/* * ParserUnitTest.cpp * * Created on: Mar 3, 2010 * Author: metzler */ #include "ParserUnitTest.hpp" #include #include #include #include "Parser/MpqcParser.hpp" #include "Parser/PcpParser.hpp" #include "Parser/TremoloParser.hpp" #include "Parser/XyzParser.hpp" #include "World.hpp" #include "atom.hpp" #include "element.hpp" #include "periodentafel.hpp" #include "Descriptors/AtomTypeDescriptor.hpp" #ifdef HAVE_TESTRUNNER #include "UnitTestMain.hpp" #endif /*HAVE_TESTRUNNER*/ using namespace std; // Registers the fixture into the 'registry' CPPUNIT_TEST_SUITE_REGISTRATION( ParserUnitTest ); static string waterPcp = "# ParallelCarParinello - main configuration file - created with molecuilder\n\ \n\ mainname\tpcp\t# programm name (for runtime files)\n\ defaultpath\not specified\t# where to put files during runtime\n\ pseudopotpath\not specified\t# where to find pseudopotentials\n\ \n\ ProcPEGamma\t8\t# for parallel computing: share constants\n\ ProcPEPsi\t1\t# for parallel computing: share wave functions\n\ DoOutVis\t0\t# Output data for OpenDX\n\ DoOutMes\t1\t# Output data for measurements\n\ DoOutOrbitals\t0\t# Output all Orbitals\n\ DoOutCurr\t0\t# Ouput current density for OpenDx\n\ DoOutNICS\t0\t# Output Nucleus independent current shieldings\n\ DoPerturbation\t0\t# Do perturbation calculate and determine susceptibility and shielding\n\ DoFullCurrent\t0\t# Do full perturbation\n\ DoConstrainedMD\t0\t# Do perform a constrained (>0, relating to current MD step) instead of unconstrained (0) MD\n\ Thermostat\tBerendsen\t2.5\t# Which Thermostat and its parameters to use in MD case.\n\ CommonWannier\t0\t# Put virtual centers at indivual orbits, all common, merged by variance, to grid point, to cell center\n\ SawtoothStart\t0.01\t# Absolute value for smooth transition at cell border \n\ VectorPlane\t0\t# Cut plane axis (x, y or z: 0,1,2) for two-dim current vector plot\n\ VectorCut\t0\t# Cut plane axis value\n\ AddGramSch\t1\t# Additional GramSchmidtOrtogonalization to be safe\n\ Seed\t1\t# initial value for random seed for Psi coefficients\n\ \n\ MaxOuterStep\t0\t# number of MolecularDynamics/Structure optimization steps\n\ Deltat\t0.01\t# time per MD step\n\ OutVisStep\t10\t# Output visual data every ...th step\n\ OutSrcStep\t5\t# Output \"restart\" data every ..th step\n\ TargetTemp\t0.000950045\t# Target temperature\n\ MaxPsiStep\t3\t# number of Minimisation steps per state (0 - default)\n\ EpsWannier\t1e-07\t# tolerance value for spread minimisation of orbitals\n\ # Values specifying when to stop\n\ MaxMinStep\t100\t# Maximum number of steps\n\ RelEpsTotalE\t1e-07\t# relative change in total energy\n\ RelEpsKineticE\t1e-05\t# relative change in kinetic energy\n\ MaxMinStopStep\t2\t# check every ..th steps\n\ MaxMinGapStopStep\t1\t# check every ..th steps\n\ \n\ # Values specifying when to stop for INIT, otherwise same as above\n\ MaxInitMinStep\t100\t# Maximum number of steps\n\ InitRelEpsTotalE\t1e-05\t# relative change in total energy\n\ InitRelEpsKineticE\t0.0001\t# relative change in kinetic energy\n\ InitMaxMinStopStep\t2\t# check every ..th steps\n\ InitMaxMinGapStopStep\t1\t# check every ..th steps\n\ \n\ BoxLength\t# (Length of a unit cell)\n\ 20\n\ 0\t20\n\ 0\t0\t20\n\ \n\ ECut\t128\t# energy cutoff for discretization in Hartrees\n\ MaxLevel\t5\t# number of different levels in the code, >=2\n\ Level0Factor\t2\t# factor by which node number increases from S to 0 level\n\ RiemannTensor\t0\t# (Use metric)\n\ PsiType\t0\t# 0 - doubly occupied, 1 - SpinUp,SpinDown\n\ MaxPsiDouble\t2\t# here: specifying both maximum number of SpinUp- and -Down-states\n\ PsiMaxNoUp\t2\t# here: specifying maximum number of SpinUp-states\n\ PsiMaxNoDown\t2\t# here: specifying maximum number of SpinDown-states\n\ AddPsis\t0\t# Additional unoccupied Psis for bandgap determination\n\ \n\ RCut\t20\t# R-cut for the ewald summation\n\ StructOpt\t0\t# Do structure optimization beforehand\n\ IsAngstroem\t1\t# 0 - Bohr, 1 - Angstroem\n\ RelativeCoord\t0\t# whether ion coordinates are relative (1) or absolute (0)\n\ MaxTypes\t2\t# maximum number of different ion types\n\ \n\ # Ion type data (PP = PseudoPotential, Z = atomic number)\n\ #Ion_TypeNr.\tAmount\tZ\tRGauss\tL_Max(PP)L_Loc(PP)IonMass\t# chemical name, symbol\n\ Ion_Type1\t2\t1\t1.0\t3\t3\t1.008\tHydrogen\tH\n\ Ion_Type2\t1\t8\t1.0\t3\t3\t15.999\tOxygen\tO\n\ #Ion_TypeNr._Nr.R[0]\tR[1]\tR[2]\tMoveType (0 MoveIon, 1 FixedIon)\n\ Ion_Type2_1\t0.000000000\t0.000000000\t0.000000000\t0 # molecule nr 0\n\ Ion_Type1_1\t0.758602\t0.000000000\t0.504284\t0 # molecule nr 1\n\ Ion_Type1_2\t0.758602\t0.000000000\t-0.504284\t0 # molecule nr 2\n"; static string waterMpqc ="% Created by MoleCuilder\n\ mpqc: (\n\ \tsavestate = no\n\ \tdo_gradient = yes\n\ \tmole: (\n\ \t\tmaxiter = 200\n\ \t\tbasis = $:basis\n\ \t\tmolecule = $:molecule\n\ \t\treference: (\n\ \t\t\tbasis = $:basis\n\ \t\t\tmolecule = $:molecule\n\ \t\t)\n\ \t)\n\ )\n\ molecule: (\n\ \tunit = angstrom\n\ \t{ atoms geometry } = {\n\ \t\tO [ -0.505735\t0\t0 ]\n\ \t\tH [ 0.252867\t0\t0.504284 ]\n\ \t\tH [ 0.252867\t0\t-0.504284 ]\n\ \t}\n\ )\n\ basis: (\n\ \tname = \"3-21G\"\n\ \tmolecule = $:molecule\n\ )\n"; static string waterXyz = "3\n\tH2O: water molecule\nO\t0\t0\t0\nH\t0.758602\t0\t0.504284\nH\t0.758602\t0\t-0.504284\n"; static string Tremolo_Atomdata1 = "# ATOMDATA\tId\tname\tType\tx=3\n"; static string Tremolo_Atomdata2 = "#\n#ATOMDATA Id name Type x=3\n1 hydrogen H 3.0 4.5 0.1\n\n"; static string Tremolo_invalidkey = "#\n#ATOMDATA Id name foo Type x=3\n\n\n"; static string Tremolo_velocity = "#\n#ATOMDATA Id name Type u=3\n1 hydrogen H 3.0 4.5 0.1\n\n"; static string Tremolo_neighbours = "#\n#ATOMDATA Id Type neighbors=2\n1 H 3 0\n2 H 3 0\n3 O 1 2\n"; static string Tremolo_improper = "#\n#ATOMDATA Id Type imprData\n8 H 9-10\n9 H 10-8,8-10\n10 O -\n"; static string Tremolo_torsion = "#\n#ATOMDATA Id Type torsion\n8 H 9-10\n9 H 10-8,8-10\n10 O -\n"; static string Tremolo_full = "# ATOMDATA\tx=3\tu=3\tF\tstress\tId\tneighbors=5\timprData\tGroupMeasureTypeNo\tType\textType\tname\tresName\tchainID\tresSeq\toccupancy\ttempFactor\tsegID\tCharge\tcharge\tGrpTypeNo\ttorsion\n0\t0\t0\t0\t0\t0\t0\t0\t0\t0\t0\t0\t0\t0\t-\t0\tH\t-\t-\t-\t0\t0\t0\t0\t0\t0\t0\t0\t-\t\n"; void ParserUnitTest::setUp() { World::getInstance(); // we need hydrogens and oxygens in the following tests CPPUNIT_ASSERT(World::getInstance().getPeriode()->FindElement(1) != NULL); CPPUNIT_ASSERT(World::getInstance().getPeriode()->FindElement(8) != NULL); } void ParserUnitTest::tearDown() { ChangeTracker::purgeInstance(); World::purgeInstance(); } /************************************ tests ***********************************/ void ParserUnitTest::rewriteAnXyzTest() { cout << "Testing the XYZ parser." << endl; XyzParser* testParser = new XyzParser(); stringstream input; input << waterXyz; testParser->load(&input); CPPUNIT_ASSERT_EQUAL(3, World::getInstance().numAtoms()); string newWaterXyz = ""; stringstream output; testParser->save(&output); newWaterXyz = output.str(); CPPUNIT_ASSERT(waterXyz == newWaterXyz); } void ParserUnitTest::readTremoloPreliminaryCommentsTest() { cout << "Testing the tremolo parser." << endl; TremoloParser* testParser = new TremoloParser(); stringstream input, output; // Atomdata beginning with "# ATOMDATA" input << Tremolo_Atomdata1; testParser->load(&input); testParser->save(&output); CPPUNIT_ASSERT(Tremolo_Atomdata1 == output.str()); input.clear(); output.clear(); // Atomdata beginning with "#ATOMDATA" input << Tremolo_Atomdata2; testParser->load(&input); testParser->save(&output); CPPUNIT_ASSERT(output.str().find("hydrogen") != string::npos); input.clear(); output.clear(); // Invalid key in Atomdata line input << Tremolo_invalidkey; testParser->load(&input); //TODO: proove invalidity input.clear(); } void ParserUnitTest::readTremoloCoordinatesTest() { TremoloParser* testParser = new TremoloParser(); stringstream input; // One simple data line input << Tremolo_Atomdata2; testParser->load(&input); CPPUNIT_ASSERT(World::getInstance().getAtom(AtomByType(1))->at(0) == 3.0); input.clear(); } void ParserUnitTest::readTremoloVelocityTest() { TremoloParser* testParser = new TremoloParser(); stringstream input; // One simple data line input << Tremolo_velocity; testParser->load(&input); CPPUNIT_ASSERT(World::getInstance().getAtom(AtomByType(1))->AtomicVelocity[0] == 3.0); input.clear(); } void ParserUnitTest::readTremoloNeighborInformationTest() { TremoloParser* testParser = new TremoloParser(); stringstream input; // Neighbor data input << Tremolo_neighbours; testParser->load(&input); CPPUNIT_ASSERT_EQUAL(3, World::getInstance().numAtoms()); CPPUNIT_ASSERT(World::getInstance().getAtom(AtomByType(8))-> IsBondedTo(World::getInstance().getAtom(AtomByType(1)))); input.clear(); } void ParserUnitTest::readAndWriteTremoloImprDataInformationTest() { TremoloParser* testParser = new TremoloParser(); stringstream input, output; // Neighbor data input << Tremolo_improper; testParser->load(&input); testParser->save(&output); CPPUNIT_ASSERT_EQUAL(3, World::getInstance().numAtoms()); CPPUNIT_ASSERT(output.str().find("2-0,0-2") != string::npos); input.clear(); output.clear(); } void ParserUnitTest::readAndWriteTremoloTorsionInformationTest() { TremoloParser* testParser = new TremoloParser(); stringstream input, output; // Neighbor data input << Tremolo_torsion; testParser->load(&input); testParser->save(&output); CPPUNIT_ASSERT_EQUAL(3, World::getInstance().numAtoms()); CPPUNIT_ASSERT(output.str().find("2-0,0-2") != string::npos); input.clear(); output.clear(); } void ParserUnitTest::writeTremoloTest() { TremoloParser* testParser = new TremoloParser(); stringstream output; // with the maximum number of fields and minimal information, default values are printed atom* newAtom = World::getInstance().createAtom(); newAtom->setType(1); testParser->setFieldsForSave("x=3 u=3 F stress Id neighbors=5 imprData GroupMeasureTypeNo Type extType name resName chainID resSeq occupancy tempFactor segID Charge charge GrpTypeNo torsion"); testParser->save(&output); CPPUNIT_ASSERT(output.str() == Tremolo_full); cout << "testing the tremolo parser is done" << endl; } void ParserUnitTest::readwritePcpTest() { stringstream input(waterPcp); PcpParser* testParser = new PcpParser(); testParser->load(&input); input.clear(); CPPUNIT_ASSERT_EQUAL(3, World::getInstance().numAtoms()); string newWaterPcp = ""; stringstream output; testParser->save(&output); input << output; PcpParser* testParser2 = new PcpParser(); testParser2->load(&input); CPPUNIT_ASSERT_EQUAL(6, World::getInstance().numAtoms()); CPPUNIT_ASSERT(*testParser == *testParser2); } void ParserUnitTest::writeMpqcTest() { // build up water molecule atom *Walker = NULL; Walker = World::getInstance().createAtom(); Walker->setType(8); Walker->setPosition(Vector(0,0,0)); Walker = World::getInstance().createAtom(); Walker->setType(1); Walker->setPosition(Vector(0.758602,0,0.504284)); Walker = World::getInstance().createAtom(); Walker->setType(1); Walker->setPosition(Vector(0.758602,0,-0.504284)); CPPUNIT_ASSERT_EQUAL(3, World::getInstance().numAtoms()); // create two stringstreams, one stored, one created stringstream input(waterMpqc); MpqcParser* testParser = new MpqcParser(); stringstream output; testParser->save(&output); // compare both configs string first = input.str(); string second = output.str(); CPPUNIT_ASSERT(first == second); }