[6ac7ee] | 1 | /** \file vector.cpp
|
---|
| 2 | *
|
---|
| 3 | * Function implementations for the class vector.
|
---|
| 4 | *
|
---|
| 5 | */
|
---|
| 6 |
|
---|
[112b09] | 7 | #include "Helpers/MemDebug.hpp"
|
---|
[edb93c] | 8 |
|
---|
[54a746] | 9 | #include "vector.hpp"
|
---|
[ce3d2b] | 10 | #include "VectorContent.hpp"
|
---|
[54a746] | 11 | #include "verbose.hpp"
|
---|
[b34306] | 12 | #include "World.hpp"
|
---|
[0a4f7f] | 13 | #include "Helpers/Assert.hpp"
|
---|
[753f02] | 14 | #include "Helpers/fast_functions.hpp"
|
---|
[325390] | 15 | #include "Exceptions/MathException.hpp"
|
---|
[6ac7ee] | 16 |
|
---|
[1bd79e] | 17 | #include <iostream>
|
---|
[923b6c] | 18 | #include <gsl/gsl_blas.h>
|
---|
| 19 |
|
---|
[1bd79e] | 20 |
|
---|
| 21 | using namespace std;
|
---|
[6ac7ee] | 22 |
|
---|
[97498a] | 23 |
|
---|
[6ac7ee] | 24 | /************************************ Functions for class vector ************************************/
|
---|
| 25 |
|
---|
| 26 | /** Constructor of class vector.
|
---|
| 27 | */
|
---|
[753f02] | 28 | Vector::Vector()
|
---|
| 29 | {
|
---|
[ce3d2b] | 30 | content = new VectorContent();
|
---|
[753f02] | 31 | };
|
---|
[6ac7ee] | 32 |
|
---|
[753f02] | 33 | /**
|
---|
| 34 | * Copy constructor
|
---|
[821907] | 35 | */
|
---|
[1bd79e] | 36 |
|
---|
[753f02] | 37 | Vector::Vector(const Vector& src)
|
---|
[821907] | 38 | {
|
---|
[ce3d2b] | 39 | content = new VectorContent();
|
---|
| 40 | gsl_vector_memcpy(content->content, src.content->content);
|
---|
[1bd79e] | 41 | }
|
---|
[821907] | 42 |
|
---|
| 43 | /** Constructor of class vector.
|
---|
| 44 | */
|
---|
[753f02] | 45 | Vector::Vector(const double x1, const double x2, const double x3)
|
---|
[821907] | 46 | {
|
---|
[ce3d2b] | 47 | content = new VectorContent();
|
---|
| 48 | gsl_vector_set(content->content,0,x1);
|
---|
| 49 | gsl_vector_set(content->content,1,x2);
|
---|
| 50 | gsl_vector_set(content->content,2,x3);
|
---|
[821907] | 51 | };
|
---|
| 52 |
|
---|
[ce3d2b] | 53 | Vector::Vector(VectorContent *_content) :
|
---|
[325390] | 54 | content(_content)
|
---|
| 55 | {}
|
---|
| 56 |
|
---|
[0a4f7f] | 57 | /**
|
---|
| 58 | * Assignment operator
|
---|
[6ac7ee] | 59 | */
|
---|
[0a4f7f] | 60 | Vector& Vector::operator=(const Vector& src){
|
---|
| 61 | // check for self assignment
|
---|
| 62 | if(&src!=this){
|
---|
[ce3d2b] | 63 | gsl_vector_memcpy(content->content, src.content->content);
|
---|
[0a4f7f] | 64 | }
|
---|
| 65 | return *this;
|
---|
| 66 | }
|
---|
[6ac7ee] | 67 |
|
---|
| 68 | /** Desctructor of class vector.
|
---|
| 69 | */
|
---|
[d466f0] | 70 | Vector::~Vector() {
|
---|
[ce3d2b] | 71 | delete content;
|
---|
[d466f0] | 72 | };
|
---|
[6ac7ee] | 73 |
|
---|
| 74 | /** Calculates square of distance between this and another vector.
|
---|
| 75 | * \param *y array to second vector
|
---|
| 76 | * \return \f$| x - y |^2\f$
|
---|
| 77 | */
|
---|
[273382] | 78 | double Vector::DistanceSquared(const Vector &y) const
|
---|
[6ac7ee] | 79 | {
|
---|
[042f82] | 80 | double res = 0.;
|
---|
| 81 | for (int i=NDIM;i--;)
|
---|
[d466f0] | 82 | res += (at(i)-y[i])*(at(i)-y[i]);
|
---|
[042f82] | 83 | return (res);
|
---|
[6ac7ee] | 84 | };
|
---|
| 85 |
|
---|
| 86 | /** Calculates distance between this and another vector.
|
---|
| 87 | * \param *y array to second vector
|
---|
| 88 | * \return \f$| x - y |\f$
|
---|
| 89 | */
|
---|
[1513a74] | 90 | double Vector::distance(const Vector &y) const
|
---|
[6ac7ee] | 91 | {
|
---|
[273382] | 92 | return (sqrt(DistanceSquared(y)));
|
---|
[6ac7ee] | 93 | };
|
---|
| 94 |
|
---|
[1513a74] | 95 | Vector Vector::getClosestPoint(const Vector &point) const{
|
---|
| 96 | // the closest point to a single point space is always the single point itself
|
---|
| 97 | return *this;
|
---|
| 98 | }
|
---|
| 99 |
|
---|
[6ac7ee] | 100 | /** Calculates scalar product between this and another vector.
|
---|
| 101 | * \param *y array to second vector
|
---|
| 102 | * \return \f$\langle x, y \rangle\f$
|
---|
| 103 | */
|
---|
[273382] | 104 | double Vector::ScalarProduct(const Vector &y) const
|
---|
[6ac7ee] | 105 | {
|
---|
[042f82] | 106 | double res = 0.;
|
---|
[ce3d2b] | 107 | gsl_blas_ddot(content->content, y.content->content, &res);
|
---|
[042f82] | 108 | return (res);
|
---|
[6ac7ee] | 109 | };
|
---|
| 110 |
|
---|
| 111 |
|
---|
| 112 | /** Calculates VectorProduct between this and another vector.
|
---|
[042f82] | 113 | * -# returns the Product in place of vector from which it was initiated
|
---|
| 114 | * -# ATTENTION: Only three dim.
|
---|
| 115 | * \param *y array to vector with which to calculate crossproduct
|
---|
| 116 | * \return \f$ x \times y \f&
|
---|
[6ac7ee] | 117 | */
|
---|
[273382] | 118 | void Vector::VectorProduct(const Vector &y)
|
---|
[6ac7ee] | 119 | {
|
---|
[042f82] | 120 | Vector tmp;
|
---|
[d466f0] | 121 | for(int i=NDIM;i--;)
|
---|
| 122 | tmp[i] = at((i+1)%NDIM)*y[(i+2)%NDIM] - at((i+2)%NDIM)*y[(i+1)%NDIM];
|
---|
[753f02] | 123 | (*this) = tmp;
|
---|
[6ac7ee] | 124 | };
|
---|
| 125 |
|
---|
| 126 |
|
---|
| 127 | /** projects this vector onto plane defined by \a *y.
|
---|
| 128 | * \param *y normal vector of plane
|
---|
| 129 | * \return \f$\langle x, y \rangle\f$
|
---|
| 130 | */
|
---|
[273382] | 131 | void Vector::ProjectOntoPlane(const Vector &y)
|
---|
[6ac7ee] | 132 | {
|
---|
[042f82] | 133 | Vector tmp;
|
---|
[753f02] | 134 | tmp = y;
|
---|
[042f82] | 135 | tmp.Normalize();
|
---|
[753f02] | 136 | tmp.Scale(ScalarProduct(tmp));
|
---|
| 137 | *this -= tmp;
|
---|
[2319ed] | 138 | };
|
---|
| 139 |
|
---|
[821907] | 140 | /** Calculates the minimum distance of this vector to the plane.
|
---|
| 141 | * \sa Vector::GetDistanceVectorToPlane()
|
---|
| 142 | * \param *out output stream for debugging
|
---|
| 143 | * \param *PlaneNormal normal of plane
|
---|
| 144 | * \param *PlaneOffset offset of plane
|
---|
| 145 | * \return distance to plane
|
---|
| 146 | */
|
---|
[d4c9ae] | 147 | double Vector::DistanceToSpace(const Space &space) const
|
---|
[821907] | 148 | {
|
---|
[d4c9ae] | 149 | return space.distance(*this);
|
---|
[c4d4df] | 150 | };
|
---|
| 151 |
|
---|
[6ac7ee] | 152 | /** Calculates the projection of a vector onto another \a *y.
|
---|
| 153 | * \param *y array to second vector
|
---|
| 154 | */
|
---|
[273382] | 155 | void Vector::ProjectIt(const Vector &y)
|
---|
[6ac7ee] | 156 | {
|
---|
[753f02] | 157 | (*this) += (-ScalarProduct(y))*y;
|
---|
[ef9df36] | 158 | };
|
---|
| 159 |
|
---|
| 160 | /** Calculates the projection of a vector onto another \a *y.
|
---|
| 161 | * \param *y array to second vector
|
---|
| 162 | * \return Vector
|
---|
| 163 | */
|
---|
[273382] | 164 | Vector Vector::Projection(const Vector &y) const
|
---|
[ef9df36] | 165 | {
|
---|
[753f02] | 166 | Vector helper = y;
|
---|
| 167 | helper.Scale((ScalarProduct(y)/y.NormSquared()));
|
---|
[ef9df36] | 168 |
|
---|
| 169 | return helper;
|
---|
[6ac7ee] | 170 | };
|
---|
| 171 |
|
---|
| 172 | /** Calculates norm of this vector.
|
---|
| 173 | * \return \f$|x|\f$
|
---|
| 174 | */
|
---|
| 175 | double Vector::Norm() const
|
---|
| 176 | {
|
---|
[273382] | 177 | return (sqrt(NormSquared()));
|
---|
[6ac7ee] | 178 | };
|
---|
| 179 |
|
---|
[d4d0dd] | 180 | /** Calculates squared norm of this vector.
|
---|
| 181 | * \return \f$|x|^2\f$
|
---|
| 182 | */
|
---|
| 183 | double Vector::NormSquared() const
|
---|
| 184 | {
|
---|
[273382] | 185 | return (ScalarProduct(*this));
|
---|
[d4d0dd] | 186 | };
|
---|
| 187 |
|
---|
[6ac7ee] | 188 | /** Normalizes this vector.
|
---|
| 189 | */
|
---|
| 190 | void Vector::Normalize()
|
---|
| 191 | {
|
---|
[1bd79e] | 192 | double factor = Norm();
|
---|
| 193 | (*this) *= 1/factor;
|
---|
[6ac7ee] | 194 | };
|
---|
| 195 |
|
---|
| 196 | /** Zeros all components of this vector.
|
---|
| 197 | */
|
---|
| 198 | void Vector::Zero()
|
---|
| 199 | {
|
---|
[753f02] | 200 | at(0)=at(1)=at(2)=0;
|
---|
[6ac7ee] | 201 | };
|
---|
| 202 |
|
---|
| 203 | /** Zeros all components of this vector.
|
---|
| 204 | */
|
---|
[776b64] | 205 | void Vector::One(const double one)
|
---|
[6ac7ee] | 206 | {
|
---|
[753f02] | 207 | at(0)=at(1)=at(2)=one;
|
---|
[6ac7ee] | 208 | };
|
---|
| 209 |
|
---|
[9c20aa] | 210 | /** Checks whether vector has all components zero.
|
---|
| 211 | * @return true - vector is zero, false - vector is not
|
---|
| 212 | */
|
---|
[54a746] | 213 | bool Vector::IsZero() const
|
---|
[9c20aa] | 214 | {
|
---|
[d466f0] | 215 | return (fabs(at(0))+fabs(at(1))+fabs(at(2)) < MYEPSILON);
|
---|
[54a746] | 216 | };
|
---|
| 217 |
|
---|
| 218 | /** Checks whether vector has length of 1.
|
---|
| 219 | * @return true - vector is normalized, false - vector is not
|
---|
| 220 | */
|
---|
| 221 | bool Vector::IsOne() const
|
---|
| 222 | {
|
---|
| 223 | return (fabs(Norm() - 1.) < MYEPSILON);
|
---|
[9c20aa] | 224 | };
|
---|
| 225 |
|
---|
[ef9df36] | 226 | /** Checks whether vector is normal to \a *normal.
|
---|
| 227 | * @return true - vector is normalized, false - vector is not
|
---|
| 228 | */
|
---|
[273382] | 229 | bool Vector::IsNormalTo(const Vector &normal) const
|
---|
[ef9df36] | 230 | {
|
---|
| 231 | if (ScalarProduct(normal) < MYEPSILON)
|
---|
| 232 | return true;
|
---|
| 233 | else
|
---|
| 234 | return false;
|
---|
| 235 | };
|
---|
| 236 |
|
---|
[b998c3] | 237 | /** Checks whether vector is normal to \a *normal.
|
---|
| 238 | * @return true - vector is normalized, false - vector is not
|
---|
| 239 | */
|
---|
[273382] | 240 | bool Vector::IsEqualTo(const Vector &a) const
|
---|
[b998c3] | 241 | {
|
---|
| 242 | bool status = true;
|
---|
| 243 | for (int i=0;i<NDIM;i++) {
|
---|
[d466f0] | 244 | if (fabs(at(i) - a[i]) > MYEPSILON)
|
---|
[b998c3] | 245 | status = false;
|
---|
| 246 | }
|
---|
| 247 | return status;
|
---|
| 248 | };
|
---|
| 249 |
|
---|
[6ac7ee] | 250 | /** Calculates the angle between this and another vector.
|
---|
| 251 | * \param *y array to second vector
|
---|
| 252 | * \return \f$\acos\bigl(frac{\langle x, y \rangle}{|x||y|}\bigr)\f$
|
---|
| 253 | */
|
---|
[273382] | 254 | double Vector::Angle(const Vector &y) const
|
---|
[6ac7ee] | 255 | {
|
---|
[753f02] | 256 | double norm1 = Norm(), norm2 = y.Norm();
|
---|
[ef9df36] | 257 | double angle = -1;
|
---|
[d4d0dd] | 258 | if ((fabs(norm1) > MYEPSILON) && (fabs(norm2) > MYEPSILON))
|
---|
| 259 | angle = this->ScalarProduct(y)/norm1/norm2;
|
---|
[02da9e] | 260 | // -1-MYEPSILON occured due to numerical imprecision, catch ...
|
---|
[e138de] | 261 | //Log() << Verbose(2) << "INFO: acos(-1) = " << acos(-1) << ", acos(-1+MYEPSILON) = " << acos(-1+MYEPSILON) << ", acos(-1-MYEPSILON) = " << acos(-1-MYEPSILON) << "." << endl;
|
---|
[02da9e] | 262 | if (angle < -1)
|
---|
| 263 | angle = -1;
|
---|
| 264 | if (angle > 1)
|
---|
| 265 | angle = 1;
|
---|
[042f82] | 266 | return acos(angle);
|
---|
[6ac7ee] | 267 | };
|
---|
| 268 |
|
---|
[0a4f7f] | 269 |
|
---|
| 270 | double& Vector::operator[](size_t i){
|
---|
[753f02] | 271 | ASSERT(i<=NDIM && i>=0,"Vector Index out of Range");
|
---|
[ce3d2b] | 272 | return *gsl_vector_ptr (content->content, i);
|
---|
[0a4f7f] | 273 | }
|
---|
| 274 |
|
---|
| 275 | const double& Vector::operator[](size_t i) const{
|
---|
[753f02] | 276 | ASSERT(i<=NDIM && i>=0,"Vector Index out of Range");
|
---|
[ce3d2b] | 277 | return *gsl_vector_ptr (content->content, i);
|
---|
[0a4f7f] | 278 | }
|
---|
| 279 |
|
---|
| 280 | double& Vector::at(size_t i){
|
---|
| 281 | return (*this)[i];
|
---|
| 282 | }
|
---|
| 283 |
|
---|
| 284 | const double& Vector::at(size_t i) const{
|
---|
| 285 | return (*this)[i];
|
---|
| 286 | }
|
---|
| 287 |
|
---|
[ce3d2b] | 288 | VectorContent* Vector::get(){
|
---|
[0c7ed8] | 289 | return content;
|
---|
[0a4f7f] | 290 | }
|
---|
[6ac7ee] | 291 |
|
---|
[ef9df36] | 292 | /** Compares vector \a to vector \a b component-wise.
|
---|
| 293 | * \param a base vector
|
---|
| 294 | * \param b vector components to add
|
---|
| 295 | * \return a == b
|
---|
| 296 | */
|
---|
[72e7fa] | 297 | bool Vector::operator==(const Vector& b) const
|
---|
[ef9df36] | 298 | {
|
---|
[1bd79e] | 299 | return IsEqualTo(b);
|
---|
[ef9df36] | 300 | };
|
---|
| 301 |
|
---|
[fa5a6a] | 302 | bool Vector::operator!=(const Vector& b) const
|
---|
| 303 | {
|
---|
| 304 | return !IsEqualTo(b);
|
---|
| 305 | }
|
---|
| 306 |
|
---|
[6ac7ee] | 307 | /** Sums vector \a to this lhs component-wise.
|
---|
| 308 | * \param a base vector
|
---|
| 309 | * \param b vector components to add
|
---|
| 310 | * \return lhs + a
|
---|
| 311 | */
|
---|
[72e7fa] | 312 | const Vector& Vector::operator+=(const Vector& b)
|
---|
[6ac7ee] | 313 | {
|
---|
[273382] | 314 | this->AddVector(b);
|
---|
[72e7fa] | 315 | return *this;
|
---|
[6ac7ee] | 316 | };
|
---|
[54a746] | 317 |
|
---|
| 318 | /** Subtracts vector \a from this lhs component-wise.
|
---|
| 319 | * \param a base vector
|
---|
| 320 | * \param b vector components to add
|
---|
| 321 | * \return lhs - a
|
---|
| 322 | */
|
---|
[72e7fa] | 323 | const Vector& Vector::operator-=(const Vector& b)
|
---|
[54a746] | 324 | {
|
---|
[273382] | 325 | this->SubtractVector(b);
|
---|
[72e7fa] | 326 | return *this;
|
---|
[54a746] | 327 | };
|
---|
| 328 |
|
---|
[6ac7ee] | 329 | /** factor each component of \a a times a double \a m.
|
---|
| 330 | * \param a base vector
|
---|
| 331 | * \param m factor
|
---|
| 332 | * \return lhs.x[i] * m
|
---|
| 333 | */
|
---|
[b84d5d] | 334 | const Vector& operator*=(Vector& a, const double m)
|
---|
[6ac7ee] | 335 | {
|
---|
[042f82] | 336 | a.Scale(m);
|
---|
| 337 | return a;
|
---|
[6ac7ee] | 338 | };
|
---|
| 339 |
|
---|
[042f82] | 340 | /** Sums two vectors \a and \b component-wise.
|
---|
[6ac7ee] | 341 | * \param a first vector
|
---|
| 342 | * \param b second vector
|
---|
| 343 | * \return a + b
|
---|
| 344 | */
|
---|
[72e7fa] | 345 | Vector const Vector::operator+(const Vector& b) const
|
---|
[6ac7ee] | 346 | {
|
---|
[72e7fa] | 347 | Vector x = *this;
|
---|
[273382] | 348 | x.AddVector(b);
|
---|
[b84d5d] | 349 | return x;
|
---|
[6ac7ee] | 350 | };
|
---|
| 351 |
|
---|
[54a746] | 352 | /** Subtracts vector \a from \b component-wise.
|
---|
| 353 | * \param a first vector
|
---|
| 354 | * \param b second vector
|
---|
| 355 | * \return a - b
|
---|
| 356 | */
|
---|
[72e7fa] | 357 | Vector const Vector::operator-(const Vector& b) const
|
---|
[54a746] | 358 | {
|
---|
[72e7fa] | 359 | Vector x = *this;
|
---|
[273382] | 360 | x.SubtractVector(b);
|
---|
[b84d5d] | 361 | return x;
|
---|
[54a746] | 362 | };
|
---|
| 363 |
|
---|
[6ac7ee] | 364 | /** Factors given vector \a a times \a m.
|
---|
| 365 | * \param a vector
|
---|
| 366 | * \param m factor
|
---|
[54a746] | 367 | * \return m * a
|
---|
[6ac7ee] | 368 | */
|
---|
[b84d5d] | 369 | Vector const operator*(const Vector& a, const double m)
|
---|
[6ac7ee] | 370 | {
|
---|
[b84d5d] | 371 | Vector x(a);
|
---|
| 372 | x.Scale(m);
|
---|
| 373 | return x;
|
---|
[6ac7ee] | 374 | };
|
---|
| 375 |
|
---|
[54a746] | 376 | /** Factors given vector \a a times \a m.
|
---|
| 377 | * \param m factor
|
---|
| 378 | * \param a vector
|
---|
| 379 | * \return m * a
|
---|
| 380 | */
|
---|
[b84d5d] | 381 | Vector const operator*(const double m, const Vector& a )
|
---|
[54a746] | 382 | {
|
---|
[b84d5d] | 383 | Vector x(a);
|
---|
| 384 | x.Scale(m);
|
---|
| 385 | return x;
|
---|
[54a746] | 386 | };
|
---|
| 387 |
|
---|
[9c20aa] | 388 | ostream& operator<<(ostream& ost, const Vector& m)
|
---|
[6ac7ee] | 389 | {
|
---|
[042f82] | 390 | ost << "(";
|
---|
| 391 | for (int i=0;i<NDIM;i++) {
|
---|
[0a4f7f] | 392 | ost << m[i];
|
---|
[042f82] | 393 | if (i != 2)
|
---|
| 394 | ost << ",";
|
---|
| 395 | }
|
---|
| 396 | ost << ")";
|
---|
| 397 | return ost;
|
---|
[6ac7ee] | 398 | };
|
---|
| 399 |
|
---|
| 400 |
|
---|
[1bd79e] | 401 | void Vector::ScaleAll(const double *factor)
|
---|
[6ac7ee] | 402 | {
|
---|
[042f82] | 403 | for (int i=NDIM;i--;)
|
---|
[d466f0] | 404 | at(i) *= factor[i];
|
---|
[6ac7ee] | 405 | };
|
---|
| 406 |
|
---|
[b5bf84] | 407 | void Vector::ScaleAll(const Vector &factor){
|
---|
[ce3d2b] | 408 | gsl_vector_mul(content->content, factor.content->content);
|
---|
[b5bf84] | 409 | }
|
---|
[6ac7ee] | 410 |
|
---|
[1bd79e] | 411 |
|
---|
[776b64] | 412 | void Vector::Scale(const double factor)
|
---|
[6ac7ee] | 413 | {
|
---|
[ce3d2b] | 414 | gsl_vector_scale(content->content,factor);
|
---|
[6ac7ee] | 415 | };
|
---|
| 416 |
|
---|
[45ef76] | 417 | std::pair<Vector,Vector> Vector::partition(const Vector &rhs) const{
|
---|
| 418 | double factor = ScalarProduct(rhs)/rhs.NormSquared();
|
---|
| 419 | Vector res= factor * rhs;
|
---|
| 420 | return make_pair(res,(*this)-res);
|
---|
| 421 | }
|
---|
| 422 |
|
---|
| 423 | std::pair<pointset,Vector> Vector::partition(const pointset &points) const{
|
---|
| 424 | Vector helper = *this;
|
---|
| 425 | pointset res;
|
---|
| 426 | for(pointset::const_iterator iter=points.begin();iter!=points.end();++iter){
|
---|
| 427 | pair<Vector,Vector> currPart = helper.partition(*iter);
|
---|
| 428 | res.push_back(currPart.first);
|
---|
| 429 | helper = currPart.second;
|
---|
| 430 | }
|
---|
| 431 | return make_pair(res,helper);
|
---|
| 432 | }
|
---|
| 433 |
|
---|
[6ac7ee] | 434 | /** Creates this vector as the b y *factors' components scaled linear combination of the given three.
|
---|
| 435 | * this vector = x1*factors[0] + x2* factors[1] + x3*factors[2]
|
---|
| 436 | * \param *x1 first vector
|
---|
| 437 | * \param *x2 second vector
|
---|
| 438 | * \param *x3 third vector
|
---|
| 439 | * \param *factors three-component vector with the factor for each given vector
|
---|
| 440 | */
|
---|
[273382] | 441 | void Vector::LinearCombinationOfVectors(const Vector &x1, const Vector &x2, const Vector &x3, const double * const factors)
|
---|
[6ac7ee] | 442 | {
|
---|
[273382] | 443 | (*this) = (factors[0]*x1) +
|
---|
| 444 | (factors[1]*x2) +
|
---|
| 445 | (factors[2]*x3);
|
---|
[6ac7ee] | 446 | };
|
---|
| 447 |
|
---|
| 448 | /** Calculates orthonormal vector to one given vectors.
|
---|
| 449 | * Just subtracts the projection onto the given vector from this vector.
|
---|
[ef9df36] | 450 | * The removed part of the vector is Vector::Projection()
|
---|
[6ac7ee] | 451 | * \param *x1 vector
|
---|
| 452 | * \return true - success, false - vector is zero
|
---|
| 453 | */
|
---|
[0a4f7f] | 454 | bool Vector::MakeNormalTo(const Vector &y1)
|
---|
[6ac7ee] | 455 | {
|
---|
[042f82] | 456 | bool result = false;
|
---|
[753f02] | 457 | double factor = y1.ScalarProduct(*this)/y1.NormSquared();
|
---|
[45ef76] | 458 | Vector x1 = factor * y1;
|
---|
[753f02] | 459 | SubtractVector(x1);
|
---|
[042f82] | 460 | for (int i=NDIM;i--;)
|
---|
[d466f0] | 461 | result = result || (fabs(at(i)) > MYEPSILON);
|
---|
[6ac7ee] | 462 |
|
---|
[042f82] | 463 | return result;
|
---|
[6ac7ee] | 464 | };
|
---|
| 465 |
|
---|
| 466 | /** Creates this vector as one of the possible orthonormal ones to the given one.
|
---|
| 467 | * Just scan how many components of given *vector are unequal to zero and
|
---|
| 468 | * try to get the skp of both to be zero accordingly.
|
---|
| 469 | * \param *vector given vector
|
---|
| 470 | * \return true - success, false - failure (null vector given)
|
---|
| 471 | */
|
---|
[273382] | 472 | bool Vector::GetOneNormalVector(const Vector &GivenVector)
|
---|
[6ac7ee] | 473 | {
|
---|
[042f82] | 474 | int Components[NDIM]; // contains indices of non-zero components
|
---|
| 475 | int Last = 0; // count the number of non-zero entries in vector
|
---|
| 476 | int j; // loop variables
|
---|
| 477 | double norm;
|
---|
| 478 |
|
---|
| 479 | for (j=NDIM;j--;)
|
---|
| 480 | Components[j] = -1;
|
---|
[1829c4] | 481 |
|
---|
| 482 | // in two component-systems we need to find the one position that is zero
|
---|
| 483 | int zeroPos = -1;
|
---|
[042f82] | 484 | // find two components != 0
|
---|
[1829c4] | 485 | for (j=0;j<NDIM;j++){
|
---|
[753f02] | 486 | if (fabs(GivenVector[j]) > MYEPSILON)
|
---|
[042f82] | 487 | Components[Last++] = j;
|
---|
[1829c4] | 488 | else
|
---|
| 489 | // this our zero Position
|
---|
| 490 | zeroPos = j;
|
---|
| 491 | }
|
---|
[042f82] | 492 |
|
---|
| 493 | switch(Last) {
|
---|
| 494 | case 3: // threecomponent system
|
---|
[1829c4] | 495 | // the position of the zero is arbitrary in three component systems
|
---|
| 496 | zeroPos = Components[2];
|
---|
[042f82] | 497 | case 2: // two component system
|
---|
[753f02] | 498 | norm = sqrt(1./(GivenVector[Components[1]]*GivenVector[Components[1]]) + 1./(GivenVector[Components[0]]*GivenVector[Components[0]]));
|
---|
[1829c4] | 499 | at(zeroPos) = 0.;
|
---|
[042f82] | 500 | // in skp both remaining parts shall become zero but with opposite sign and third is zero
|
---|
[1829c4] | 501 | at(Components[1]) = -1./GivenVector[Components[1]] / norm;
|
---|
| 502 | at(Components[0]) = 1./GivenVector[Components[0]] / norm;
|
---|
[042f82] | 503 | return true;
|
---|
| 504 | break;
|
---|
| 505 | case 1: // one component system
|
---|
| 506 | // set sole non-zero component to 0, and one of the other zero component pendants to 1
|
---|
[1829c4] | 507 | at((Components[0]+2)%NDIM) = 0.;
|
---|
| 508 | at((Components[0]+1)%NDIM) = 1.;
|
---|
| 509 | at(Components[0]) = 0.;
|
---|
[042f82] | 510 | return true;
|
---|
| 511 | break;
|
---|
| 512 | default:
|
---|
| 513 | return false;
|
---|
| 514 | }
|
---|
[6ac7ee] | 515 | };
|
---|
| 516 |
|
---|
| 517 | /** Adds vector \a *y componentwise.
|
---|
| 518 | * \param *y vector
|
---|
| 519 | */
|
---|
[273382] | 520 | void Vector::AddVector(const Vector &y)
|
---|
[6ac7ee] | 521 | {
|
---|
[ce3d2b] | 522 | gsl_vector_add(content->content, y.content->content);
|
---|
[6ac7ee] | 523 | }
|
---|
| 524 |
|
---|
| 525 | /** Adds vector \a *y componentwise.
|
---|
| 526 | * \param *y vector
|
---|
| 527 | */
|
---|
[273382] | 528 | void Vector::SubtractVector(const Vector &y)
|
---|
[6ac7ee] | 529 | {
|
---|
[ce3d2b] | 530 | gsl_vector_sub(content->content, y.content->content);
|
---|
[ef9df36] | 531 | }
|
---|
| 532 |
|
---|
[005e18] | 533 |
|
---|
| 534 | // some comonly used vectors
|
---|
| 535 | const Vector zeroVec(0,0,0);
|
---|
| 536 | const Vector e1(1,0,0);
|
---|
| 537 | const Vector e2(0,1,0);
|
---|
| 538 | const Vector e3(0,0,1);
|
---|