1 | /*
|
---|
2 | * TesselationHelpers.cpp
|
---|
3 | *
|
---|
4 | * Created on: Aug 3, 2009
|
---|
5 | * Author: heber
|
---|
6 | */
|
---|
7 |
|
---|
8 | #include "tesselationhelpers.hpp"
|
---|
9 |
|
---|
10 | double DetGet(gsl_matrix *A, int inPlace) {
|
---|
11 | /*
|
---|
12 | inPlace = 1 => A is replaced with the LU decomposed copy.
|
---|
13 | inPlace = 0 => A is retained, and a copy is used for LU.
|
---|
14 | */
|
---|
15 |
|
---|
16 | double det;
|
---|
17 | int signum;
|
---|
18 | gsl_permutation *p = gsl_permutation_alloc(A->size1);
|
---|
19 | gsl_matrix *tmpA;
|
---|
20 |
|
---|
21 | if (inPlace)
|
---|
22 | tmpA = A;
|
---|
23 | else {
|
---|
24 | gsl_matrix *tmpA = gsl_matrix_alloc(A->size1, A->size2);
|
---|
25 | gsl_matrix_memcpy(tmpA , A);
|
---|
26 | }
|
---|
27 |
|
---|
28 |
|
---|
29 | gsl_linalg_LU_decomp(tmpA , p , &signum);
|
---|
30 | det = gsl_linalg_LU_det(tmpA , signum);
|
---|
31 | gsl_permutation_free(p);
|
---|
32 | if (! inPlace)
|
---|
33 | gsl_matrix_free(tmpA);
|
---|
34 |
|
---|
35 | return det;
|
---|
36 | };
|
---|
37 |
|
---|
38 | void GetSphere(Vector *center, Vector &a, Vector &b, Vector &c, double RADIUS)
|
---|
39 | {
|
---|
40 | gsl_matrix *A = gsl_matrix_calloc(3,3);
|
---|
41 | double m11, m12, m13, m14;
|
---|
42 |
|
---|
43 | for(int i=0;i<3;i++) {
|
---|
44 | gsl_matrix_set(A, i, 0, a.x[i]);
|
---|
45 | gsl_matrix_set(A, i, 1, b.x[i]);
|
---|
46 | gsl_matrix_set(A, i, 2, c.x[i]);
|
---|
47 | }
|
---|
48 | m11 = DetGet(A, 1);
|
---|
49 |
|
---|
50 | for(int i=0;i<3;i++) {
|
---|
51 | gsl_matrix_set(A, i, 0, a.x[i]*a.x[i] + b.x[i]*b.x[i] + c.x[i]*c.x[i]);
|
---|
52 | gsl_matrix_set(A, i, 1, b.x[i]);
|
---|
53 | gsl_matrix_set(A, i, 2, c.x[i]);
|
---|
54 | }
|
---|
55 | m12 = DetGet(A, 1);
|
---|
56 |
|
---|
57 | for(int i=0;i<3;i++) {
|
---|
58 | gsl_matrix_set(A, i, 0, a.x[i]*a.x[i] + b.x[i]*b.x[i] + c.x[i]*c.x[i]);
|
---|
59 | gsl_matrix_set(A, i, 1, a.x[i]);
|
---|
60 | gsl_matrix_set(A, i, 2, c.x[i]);
|
---|
61 | }
|
---|
62 | m13 = DetGet(A, 1);
|
---|
63 |
|
---|
64 | for(int i=0;i<3;i++) {
|
---|
65 | gsl_matrix_set(A, i, 0, a.x[i]*a.x[i] + b.x[i]*b.x[i] + c.x[i]*c.x[i]);
|
---|
66 | gsl_matrix_set(A, i, 1, a.x[i]);
|
---|
67 | gsl_matrix_set(A, i, 2, b.x[i]);
|
---|
68 | }
|
---|
69 | m14 = DetGet(A, 1);
|
---|
70 |
|
---|
71 | if (fabs(m11) < MYEPSILON)
|
---|
72 | cerr << "ERROR: three points are colinear." << endl;
|
---|
73 |
|
---|
74 | center->x[0] = 0.5 * m12/ m11;
|
---|
75 | center->x[1] = -0.5 * m13/ m11;
|
---|
76 | center->x[2] = 0.5 * m14/ m11;
|
---|
77 |
|
---|
78 | if (fabs(a.Distance(center) - RADIUS) > MYEPSILON)
|
---|
79 | cerr << "ERROR: The given center is further way by " << fabs(a.Distance(center) - RADIUS) << " from a than RADIUS." << endl;
|
---|
80 |
|
---|
81 | gsl_matrix_free(A);
|
---|
82 | };
|
---|
83 |
|
---|
84 |
|
---|
85 |
|
---|
86 | /**
|
---|
87 | * Function returns center of sphere with RADIUS, which rests on points a, b, c
|
---|
88 | * @param Center this vector will be used for return
|
---|
89 | * @param a vector first point of triangle
|
---|
90 | * @param b vector second point of triangle
|
---|
91 | * @param c vector third point of triangle
|
---|
92 | * @param *Umkreismittelpunkt new cneter point of circumference
|
---|
93 | * @param Direction vector indicates up/down
|
---|
94 | * @param AlternativeDirection vecotr, needed in case the triangles have 90 deg angle
|
---|
95 | * @param Halfplaneindicator double indicates whether Direction is up or down
|
---|
96 | * @param AlternativeIndicator doube indicates in case of orthogonal triangles which direction of AlternativeDirection is suitable
|
---|
97 | * @param alpha double angle at a
|
---|
98 | * @param beta double, angle at b
|
---|
99 | * @param gamma, double, angle at c
|
---|
100 | * @param Radius, double
|
---|
101 | * @param Umkreisradius double radius of circumscribing circle
|
---|
102 | */
|
---|
103 | void GetCenterOfSphere(Vector* Center, Vector a, Vector b, Vector c, Vector *NewUmkreismittelpunkt, Vector* Direction, Vector* AlternativeDirection,
|
---|
104 | double HalfplaneIndicator, double AlternativeIndicator, double alpha, double beta, double gamma, double RADIUS, double Umkreisradius)
|
---|
105 | {
|
---|
106 | Vector TempNormal, helper;
|
---|
107 | double Restradius;
|
---|
108 | Vector OtherCenter;
|
---|
109 | cout << Verbose(3) << "Begin of GetCenterOfSphere.\n";
|
---|
110 | Center->Zero();
|
---|
111 | helper.CopyVector(&a);
|
---|
112 | helper.Scale(sin(2.*alpha));
|
---|
113 | Center->AddVector(&helper);
|
---|
114 | helper.CopyVector(&b);
|
---|
115 | helper.Scale(sin(2.*beta));
|
---|
116 | Center->AddVector(&helper);
|
---|
117 | helper.CopyVector(&c);
|
---|
118 | helper.Scale(sin(2.*gamma));
|
---|
119 | Center->AddVector(&helper);
|
---|
120 | //*Center = a * sin(2.*alpha) + b * sin(2.*beta) + c * sin(2.*gamma) ;
|
---|
121 | Center->Scale(1./(sin(2.*alpha) + sin(2.*beta) + sin(2.*gamma)));
|
---|
122 | NewUmkreismittelpunkt->CopyVector(Center);
|
---|
123 | cout << Verbose(4) << "Center of new circumference is " << *NewUmkreismittelpunkt << ".\n";
|
---|
124 | // Here we calculated center of circumscribing circle, using barycentric coordinates
|
---|
125 | cout << Verbose(4) << "Center of circumference is " << *Center << " in direction " << *Direction << ".\n";
|
---|
126 |
|
---|
127 | TempNormal.CopyVector(&a);
|
---|
128 | TempNormal.SubtractVector(&b);
|
---|
129 | helper.CopyVector(&a);
|
---|
130 | helper.SubtractVector(&c);
|
---|
131 | TempNormal.VectorProduct(&helper);
|
---|
132 | if (fabs(HalfplaneIndicator) < MYEPSILON)
|
---|
133 | {
|
---|
134 | if ((TempNormal.ScalarProduct(AlternativeDirection) <0 and AlternativeIndicator >0) or (TempNormal.ScalarProduct(AlternativeDirection) >0 and AlternativeIndicator <0))
|
---|
135 | {
|
---|
136 | TempNormal.Scale(-1);
|
---|
137 | }
|
---|
138 | }
|
---|
139 | else
|
---|
140 | {
|
---|
141 | if (TempNormal.ScalarProduct(Direction)<0 && HalfplaneIndicator >0 || TempNormal.ScalarProduct(Direction)>0 && HalfplaneIndicator<0)
|
---|
142 | {
|
---|
143 | TempNormal.Scale(-1);
|
---|
144 | }
|
---|
145 | }
|
---|
146 |
|
---|
147 | TempNormal.Normalize();
|
---|
148 | Restradius = sqrt(RADIUS*RADIUS - Umkreisradius*Umkreisradius);
|
---|
149 | cout << Verbose(4) << "Height of center of circumference to center of sphere is " << Restradius << ".\n";
|
---|
150 | TempNormal.Scale(Restradius);
|
---|
151 | cout << Verbose(4) << "Shift vector to sphere of circumference is " << TempNormal << ".\n";
|
---|
152 |
|
---|
153 | Center->AddVector(&TempNormal);
|
---|
154 | cout << Verbose(0) << "Center of sphere of circumference is " << *Center << ".\n";
|
---|
155 | GetSphere(&OtherCenter, a, b, c, RADIUS);
|
---|
156 | cout << Verbose(0) << "OtherCenter of sphere of circumference is " << OtherCenter << ".\n";
|
---|
157 | cout << Verbose(3) << "End of GetCenterOfSphere.\n";
|
---|
158 | };
|
---|
159 |
|
---|
160 |
|
---|
161 | /** Constructs the center of the circumcircle defined by three points \a *a, \a *b and \a *c.
|
---|
162 | * \param *Center new center on return
|
---|
163 | * \param *a first point
|
---|
164 | * \param *b second point
|
---|
165 | * \param *c third point
|
---|
166 | */
|
---|
167 | void GetCenterofCircumcircle(Vector *Center, Vector *a, Vector *b, Vector *c)
|
---|
168 | {
|
---|
169 | Vector helper;
|
---|
170 | double alpha, beta, gamma;
|
---|
171 | Vector SideA, SideB, SideC;
|
---|
172 | SideA.CopyVector(b);
|
---|
173 | SideA.SubtractVector(c);
|
---|
174 | SideB.CopyVector(c);
|
---|
175 | SideB.SubtractVector(a);
|
---|
176 | SideC.CopyVector(a);
|
---|
177 | SideC.SubtractVector(b);
|
---|
178 | alpha = M_PI - SideB.Angle(&SideC);
|
---|
179 | beta = M_PI - SideC.Angle(&SideA);
|
---|
180 | gamma = M_PI - SideA.Angle(&SideB);
|
---|
181 | //cout << Verbose(3) << "INFO: alpha = " << alpha/M_PI*180. << ", beta = " << beta/M_PI*180. << ", gamma = " << gamma/M_PI*180. << "." << endl;
|
---|
182 | if (fabs(M_PI - alpha - beta - gamma) > HULLEPSILON)
|
---|
183 | cerr << "GetCenterofCircumcircle: Sum of angles " << (alpha+beta+gamma)/M_PI*180. << " > 180 degrees by " << fabs(M_PI - alpha - beta - gamma)/M_PI*180. << "!" << endl;
|
---|
184 |
|
---|
185 | Center->Zero();
|
---|
186 | helper.CopyVector(a);
|
---|
187 | helper.Scale(sin(2.*alpha));
|
---|
188 | Center->AddVector(&helper);
|
---|
189 | helper.CopyVector(b);
|
---|
190 | helper.Scale(sin(2.*beta));
|
---|
191 | Center->AddVector(&helper);
|
---|
192 | helper.CopyVector(c);
|
---|
193 | helper.Scale(sin(2.*gamma));
|
---|
194 | Center->AddVector(&helper);
|
---|
195 | Center->Scale(1./(sin(2.*alpha) + sin(2.*beta) + sin(2.*gamma)));
|
---|
196 | };
|
---|
197 |
|
---|
198 | /** Returns the parameter "path length" for a given \a NewSphereCenter relative to \a OldSphereCenter on a circle on the plane \a CirclePlaneNormal with center \a CircleCenter and radius \a CircleRadius.
|
---|
199 | * Test whether the \a NewSphereCenter is really on the given plane and in distance \a CircleRadius from \a CircleCenter.
|
---|
200 | * It calculates the angle, making it unique on [0,2.*M_PI) by comparing to SearchDirection.
|
---|
201 | * Also the new center is invalid if it the same as the old one and does not lie right above (\a NormalVector) the base line (\a CircleCenter).
|
---|
202 | * \param CircleCenter Center of the parameter circle
|
---|
203 | * \param CirclePlaneNormal normal vector to plane of the parameter circle
|
---|
204 | * \param CircleRadius radius of the parameter circle
|
---|
205 | * \param NewSphereCenter new center of a circumcircle
|
---|
206 | * \param OldSphereCenter old center of a circumcircle, defining the zero "path length" on the parameter circle
|
---|
207 | * \param NormalVector normal vector
|
---|
208 | * \param SearchDirection search direction to make angle unique on return.
|
---|
209 | * \return Angle between \a NewSphereCenter and \a OldSphereCenter relative to \a CircleCenter, 2.*M_PI if one test fails
|
---|
210 | */
|
---|
211 | double GetPathLengthonCircumCircle(Vector &CircleCenter, Vector &CirclePlaneNormal, double CircleRadius, Vector &NewSphereCenter, Vector &OldSphereCenter, Vector &NormalVector, Vector &SearchDirection)
|
---|
212 | {
|
---|
213 | Vector helper;
|
---|
214 | double radius, alpha;
|
---|
215 |
|
---|
216 | helper.CopyVector(&NewSphereCenter);
|
---|
217 | // test whether new center is on the parameter circle's plane
|
---|
218 | if (fabs(helper.ScalarProduct(&CirclePlaneNormal)) > HULLEPSILON) {
|
---|
219 | cerr << "ERROR: Something's very wrong here: NewSphereCenter is not on the band's plane as desired by " <<fabs(helper.ScalarProduct(&CirclePlaneNormal)) << "!" << endl;
|
---|
220 | helper.ProjectOntoPlane(&CirclePlaneNormal);
|
---|
221 | }
|
---|
222 | radius = helper.ScalarProduct(&helper);
|
---|
223 | // test whether the new center vector has length of CircleRadius
|
---|
224 | if (fabs(radius - CircleRadius) > HULLEPSILON)
|
---|
225 | cerr << Verbose(1) << "ERROR: The projected center of the new sphere has radius " << radius << " instead of " << CircleRadius << "." << endl;
|
---|
226 | alpha = helper.Angle(&OldSphereCenter);
|
---|
227 | // make the angle unique by checking the halfplanes/search direction
|
---|
228 | if (helper.ScalarProduct(&SearchDirection) < -HULLEPSILON) // acos is not unique on [0, 2.*M_PI), hence extra check to decide between two half intervals
|
---|
229 | alpha = 2.*M_PI - alpha;
|
---|
230 | //cout << Verbose(2) << "INFO: RelativeNewSphereCenter is " << helper << ", RelativeOldSphereCenter is " << OldSphereCenter << " and resulting angle is " << alpha << "." << endl;
|
---|
231 | radius = helper.Distance(&OldSphereCenter);
|
---|
232 | helper.ProjectOntoPlane(&NormalVector);
|
---|
233 | // check whether new center is somewhat away or at least right over the current baseline to prevent intersecting triangles
|
---|
234 | if ((radius > HULLEPSILON) || (helper.Norm() < HULLEPSILON)) {
|
---|
235 | //cout << Verbose(2) << "INFO: Distance between old and new center is " << radius << " and between new center and baseline center is " << helper.Norm() << "." << endl;
|
---|
236 | return alpha;
|
---|
237 | } else {
|
---|
238 | //cout << Verbose(1) << "INFO: NewSphereCenter " << helper << " is too close to OldSphereCenter" << OldSphereCenter << "." << endl;
|
---|
239 | return 2.*M_PI;
|
---|
240 | }
|
---|
241 | };
|
---|
242 |
|
---|
243 | struct Intersection {
|
---|
244 | Vector x1;
|
---|
245 | Vector x2;
|
---|
246 | Vector x3;
|
---|
247 | Vector x4;
|
---|
248 | };
|
---|
249 |
|
---|
250 | /**
|
---|
251 | * Intersection calculation function.
|
---|
252 | *
|
---|
253 | * @param x to find the result for
|
---|
254 | * @param function parameter
|
---|
255 | */
|
---|
256 | double MinIntersectDistance(const gsl_vector * x, void *params)
|
---|
257 | {
|
---|
258 | double retval = 0;
|
---|
259 | struct Intersection *I = (struct Intersection *)params;
|
---|
260 | Vector intersection;
|
---|
261 | Vector SideA,SideB,HeightA, HeightB;
|
---|
262 | for (int i=0;i<NDIM;i++)
|
---|
263 | intersection.x[i] = gsl_vector_get(x, i);
|
---|
264 |
|
---|
265 | SideA.CopyVector(&(I->x1));
|
---|
266 | SideA.SubtractVector(&I->x2);
|
---|
267 | HeightA.CopyVector(&intersection);
|
---|
268 | HeightA.SubtractVector(&I->x1);
|
---|
269 | HeightA.ProjectOntoPlane(&SideA);
|
---|
270 |
|
---|
271 | SideB.CopyVector(&I->x3);
|
---|
272 | SideB.SubtractVector(&I->x4);
|
---|
273 | HeightB.CopyVector(&intersection);
|
---|
274 | HeightB.SubtractVector(&I->x3);
|
---|
275 | HeightB.ProjectOntoPlane(&SideB);
|
---|
276 |
|
---|
277 | retval = HeightA.ScalarProduct(&HeightA) + HeightB.ScalarProduct(&HeightB);
|
---|
278 | //cout << Verbose(2) << "MinIntersectDistance called, result: " << retval << endl;
|
---|
279 |
|
---|
280 | return retval;
|
---|
281 | };
|
---|
282 |
|
---|
283 |
|
---|
284 | /**
|
---|
285 | * Calculates whether there is an intersection between two lines. The first line
|
---|
286 | * always goes through point 1 and point 2 and the second line is given by the
|
---|
287 | * connection between point 4 and point 5.
|
---|
288 | *
|
---|
289 | * @param point 1 of line 1
|
---|
290 | * @param point 2 of line 1
|
---|
291 | * @param point 1 of line 2
|
---|
292 | * @param point 2 of line 2
|
---|
293 | *
|
---|
294 | * @return true if there is an intersection between the given lines, false otherwise
|
---|
295 | */
|
---|
296 | bool existsIntersection(Vector point1, Vector point2, Vector point3, Vector point4)
|
---|
297 | {
|
---|
298 | bool result;
|
---|
299 |
|
---|
300 | struct Intersection par;
|
---|
301 | par.x1.CopyVector(&point1);
|
---|
302 | par.x2.CopyVector(&point2);
|
---|
303 | par.x3.CopyVector(&point3);
|
---|
304 | par.x4.CopyVector(&point4);
|
---|
305 |
|
---|
306 | const gsl_multimin_fminimizer_type *T = gsl_multimin_fminimizer_nmsimplex;
|
---|
307 | gsl_multimin_fminimizer *s = NULL;
|
---|
308 | gsl_vector *ss, *x;
|
---|
309 | gsl_multimin_function minexFunction;
|
---|
310 |
|
---|
311 | size_t iter = 0;
|
---|
312 | int status;
|
---|
313 | double size;
|
---|
314 |
|
---|
315 | /* Starting point */
|
---|
316 | x = gsl_vector_alloc(NDIM);
|
---|
317 | gsl_vector_set(x, 0, point1.x[0]);
|
---|
318 | gsl_vector_set(x, 1, point1.x[1]);
|
---|
319 | gsl_vector_set(x, 2, point1.x[2]);
|
---|
320 |
|
---|
321 | /* Set initial step sizes to 1 */
|
---|
322 | ss = gsl_vector_alloc(NDIM);
|
---|
323 | gsl_vector_set_all(ss, 1.0);
|
---|
324 |
|
---|
325 | /* Initialize method and iterate */
|
---|
326 | minexFunction.n = NDIM;
|
---|
327 | minexFunction.f = &MinIntersectDistance;
|
---|
328 | minexFunction.params = (void *)∥
|
---|
329 |
|
---|
330 | s = gsl_multimin_fminimizer_alloc(T, NDIM);
|
---|
331 | gsl_multimin_fminimizer_set(s, &minexFunction, x, ss);
|
---|
332 |
|
---|
333 | do {
|
---|
334 | iter++;
|
---|
335 | status = gsl_multimin_fminimizer_iterate(s);
|
---|
336 |
|
---|
337 | if (status) {
|
---|
338 | break;
|
---|
339 | }
|
---|
340 |
|
---|
341 | size = gsl_multimin_fminimizer_size(s);
|
---|
342 | status = gsl_multimin_test_size(size, 1e-2);
|
---|
343 |
|
---|
344 | if (status == GSL_SUCCESS) {
|
---|
345 | cout << Verbose(2) << "converged to minimum" << endl;
|
---|
346 | }
|
---|
347 | } while (status == GSL_CONTINUE && iter < 100);
|
---|
348 |
|
---|
349 | // check whether intersection is in between or not
|
---|
350 | Vector intersection, SideA, SideB, HeightA, HeightB;
|
---|
351 | double t1, t2;
|
---|
352 | for (int i = 0; i < NDIM; i++) {
|
---|
353 | intersection.x[i] = gsl_vector_get(s->x, i);
|
---|
354 | }
|
---|
355 |
|
---|
356 | SideA.CopyVector(&par.x2);
|
---|
357 | SideA.SubtractVector(&par.x1);
|
---|
358 | HeightA.CopyVector(&intersection);
|
---|
359 | HeightA.SubtractVector(&par.x1);
|
---|
360 |
|
---|
361 | t1 = HeightA.ScalarProduct(&SideA)/SideA.ScalarProduct(&SideA);
|
---|
362 |
|
---|
363 | SideB.CopyVector(&par.x4);
|
---|
364 | SideB.SubtractVector(&par.x3);
|
---|
365 | HeightB.CopyVector(&intersection);
|
---|
366 | HeightB.SubtractVector(&par.x3);
|
---|
367 |
|
---|
368 | t2 = HeightB.ScalarProduct(&SideB)/SideB.ScalarProduct(&SideB);
|
---|
369 |
|
---|
370 | cout << Verbose(2) << "Intersection " << intersection << " is at "
|
---|
371 | << t1 << " for (" << point1 << "," << point2 << ") and at "
|
---|
372 | << t2 << " for (" << point3 << "," << point4 << "): ";
|
---|
373 |
|
---|
374 | if (((t1 >= 0) && (t1 <= 1)) && ((t2 >= 0) && (t2 <= 1))) {
|
---|
375 | cout << "true intersection." << endl;
|
---|
376 | result = true;
|
---|
377 | } else {
|
---|
378 | cout << "intersection out of region of interest." << endl;
|
---|
379 | result = false;
|
---|
380 | }
|
---|
381 |
|
---|
382 | // free minimizer stuff
|
---|
383 | gsl_vector_free(x);
|
---|
384 | gsl_vector_free(ss);
|
---|
385 | gsl_multimin_fminimizer_free(s);
|
---|
386 |
|
---|
387 | return result;
|
---|
388 | }
|
---|
389 |
|
---|