[6ac7ee] | 1 | /** \file vector.cpp
|
---|
| 2 | *
|
---|
| 3 | * Function implementations for the class vector.
|
---|
| 4 | *
|
---|
| 5 | */
|
---|
| 6 |
|
---|
[112b09] | 7 | #include "Helpers/MemDebug.hpp"
|
---|
[edb93c] | 8 |
|
---|
[54a746] | 9 | #include "vector.hpp"
|
---|
| 10 | #include "verbose.hpp"
|
---|
[b34306] | 11 | #include "World.hpp"
|
---|
[0a4f7f] | 12 | #include "Helpers/Assert.hpp"
|
---|
[753f02] | 13 | #include "Helpers/fast_functions.hpp"
|
---|
[325390] | 14 | #include "Exceptions/MathException.hpp"
|
---|
[6ac7ee] | 15 |
|
---|
[1bd79e] | 16 | #include <iostream>
|
---|
[923b6c] | 17 | #include <gsl/gsl_blas.h>
|
---|
| 18 |
|
---|
[1bd79e] | 19 |
|
---|
| 20 | using namespace std;
|
---|
[6ac7ee] | 21 |
|
---|
[97498a] | 22 |
|
---|
[6ac7ee] | 23 | /************************************ Functions for class vector ************************************/
|
---|
| 24 |
|
---|
| 25 | /** Constructor of class vector.
|
---|
| 26 | */
|
---|
[753f02] | 27 | Vector::Vector()
|
---|
| 28 | {
|
---|
[d690fa] | 29 | content = gsl_vector_calloc (NDIM);
|
---|
[753f02] | 30 | };
|
---|
[6ac7ee] | 31 |
|
---|
[753f02] | 32 | /**
|
---|
| 33 | * Copy constructor
|
---|
[821907] | 34 | */
|
---|
[1bd79e] | 35 |
|
---|
[753f02] | 36 | Vector::Vector(const Vector& src)
|
---|
[821907] | 37 | {
|
---|
[d690fa] | 38 | content = gsl_vector_alloc(NDIM);
|
---|
[93987b] | 39 | gsl_vector_memcpy(content, src.content);
|
---|
[1bd79e] | 40 | }
|
---|
[821907] | 41 |
|
---|
| 42 | /** Constructor of class vector.
|
---|
| 43 | */
|
---|
[753f02] | 44 | Vector::Vector(const double x1, const double x2, const double x3)
|
---|
[821907] | 45 | {
|
---|
[d690fa] | 46 | content = gsl_vector_alloc(NDIM);
|
---|
| 47 | gsl_vector_set(content,0,x1);
|
---|
| 48 | gsl_vector_set(content,1,x2);
|
---|
| 49 | gsl_vector_set(content,2,x3);
|
---|
[821907] | 50 | };
|
---|
| 51 |
|
---|
[325390] | 52 | Vector::Vector(gsl_vector *_content) :
|
---|
| 53 | content(_content)
|
---|
| 54 | {}
|
---|
| 55 |
|
---|
[0a4f7f] | 56 | /**
|
---|
| 57 | * Assignment operator
|
---|
[6ac7ee] | 58 | */
|
---|
[0a4f7f] | 59 | Vector& Vector::operator=(const Vector& src){
|
---|
| 60 | // check for self assignment
|
---|
| 61 | if(&src!=this){
|
---|
[93987b] | 62 | gsl_vector_memcpy(content, src.content);
|
---|
[0a4f7f] | 63 | }
|
---|
| 64 | return *this;
|
---|
| 65 | }
|
---|
[6ac7ee] | 66 |
|
---|
| 67 | /** Desctructor of class vector.
|
---|
| 68 | */
|
---|
[d466f0] | 69 | Vector::~Vector() {
|
---|
[d690fa] | 70 | gsl_vector_free(content);
|
---|
[d466f0] | 71 | };
|
---|
[6ac7ee] | 72 |
|
---|
| 73 | /** Calculates square of distance between this and another vector.
|
---|
| 74 | * \param *y array to second vector
|
---|
| 75 | * \return \f$| x - y |^2\f$
|
---|
| 76 | */
|
---|
[273382] | 77 | double Vector::DistanceSquared(const Vector &y) const
|
---|
[6ac7ee] | 78 | {
|
---|
[042f82] | 79 | double res = 0.;
|
---|
| 80 | for (int i=NDIM;i--;)
|
---|
[d466f0] | 81 | res += (at(i)-y[i])*(at(i)-y[i]);
|
---|
[042f82] | 82 | return (res);
|
---|
[6ac7ee] | 83 | };
|
---|
| 84 |
|
---|
| 85 | /** Calculates distance between this and another vector.
|
---|
| 86 | * \param *y array to second vector
|
---|
| 87 | * \return \f$| x - y |\f$
|
---|
| 88 | */
|
---|
[1513a74] | 89 | double Vector::distance(const Vector &y) const
|
---|
[6ac7ee] | 90 | {
|
---|
[273382] | 91 | return (sqrt(DistanceSquared(y)));
|
---|
[6ac7ee] | 92 | };
|
---|
| 93 |
|
---|
[1513a74] | 94 | Vector Vector::getClosestPoint(const Vector &point) const{
|
---|
| 95 | // the closest point to a single point space is always the single point itself
|
---|
| 96 | return *this;
|
---|
| 97 | }
|
---|
| 98 |
|
---|
[6ac7ee] | 99 | /** Calculates scalar product between this and another vector.
|
---|
| 100 | * \param *y array to second vector
|
---|
| 101 | * \return \f$\langle x, y \rangle\f$
|
---|
| 102 | */
|
---|
[273382] | 103 | double Vector::ScalarProduct(const Vector &y) const
|
---|
[6ac7ee] | 104 | {
|
---|
[042f82] | 105 | double res = 0.;
|
---|
[923b6c] | 106 | gsl_blas_ddot(content, y.content, &res);
|
---|
[042f82] | 107 | return (res);
|
---|
[6ac7ee] | 108 | };
|
---|
| 109 |
|
---|
| 110 |
|
---|
| 111 | /** Calculates VectorProduct between this and another vector.
|
---|
[042f82] | 112 | * -# returns the Product in place of vector from which it was initiated
|
---|
| 113 | * -# ATTENTION: Only three dim.
|
---|
| 114 | * \param *y array to vector with which to calculate crossproduct
|
---|
| 115 | * \return \f$ x \times y \f&
|
---|
[6ac7ee] | 116 | */
|
---|
[273382] | 117 | void Vector::VectorProduct(const Vector &y)
|
---|
[6ac7ee] | 118 | {
|
---|
[042f82] | 119 | Vector tmp;
|
---|
[d466f0] | 120 | for(int i=NDIM;i--;)
|
---|
| 121 | tmp[i] = at((i+1)%NDIM)*y[(i+2)%NDIM] - at((i+2)%NDIM)*y[(i+1)%NDIM];
|
---|
[753f02] | 122 | (*this) = tmp;
|
---|
[6ac7ee] | 123 | };
|
---|
| 124 |
|
---|
| 125 |
|
---|
| 126 | /** projects this vector onto plane defined by \a *y.
|
---|
| 127 | * \param *y normal vector of plane
|
---|
| 128 | * \return \f$\langle x, y \rangle\f$
|
---|
| 129 | */
|
---|
[273382] | 130 | void Vector::ProjectOntoPlane(const Vector &y)
|
---|
[6ac7ee] | 131 | {
|
---|
[042f82] | 132 | Vector tmp;
|
---|
[753f02] | 133 | tmp = y;
|
---|
[042f82] | 134 | tmp.Normalize();
|
---|
[753f02] | 135 | tmp.Scale(ScalarProduct(tmp));
|
---|
| 136 | *this -= tmp;
|
---|
[2319ed] | 137 | };
|
---|
| 138 |
|
---|
[821907] | 139 | /** Calculates the minimum distance of this vector to the plane.
|
---|
| 140 | * \sa Vector::GetDistanceVectorToPlane()
|
---|
| 141 | * \param *out output stream for debugging
|
---|
| 142 | * \param *PlaneNormal normal of plane
|
---|
| 143 | * \param *PlaneOffset offset of plane
|
---|
| 144 | * \return distance to plane
|
---|
| 145 | */
|
---|
[d4c9ae] | 146 | double Vector::DistanceToSpace(const Space &space) const
|
---|
[821907] | 147 | {
|
---|
[d4c9ae] | 148 | return space.distance(*this);
|
---|
[c4d4df] | 149 | };
|
---|
| 150 |
|
---|
[6ac7ee] | 151 | /** Calculates the projection of a vector onto another \a *y.
|
---|
| 152 | * \param *y array to second vector
|
---|
| 153 | */
|
---|
[273382] | 154 | void Vector::ProjectIt(const Vector &y)
|
---|
[6ac7ee] | 155 | {
|
---|
[753f02] | 156 | (*this) += (-ScalarProduct(y))*y;
|
---|
[ef9df36] | 157 | };
|
---|
| 158 |
|
---|
| 159 | /** Calculates the projection of a vector onto another \a *y.
|
---|
| 160 | * \param *y array to second vector
|
---|
| 161 | * \return Vector
|
---|
| 162 | */
|
---|
[273382] | 163 | Vector Vector::Projection(const Vector &y) const
|
---|
[ef9df36] | 164 | {
|
---|
[753f02] | 165 | Vector helper = y;
|
---|
| 166 | helper.Scale((ScalarProduct(y)/y.NormSquared()));
|
---|
[ef9df36] | 167 |
|
---|
| 168 | return helper;
|
---|
[6ac7ee] | 169 | };
|
---|
| 170 |
|
---|
| 171 | /** Calculates norm of this vector.
|
---|
| 172 | * \return \f$|x|\f$
|
---|
| 173 | */
|
---|
| 174 | double Vector::Norm() const
|
---|
| 175 | {
|
---|
[273382] | 176 | return (sqrt(NormSquared()));
|
---|
[6ac7ee] | 177 | };
|
---|
| 178 |
|
---|
[d4d0dd] | 179 | /** Calculates squared norm of this vector.
|
---|
| 180 | * \return \f$|x|^2\f$
|
---|
| 181 | */
|
---|
| 182 | double Vector::NormSquared() const
|
---|
| 183 | {
|
---|
[273382] | 184 | return (ScalarProduct(*this));
|
---|
[d4d0dd] | 185 | };
|
---|
| 186 |
|
---|
[6ac7ee] | 187 | /** Normalizes this vector.
|
---|
| 188 | */
|
---|
| 189 | void Vector::Normalize()
|
---|
| 190 | {
|
---|
[1bd79e] | 191 | double factor = Norm();
|
---|
| 192 | (*this) *= 1/factor;
|
---|
[6ac7ee] | 193 | };
|
---|
| 194 |
|
---|
| 195 | /** Zeros all components of this vector.
|
---|
| 196 | */
|
---|
| 197 | void Vector::Zero()
|
---|
| 198 | {
|
---|
[753f02] | 199 | at(0)=at(1)=at(2)=0;
|
---|
[6ac7ee] | 200 | };
|
---|
| 201 |
|
---|
| 202 | /** Zeros all components of this vector.
|
---|
| 203 | */
|
---|
[776b64] | 204 | void Vector::One(const double one)
|
---|
[6ac7ee] | 205 | {
|
---|
[753f02] | 206 | at(0)=at(1)=at(2)=one;
|
---|
[6ac7ee] | 207 | };
|
---|
| 208 |
|
---|
[9c20aa] | 209 | /** Checks whether vector has all components zero.
|
---|
| 210 | * @return true - vector is zero, false - vector is not
|
---|
| 211 | */
|
---|
[54a746] | 212 | bool Vector::IsZero() const
|
---|
[9c20aa] | 213 | {
|
---|
[d466f0] | 214 | return (fabs(at(0))+fabs(at(1))+fabs(at(2)) < MYEPSILON);
|
---|
[54a746] | 215 | };
|
---|
| 216 |
|
---|
| 217 | /** Checks whether vector has length of 1.
|
---|
| 218 | * @return true - vector is normalized, false - vector is not
|
---|
| 219 | */
|
---|
| 220 | bool Vector::IsOne() const
|
---|
| 221 | {
|
---|
| 222 | return (fabs(Norm() - 1.) < MYEPSILON);
|
---|
[9c20aa] | 223 | };
|
---|
| 224 |
|
---|
[ef9df36] | 225 | /** Checks whether vector is normal to \a *normal.
|
---|
| 226 | * @return true - vector is normalized, false - vector is not
|
---|
| 227 | */
|
---|
[273382] | 228 | bool Vector::IsNormalTo(const Vector &normal) const
|
---|
[ef9df36] | 229 | {
|
---|
| 230 | if (ScalarProduct(normal) < MYEPSILON)
|
---|
| 231 | return true;
|
---|
| 232 | else
|
---|
| 233 | return false;
|
---|
| 234 | };
|
---|
| 235 |
|
---|
[b998c3] | 236 | /** Checks whether vector is normal to \a *normal.
|
---|
| 237 | * @return true - vector is normalized, false - vector is not
|
---|
| 238 | */
|
---|
[273382] | 239 | bool Vector::IsEqualTo(const Vector &a) const
|
---|
[b998c3] | 240 | {
|
---|
| 241 | bool status = true;
|
---|
| 242 | for (int i=0;i<NDIM;i++) {
|
---|
[d466f0] | 243 | if (fabs(at(i) - a[i]) > MYEPSILON)
|
---|
[b998c3] | 244 | status = false;
|
---|
| 245 | }
|
---|
| 246 | return status;
|
---|
| 247 | };
|
---|
| 248 |
|
---|
[6ac7ee] | 249 | /** Calculates the angle between this and another vector.
|
---|
| 250 | * \param *y array to second vector
|
---|
| 251 | * \return \f$\acos\bigl(frac{\langle x, y \rangle}{|x||y|}\bigr)\f$
|
---|
| 252 | */
|
---|
[273382] | 253 | double Vector::Angle(const Vector &y) const
|
---|
[6ac7ee] | 254 | {
|
---|
[753f02] | 255 | double norm1 = Norm(), norm2 = y.Norm();
|
---|
[ef9df36] | 256 | double angle = -1;
|
---|
[d4d0dd] | 257 | if ((fabs(norm1) > MYEPSILON) && (fabs(norm2) > MYEPSILON))
|
---|
| 258 | angle = this->ScalarProduct(y)/norm1/norm2;
|
---|
[02da9e] | 259 | // -1-MYEPSILON occured due to numerical imprecision, catch ...
|
---|
[e138de] | 260 | //Log() << Verbose(2) << "INFO: acos(-1) = " << acos(-1) << ", acos(-1+MYEPSILON) = " << acos(-1+MYEPSILON) << ", acos(-1-MYEPSILON) = " << acos(-1-MYEPSILON) << "." << endl;
|
---|
[02da9e] | 261 | if (angle < -1)
|
---|
| 262 | angle = -1;
|
---|
| 263 | if (angle > 1)
|
---|
| 264 | angle = 1;
|
---|
[042f82] | 265 | return acos(angle);
|
---|
[6ac7ee] | 266 | };
|
---|
| 267 |
|
---|
[0a4f7f] | 268 |
|
---|
| 269 | double& Vector::operator[](size_t i){
|
---|
[753f02] | 270 | ASSERT(i<=NDIM && i>=0,"Vector Index out of Range");
|
---|
[d690fa] | 271 | return *gsl_vector_ptr (content, i);
|
---|
[0a4f7f] | 272 | }
|
---|
| 273 |
|
---|
| 274 | const double& Vector::operator[](size_t i) const{
|
---|
[753f02] | 275 | ASSERT(i<=NDIM && i>=0,"Vector Index out of Range");
|
---|
[d690fa] | 276 | return *gsl_vector_ptr (content, i);
|
---|
[0a4f7f] | 277 | }
|
---|
| 278 |
|
---|
| 279 | double& Vector::at(size_t i){
|
---|
| 280 | return (*this)[i];
|
---|
| 281 | }
|
---|
| 282 |
|
---|
| 283 | const double& Vector::at(size_t i) const{
|
---|
| 284 | return (*this)[i];
|
---|
| 285 | }
|
---|
| 286 |
|
---|
[0c7ed8] | 287 | gsl_vector* Vector::get(){
|
---|
| 288 | return content;
|
---|
[0a4f7f] | 289 | }
|
---|
[6ac7ee] | 290 |
|
---|
[ef9df36] | 291 | /** Compares vector \a to vector \a b component-wise.
|
---|
| 292 | * \param a base vector
|
---|
| 293 | * \param b vector components to add
|
---|
| 294 | * \return a == b
|
---|
| 295 | */
|
---|
[72e7fa] | 296 | bool Vector::operator==(const Vector& b) const
|
---|
[ef9df36] | 297 | {
|
---|
[1bd79e] | 298 | return IsEqualTo(b);
|
---|
[ef9df36] | 299 | };
|
---|
| 300 |
|
---|
[fa5a6a] | 301 | bool Vector::operator!=(const Vector& b) const
|
---|
| 302 | {
|
---|
| 303 | return !IsEqualTo(b);
|
---|
| 304 | }
|
---|
| 305 |
|
---|
[6ac7ee] | 306 | /** Sums vector \a to this lhs component-wise.
|
---|
| 307 | * \param a base vector
|
---|
| 308 | * \param b vector components to add
|
---|
| 309 | * \return lhs + a
|
---|
| 310 | */
|
---|
[72e7fa] | 311 | const Vector& Vector::operator+=(const Vector& b)
|
---|
[6ac7ee] | 312 | {
|
---|
[273382] | 313 | this->AddVector(b);
|
---|
[72e7fa] | 314 | return *this;
|
---|
[6ac7ee] | 315 | };
|
---|
[54a746] | 316 |
|
---|
| 317 | /** Subtracts vector \a from this lhs component-wise.
|
---|
| 318 | * \param a base vector
|
---|
| 319 | * \param b vector components to add
|
---|
| 320 | * \return lhs - a
|
---|
| 321 | */
|
---|
[72e7fa] | 322 | const Vector& Vector::operator-=(const Vector& b)
|
---|
[54a746] | 323 | {
|
---|
[273382] | 324 | this->SubtractVector(b);
|
---|
[72e7fa] | 325 | return *this;
|
---|
[54a746] | 326 | };
|
---|
| 327 |
|
---|
[6ac7ee] | 328 | /** factor each component of \a a times a double \a m.
|
---|
| 329 | * \param a base vector
|
---|
| 330 | * \param m factor
|
---|
| 331 | * \return lhs.x[i] * m
|
---|
| 332 | */
|
---|
[b84d5d] | 333 | const Vector& operator*=(Vector& a, const double m)
|
---|
[6ac7ee] | 334 | {
|
---|
[042f82] | 335 | a.Scale(m);
|
---|
| 336 | return a;
|
---|
[6ac7ee] | 337 | };
|
---|
| 338 |
|
---|
[042f82] | 339 | /** Sums two vectors \a and \b component-wise.
|
---|
[6ac7ee] | 340 | * \param a first vector
|
---|
| 341 | * \param b second vector
|
---|
| 342 | * \return a + b
|
---|
| 343 | */
|
---|
[72e7fa] | 344 | Vector const Vector::operator+(const Vector& b) const
|
---|
[6ac7ee] | 345 | {
|
---|
[72e7fa] | 346 | Vector x = *this;
|
---|
[273382] | 347 | x.AddVector(b);
|
---|
[b84d5d] | 348 | return x;
|
---|
[6ac7ee] | 349 | };
|
---|
| 350 |
|
---|
[54a746] | 351 | /** Subtracts vector \a from \b component-wise.
|
---|
| 352 | * \param a first vector
|
---|
| 353 | * \param b second vector
|
---|
| 354 | * \return a - b
|
---|
| 355 | */
|
---|
[72e7fa] | 356 | Vector const Vector::operator-(const Vector& b) const
|
---|
[54a746] | 357 | {
|
---|
[72e7fa] | 358 | Vector x = *this;
|
---|
[273382] | 359 | x.SubtractVector(b);
|
---|
[b84d5d] | 360 | return x;
|
---|
[54a746] | 361 | };
|
---|
| 362 |
|
---|
[6ac7ee] | 363 | /** Factors given vector \a a times \a m.
|
---|
| 364 | * \param a vector
|
---|
| 365 | * \param m factor
|
---|
[54a746] | 366 | * \return m * a
|
---|
[6ac7ee] | 367 | */
|
---|
[b84d5d] | 368 | Vector const operator*(const Vector& a, const double m)
|
---|
[6ac7ee] | 369 | {
|
---|
[b84d5d] | 370 | Vector x(a);
|
---|
| 371 | x.Scale(m);
|
---|
| 372 | return x;
|
---|
[6ac7ee] | 373 | };
|
---|
| 374 |
|
---|
[54a746] | 375 | /** Factors given vector \a a times \a m.
|
---|
| 376 | * \param m factor
|
---|
| 377 | * \param a vector
|
---|
| 378 | * \return m * a
|
---|
| 379 | */
|
---|
[b84d5d] | 380 | Vector const operator*(const double m, const Vector& a )
|
---|
[54a746] | 381 | {
|
---|
[b84d5d] | 382 | Vector x(a);
|
---|
| 383 | x.Scale(m);
|
---|
| 384 | return x;
|
---|
[54a746] | 385 | };
|
---|
| 386 |
|
---|
[9c20aa] | 387 | ostream& operator<<(ostream& ost, const Vector& m)
|
---|
[6ac7ee] | 388 | {
|
---|
[042f82] | 389 | ost << "(";
|
---|
| 390 | for (int i=0;i<NDIM;i++) {
|
---|
[0a4f7f] | 391 | ost << m[i];
|
---|
[042f82] | 392 | if (i != 2)
|
---|
| 393 | ost << ",";
|
---|
| 394 | }
|
---|
| 395 | ost << ")";
|
---|
| 396 | return ost;
|
---|
[6ac7ee] | 397 | };
|
---|
| 398 |
|
---|
| 399 |
|
---|
[1bd79e] | 400 | void Vector::ScaleAll(const double *factor)
|
---|
[6ac7ee] | 401 | {
|
---|
[042f82] | 402 | for (int i=NDIM;i--;)
|
---|
[d466f0] | 403 | at(i) *= factor[i];
|
---|
[6ac7ee] | 404 | };
|
---|
| 405 |
|
---|
[b5bf84] | 406 | void Vector::ScaleAll(const Vector &factor){
|
---|
| 407 | gsl_vector_mul(content, factor.content);
|
---|
| 408 | }
|
---|
[6ac7ee] | 409 |
|
---|
[1bd79e] | 410 |
|
---|
[776b64] | 411 | void Vector::Scale(const double factor)
|
---|
[6ac7ee] | 412 | {
|
---|
[93987b] | 413 | gsl_vector_scale(content,factor);
|
---|
[6ac7ee] | 414 | };
|
---|
| 415 |
|
---|
[45ef76] | 416 | std::pair<Vector,Vector> Vector::partition(const Vector &rhs) const{
|
---|
| 417 | double factor = ScalarProduct(rhs)/rhs.NormSquared();
|
---|
| 418 | Vector res= factor * rhs;
|
---|
| 419 | return make_pair(res,(*this)-res);
|
---|
| 420 | }
|
---|
| 421 |
|
---|
| 422 | std::pair<pointset,Vector> Vector::partition(const pointset &points) const{
|
---|
| 423 | Vector helper = *this;
|
---|
| 424 | pointset res;
|
---|
| 425 | for(pointset::const_iterator iter=points.begin();iter!=points.end();++iter){
|
---|
| 426 | pair<Vector,Vector> currPart = helper.partition(*iter);
|
---|
| 427 | res.push_back(currPart.first);
|
---|
| 428 | helper = currPart.second;
|
---|
| 429 | }
|
---|
| 430 | return make_pair(res,helper);
|
---|
| 431 | }
|
---|
| 432 |
|
---|
[6ac7ee] | 433 | /** Creates this vector as the b y *factors' components scaled linear combination of the given three.
|
---|
| 434 | * this vector = x1*factors[0] + x2* factors[1] + x3*factors[2]
|
---|
| 435 | * \param *x1 first vector
|
---|
| 436 | * \param *x2 second vector
|
---|
| 437 | * \param *x3 third vector
|
---|
| 438 | * \param *factors three-component vector with the factor for each given vector
|
---|
| 439 | */
|
---|
[273382] | 440 | void Vector::LinearCombinationOfVectors(const Vector &x1, const Vector &x2, const Vector &x3, const double * const factors)
|
---|
[6ac7ee] | 441 | {
|
---|
[273382] | 442 | (*this) = (factors[0]*x1) +
|
---|
| 443 | (factors[1]*x2) +
|
---|
| 444 | (factors[2]*x3);
|
---|
[6ac7ee] | 445 | };
|
---|
| 446 |
|
---|
| 447 | /** Calculates orthonormal vector to one given vectors.
|
---|
| 448 | * Just subtracts the projection onto the given vector from this vector.
|
---|
[ef9df36] | 449 | * The removed part of the vector is Vector::Projection()
|
---|
[6ac7ee] | 450 | * \param *x1 vector
|
---|
| 451 | * \return true - success, false - vector is zero
|
---|
| 452 | */
|
---|
[0a4f7f] | 453 | bool Vector::MakeNormalTo(const Vector &y1)
|
---|
[6ac7ee] | 454 | {
|
---|
[042f82] | 455 | bool result = false;
|
---|
[753f02] | 456 | double factor = y1.ScalarProduct(*this)/y1.NormSquared();
|
---|
[45ef76] | 457 | Vector x1 = factor * y1;
|
---|
[753f02] | 458 | SubtractVector(x1);
|
---|
[042f82] | 459 | for (int i=NDIM;i--;)
|
---|
[d466f0] | 460 | result = result || (fabs(at(i)) > MYEPSILON);
|
---|
[6ac7ee] | 461 |
|
---|
[042f82] | 462 | return result;
|
---|
[6ac7ee] | 463 | };
|
---|
| 464 |
|
---|
| 465 | /** Creates this vector as one of the possible orthonormal ones to the given one.
|
---|
| 466 | * Just scan how many components of given *vector are unequal to zero and
|
---|
| 467 | * try to get the skp of both to be zero accordingly.
|
---|
| 468 | * \param *vector given vector
|
---|
| 469 | * \return true - success, false - failure (null vector given)
|
---|
| 470 | */
|
---|
[273382] | 471 | bool Vector::GetOneNormalVector(const Vector &GivenVector)
|
---|
[6ac7ee] | 472 | {
|
---|
[042f82] | 473 | int Components[NDIM]; // contains indices of non-zero components
|
---|
| 474 | int Last = 0; // count the number of non-zero entries in vector
|
---|
| 475 | int j; // loop variables
|
---|
| 476 | double norm;
|
---|
| 477 |
|
---|
| 478 | for (j=NDIM;j--;)
|
---|
| 479 | Components[j] = -1;
|
---|
[1829c4] | 480 |
|
---|
| 481 | // in two component-systems we need to find the one position that is zero
|
---|
| 482 | int zeroPos = -1;
|
---|
[042f82] | 483 | // find two components != 0
|
---|
[1829c4] | 484 | for (j=0;j<NDIM;j++){
|
---|
[753f02] | 485 | if (fabs(GivenVector[j]) > MYEPSILON)
|
---|
[042f82] | 486 | Components[Last++] = j;
|
---|
[1829c4] | 487 | else
|
---|
| 488 | // this our zero Position
|
---|
| 489 | zeroPos = j;
|
---|
| 490 | }
|
---|
[042f82] | 491 |
|
---|
| 492 | switch(Last) {
|
---|
| 493 | case 3: // threecomponent system
|
---|
[1829c4] | 494 | // the position of the zero is arbitrary in three component systems
|
---|
| 495 | zeroPos = Components[2];
|
---|
[042f82] | 496 | case 2: // two component system
|
---|
[753f02] | 497 | norm = sqrt(1./(GivenVector[Components[1]]*GivenVector[Components[1]]) + 1./(GivenVector[Components[0]]*GivenVector[Components[0]]));
|
---|
[1829c4] | 498 | at(zeroPos) = 0.;
|
---|
[042f82] | 499 | // in skp both remaining parts shall become zero but with opposite sign and third is zero
|
---|
[1829c4] | 500 | at(Components[1]) = -1./GivenVector[Components[1]] / norm;
|
---|
| 501 | at(Components[0]) = 1./GivenVector[Components[0]] / norm;
|
---|
[042f82] | 502 | return true;
|
---|
| 503 | break;
|
---|
| 504 | case 1: // one component system
|
---|
| 505 | // set sole non-zero component to 0, and one of the other zero component pendants to 1
|
---|
[1829c4] | 506 | at((Components[0]+2)%NDIM) = 0.;
|
---|
| 507 | at((Components[0]+1)%NDIM) = 1.;
|
---|
| 508 | at(Components[0]) = 0.;
|
---|
[042f82] | 509 | return true;
|
---|
| 510 | break;
|
---|
| 511 | default:
|
---|
| 512 | return false;
|
---|
| 513 | }
|
---|
[6ac7ee] | 514 | };
|
---|
| 515 |
|
---|
| 516 | /** Adds vector \a *y componentwise.
|
---|
| 517 | * \param *y vector
|
---|
| 518 | */
|
---|
[273382] | 519 | void Vector::AddVector(const Vector &y)
|
---|
[6ac7ee] | 520 | {
|
---|
[93987b] | 521 | gsl_vector_add(content, y.content);
|
---|
[6ac7ee] | 522 | }
|
---|
| 523 |
|
---|
| 524 | /** Adds vector \a *y componentwise.
|
---|
| 525 | * \param *y vector
|
---|
| 526 | */
|
---|
[273382] | 527 | void Vector::SubtractVector(const Vector &y)
|
---|
[6ac7ee] | 528 | {
|
---|
[93987b] | 529 | gsl_vector_sub(content, y.content);
|
---|
[ef9df36] | 530 | }
|
---|
| 531 |
|
---|
[005e18] | 532 |
|
---|
| 533 | // some comonly used vectors
|
---|
| 534 | const Vector zeroVec(0,0,0);
|
---|
| 535 | const Vector e1(1,0,0);
|
---|
| 536 | const Vector e2(0,1,0);
|
---|
| 537 | const Vector e3(0,0,1);
|
---|