | 
|---|
 | 602 |  * \param b vector components to add
 | 
|---|
 | 603 |  * \return a == b
 | 
|---|
 | 604 |  */
 | 
|---|
 | 605 | bool operator==(const Vector& a, const Vector& b)
 | 
|---|
 | 606 | {
 | 
|---|
 | 607 |   bool status = true;
 | 
|---|
 | 608 |   for (int i=0;i<NDIM;i++)
 | 
|---|
 | 609 |     status = status && (fabs(a.x[i] - b.x[i]) < MYEPSILON);
 | 
|---|
 | 610 |   return status;
 | 
|---|
 | 611 | };
 | 
|---|
 | 612 | 
 | 
|---|
| [6ac7ee] | 613 | /** Sums vector \a to this lhs component-wise.
 | 
|---|
 | 614 |  * \param a base vector
 | 
|---|
 | 615 |  * \param b vector components to add
 | 
|---|
 | 616 |  * \return lhs + a
 | 
|---|
 | 617 |  */
 | 
|---|
 | 618 | Vector& operator+=(Vector& a, const Vector& b)
 | 
|---|
 | 619 | {
 | 
|---|
| [042f82] | 620 |   a.AddVector(&b);
 | 
|---|
 | 621 |   return a;
 | 
|---|
| [6ac7ee] | 622 | };
 | 
|---|
| [54a746] | 623 | 
 | 
|---|
 | 624 | /** Subtracts vector \a from this lhs component-wise.
 | 
|---|
 | 625 |  * \param a base vector
 | 
|---|
 | 626 |  * \param b vector components to add
 | 
|---|
 | 627 |  * \return lhs - a
 | 
|---|
 | 628 |  */
 | 
|---|
 | 629 | Vector& operator-=(Vector& a, const Vector& b)
 | 
|---|
 | 630 | {
 | 
|---|
 | 631 |   a.SubtractVector(&b);
 | 
|---|
 | 632 |   return a;
 | 
|---|
 | 633 | };
 | 
|---|
 | 634 | 
 | 
|---|
| [6ac7ee] | 635 | /** factor each component of \a a times a double \a m.
 | 
|---|
 | 636 |  * \param a base vector
 | 
|---|
 | 637 |  * \param m factor
 | 
|---|
 | 638 |  * \return lhs.x[i] * m
 | 
|---|
 | 639 |  */
 | 
|---|
 | 640 | Vector& operator*=(Vector& a, const double m)
 | 
|---|
 | 641 | {
 | 
|---|
| [042f82] | 642 |   a.Scale(m);
 | 
|---|
 | 643 |   return a;
 | 
|---|
| [6ac7ee] | 644 | };
 | 
|---|
 | 645 | 
 | 
|---|
| [042f82] | 646 | /** Sums two vectors \a  and \b component-wise.
 | 
|---|
| [6ac7ee] | 647 |  * \param a first vector
 | 
|---|
 | 648 |  * \param b second vector
 | 
|---|
 | 649 |  * \return a + b
 | 
|---|
 | 650 |  */
 | 
|---|
 | 651 | Vector& operator+(const Vector& a, const Vector& b)
 | 
|---|
 | 652 | {
 | 
|---|
| [042f82] | 653 |   Vector *x = new Vector;
 | 
|---|
 | 654 |   x->CopyVector(&a);
 | 
|---|
 | 655 |   x->AddVector(&b);
 | 
|---|
 | 656 |   return *x;
 | 
|---|
| [6ac7ee] | 657 | };
 | 
|---|
 | 658 | 
 | 
|---|
| [54a746] | 659 | /** Subtracts vector \a from \b component-wise.
 | 
|---|
 | 660 |  * \param a first vector
 | 
|---|
 | 661 |  * \param b second vector
 | 
|---|
 | 662 |  * \return a - b
 | 
|---|
 | 663 |  */
 | 
|---|
 | 664 | Vector& operator-(const Vector& a, const Vector& b)
 | 
|---|
 | 665 | {
 | 
|---|
 | 666 |   Vector *x = new Vector;
 | 
|---|
 | 667 |   x->CopyVector(&a);
 | 
|---|
 | 668 |   x->SubtractVector(&b);
 | 
|---|
 | 669 |   return *x;
 | 
|---|
 | 670 | };
 | 
|---|
 | 671 | 
 | 
|---|
| [6ac7ee] | 672 | /** Factors given vector \a a times \a m.
 | 
|---|
 | 673 |  * \param a vector
 | 
|---|
 | 674 |  * \param m factor
 | 
|---|
| [54a746] | 675 |  * \return m * a
 | 
|---|
| [6ac7ee] | 676 |  */
 | 
|---|
 | 677 | Vector& operator*(const Vector& a, const double m)
 | 
|---|
 | 678 | {
 | 
|---|
| [042f82] | 679 |   Vector *x = new Vector;
 | 
|---|
 | 680 |   x->CopyVector(&a);
 | 
|---|
 | 681 |   x->Scale(m);
 | 
|---|
 | 682 |   return *x;
 | 
|---|
| [6ac7ee] | 683 | };
 | 
|---|
 | 684 | 
 | 
|---|
| [54a746] | 685 | /** Factors given vector \a a times \a m.
 | 
|---|
 | 686 |  * \param m factor
 | 
|---|
 | 687 |  * \param a vector
 | 
|---|
 | 688 |  * \return m * a
 | 
|---|
 | 689 |  */
 | 
|---|
 | 690 | Vector& operator*(const double m, const Vector& a )
 | 
|---|
 | 691 | {
 | 
|---|
 | 692 |   Vector *x = new Vector;
 | 
|---|
 | 693 |   x->CopyVector(&a);
 | 
|---|
 | 694 |   x->Scale(m);
 | 
|---|
 | 695 |   return *x;
 | 
|---|
 | 696 | };
 | 
|---|
 | 697 | 
 | 
|---|
| [6ac7ee] | 698 | /** Prints a 3dim vector.
 | 
|---|
 | 699 |  * prints no end of line.
 | 
|---|
 | 700 |  */
 | 
|---|
| [e138de] | 701 | void Vector::Output() const
 | 
|---|
| [6ac7ee] | 702 | {
 | 
|---|
| [e138de] | 703 |   Log() << Verbose(0) << "(";
 | 
|---|
 | 704 |   for (int i=0;i<NDIM;i++) {
 | 
|---|
 | 705 |     Log() << Verbose(0) << x[i];
 | 
|---|
 | 706 |     if (i != 2)
 | 
|---|
 | 707 |       Log() << Verbose(0) << ",";
 | 
|---|
 | 708 |   }
 | 
|---|
 | 709 |   Log() << Verbose(0) << ")";
 | 
|---|
| [6ac7ee] | 710 | };
 | 
|---|
 | 711 | 
 | 
|---|
| [9c20aa] | 712 | ostream& operator<<(ostream& ost, const Vector& m)
 | 
|---|
| [6ac7ee] | 713 | {
 | 
|---|
| [042f82] | 714 |   ost << "(";
 | 
|---|
 | 715 |   for (int i=0;i<NDIM;i++) {
 | 
|---|
 | 716 |     ost << m.x[i];
 | 
|---|
 | 717 |     if (i != 2)
 | 
|---|
 | 718 |       ost << ",";
 | 
|---|
 | 719 |   }
 | 
|---|
 | 720 |   ost << ")";
 | 
|---|
 | 721 |   return ost;
 | 
|---|
| [6ac7ee] | 722 | };
 | 
|---|
 | 723 | 
 | 
|---|
 | 724 | /** Scales each atom coordinate by an individual \a factor.
 | 
|---|
 | 725 |  * \param *factor pointer to scaling factor
 | 
|---|
 | 726 |  */
 | 
|---|
| [776b64] | 727 | void Vector::Scale(const double ** const factor)
 | 
|---|
| [6ac7ee] | 728 | {
 | 
|---|
| [042f82] | 729 |   for (int i=NDIM;i--;)
 | 
|---|
 | 730 |     x[i] *= (*factor)[i];
 | 
|---|
| [6ac7ee] | 731 | };
 | 
|---|
 | 732 | 
 | 
|---|
| [776b64] | 733 | void Vector::Scale(const double * const factor)
 | 
|---|
| [6ac7ee] | 734 | {
 | 
|---|
| [042f82] | 735 |   for (int i=NDIM;i--;)
 | 
|---|
 | 736 |     x[i] *= *factor;
 | 
|---|
| [6ac7ee] | 737 | };
 | 
|---|
 | 738 | 
 | 
|---|
| [776b64] | 739 | void Vector::Scale(const double factor)
 | 
|---|
| [6ac7ee] | 740 | {
 | 
|---|
| [042f82] | 741 |   for (int i=NDIM;i--;)
 | 
|---|
 | 742 |     x[i] *= factor;
 | 
|---|
| [6ac7ee] | 743 | };
 | 
|---|
 | 744 | 
 | 
|---|
 | 745 | /** Translate atom by given vector.
 | 
|---|
 | 746 |  * \param trans[] translation vector.
 | 
|---|
 | 747 |  */
 | 
|---|
| [776b64] | 748 | void Vector::Translate(const Vector * const trans)
 | 
|---|
| [6ac7ee] | 749 | {
 | 
|---|
| [042f82] | 750 |   for (int i=NDIM;i--;)
 | 
|---|
 | 751 |     x[i] += trans->x[i];
 | 
|---|
| [6ac7ee] | 752 | };
 | 
|---|
 | 753 | 
 | 
|---|
| [d09ff7] | 754 | /** Given a box by its matrix \a *M and its inverse *Minv the vector is made to point within that box.
 | 
|---|
 | 755 |  * \param *M matrix of box
 | 
|---|
 | 756 |  * \param *Minv inverse matrix
 | 
|---|
 | 757 |  */
 | 
|---|
| [776b64] | 758 | void Vector::WrapPeriodically(const double * const M, const double * const Minv)
 | 
|---|
| [d09ff7] | 759 | {
 | 
|---|
 | 760 |   MatrixMultiplication(Minv);
 | 
|---|
 | 761 |   // truncate to [0,1] for each axis
 | 
|---|
 | 762 |   for (int i=0;i<NDIM;i++) {
 | 
|---|
 | 763 |     x[i] += 0.5;  // set to center of box
 | 
|---|
 | 764 |     while (x[i] >= 1.)
 | 
|---|
 | 765 |       x[i] -= 1.;
 | 
|---|
 | 766 |     while (x[i] < 0.)
 | 
|---|
 | 767 |       x[i] += 1.;
 | 
|---|
 | 768 |   }
 | 
|---|
 | 769 |   MatrixMultiplication(M);
 | 
|---|
 | 770 | };
 | 
|---|
 | 771 | 
 | 
|---|
| [6ac7ee] | 772 | /** Do a matrix multiplication.
 | 
|---|
 | 773 |  * \param *matrix NDIM_NDIM array
 | 
|---|
 | 774 |  */
 | 
|---|
| [776b64] | 775 | void Vector::MatrixMultiplication(const double * const M)
 | 
|---|
| [6ac7ee] | 776 | {
 | 
|---|
| [042f82] | 777 |   Vector C;
 | 
|---|
 | 778 |   // do the matrix multiplication
 | 
|---|
 | 779 |   C.x[0] = M[0]*x[0]+M[3]*x[1]+M[6]*x[2];
 | 
|---|
 | 780 |   C.x[1] = M[1]*x[0]+M[4]*x[1]+M[7]*x[2];
 | 
|---|
 | 781 |   C.x[2] = M[2]*x[0]+M[5]*x[1]+M[8]*x[2];
 | 
|---|
 | 782 |   // transfer the result into this
 | 
|---|
 | 783 |   for (int i=NDIM;i--;)
 | 
|---|
 | 784 |     x[i] = C.x[i];
 | 
|---|
| [6ac7ee] | 785 | };
 | 
|---|
 | 786 | 
 | 
|---|
| [2319ed] | 787 | /** Do a matrix multiplication with the \a *A' inverse.
 | 
|---|
| [6ac7ee] | 788 |  * \param *matrix NDIM_NDIM array
 | 
|---|
 | 789 |  */
 | 
|---|
| [776b64] | 790 | void Vector::InverseMatrixMultiplication(const double * const A)
 | 
|---|
| [6ac7ee] | 791 | {
 | 
|---|
| [042f82] | 792 |   Vector C;
 | 
|---|
 | 793 |   double B[NDIM*NDIM];
 | 
|---|
 | 794 |   double detA = RDET3(A);
 | 
|---|
 | 795 |   double detAReci;
 | 
|---|
 | 796 | 
 | 
|---|
 | 797 |   // calculate the inverse B
 | 
|---|
 | 798 |   if (fabs(detA) > MYEPSILON) {;  // RDET3(A) yields precisely zero if A irregular
 | 
|---|
 | 799 |     detAReci = 1./detA;
 | 
|---|
 | 800 |     B[0] =  detAReci*RDET2(A[4],A[5],A[7],A[8]);    // A_11
 | 
|---|
 | 801 |     B[1] = -detAReci*RDET2(A[1],A[2],A[7],A[8]);    // A_12
 | 
|---|
 | 802 |     B[2] =  detAReci*RDET2(A[1],A[2],A[4],A[5]);    // A_13
 | 
|---|
 | 803 |     B[3] = -detAReci*RDET2(A[3],A[5],A[6],A[8]);    // A_21
 | 
|---|
 | 804 |     B[4] =  detAReci*RDET2(A[0],A[2],A[6],A[8]);    // A_22
 | 
|---|
 | 805 |     B[5] = -detAReci*RDET2(A[0],A[2],A[3],A[5]);    // A_23
 | 
|---|
 | 806 |     B[6] =  detAReci*RDET2(A[3],A[4],A[6],A[7]);    // A_31
 | 
|---|
 | 807 |     B[7] = -detAReci*RDET2(A[0],A[1],A[6],A[7]);    // A_32
 | 
|---|
 | 808 |     B[8] =  detAReci*RDET2(A[0],A[1],A[3],A[4]);    // A_33
 | 
|---|
 | 809 | 
 | 
|---|
 | 810 |     // do the matrix multiplication
 | 
|---|
 | 811 |     C.x[0] = B[0]*x[0]+B[3]*x[1]+B[6]*x[2];
 | 
|---|
 | 812 |     C.x[1] = B[1]*x[0]+B[4]*x[1]+B[7]*x[2];
 | 
|---|
 | 813 |     C.x[2] = B[2]*x[0]+B[5]*x[1]+B[8]*x[2];
 | 
|---|
 | 814 |     // transfer the result into this
 | 
|---|
 | 815 |     for (int i=NDIM;i--;)
 | 
|---|
 | 816 |       x[i] = C.x[i];
 | 
|---|
 | 817 |   } else {
 | 
|---|
| [58ed4a] | 818 |     DoeLog(1) && (eLog()<< Verbose(1) << "inverse of matrix does not exists: det A = " << detA << "." << endl);
 | 
|---|
| [042f82] | 819 |   }
 | 
|---|
| [6ac7ee] | 820 | };
 | 
|---|
 | 821 | 
 | 
|---|
 | 822 | 
 | 
|---|
 | 823 | /** Creates this vector as the b y *factors' components scaled linear combination of the given three.
 | 
|---|
 | 824 |  * this vector = x1*factors[0] + x2* factors[1] + x3*factors[2]
 | 
|---|
 | 825 |  * \param *x1 first vector
 | 
|---|
 | 826 |  * \param *x2 second vector
 | 
|---|
 | 827 |  * \param *x3 third vector
 | 
|---|
 | 828 |  * \param *factors three-component vector with the factor for each given vector
 | 
|---|
 | 829 |  */
 | 
|---|
| [776b64] | 830 | void Vector::LinearCombinationOfVectors(const Vector * const x1, const Vector * const x2, const Vector * const x3, const double * const factors)
 | 
|---|
| [6ac7ee] | 831 | {
 | 
|---|
| [042f82] | 832 |   for(int i=NDIM;i--;)
 | 
|---|
 | 833 |     x[i] = factors[0]*x1->x[i] + factors[1]*x2->x[i] + factors[2]*x3->x[i];
 | 
|---|
| [6ac7ee] | 834 | };
 | 
|---|
 | 835 | 
 | 
|---|
 | 836 | /** Mirrors atom against a given plane.
 | 
|---|
 | 837 |  * \param n[] normal vector of mirror plane.
 | 
|---|
 | 838 |  */
 | 
|---|
| [776b64] | 839 | void Vector::Mirror(const Vector * const n)
 | 
|---|
| [6ac7ee] | 840 | {
 | 
|---|
| [042f82] | 841 |   double projection;
 | 
|---|
 | 842 |   projection = ScalarProduct(n)/n->ScalarProduct(n);    // remove constancy from n (keep as logical one)
 | 
|---|
 | 843 |   // withdraw projected vector twice from original one
 | 
|---|
| [e138de] | 844 |   Log() << Verbose(1) << "Vector: ";
 | 
|---|
 | 845 |   Output();
 | 
|---|
 | 846 |   Log() << Verbose(0) << "\t";
 | 
|---|
| [042f82] | 847 |   for (int i=NDIM;i--;)
 | 
|---|
 | 848 |     x[i] -= 2.*projection*n->x[i];
 | 
|---|
| [e138de] | 849 |   Log() << Verbose(0) << "Projected vector: ";
 | 
|---|
 | 850 |   Output();
 | 
|---|
 | 851 |   Log() << Verbose(0) << endl;
 | 
|---|
| [6ac7ee] | 852 | };
 | 
|---|
 | 853 | 
 | 
|---|
 | 854 | /** Calculates normal vector for three given vectors (being three points in space).
 | 
|---|
 | 855 |  * Makes this vector orthonormal to the three given points, making up a place in 3d space.
 | 
|---|
 | 856 |  * \param *y1 first vector
 | 
|---|
 | 857 |  * \param *y2 second vector
 | 
|---|
 | 858 |  * \param *y3 third vector
 | 
|---|
 | 859 |  * \return true - success, vectors are linear independent, false - failure due to linear dependency
 | 
|---|
 | 860 |  */
 | 
|---|
| [776b64] | 861 | bool Vector::MakeNormalVector(const Vector * const y1, const Vector * const y2, const Vector * const y3)
 | 
|---|
| [6ac7ee] | 862 | {
 | 
|---|
| [042f82] | 863 |   Vector x1, x2;
 | 
|---|
| [6ac7ee] | 864 | 
 | 
|---|
| [042f82] | 865 |   x1.CopyVector(y1);
 | 
|---|
 | 866 |   x1.SubtractVector(y2);
 | 
|---|
 | 867 |   x2.CopyVector(y3);
 | 
|---|
 | 868 |   x2.SubtractVector(y2);
 | 
|---|
 | 869 |   if ((fabs(x1.Norm()) < MYEPSILON) || (fabs(x2.Norm()) < MYEPSILON) || (fabs(x1.Angle(&x2)) < MYEPSILON)) {
 | 
|---|
| [58ed4a] | 870 |     DoeLog(2) && (eLog()<< Verbose(2) << "Given vectors are linear dependent." << endl);
 | 
|---|
| [042f82] | 871 |     return false;
 | 
|---|
 | 872 |   }
 | 
|---|
| [e138de] | 873 | //  Log() << Verbose(4) << "relative, first plane coordinates:";
 | 
|---|
| [042f82] | 874 | //  x1.Output((ofstream *)&cout);
 | 
|---|
| [e138de] | 875 | //  Log() << Verbose(0) << endl;
 | 
|---|
 | 876 | //  Log() << Verbose(4) << "second plane coordinates:";
 | 
|---|
| [042f82] | 877 | //  x2.Output((ofstream *)&cout);
 | 
|---|
| [e138de] | 878 | //  Log() << Verbose(0) << endl;
 | 
|---|
| [6ac7ee] | 879 | 
 | 
|---|
| [042f82] | 880 |   this->x[0] = (x1.x[1]*x2.x[2] - x1.x[2]*x2.x[1]);
 | 
|---|
 | 881 |   this->x[1] = (x1.x[2]*x2.x[0] - x1.x[0]*x2.x[2]);
 | 
|---|
 | 882 |   this->x[2] = (x1.x[0]*x2.x[1] - x1.x[1]*x2.x[0]);
 | 
|---|
 | 883 |   Normalize();
 | 
|---|
| [6ac7ee] | 884 | 
 | 
|---|
| [042f82] | 885 |   return true;
 | 
|---|
| [6ac7ee] | 886 | };
 | 
|---|
 | 887 | 
 | 
|---|
 | 888 | 
 | 
|---|
 | 889 | /** Calculates orthonormal vector to two given vectors.
 | 
|---|
 | 890 |  * Makes this vector orthonormal to two given vectors. This is very similar to the other
 | 
|---|
 | 891 |  * vector::MakeNormalVector(), only there three points whereas here two difference
 | 
|---|
 | 892 |  * vectors are given.
 | 
|---|
 | 893 |  * \param *x1 first vector
 | 
|---|
 | 894 |  * \param *x2 second vector
 | 
|---|
 | 895 |  * \return true - success, vectors are linear independent, false - failure due to linear dependency
 | 
|---|
 | 896 |  */
 | 
|---|
| [776b64] | 897 | bool Vector::MakeNormalVector(const Vector * const y1, const Vector * const y2)
 | 
|---|
| [6ac7ee] | 898 | {
 | 
|---|
| [042f82] | 899 |   Vector x1,x2;
 | 
|---|
 | 900 |   x1.CopyVector(y1);
 | 
|---|
 | 901 |   x2.CopyVector(y2);
 | 
|---|
 | 902 |   Zero();
 | 
|---|
 | 903 |   if ((fabs(x1.Norm()) < MYEPSILON) || (fabs(x2.Norm()) < MYEPSILON) || (fabs(x1.Angle(&x2)) < MYEPSILON)) {
 | 
|---|
| [58ed4a] | 904 |     DoeLog(2) && (eLog()<< Verbose(2) << "Given vectors are linear dependent." << endl);
 | 
|---|
| [042f82] | 905 |     return false;
 | 
|---|
 | 906 |   }
 | 
|---|
| [e138de] | 907 | //  Log() << Verbose(4) << "relative, first plane coordinates:";
 | 
|---|
| [042f82] | 908 | //  x1.Output((ofstream *)&cout);
 | 
|---|
| [e138de] | 909 | //  Log() << Verbose(0) << endl;
 | 
|---|
 | 910 | //  Log() << Verbose(4) << "second plane coordinates:";
 | 
|---|
| [042f82] | 911 | //  x2.Output((ofstream *)&cout);
 | 
|---|
| [e138de] | 912 | //  Log() << Verbose(0) << endl;
 | 
|---|
| [042f82] | 913 | 
 | 
|---|
 | 914 |   this->x[0] = (x1.x[1]*x2.x[2] - x1.x[2]*x2.x[1]);
 | 
|---|
 | 915 |   this->x[1] = (x1.x[2]*x2.x[0] - x1.x[0]*x2.x[2]);
 | 
|---|
 | 916 |   this->x[2] = (x1.x[0]*x2.x[1] - x1.x[1]*x2.x[0]);
 | 
|---|
 | 917 |   Normalize();
 | 
|---|
 | 918 | 
 | 
|---|
 | 919 |   return true;
 | 
|---|
| [6ac7ee] | 920 | };
 | 
|---|
 | 921 | 
 | 
|---|
 | 922 | /** Calculates orthonormal vector to one given vectors.
 | 
|---|
 | 923 |  * Just subtracts the projection onto the given vector from this vector.
 | 
|---|
| [ef9df36] | 924 |  * The removed part of the vector is Vector::Projection()
 | 
|---|
| [6ac7ee] | 925 |  * \param *x1 vector
 | 
|---|
 | 926 |  * \return true - success, false - vector is zero
 | 
|---|
 | 927 |  */
 | 
|---|
| [776b64] | 928 | bool Vector::MakeNormalVector(const Vector * const y1)
 | 
|---|
| [6ac7ee] | 929 | {
 | 
|---|
| [042f82] | 930 |   bool result = false;
 | 
|---|
| [ef9df36] | 931 |   double factor = y1->ScalarProduct(this)/y1->NormSquared();
 | 
|---|
| [042f82] | 932 |   Vector x1;
 | 
|---|
 | 933 |   x1.CopyVector(y1);
 | 
|---|
| [46670d] | 934 |   x1.Scale(factor);
 | 
|---|
| [042f82] | 935 |   SubtractVector(&x1);
 | 
|---|
 | 936 |   for (int i=NDIM;i--;)
 | 
|---|
 | 937 |     result = result || (fabs(x[i]) > MYEPSILON);
 | 
|---|
| [6ac7ee] | 938 | 
 | 
|---|
| [042f82] | 939 |   return result;
 | 
|---|
| [6ac7ee] | 940 | };
 | 
|---|
 | 941 | 
 | 
|---|
 | 942 | /** Creates this vector as one of the possible orthonormal ones to the given one.
 | 
|---|
 | 943 |  * Just scan how many components of given *vector are unequal to zero and
 | 
|---|
 | 944 |  * try to get the skp of both to be zero accordingly.
 | 
|---|
 | 945 |  * \param *vector given vector
 | 
|---|
 | 946 |  * \return true - success, false - failure (null vector given)
 | 
|---|
 | 947 |  */
 | 
|---|
| [776b64] | 948 | bool Vector::GetOneNormalVector(const Vector * const GivenVector)
 | 
|---|
| [6ac7ee] | 949 | {
 | 
|---|
| [042f82] | 950 |   int Components[NDIM]; // contains indices of non-zero components
 | 
|---|
 | 951 |   int Last = 0;   // count the number of non-zero entries in vector
 | 
|---|
 | 952 |   int j;  // loop variables
 | 
|---|
 | 953 |   double norm;
 | 
|---|
 | 954 | 
 | 
|---|
| [e138de] | 955 |   Log() << Verbose(4);
 | 
|---|
 | 956 |   GivenVector->Output();
 | 
|---|
 | 957 |   Log() << Verbose(0) << endl;
 | 
|---|
| [042f82] | 958 |   for (j=NDIM;j--;)
 | 
|---|
 | 959 |     Components[j] = -1;
 | 
|---|
 | 960 |   // find two components != 0
 | 
|---|
 | 961 |   for (j=0;j<NDIM;j++)
 | 
|---|
 | 962 |     if (fabs(GivenVector->x[j]) > MYEPSILON)
 | 
|---|
 | 963 |       Components[Last++] = j;
 | 
|---|
| [e138de] | 964 |   Log() << Verbose(4) << Last << " Components != 0: (" << Components[0] << "," << Components[1] << "," << Components[2] << ")" << endl;
 | 
|---|
| [042f82] | 965 | 
 | 
|---|
 | 966 |   switch(Last) {
 | 
|---|
 | 967 |     case 3:  // threecomponent system
 | 
|---|
 | 968 |     case 2:  // two component system
 | 
|---|
 | 969 |       norm = sqrt(1./(GivenVector->x[Components[1]]*GivenVector->x[Components[1]]) + 1./(GivenVector->x[Components[0]]*GivenVector->x[Components[0]]));
 | 
|---|
 | 970 |       x[Components[2]] = 0.;
 | 
|---|
 | 971 |       // in skp both remaining parts shall become zero but with opposite sign and third is zero
 | 
|---|
 | 972 |       x[Components[1]] = -1./GivenVector->x[Components[1]] / norm;
 | 
|---|
 | 973 |       x[Components[0]] = 1./GivenVector->x[Components[0]] / norm;
 | 
|---|
 | 974 |       return true;
 | 
|---|
 | 975 |       break;
 | 
|---|
 | 976 |     case 1: // one component system
 | 
|---|
 | 977 |       // set sole non-zero component to 0, and one of the other zero component pendants to 1
 | 
|---|
 | 978 |       x[(Components[0]+2)%NDIM] = 0.;
 | 
|---|
 | 979 |       x[(Components[0]+1)%NDIM] = 1.;
 | 
|---|
 | 980 |       x[Components[0]] = 0.;
 | 
|---|
 | 981 |       return true;
 | 
|---|
 | 982 |       break;
 | 
|---|
 | 983 |     default:
 | 
|---|
 | 984 |       return false;
 | 
|---|
 | 985 |   }
 | 
|---|
| [6ac7ee] | 986 | };
 | 
|---|
 | 987 | 
 | 
|---|
| [ef9df36] | 988 | /** Determines parameter needed to multiply this vector to obtain intersection point with plane defined by \a *A, \a *B and \a *C.
 | 
|---|
| [6ac7ee] | 989 |  * \param *A first plane vector
 | 
|---|
 | 990 |  * \param *B second plane vector
 | 
|---|
 | 991 |  * \param *C third plane vector
 | 
|---|
 | 992 |  * \return scaling parameter for this vector
 | 
|---|
 | 993 |  */
 | 
|---|
| [776b64] | 994 | double Vector::CutsPlaneAt(const Vector * const A, const Vector * const B, const Vector * const C) const
 | 
|---|
| [6ac7ee] | 995 | {
 | 
|---|
| [e138de] | 996 | //  Log() << Verbose(3) << "For comparison: ";
 | 
|---|
 | 997 | //  Log() << Verbose(0) << "A " << A->Projection(this) << "\t";
 | 
|---|
 | 998 | //  Log() << Verbose(0) << "B " << B->Projection(this) << "\t";
 | 
|---|
 | 999 | //  Log() << Verbose(0) << "C " << C->Projection(this) << "\t";
 | 
|---|
 | 1000 | //  Log() << Verbose(0) << endl;
 | 
|---|
| [ef9df36] | 1001 |   return A->ScalarProduct(this);
 | 
|---|
| [6ac7ee] | 1002 | };
 | 
|---|
 | 1003 | 
 | 
|---|
 | 1004 | /** Creates a new vector as the one with least square distance to a given set of \a vectors.
 | 
|---|
 | 1005 |  * \param *vectors set of vectors
 | 
|---|
 | 1006 |  * \param num number of vectors
 | 
|---|
 | 1007 |  * \return true if success, false if failed due to linear dependency
 | 
|---|
 | 1008 |  */
 | 
|---|
| [776b64] | 1009 | bool Vector::LSQdistance(const Vector **vectors, int num)
 | 
|---|
| [6ac7ee] | 1010 | {
 | 
|---|
| [042f82] | 1011 |   int j;
 | 
|---|
| [6ac7ee] | 1012 | 
 | 
|---|
| [042f82] | 1013 |   for (j=0;j<num;j++) {
 | 
|---|
| [e138de] | 1014 |     Log() << Verbose(1) << j << "th atom's vector: ";
 | 
|---|
 | 1015 |     (vectors[j])->Output();
 | 
|---|
 | 1016 |     Log() << Verbose(0) << endl;
 | 
|---|
| [042f82] | 1017 |   }
 | 
|---|
| [6ac7ee] | 1018 | 
 | 
|---|
| [042f82] | 1019 |   int np = 3;
 | 
|---|
 | 1020 |   struct LSQ_params par;
 | 
|---|
| [6ac7ee] | 1021 | 
 | 
|---|
| [042f82] | 1022 |    const gsl_multimin_fminimizer_type *T =
 | 
|---|
 | 1023 |      gsl_multimin_fminimizer_nmsimplex;
 | 
|---|
 | 1024 |    gsl_multimin_fminimizer *s = NULL;
 | 
|---|
 | 1025 |    gsl_vector *ss, *y;
 | 
|---|
 | 1026 |    gsl_multimin_function minex_func;
 | 
|---|
| [6ac7ee] | 1027 | 
 | 
|---|
| [042f82] | 1028 |    size_t iter = 0, i;
 | 
|---|
 | 1029 |    int status;
 | 
|---|
 | 1030 |    double size;
 | 
|---|
| [6ac7ee] | 1031 | 
 | 
|---|
| [042f82] | 1032 |    /* Initial vertex size vector */
 | 
|---|
 | 1033 |    ss = gsl_vector_alloc (np);
 | 
|---|
 | 1034 |    y = gsl_vector_alloc (np);
 | 
|---|
| [6ac7ee] | 1035 | 
 | 
|---|
| [042f82] | 1036 |    /* Set all step sizes to 1 */
 | 
|---|
 | 1037 |    gsl_vector_set_all (ss, 1.0);
 | 
|---|
| [6ac7ee] | 1038 | 
 | 
|---|
| [042f82] | 1039 |    /* Starting point */
 | 
|---|
 | 1040 |    par.vectors = vectors;
 | 
|---|
 | 1041 |    par.num = num;
 | 
|---|
| [6ac7ee] | 1042 | 
 | 
|---|
| [042f82] | 1043 |    for (i=NDIM;i--;)
 | 
|---|
 | 1044 |     gsl_vector_set(y, i, (vectors[0]->x[i] - vectors[1]->x[i])/2.);
 | 
|---|
| [6ac7ee] | 1045 | 
 | 
|---|
| [042f82] | 1046 |    /* Initialize method and iterate */
 | 
|---|
 | 1047 |    minex_func.f = &LSQ;
 | 
|---|
 | 1048 |    minex_func.n = np;
 | 
|---|
 | 1049 |    minex_func.params = (void *)∥
 | 
|---|
| [6ac7ee] | 1050 | 
 | 
|---|
| [042f82] | 1051 |    s = gsl_multimin_fminimizer_alloc (T, np);
 | 
|---|
 | 1052 |    gsl_multimin_fminimizer_set (s, &minex_func, y, ss);
 | 
|---|
| [6ac7ee] | 1053 | 
 | 
|---|
| [042f82] | 1054 |    do
 | 
|---|
 | 1055 |      {
 | 
|---|
 | 1056 |        iter++;
 | 
|---|
 | 1057 |        status = gsl_multimin_fminimizer_iterate(s);
 | 
|---|
| [6ac7ee] | 1058 | 
 | 
|---|
| [042f82] | 1059 |        if (status)
 | 
|---|
 | 1060 |          break;
 | 
|---|
| [6ac7ee] | 1061 | 
 | 
|---|
| [042f82] | 1062 |        size = gsl_multimin_fminimizer_size (s);
 | 
|---|
 | 1063 |        status = gsl_multimin_test_size (size, 1e-2);
 | 
|---|
| [6ac7ee] | 1064 | 
 | 
|---|
| [042f82] | 1065 |        if (status == GSL_SUCCESS)
 | 
|---|
 | 1066 |          {
 | 
|---|
 | 1067 |            printf ("converged to minimum at\n");
 | 
|---|
 | 1068 |          }
 | 
|---|
| [6ac7ee] | 1069 | 
 | 
|---|
| [042f82] | 1070 |        printf ("%5d ", (int)iter);
 | 
|---|
 | 1071 |        for (i = 0; i < (size_t)np; i++)
 | 
|---|
 | 1072 |          {
 | 
|---|
 | 1073 |            printf ("%10.3e ", gsl_vector_get (s->x, i));
 | 
|---|
 | 1074 |          }
 | 
|---|
 | 1075 |        printf ("f() = %7.3f size = %.3f\n", s->fval, size);
 | 
|---|
 | 1076 |      }
 | 
|---|
 | 1077 |    while (status == GSL_CONTINUE && iter < 100);
 | 
|---|
| [6ac7ee] | 1078 | 
 | 
|---|
| [042f82] | 1079 |   for (i=(size_t)np;i--;)
 | 
|---|
 | 1080 |     this->x[i] = gsl_vector_get(s->x, i);
 | 
|---|
 | 1081 |    gsl_vector_free(y);
 | 
|---|
 | 1082 |    gsl_vector_free(ss);
 | 
|---|
 | 1083 |    gsl_multimin_fminimizer_free (s);
 | 
|---|
| [6ac7ee] | 1084 | 
 | 
|---|
| [042f82] | 1085 |   return true;
 | 
|---|
| [6ac7ee] | 1086 | };
 | 
|---|
 | 1087 | 
 | 
|---|
 | 1088 | /** Adds vector \a *y componentwise.
 | 
|---|
 | 1089 |  * \param *y vector
 | 
|---|
 | 1090 |  */
 | 
|---|
| [776b64] | 1091 | void Vector::AddVector(const Vector * const y)
 | 
|---|
| [6ac7ee] | 1092 | {
 | 
|---|
| [042f82] | 1093 |   for (int i=NDIM;i--;)
 | 
|---|
 | 1094 |     this->x[i] += y->x[i];
 | 
|---|
| [6ac7ee] | 1095 | }
 | 
|---|
 | 1096 | 
 | 
|---|
 | 1097 | /** Adds vector \a *y componentwise.
 | 
|---|
 | 1098 |  * \param *y vector
 | 
|---|
 | 1099 |  */
 | 
|---|
| [776b64] | 1100 | void Vector::SubtractVector(const Vector * const y)
 | 
|---|
| [6ac7ee] | 1101 | {
 | 
|---|
| [042f82] | 1102 |   for (int i=NDIM;i--;)
 | 
|---|
 | 1103 |     this->x[i] -= y->x[i];
 | 
|---|
| [6ac7ee] | 1104 | }
 | 
|---|
 | 1105 | 
 | 
|---|
 | 1106 | /** Copy vector \a *y componentwise.
 | 
|---|
 | 1107 |  * \param *y vector
 | 
|---|
 | 1108 |  */
 | 
|---|
| [776b64] | 1109 | void Vector::CopyVector(const Vector * const y)
 | 
|---|
| [6ac7ee] | 1110 | {
 | 
|---|
| [042f82] | 1111 |   for (int i=NDIM;i--;)
 | 
|---|
 | 1112 |     this->x[i] = y->x[i];
 | 
|---|
| [6ac7ee] | 1113 | }
 | 
|---|
 | 1114 | 
 | 
|---|
| [ef9df36] | 1115 | /** Copy vector \a y componentwise.
 | 
|---|
 | 1116 |  * \param y vector
 | 
|---|
 | 1117 |  */
 | 
|---|
| [776b64] | 1118 | void Vector::CopyVector(const Vector &y)
 | 
|---|
| [ef9df36] | 1119 | {
 | 
|---|
 | 1120 |   for (int i=NDIM;i--;)
 | 
|---|
 | 1121 |     this->x[i] = y.x[i];
 | 
|---|
 | 1122 | }
 | 
|---|
 | 1123 | 
 | 
|---|
| [6ac7ee] | 1124 | 
 | 
|---|
 | 1125 | /** Asks for position, checks for boundary.
 | 
|---|
 | 1126 |  * \param cell_size unitary size of cubic cell, coordinates must be within 0...cell_size
 | 
|---|
 | 1127 |  * \param check whether bounds shall be checked (true) or not (false)
 | 
|---|
 | 1128 |  */
 | 
|---|
| [776b64] | 1129 | void Vector::AskPosition(const double * const cell_size, const bool check)
 | 
|---|
| [6ac7ee] | 1130 | {
 | 
|---|
| [042f82] | 1131 |   char coords[3] = {'x','y','z'};
 | 
|---|
 | 1132 |   int j = -1;
 | 
|---|
 | 1133 |   for (int i=0;i<3;i++) {
 | 
|---|
 | 1134 |     j += i+1;
 | 
|---|
 | 1135 |     do {
 | 
|---|
| [e138de] | 1136 |       Log() << Verbose(0) << coords[i] << "[0.." << cell_size[j] << "]: ";
 | 
|---|
| [042f82] | 1137 |       cin >> x[i];
 | 
|---|
 | 1138 |     } while (((x[i] < 0) || (x[i] >= cell_size[j])) && (check));
 | 
|---|
 | 1139 |   }
 | 
|---|
| [6ac7ee] | 1140 | };
 | 
|---|
 | 1141 | 
 | 
|---|
 | 1142 | /** Solves a vectorial system consisting of two orthogonal statements and a norm statement.
 | 
|---|
 | 1143 |  * This is linear system of equations to be solved, however of the three given (skp of this vector\
 | 
|---|
 | 1144 |  * with either of the three hast to be zero) only two are linear independent. The third equation
 | 
|---|
 | 1145 |  * is that the vector should be of magnitude 1 (orthonormal). This all leads to a case-based solution
 | 
|---|
 | 1146 |  * where very often it has to be checked whether a certain value is zero or not and thus forked into
 | 
|---|
 | 1147 |  * another case.
 | 
|---|
 | 1148 |  * \param *x1 first vector
 | 
|---|
 | 1149 |  * \param *x2 second vector
 | 
|---|
 | 1150 |  * \param *y third vector
 | 
|---|
 | 1151 |  * \param alpha first angle
 | 
|---|
 | 1152 |  * \param beta second angle
 | 
|---|
 | 1153 |  * \param c norm of final vector
 | 
|---|
 | 1154 |  * \return a vector with \f$\langle x1,x2 \rangle=A\f$, \f$\langle x1,y \rangle = B\f$ and with norm \a c.
 | 
|---|
 | 1155 |  * \bug this is not yet working properly
 | 
|---|
 | 1156 |  */
 | 
|---|
| [776b64] | 1157 | bool Vector::SolveSystem(Vector * x1, Vector * x2, Vector * y, const double alpha, const double beta, const double c)
 | 
|---|
| [6ac7ee] | 1158 | {
 | 
|---|
| [042f82] | 1159 |   double D1,D2,D3,E1,E2,F1,F2,F3,p,q=0., A, B1, B2, C;
 | 
|---|
 | 1160 |   double ang; // angle on testing
 | 
|---|
 | 1161 |   double sign[3];
 | 
|---|
 | 1162 |   int i,j,k;
 | 
|---|
 | 1163 |   A = cos(alpha) * x1->Norm() * c;
 | 
|---|
 | 1164 |   B1 = cos(beta + M_PI/2.) * y->Norm() * c;
 | 
|---|
 | 1165 |   B2 = cos(beta) * x2->Norm() * c;
 | 
|---|
 | 1166 |   C = c * c;
 | 
|---|
| [e138de] | 1167 |   Log() << Verbose(2) << "A " << A << "\tB " << B1 << "\tC " << C << endl;
 | 
|---|
| [042f82] | 1168 |   int flag = 0;
 | 
|---|
 | 1169 |   if (fabs(x1->x[0]) < MYEPSILON) { // check for zero components for the later flipping and back-flipping
 | 
|---|
 | 1170 |     if (fabs(x1->x[1]) > MYEPSILON) {
 | 
|---|
 | 1171 |       flag = 1;
 | 
|---|
 | 1172 |     } else if (fabs(x1->x[2]) > MYEPSILON) {
 | 
|---|
 | 1173 |        flag = 2;
 | 
|---|
 | 1174 |     } else {
 | 
|---|
 | 1175 |       return false;
 | 
|---|
 | 1176 |     }
 | 
|---|
 | 1177 |   }
 | 
|---|
 | 1178 |   switch (flag) {
 | 
|---|
 | 1179 |     default:
 | 
|---|
 | 1180 |     case 0:
 | 
|---|
 | 1181 |       break;
 | 
|---|
 | 1182 |     case 2:
 | 
|---|
| [ad8b0d] | 1183 |       flip(x1->x[0],x1->x[1]);
 | 
|---|
 | 1184 |       flip(x2->x[0],x2->x[1]);
 | 
|---|
 | 1185 |       flip(y->x[0],y->x[1]);
 | 
|---|
 | 1186 |       //flip(x[0],x[1]);
 | 
|---|
 | 1187 |       flip(x1->x[1],x1->x[2]);
 | 
|---|
 | 1188 |       flip(x2->x[1],x2->x[2]);
 | 
|---|
 | 1189 |       flip(y->x[1],y->x[2]);
 | 
|---|
 | 1190 |       //flip(x[1],x[2]);
 | 
|---|
| [042f82] | 1191 |     case 1:
 | 
|---|
| [ad8b0d] | 1192 |       flip(x1->x[0],x1->x[1]);
 | 
|---|
 | 1193 |       flip(x2->x[0],x2->x[1]);
 | 
|---|
 | 1194 |       flip(y->x[0],y->x[1]);
 | 
|---|
 | 1195 |       //flip(x[0],x[1]);
 | 
|---|
 | 1196 |       flip(x1->x[1],x1->x[2]);
 | 
|---|
 | 1197 |       flip(x2->x[1],x2->x[2]);
 | 
|---|
 | 1198 |       flip(y->x[1],y->x[2]);
 | 
|---|
 | 1199 |       //flip(x[1],x[2]);
 | 
|---|
| [042f82] | 1200 |       break;
 | 
|---|
 | 1201 |   }
 | 
|---|
 | 1202 |   // now comes the case system
 | 
|---|
 | 1203 |   D1 = -y->x[0]/x1->x[0]*x1->x[1]+y->x[1];
 | 
|---|
 | 1204 |   D2 = -y->x[0]/x1->x[0]*x1->x[2]+y->x[2];
 | 
|---|
 | 1205 |   D3 = y->x[0]/x1->x[0]*A-B1;
 | 
|---|
| [e138de] | 1206 |   Log() << Verbose(2) << "D1 " << D1 << "\tD2 " << D2 << "\tD3 " << D3 << "\n";
 | 
|---|
| [042f82] | 1207 |   if (fabs(D1) < MYEPSILON) {
 | 
|---|
| [e138de] | 1208 |     Log() << Verbose(2) << "D1 == 0!\n";
 | 
|---|
| [042f82] | 1209 |     if (fabs(D2) > MYEPSILON) {
 | 
|---|
| [e138de] | 1210 |       Log() << Verbose(3) << "D2 != 0!\n";
 | 
|---|
| [042f82] | 1211 |       x[2] = -D3/D2;
 | 
|---|
 | 1212 |       E1 = A/x1->x[0] + x1->x[2]/x1->x[0]*D3/D2;
 | 
|---|
 | 1213 |       E2 = -x1->x[1]/x1->x[0];
 | 
|---|
| [e138de] | 1214 |       Log() << Verbose(3) << "E1 " << E1 << "\tE2 " << E2 << "\n";
 | 
|---|
| [042f82] | 1215 |       F1 = E1*E1 + 1.;
 | 
|---|
 | 1216 |       F2 = -E1*E2;
 | 
|---|
 | 1217 |       F3 = E1*E1 + D3*D3/(D2*D2) - C;
 | 
|---|
| [e138de] | 1218 |       Log() << Verbose(3) << "F1 " << F1 << "\tF2 " << F2 << "\tF3 " << F3 << "\n";
 | 
|---|
| [042f82] | 1219 |       if (fabs(F1) < MYEPSILON) {
 | 
|---|
| [e138de] | 1220 |         Log() << Verbose(4) << "F1 == 0!\n";
 | 
|---|
 | 1221 |         Log() << Verbose(4) << "Gleichungssystem linear\n";
 | 
|---|
| [042f82] | 1222 |         x[1] = F3/(2.*F2);
 | 
|---|
 | 1223 |       } else {
 | 
|---|
 | 1224 |         p = F2/F1;
 | 
|---|
 | 1225 |         q = p*p - F3/F1;
 | 
|---|
| [e138de] | 1226 |         Log() << Verbose(4) << "p " << p << "\tq " << q << endl;
 | 
|---|
| [042f82] | 1227 |         if (q < 0) {
 | 
|---|
| [e138de] | 1228 |           Log() << Verbose(4) << "q < 0" << endl;
 | 
|---|
| [042f82] | 1229 |           return false;
 | 
|---|
 | 1230 |         }
 | 
|---|
 | 1231 |         x[1] = p + sqrt(q);
 | 
|---|
 | 1232 |       }
 | 
|---|
 | 1233 |       x[0] =  A/x1->x[0] - x1->x[1]/x1->x[0]*x[1] + x1->x[2]/x1->x[0]*x[2];
 | 
|---|
 | 1234 |     } else {
 | 
|---|
| [e138de] | 1235 |       Log() << Verbose(2) << "Gleichungssystem unterbestimmt\n";
 | 
|---|
| [042f82] | 1236 |       return false;
 | 
|---|
 | 1237 |     }
 | 
|---|
 | 1238 |   } else {
 | 
|---|
 | 1239 |     E1 = A/x1->x[0]+x1->x[1]/x1->x[0]*D3/D1;
 | 
|---|
 | 1240 |     E2 = x1->x[1]/x1->x[0]*D2/D1 - x1->x[2];
 | 
|---|
| [e138de] | 1241 |     Log() << Verbose(2) << "E1 " << E1 << "\tE2 " << E2 << "\n";
 | 
|---|
| [042f82] | 1242 |     F1 = E2*E2 + D2*D2/(D1*D1) + 1.;
 | 
|---|
 | 1243 |     F2 = -(E1*E2 + D2*D3/(D1*D1));
 | 
|---|
 | 1244 |     F3 = E1*E1 + D3*D3/(D1*D1) - C;
 | 
|---|
| [e138de] | 1245 |     Log() << Verbose(2) << "F1 " << F1 << "\tF2 " << F2 << "\tF3 " << F3 << "\n";
 | 
|---|
| [042f82] | 1246 |     if (fabs(F1) < MYEPSILON) {
 | 
|---|
| [e138de] | 1247 |       Log() << Verbose(3) << "F1 == 0!\n";
 | 
|---|
 | 1248 |       Log() << Verbose(3) << "Gleichungssystem linear\n";
 | 
|---|
| [042f82] | 1249 |       x[2] = F3/(2.*F2);
 | 
|---|
 | 1250 |     } else {
 | 
|---|
 | 1251 |       p = F2/F1;
 | 
|---|
 | 1252 |       q = p*p - F3/F1;
 | 
|---|
| [e138de] | 1253 |       Log() << Verbose(3) << "p " << p << "\tq " << q << endl;
 | 
|---|
| [042f82] | 1254 |       if (q < 0) {
 | 
|---|
| [e138de] | 1255 |         Log() << Verbose(3) << "q < 0" << endl;
 | 
|---|
| [042f82] | 1256 |         return false;
 | 
|---|
 | 1257 |       }
 | 
|---|
 | 1258 |       x[2] = p + sqrt(q);
 | 
|---|
 | 1259 |     }
 | 
|---|
 | 1260 |     x[1] = (-D2 * x[2] - D3)/D1;
 | 
|---|
 | 1261 |     x[0] = A/x1->x[0] - x1->x[1]/x1->x[0]*x[1] + x1->x[2]/x1->x[0]*x[2];
 | 
|---|
 | 1262 |   }
 | 
|---|
 | 1263 |   switch (flag) { // back-flipping
 | 
|---|
 | 1264 |     default:
 | 
|---|
 | 1265 |     case 0:
 | 
|---|
 | 1266 |       break;
 | 
|---|
 | 1267 |     case 2:
 | 
|---|
| [ad8b0d] | 1268 |       flip(x1->x[0],x1->x[1]);
 | 
|---|
 | 1269 |       flip(x2->x[0],x2->x[1]);
 | 
|---|
 | 1270 |       flip(y->x[0],y->x[1]);
 | 
|---|
 | 1271 |       flip(x[0],x[1]);
 | 
|---|
 | 1272 |       flip(x1->x[1],x1->x[2]);
 | 
|---|
 | 1273 |       flip(x2->x[1],x2->x[2]);
 | 
|---|
 | 1274 |       flip(y->x[1],y->x[2]);
 | 
|---|
 | 1275 |       flip(x[1],x[2]);
 | 
|---|
| [042f82] | 1276 |     case 1:
 | 
|---|
| [ad8b0d] | 1277 |       flip(x1->x[0],x1->x[1]);
 | 
|---|
 | 1278 |       flip(x2->x[0],x2->x[1]);
 | 
|---|
 | 1279 |       flip(y->x[0],y->x[1]);
 | 
|---|
 | 1280 |       //flip(x[0],x[1]);
 | 
|---|
 | 1281 |       flip(x1->x[1],x1->x[2]);
 | 
|---|
 | 1282 |       flip(x2->x[1],x2->x[2]);
 | 
|---|
 | 1283 |       flip(y->x[1],y->x[2]);
 | 
|---|
 | 1284 |       flip(x[1],x[2]);
 | 
|---|
| [042f82] | 1285 |       break;
 | 
|---|
 | 1286 |   }
 | 
|---|
 | 1287 |   // one z component is only determined by its radius (without sign)
 | 
|---|
 | 1288 |   // thus check eight possible sign flips and determine by checking angle with second vector
 | 
|---|
 | 1289 |   for (i=0;i<8;i++) {
 | 
|---|
 | 1290 |     // set sign vector accordingly
 | 
|---|
 | 1291 |     for (j=2;j>=0;j--) {
 | 
|---|
 | 1292 |       k = (i & pot(2,j)) << j;
 | 
|---|
| [e138de] | 1293 |       Log() << Verbose(2) << "k " << k << "\tpot(2,j) " << pot(2,j) << endl;
 | 
|---|
| [042f82] | 1294 |       sign[j] = (k == 0) ? 1. : -1.;
 | 
|---|
 | 1295 |     }
 | 
|---|
| [e138de] | 1296 |     Log() << Verbose(2) << i << ": sign matrix is " << sign[0] << "\t" << sign[1] << "\t" << sign[2] << "\n";
 | 
|---|
| [042f82] | 1297 |     // apply sign matrix
 | 
|---|
 | 1298 |     for (j=NDIM;j--;)
 | 
|---|
 | 1299 |       x[j] *= sign[j];
 | 
|---|
 | 1300 |     // calculate angle and check
 | 
|---|
 | 1301 |     ang = x2->Angle (this);
 | 
|---|
| [e138de] | 1302 |     Log() << Verbose(1) << i << "th angle " << ang << "\tbeta " << cos(beta) << " :\t";
 | 
|---|
| [042f82] | 1303 |     if (fabs(ang - cos(beta)) < MYEPSILON) {
 | 
|---|
 | 1304 |       break;
 | 
|---|
 | 1305 |     }
 | 
|---|
 | 1306 |     // unapply sign matrix (is its own inverse)
 | 
|---|
 | 1307 |     for (j=NDIM;j--;)
 | 
|---|
 | 1308 |       x[j] *= sign[j];
 | 
|---|
 | 1309 |   }
 | 
|---|
 | 1310 |   return true;
 | 
|---|
| [6ac7ee] | 1311 | };
 | 
|---|
| [89c8b2] | 1312 | 
 | 
|---|
 | 1313 | /**
 | 
|---|
 | 1314 |  * Checks whether this vector is within the parallelepiped defined by the given three vectors and
 | 
|---|
 | 1315 |  * their offset.
 | 
|---|
 | 1316 |  *
 | 
|---|
 | 1317 |  * @param offest for the origin of the parallelepiped
 | 
|---|
 | 1318 |  * @param three vectors forming the matrix that defines the shape of the parallelpiped
 | 
|---|
 | 1319 |  */
 | 
|---|
| [776b64] | 1320 | bool Vector::IsInParallelepiped(const Vector &offset, const double * const parallelepiped) const
 | 
|---|
| [89c8b2] | 1321 | {
 | 
|---|
 | 1322 |   Vector a;
 | 
|---|
 | 1323 |   a.CopyVector(this);
 | 
|---|
 | 1324 |   a.SubtractVector(&offset);
 | 
|---|
 | 1325 |   a.InverseMatrixMultiplication(parallelepiped);
 | 
|---|
 | 1326 |   bool isInside = true;
 | 
|---|
 | 1327 | 
 | 
|---|
 | 1328 |   for (int i=NDIM;i--;)
 | 
|---|
 | 1329 |     isInside = isInside && ((a.x[i] <= 1) && (a.x[i] >= 0));
 | 
|---|
 | 1330 | 
 | 
|---|
 | 1331 |   return isInside;
 | 
|---|
 | 1332 | }
 | 
|---|