source: src/tesselationhelpers.cpp@ a7c344

Action_Thermostats Add_AtomRandomPerturbation Add_FitFragmentPartialChargesAction Add_RotateAroundBondAction Add_SelectAtomByNameAction Added_ParseSaveFragmentResults AddingActions_SaveParseParticleParameters Adding_Graph_to_ChangeBondActions Adding_MD_integration_tests Adding_ParticleName_to_Atom Adding_StructOpt_integration_tests AtomFragments Automaking_mpqc_open AutomationFragmentation_failures Candidate_v1.5.4 Candidate_v1.6.0 Candidate_v1.6.1 ChangeBugEmailaddress ChangingTestPorts ChemicalSpaceEvaluator CombiningParticlePotentialParsing Combining_Subpackages Debian_Package_split Debian_package_split_molecuildergui_only Disabling_MemDebug Docu_Python_wait EmpiricalPotential_contain_HomologyGraph EmpiricalPotential_contain_HomologyGraph_documentation Enable_parallel_make_install Enhance_userguide Enhanced_StructuralOptimization Enhanced_StructuralOptimization_continued Example_ManyWaysToTranslateAtom Exclude_Hydrogens_annealWithBondGraph FitPartialCharges_GlobalError Fix_BoundInBox_CenterInBox_MoleculeActions Fix_ChargeSampling_PBC Fix_ChronosMutex Fix_FitPartialCharges Fix_FitPotential_needs_atomicnumbers Fix_ForceAnnealing Fix_IndependentFragmentGrids Fix_ParseParticles Fix_ParseParticles_split_forward_backward_Actions Fix_PopActions Fix_QtFragmentList_sorted_selection Fix_Restrictedkeyset_FragmentMolecule Fix_StatusMsg Fix_StepWorldTime_single_argument Fix_Verbose_Codepatterns Fix_fitting_potentials Fixes ForceAnnealing_goodresults ForceAnnealing_oldresults ForceAnnealing_tocheck ForceAnnealing_with_BondGraph ForceAnnealing_with_BondGraph_continued ForceAnnealing_with_BondGraph_continued_betteresults ForceAnnealing_with_BondGraph_contraction-expansion FragmentAction_writes_AtomFragments FragmentMolecule_checks_bonddegrees GeometryObjects Gui_Fixes Gui_displays_atomic_force_velocity ImplicitCharges IndependentFragmentGrids IndependentFragmentGrids_IndividualZeroInstances IndependentFragmentGrids_IntegrationTest IndependentFragmentGrids_Sole_NN_Calculation JobMarket_RobustOnKillsSegFaults JobMarket_StableWorkerPool JobMarket_unresolvable_hostname_fix MoreRobust_FragmentAutomation ODR_violation_mpqc_open PartialCharges_OrthogonalSummation PdbParser_setsAtomName PythonUI_with_named_parameters QtGui_reactivate_TimeChanged_changes Recreated_GuiChecks Rewrite_FitPartialCharges RotateToPrincipalAxisSystem_UndoRedo SaturateAtoms_findBestMatching SaturateAtoms_singleDegree StoppableMakroAction Subpackage_CodePatterns Subpackage_JobMarket Subpackage_LinearAlgebra Subpackage_levmar Subpackage_mpqc_open Subpackage_vmg Switchable_LogView ThirdParty_MPQC_rebuilt_buildsystem TrajectoryDependenant_MaxOrder TremoloParser_IncreasedPrecision TremoloParser_MultipleTimesteps TremoloParser_setsAtomName Ubuntu_1604_changes stable
Last change on this file since a7c344 was a7c344, checked in by Frederik Heber <heber@…>, 15 years ago

Merge branch 'StructureRefactoring' of jupiter:espack into StructureRefactoring

  • Property mode set to 100644
File size: 45.0 KB
Line 
1/*
2 * TesselationHelpers.cpp
3 *
4 * Created on: Aug 3, 2009
5 * Author: heber
6 */
7
8#include <fstream>
9
10#include "info.hpp"
11#include "linkedcell.hpp"
12#include "linearsystemofequations.hpp"
13#include "log.hpp"
14#include "tesselation.hpp"
15#include "tesselationhelpers.hpp"
16#include "vector.hpp"
17#include "Line.hpp"
18#include "vector_ops.hpp"
19#include "verbose.hpp"
20#include "Plane.hpp"
21
22double DetGet(gsl_matrix * const A, const int inPlace)
23{
24 Info FunctionInfo(__func__);
25 /*
26 inPlace = 1 => A is replaced with the LU decomposed copy.
27 inPlace = 0 => A is retained, and a copy is used for LU.
28 */
29
30 double det;
31 int signum;
32 gsl_permutation *p = gsl_permutation_alloc(A->size1);
33 gsl_matrix *tmpA=0;
34
35 if (inPlace)
36 tmpA = A;
37 else {
38 gsl_matrix *tmpA = gsl_matrix_alloc(A->size1, A->size2);
39 gsl_matrix_memcpy(tmpA , A);
40 }
41
42
43 gsl_linalg_LU_decomp(tmpA , p , &signum);
44 det = gsl_linalg_LU_det(tmpA , signum);
45 gsl_permutation_free(p);
46 if (! inPlace)
47 gsl_matrix_free(tmpA);
48
49 return det;
50};
51
52void GetSphere(Vector * const center, const Vector &a, const Vector &b, const Vector &c, const double RADIUS)
53{
54 Info FunctionInfo(__func__);
55 gsl_matrix *A = gsl_matrix_calloc(3,3);
56 double m11, m12, m13, m14;
57
58 for(int i=0;i<3;i++) {
59 gsl_matrix_set(A, i, 0, a[i]);
60 gsl_matrix_set(A, i, 1, b[i]);
61 gsl_matrix_set(A, i, 2, c[i]);
62 }
63 m11 = DetGet(A, 1);
64
65 for(int i=0;i<3;i++) {
66 gsl_matrix_set(A, i, 0, a[i]*a[i] + b[i]*b[i] + c[i]*c[i]);
67 gsl_matrix_set(A, i, 1, b[i]);
68 gsl_matrix_set(A, i, 2, c[i]);
69 }
70 m12 = DetGet(A, 1);
71
72 for(int i=0;i<3;i++) {
73 gsl_matrix_set(A, i, 0, a[i]*a[i] + b[i]*b[i] + c[i]*c[i]);
74 gsl_matrix_set(A, i, 1, a[i]);
75 gsl_matrix_set(A, i, 2, c[i]);
76 }
77 m13 = DetGet(A, 1);
78
79 for(int i=0;i<3;i++) {
80 gsl_matrix_set(A, i, 0, a[i]*a[i] + b[i]*b[i] + c[i]*c[i]);
81 gsl_matrix_set(A, i, 1, a[i]);
82 gsl_matrix_set(A, i, 2, b[i]);
83 }
84 m14 = DetGet(A, 1);
85
86 if (fabs(m11) < MYEPSILON)
87 DoeLog(1) && (eLog()<< Verbose(1) << "three points are colinear." << endl);
88
89 center->at(0) = 0.5 * m12/ m11;
90 center->at(1) = -0.5 * m13/ m11;
91 center->at(2) = 0.5 * m14/ m11;
92
93 if (fabs(a.distance(*center) - RADIUS) > MYEPSILON)
94 DoeLog(1) && (eLog()<< Verbose(1) << "The given center is further way by " << fabs(a.distance(*center) - RADIUS) << " from a than RADIUS." << endl);
95
96 gsl_matrix_free(A);
97};
98
99
100
101/**
102 * Function returns center of sphere with RADIUS, which rests on points a, b, c
103 * @param Center this vector will be used for return
104 * @param a vector first point of triangle
105 * @param b vector second point of triangle
106 * @param c vector third point of triangle
107 * @param *Umkreismittelpunkt new center point of circumference
108 * @param Direction vector indicates up/down
109 * @param AlternativeDirection Vector, needed in case the triangles have 90 deg angle
110 * @param Halfplaneindicator double indicates whether Direction is up or down
111 * @param AlternativeIndicator double indicates in case of orthogonal triangles which direction of AlternativeDirection is suitable
112 * @param alpha double angle at a
113 * @param beta double, angle at b
114 * @param gamma, double, angle at c
115 * @param Radius, double
116 * @param Umkreisradius double radius of circumscribing circle
117 */
118void GetCenterOfSphere(Vector* const & Center, const Vector &a, const Vector &b, const Vector &c, Vector * const NewUmkreismittelpunkt, const Vector* const Direction, const Vector* const AlternativeDirection,
119 const double HalfplaneIndicator, const double AlternativeIndicator, const double alpha, const double beta, const double gamma, const double RADIUS, const double Umkreisradius)
120{
121 Info FunctionInfo(__func__);
122 Vector TempNormal, helper;
123 double Restradius;
124 Vector OtherCenter;
125 Center->Zero();
126 helper = sin(2.*alpha) * a;
127 (*Center) += helper;
128 helper = sin(2.*beta) * b;
129 (*Center) += helper;
130 helper = sin(2.*gamma) * c;
131 (*Center) += helper;
132 //*Center = a * sin(2.*alpha) + b * sin(2.*beta) + c * sin(2.*gamma) ;
133 Center->Scale(1./(sin(2.*alpha) + sin(2.*beta) + sin(2.*gamma)));
134 (*NewUmkreismittelpunkt) = (*Center);
135 DoLog(1) && (Log() << Verbose(1) << "Center of new circumference is " << *NewUmkreismittelpunkt << ".\n");
136 // Here we calculated center of circumscribing circle, using barycentric coordinates
137 DoLog(1) && (Log() << Verbose(1) << "Center of circumference is " << *Center << " in direction " << *Direction << ".\n");
138
139 TempNormal = a - b;
140 helper = a - c;
141 TempNormal.VectorProduct(helper);
142 if (fabs(HalfplaneIndicator) < MYEPSILON)
143 {
144 if ((TempNormal.ScalarProduct(*AlternativeDirection) <0 && AlternativeIndicator >0) || (TempNormal.ScalarProduct(*AlternativeDirection) >0 && AlternativeIndicator <0))
145 {
146 TempNormal *= -1;
147 }
148 }
149 else
150 {
151 if (((TempNormal.ScalarProduct(*Direction)<0) && (HalfplaneIndicator >0)) || ((TempNormal.ScalarProduct(*Direction)>0) && (HalfplaneIndicator<0)))
152 {
153 TempNormal *= -1;
154 }
155 }
156
157 TempNormal.Normalize();
158 Restradius = sqrt(RADIUS*RADIUS - Umkreisradius*Umkreisradius);
159 DoLog(1) && (Log() << Verbose(1) << "Height of center of circumference to center of sphere is " << Restradius << ".\n");
160 TempNormal.Scale(Restradius);
161 DoLog(1) && (Log() << Verbose(1) << "Shift vector to sphere of circumference is " << TempNormal << ".\n");
162 (*Center) += TempNormal;
163 DoLog(1) && (Log() << Verbose(1) << "Center of sphere of circumference is " << *Center << ".\n");
164 GetSphere(&OtherCenter, a, b, c, RADIUS);
165 DoLog(1) && (Log() << Verbose(1) << "OtherCenter of sphere of circumference is " << OtherCenter << ".\n");
166};
167
168
169/** Constructs the center of the circumcircle defined by three points \a *a, \a *b and \a *c.
170 * \param *Center new center on return
171 * \param *a first point
172 * \param *b second point
173 * \param *c third point
174 */
175void GetCenterofCircumcircle(Vector * const Center, const Vector &a, const Vector &b, const Vector &c)
176{
177 Info FunctionInfo(__func__);
178 Vector helper;
179 double alpha, beta, gamma;
180 Vector SideA = b - c;
181 Vector SideB = c - a;
182 Vector SideC = a - b;
183 alpha = M_PI - SideB.Angle(SideC);
184 beta = M_PI - SideC.Angle(SideA);
185 gamma = M_PI - SideA.Angle(SideB);
186 Log() << Verbose(1) << "INFO: alpha = " << alpha/M_PI*180. << ", beta = " << beta/M_PI*180. << ", gamma = " << gamma/M_PI*180. << "." << endl;
187 if (fabs(M_PI - alpha - beta - gamma) > HULLEPSILON) {
188 DoeLog(2) && (eLog()<< Verbose(2) << "GetCenterofCircumcircle: Sum of angles " << (alpha+beta+gamma)/M_PI*180. << " > 180 degrees by " << fabs(M_PI - alpha - beta - gamma)/M_PI*180. << "!" << endl);
189 }
190
191 Center->Zero();
192 helper = sin(2.*alpha) * a;
193 (*Center) += helper;
194 helper = sin(2.*beta) * b;
195 (*Center) += helper;
196 helper = sin(2.*gamma) * c;
197 (*Center) += helper;
198 Center->Scale(1./(sin(2.*alpha) + sin(2.*beta) + sin(2.*gamma)));
199 Log() << Verbose(1) << "INFO: Center (1st algo) is at " << *Center << "." << endl;
200
201// LinearSystemOfEquations LSofEq(NDIM,NDIM);
202// double *matrix = new double[NDIM*NDIM];
203// matrix[0] = 0.;
204// matrix[1] = a.DistanceSquared(b);
205// matrix[2] = a.DistanceSquared(c);
206// matrix[3] = a.DistanceSquared(b);
207// matrix[4] = 0.;
208// matrix[5] = b.DistanceSquared(c);
209// matrix[6] = a.DistanceSquared(c);
210// matrix[7] = b.DistanceSquared(c);
211// matrix[8] = 0.;
212// cout << "Matrix is: ";
213// for (int i=0;i<NDIM*NDIM;i++)
214// cout << matrix[i] << "\t";
215// cout << endl;
216// LSofEq.SetA(matrix);
217// delete[](matrix);
218// LSofEq.Setb(new Vector(1.,1.,1.));
219// LSofEq.SetSymmetric(true);
220// helper.Zero();
221// if (!LSofEq.GetSolutionAsVector(helper)) {
222// DoLog(0) && (eLog()<< Verbose(0) << "Could not solve the linear system in GetCenterofCircumCircle()!" << endl);
223// }
224// cout << "Solution is " << helper << endl;
225 // is equivalent to the three lines below
226 helper[0] = SideA.NormSquared()*(SideB.NormSquared()+SideC.NormSquared() - SideA.NormSquared());
227 helper[1] = SideB.NormSquared()*(SideC.NormSquared()+SideA.NormSquared() - SideB.NormSquared());
228 helper[2] = SideC.NormSquared()*(SideA.NormSquared()+SideB.NormSquared() - SideC.NormSquared());
229
230 Center->Zero();
231 *Center += helper[0] * a;
232 *Center += helper[1] * b;
233 *Center += helper[2] * c;
234 Center->Scale(1./(helper[0]+helper[1]+helper[2]));
235 Log() << Verbose(1) << "INFO: Center (2nd algo) is at " << *Center << "." << endl;
236};
237
238/** Returns the parameter "path length" for a given \a NewSphereCenter relative to \a OldSphereCenter on a circle on the plane \a CirclePlaneNormal with center \a CircleCenter and radius \a CircleRadius.
239 * Test whether the \a NewSphereCenter is really on the given plane and in distance \a CircleRadius from \a CircleCenter.
240 * It calculates the angle, making it unique on [0,2.*M_PI) by comparing to SearchDirection.
241 * Also the new center is invalid if it the same as the old one and does not lie right above (\a NormalVector) the base line (\a CircleCenter).
242 * \param CircleCenter Center of the parameter circle
243 * \param CirclePlaneNormal normal vector to plane of the parameter circle
244 * \param CircleRadius radius of the parameter circle
245 * \param NewSphereCenter new center of a circumcircle
246 * \param OldSphereCenter old center of a circumcircle, defining the zero "path length" on the parameter circle
247 * \param NormalVector normal vector
248 * \param SearchDirection search direction to make angle unique on return.
249 * \return Angle between \a NewSphereCenter and \a OldSphereCenter relative to \a CircleCenter, 2.*M_PI if one test fails
250 */
251double GetPathLengthonCircumCircle(const Vector &CircleCenter, const Vector &CirclePlaneNormal, const double CircleRadius, const Vector &NewSphereCenter, const Vector &OldSphereCenter, const Vector &NormalVector, const Vector &SearchDirection)
252{
253 Info FunctionInfo(__func__);
254 Vector helper;
255 double radius, alpha;
256
257 Vector RelativeOldSphereCenter = OldSphereCenter - CircleCenter;
258 Vector RelativeNewSphereCenter = NewSphereCenter - CircleCenter;
259 helper = RelativeNewSphereCenter;
260 // test whether new center is on the parameter circle's plane
261 if (fabs(helper.ScalarProduct(CirclePlaneNormal)) > HULLEPSILON) {
262 DoeLog(1) && (eLog()<< Verbose(1) << "Something's very wrong here: NewSphereCenter is not on the band's plane as desired by " <<fabs(helper.ScalarProduct(CirclePlaneNormal)) << "!" << endl);
263 helper.ProjectOntoPlane(CirclePlaneNormal);
264 }
265 radius = helper.NormSquared();
266 // test whether the new center vector has length of CircleRadius
267 if (fabs(radius - CircleRadius) > HULLEPSILON)
268 DoeLog(1) && (eLog()<< Verbose(1) << "The projected center of the new sphere has radius " << radius << " instead of " << CircleRadius << "." << endl);
269 alpha = helper.Angle(RelativeOldSphereCenter);
270 // make the angle unique by checking the halfplanes/search direction
271 if (helper.ScalarProduct(SearchDirection) < -HULLEPSILON) // acos is not unique on [0, 2.*M_PI), hence extra check to decide between two half intervals
272 alpha = 2.*M_PI - alpha;
273 DoLog(1) && (Log() << Verbose(1) << "INFO: RelativeNewSphereCenter is " << helper << ", RelativeOldSphereCenter is " << RelativeOldSphereCenter << " and resulting angle is " << alpha << "." << endl);
274 radius = helper.distance(RelativeOldSphereCenter);
275 helper.ProjectOntoPlane(NormalVector);
276 // check whether new center is somewhat away or at least right over the current baseline to prevent intersecting triangles
277 if ((radius > HULLEPSILON) || (helper.Norm() < HULLEPSILON)) {
278 DoLog(1) && (Log() << Verbose(1) << "INFO: Distance between old and new center is " << radius << " and between new center and baseline center is " << helper.Norm() << "." << endl);
279 return alpha;
280 } else {
281 DoLog(1) && (Log() << Verbose(1) << "INFO: NewSphereCenter " << RelativeNewSphereCenter << " is too close to RelativeOldSphereCenter" << RelativeOldSphereCenter << "." << endl);
282 return 2.*M_PI;
283 }
284};
285
286struct Intersection {
287 Vector x1;
288 Vector x2;
289 Vector x3;
290 Vector x4;
291};
292
293/**
294 * Intersection calculation function.
295 *
296 * @param x to find the result for
297 * @param function parameter
298 */
299double MinIntersectDistance(const gsl_vector * x, void *params)
300{
301 Info FunctionInfo(__func__);
302 double retval = 0;
303 struct Intersection *I = (struct Intersection *)params;
304 Vector intersection;
305 for (int i=0;i<NDIM;i++)
306 intersection[i] = gsl_vector_get(x, i);
307
308 Vector SideA = I->x1 -I->x2 ;
309 Vector HeightA = intersection - I->x1;
310 HeightA.ProjectOntoPlane(SideA);
311
312 Vector SideB = I->x3 - I->x4;
313 Vector HeightB = intersection - I->x3;
314 HeightB.ProjectOntoPlane(SideB);
315
316 retval = HeightA.ScalarProduct(HeightA) + HeightB.ScalarProduct(HeightB);
317 //Log() << Verbose(1) << "MinIntersectDistance called, result: " << retval << endl;
318
319 return retval;
320};
321
322
323/**
324 * Calculates whether there is an intersection between two lines. The first line
325 * always goes through point 1 and point 2 and the second line is given by the
326 * connection between point 4 and point 5.
327 *
328 * @param point 1 of line 1
329 * @param point 2 of line 1
330 * @param point 1 of line 2
331 * @param point 2 of line 2
332 *
333 * @return true if there is an intersection between the given lines, false otherwise
334 */
335bool existsIntersection(const Vector &point1, const Vector &point2, const Vector &point3, const Vector &point4)
336{
337 Info FunctionInfo(__func__);
338 bool result;
339
340 struct Intersection par;
341 par.x1 = point1;
342 par.x2 = point2;
343 par.x3 = point3;
344 par.x4 = point4;
345
346 const gsl_multimin_fminimizer_type *T = gsl_multimin_fminimizer_nmsimplex;
347 gsl_multimin_fminimizer *s = NULL;
348 gsl_vector *ss, *x;
349 gsl_multimin_function minexFunction;
350
351 size_t iter = 0;
352 int status;
353 double size;
354
355 /* Starting point */
356 x = gsl_vector_alloc(NDIM);
357 gsl_vector_set(x, 0, point1[0]);
358 gsl_vector_set(x, 1, point1[1]);
359 gsl_vector_set(x, 2, point1[2]);
360
361 /* Set initial step sizes to 1 */
362 ss = gsl_vector_alloc(NDIM);
363 gsl_vector_set_all(ss, 1.0);
364
365 /* Initialize method and iterate */
366 minexFunction.n = NDIM;
367 minexFunction.f = &MinIntersectDistance;
368 minexFunction.params = (void *)&par;
369
370 s = gsl_multimin_fminimizer_alloc(T, NDIM);
371 gsl_multimin_fminimizer_set(s, &minexFunction, x, ss);
372
373 do {
374 iter++;
375 status = gsl_multimin_fminimizer_iterate(s);
376
377 if (status) {
378 break;
379 }
380
381 size = gsl_multimin_fminimizer_size(s);
382 status = gsl_multimin_test_size(size, 1e-2);
383
384 if (status == GSL_SUCCESS) {
385 DoLog(1) && (Log() << Verbose(1) << "converged to minimum" << endl);
386 }
387 } while (status == GSL_CONTINUE && iter < 100);
388
389 // check whether intersection is in between or not
390 Vector intersection;
391 double t1, t2;
392 for (int i = 0; i < NDIM; i++) {
393 intersection[i] = gsl_vector_get(s->x, i);
394 }
395
396 Vector SideA = par.x2 - par.x1;
397 Vector HeightA = intersection - par.x1;
398
399 t1 = HeightA.ScalarProduct(SideA)/SideA.ScalarProduct(SideA);
400
401 Vector SideB = par.x4 - par.x3;
402 Vector HeightB = intersection - par.x3;
403
404 t2 = HeightB.ScalarProduct(SideB)/SideB.ScalarProduct(SideB);
405
406 Log() << Verbose(1) << "Intersection " << intersection << " is at "
407 << t1 << " for (" << point1 << "," << point2 << ") and at "
408 << t2 << " for (" << point3 << "," << point4 << "): ";
409
410 if (((t1 >= 0) && (t1 <= 1)) && ((t2 >= 0) && (t2 <= 1))) {
411 DoLog(1) && (Log() << Verbose(1) << "true intersection." << endl);
412 result = true;
413 } else {
414 DoLog(1) && (Log() << Verbose(1) << "intersection out of region of interest." << endl);
415 result = false;
416 }
417
418 // free minimizer stuff
419 gsl_vector_free(x);
420 gsl_vector_free(ss);
421 gsl_multimin_fminimizer_free(s);
422
423 return result;
424};
425
426/** Gets the angle between a point and a reference relative to the provided center.
427 * We have two shanks point and reference between which the angle is calculated
428 * and by scalar product with OrthogonalVector we decide the interval.
429 * @param point to calculate the angle for
430 * @param reference to which to calculate the angle
431 * @param OrthogonalVector points in direction of [pi,2pi] interval
432 *
433 * @return angle between point and reference
434 */
435double GetAngle(const Vector &point, const Vector &reference, const Vector &OrthogonalVector)
436{
437 Info FunctionInfo(__func__);
438 if (reference.IsZero())
439 return M_PI;
440
441 // calculate both angles and correct with in-plane vector
442 if (point.IsZero())
443 return M_PI;
444 double phi = point.Angle(reference);
445 if (OrthogonalVector.ScalarProduct(point) > 0) {
446 phi = 2.*M_PI - phi;
447 }
448
449 DoLog(1) && (Log() << Verbose(1) << "INFO: " << point << " has angle " << phi << " with respect to reference " << reference << "." << endl);
450
451 return phi;
452}
453
454
455/** Calculates the volume of a general tetraeder.
456 * \param *a first vector
457 * \param *b second vector
458 * \param *c third vector
459 * \param *d fourth vector
460 * \return \f$ \frac{1}{6} \cdot ((a-d) \times (a-c) \cdot (a-b)) \f$
461 */
462double CalculateVolumeofGeneralTetraeder(const Vector &a, const Vector &b, const Vector &c, const Vector &d)
463{
464 Info FunctionInfo(__func__);
465 Vector Point, TetraederVector[3];
466 double volume;
467
468 TetraederVector[0] = a;
469 TetraederVector[1] = b;
470 TetraederVector[2] = c;
471 for (int j=0;j<3;j++)
472 TetraederVector[j].SubtractVector(d);
473 Point = TetraederVector[0];
474 Point.VectorProduct(TetraederVector[1]);
475 volume = 1./6. * fabs(Point.ScalarProduct(TetraederVector[2]));
476 return volume;
477};
478
479/** Calculates the area of a general triangle.
480 * We use the Heron's formula of area, [Bronstein, S. 138]
481 * \param &A first vector
482 * \param &B second vector
483 * \param &C third vector
484 * \return \f$ \frac{1}{6} \cdot ((a-d) \times (a-c) \cdot (a-b)) \f$
485 */
486double CalculateAreaofGeneralTriangle(const Vector &A, const Vector &B, const Vector &C)
487{
488 Info FunctionInfo(__func__);
489
490 const double sidea = B.distance(C);
491 const double sideb = A.distance(C);
492 const double sidec = A.distance(B);
493 const double s = (sidea+sideb+sidec)/2.;
494
495 const double area = sqrt(s*(s-sidea)*(s-sideb)*(s-sidec));
496 return area;
497};
498
499
500/** Checks for a new special triangle whether one of its edges is already present with one one triangle connected.
501 * This enforces that special triangles (i.e. degenerated ones) should at last close the open-edge frontier and not
502 * make it bigger (i.e. closing one (the baseline) and opening two new ones).
503 * \param TPS[3] nodes of the triangle
504 * \return true - there is such a line (i.e. creation of degenerated triangle is valid), false - no such line (don't create)
505 */
506bool CheckLineCriteriaForDegeneratedTriangle(const BoundaryPointSet * const nodes[3])
507{
508 Info FunctionInfo(__func__);
509 bool result = false;
510 int counter = 0;
511
512 // check all three points
513 for (int i=0;i<3;i++)
514 for (int j=i+1; j<3; j++) {
515 if (nodes[i] == NULL) {
516 DoLog(1) && (Log() << Verbose(1) << "Node nr. " << i << " is not yet present." << endl);
517 result = true;
518 } else if (nodes[i]->lines.find(nodes[j]->node->nr) != nodes[i]->lines.end()) { // there already is a line
519 LineMap::const_iterator FindLine;
520 pair<LineMap::const_iterator,LineMap::const_iterator> FindPair;
521 FindPair = nodes[i]->lines.equal_range(nodes[j]->node->nr);
522 for (FindLine = FindPair.first; FindLine != FindPair.second; ++FindLine) {
523 // If there is a line with less than two attached triangles, we don't need a new line.
524 if (FindLine->second->triangles.size() < 2) {
525 counter++;
526 break; // increase counter only once per edge
527 }
528 }
529 } else { // no line
530 DoLog(1) && (Log() << Verbose(1) << "The line between " << *nodes[i] << " and " << *nodes[j] << " is not yet present, hence no need for a degenerate triangle." << endl);
531 result = true;
532 }
533 }
534 if ((!result) && (counter > 1)) {
535 DoLog(1) && (Log() << Verbose(1) << "INFO: Degenerate triangle is ok, at least two, here " << counter << ", existing lines are used." << endl);
536 result = true;
537 }
538 return result;
539};
540
541
542///** Sort function for the candidate list.
543// */
544//bool SortCandidates(const CandidateForTesselation* candidate1, const CandidateForTesselation* candidate2)
545//{
546// Info FunctionInfo(__func__);
547// Vector BaseLineVector, OrthogonalVector, helper;
548// if (candidate1->BaseLine != candidate2->BaseLine) { // sanity check
549// DoeLog(1) && (eLog()<< Verbose(1) << "sortCandidates was called for two different baselines: " << candidate1->BaseLine << " and " << candidate2->BaseLine << "." << endl);
550// //return false;
551// exit(1);
552// }
553// // create baseline vector
554// BaseLineVector.CopyVector(candidate1->BaseLine->endpoints[1]->node->node);
555// BaseLineVector.SubtractVector(candidate1->BaseLine->endpoints[0]->node->node);
556// BaseLineVector.Normalize();
557//
558// // create normal in-plane vector to cope with acos() non-uniqueness on [0,2pi] (note that is pointing in the "right" direction already, hence ">0" test!)
559// helper.CopyVector(candidate1->BaseLine->endpoints[0]->node->node);
560// helper.SubtractVector(candidate1->point->node);
561// OrthogonalVector.CopyVector(&helper);
562// helper.VectorProduct(&BaseLineVector);
563// OrthogonalVector.SubtractVector(&helper);
564// OrthogonalVector.Normalize();
565//
566// // calculate both angles and correct with in-plane vector
567// helper.CopyVector(candidate1->point->node);
568// helper.SubtractVector(candidate1->BaseLine->endpoints[0]->node->node);
569// double phi = BaseLineVector.Angle(&helper);
570// if (OrthogonalVector.ScalarProduct(&helper) > 0) {
571// phi = 2.*M_PI - phi;
572// }
573// helper.CopyVector(candidate2->point->node);
574// helper.SubtractVector(candidate1->BaseLine->endpoints[0]->node->node);
575// double psi = BaseLineVector.Angle(&helper);
576// if (OrthogonalVector.ScalarProduct(&helper) > 0) {
577// psi = 2.*M_PI - psi;
578// }
579//
580// Log() << Verbose(1) << *candidate1->point << " has angle " << phi << endl;
581// Log() << Verbose(1) << *candidate2->point << " has angle " << psi << endl;
582//
583// // return comparison
584// return phi < psi;
585//};
586
587/**
588 * Finds the point which is second closest to the provided one.
589 *
590 * @param Point to which to find the second closest other point
591 * @param linked cell structure
592 *
593 * @return point which is second closest to the provided one
594 */
595TesselPoint* FindSecondClosestTesselPoint(const Vector* Point, const LinkedCell* const LC)
596{
597 Info FunctionInfo(__func__);
598 TesselPoint* closestPoint = NULL;
599 TesselPoint* secondClosestPoint = NULL;
600 double distance = 1e16;
601 double secondDistance = 1e16;
602 Vector helper;
603 int N[NDIM], Nlower[NDIM], Nupper[NDIM];
604
605 LC->SetIndexToVector(Point); // ignore status as we calculate bounds below sensibly
606 for(int i=0;i<NDIM;i++) // store indices of this cell
607 N[i] = LC->n[i];
608 DoLog(1) && (Log() << Verbose(1) << "INFO: Center cell is " << N[0] << ", " << N[1] << ", " << N[2] << " with No. " << LC->index << "." << endl);
609
610 LC->GetNeighbourBounds(Nlower, Nupper);
611 //Log() << Verbose(1) << endl;
612 for (LC->n[0] = Nlower[0]; LC->n[0] <= Nupper[0]; LC->n[0]++)
613 for (LC->n[1] = Nlower[1]; LC->n[1] <= Nupper[1]; LC->n[1]++)
614 for (LC->n[2] = Nlower[2]; LC->n[2] <= Nupper[2]; LC->n[2]++) {
615 const LinkedCell::LinkedNodes *List = LC->GetCurrentCell();
616 //Log() << Verbose(1) << "The current cell " << LC->n[0] << "," << LC->n[1] << "," << LC->n[2] << endl;
617 if (List != NULL) {
618 for (LinkedCell::LinkedNodes::const_iterator Runner = List->begin(); Runner != List->end(); Runner++) {
619 helper = (*Point) - (*(*Runner)->node);
620 double currentNorm = helper. Norm();
621 if (currentNorm < distance) {
622 // remember second point
623 secondDistance = distance;
624 secondClosestPoint = closestPoint;
625 // mark down new closest point
626 distance = currentNorm;
627 closestPoint = (*Runner);
628 //Log() << Verbose(2) << "INFO: New Second Nearest Neighbour is " << *secondClosestPoint << "." << endl;
629 }
630 }
631 } else {
632 eLog() << Verbose(1) << "The current cell " << LC->n[0] << "," << LC->n[1] << ","
633 << LC->n[2] << " is invalid!" << endl;
634 }
635 }
636
637 return secondClosestPoint;
638};
639
640/**
641 * Finds the point which is closest to the provided one.
642 *
643 * @param Point to which to find the closest other point
644 * @param SecondPoint the second closest other point on return, NULL if none found
645 * @param linked cell structure
646 *
647 * @return point which is closest to the provided one, NULL if none found
648 */
649TesselPoint* FindClosestTesselPoint(const Vector* Point, TesselPoint *&SecondPoint, const LinkedCell* const LC)
650{
651 Info FunctionInfo(__func__);
652 TesselPoint* closestPoint = NULL;
653 SecondPoint = NULL;
654 double distance = 1e16;
655 double secondDistance = 1e16;
656 Vector helper;
657 int N[NDIM], Nlower[NDIM], Nupper[NDIM];
658
659 LC->SetIndexToVector(Point); // ignore status as we calculate bounds below sensibly
660 for(int i=0;i<NDIM;i++) // store indices of this cell
661 N[i] = LC->n[i];
662 DoLog(1) && (Log() << Verbose(1) << "INFO: Center cell is " << N[0] << ", " << N[1] << ", " << N[2] << " with No. " << LC->index << "." << endl);
663
664 LC->GetNeighbourBounds(Nlower, Nupper);
665 //Log() << Verbose(1) << endl;
666 for (LC->n[0] = Nlower[0]; LC->n[0] <= Nupper[0]; LC->n[0]++)
667 for (LC->n[1] = Nlower[1]; LC->n[1] <= Nupper[1]; LC->n[1]++)
668 for (LC->n[2] = Nlower[2]; LC->n[2] <= Nupper[2]; LC->n[2]++) {
669 const LinkedCell::LinkedNodes *List = LC->GetCurrentCell();
670 //Log() << Verbose(1) << "The current cell " << LC->n[0] << "," << LC->n[1] << "," << LC->n[2] << endl;
671 if (List != NULL) {
672 for (LinkedCell::LinkedNodes::const_iterator Runner = List->begin(); Runner != List->end(); Runner++) {
673 helper = (*Point) - (*(*Runner)->node);
674 double currentNorm = helper.NormSquared();
675 if (currentNorm < distance) {
676 secondDistance = distance;
677 SecondPoint = closestPoint;
678 distance = currentNorm;
679 closestPoint = (*Runner);
680 //Log() << Verbose(1) << "INFO: New Nearest Neighbour is " << *closestPoint << "." << endl;
681 } else if (currentNorm < secondDistance) {
682 secondDistance = currentNorm;
683 SecondPoint = (*Runner);
684 //Log() << Verbose(1) << "INFO: New Second Nearest Neighbour is " << *SecondPoint << "." << endl;
685 }
686 }
687 } else {
688 eLog() << Verbose(1) << "The current cell " << LC->n[0] << "," << LC->n[1] << ","
689 << LC->n[2] << " is invalid!" << endl;
690 }
691 }
692 // output
693 if (closestPoint != NULL) {
694 DoLog(1) && (Log() << Verbose(1) << "Closest point is " << *closestPoint);
695 if (SecondPoint != NULL)
696 DoLog(0) && (Log() << Verbose(0) << " and second closest is " << *SecondPoint);
697 DoLog(0) && (Log() << Verbose(0) << "." << endl);
698 }
699 return closestPoint;
700};
701
702/** Returns the closest point on \a *Base with respect to \a *OtherBase.
703 * \param *out output stream for debugging
704 * \param *Base reference line
705 * \param *OtherBase other base line
706 * \return Vector on reference line that has closest distance
707 */
708Vector * GetClosestPointBetweenLine(const BoundaryLineSet * const Base, const BoundaryLineSet * const OtherBase)
709{
710 Info FunctionInfo(__func__);
711 // construct the plane of the two baselines (i.e. take both their directional vectors)
712 Vector Baseline = (*Base->endpoints[1]->node->node) - (*Base->endpoints[0]->node->node);
713 Vector OtherBaseline = (*OtherBase->endpoints[1]->node->node) - (*OtherBase->endpoints[0]->node->node);
714 Vector Normal = Baseline;
715 Normal.VectorProduct(OtherBaseline);
716 Normal.Normalize();
717 DoLog(1) && (Log() << Verbose(1) << "First direction is " << Baseline << ", second direction is " << OtherBaseline << ", normal of intersection plane is " << Normal << "." << endl);
718
719 // project one offset point of OtherBase onto this plane (and add plane offset vector)
720 Vector NewOffset = (*OtherBase->endpoints[0]->node->node) - (*Base->endpoints[0]->node->node);
721 NewOffset.ProjectOntoPlane(Normal);
722 NewOffset += (*Base->endpoints[0]->node->node);
723 Vector NewDirection = NewOffset + OtherBaseline;
724
725 // calculate the intersection between this projected baseline and Base
726 Vector *Intersection = new Vector;
727 Line line1 = makeLineThrough(*(Base->endpoints[0]->node->node),*(Base->endpoints[1]->node->node));
728 Line line2 = makeLineThrough(NewOffset, NewDirection);
729 *Intersection = line1.getIntersection(line2);
730 Normal = (*Intersection) - (*Base->endpoints[0]->node->node);
731 DoLog(1) && (Log() << Verbose(1) << "Found closest point on " << *Base << " at " << *Intersection << ", factor in line is " << fabs(Normal.ScalarProduct(Baseline)/Baseline.NormSquared()) << "." << endl);
732
733 return Intersection;
734};
735
736/** Returns the distance to the plane defined by \a *triangle
737 * \param *out output stream for debugging
738 * \param *x Vector to calculate distance to
739 * \param *triangle triangle defining plane
740 * \return distance between \a *x and plane defined by \a *triangle, -1 - if something went wrong
741 */
742double DistanceToTrianglePlane(const Vector *x, const BoundaryTriangleSet * const triangle)
743{
744 Info FunctionInfo(__func__);
745 double distance = 0.;
746 if (x == NULL) {
747 return -1;
748 }
749 distance = x->DistanceToSpace(triangle->getPlane());
750 return distance;
751};
752
753/** Creates the objects in a VRML file.
754 * \param *out output stream for debugging
755 * \param *vrmlfile output stream for tecplot data
756 * \param *Tess Tesselation structure with constructed triangles
757 * \param *mol molecule structure with atom positions
758 */
759void WriteVrmlFile(ofstream * const vrmlfile, const Tesselation * const Tess, const PointCloud * const cloud)
760{
761 Info FunctionInfo(__func__);
762 TesselPoint *Walker = NULL;
763 int i;
764 Vector *center = cloud->GetCenter();
765 if (vrmlfile != NULL) {
766 //Log() << Verbose(1) << "Writing Raster3D file ... ";
767 *vrmlfile << "#VRML V2.0 utf8" << endl;
768 *vrmlfile << "#Created by molecuilder" << endl;
769 *vrmlfile << "#All atoms as spheres" << endl;
770 cloud->GoToFirst();
771 while (!cloud->IsEnd()) {
772 Walker = cloud->GetPoint();
773 *vrmlfile << "Sphere {" << endl << " "; // 2 is sphere type
774 for (i=0;i<NDIM;i++)
775 *vrmlfile << Walker->node->at(i)-center->at(i) << " ";
776 *vrmlfile << "\t0.1\t1. 1. 1." << endl; // radius 0.05 and white as colour
777 cloud->GoToNext();
778 }
779
780 *vrmlfile << "# All tesselation triangles" << endl;
781 for (TriangleMap::const_iterator TriangleRunner = Tess->TrianglesOnBoundary.begin(); TriangleRunner != Tess->TrianglesOnBoundary.end(); TriangleRunner++) {
782 *vrmlfile << "1" << endl << " "; // 1 is triangle type
783 for (i=0;i<3;i++) { // print each node
784 for (int j=0;j<NDIM;j++) // and for each node all NDIM coordinates
785 *vrmlfile << TriangleRunner->second->endpoints[i]->node->node->at(j)-center->at(j) << " ";
786 *vrmlfile << "\t";
787 }
788 *vrmlfile << "1. 0. 0." << endl; // red as colour
789 *vrmlfile << "18" << endl << " 0.5 0.5 0.5" << endl; // 18 is transparency type for previous object
790 }
791 } else {
792 DoeLog(1) && (eLog()<< Verbose(1) << "Given vrmlfile is " << vrmlfile << "." << endl);
793 }
794 delete(center);
795};
796
797/** Writes additionally the current sphere (i.e. the last triangle to file).
798 * \param *out output stream for debugging
799 * \param *rasterfile output stream for tecplot data
800 * \param *Tess Tesselation structure with constructed triangles
801 * \param *mol molecule structure with atom positions
802 */
803void IncludeSphereinRaster3D(ofstream * const rasterfile, const Tesselation * const Tess, const PointCloud * const cloud)
804{
805 Info FunctionInfo(__func__);
806 Vector helper;
807
808 if (Tess->LastTriangle != NULL) {
809 // include the current position of the virtual sphere in the temporary raster3d file
810 Vector *center = cloud->GetCenter();
811 // make the circumsphere's center absolute again
812 Vector helper = (1./3.) * ((*Tess->LastTriangle->endpoints[0]->node->node) +
813 (*Tess->LastTriangle->endpoints[1]->node->node) +
814 (*Tess->LastTriangle->endpoints[2]->node->node));
815 helper -= (*center);
816 // and add to file plus translucency object
817 *rasterfile << "# current virtual sphere\n";
818 *rasterfile << "8\n 25.0 0.6 -1.0 -1.0 -1.0 0.2 0 0 0 0\n";
819 *rasterfile << "2\n " << helper[0] << " " << helper[1] << " " << helper[2] << "\t" << 5. << "\t1 0 0\n";
820 *rasterfile << "9\n terminating special property\n";
821 delete(center);
822 }
823};
824
825/** Creates the objects in a raster3d file (renderable with a header.r3d).
826 * \param *out output stream for debugging
827 * \param *rasterfile output stream for tecplot data
828 * \param *Tess Tesselation structure with constructed triangles
829 * \param *mol molecule structure with atom positions
830 */
831void WriteRaster3dFile(ofstream * const rasterfile, const Tesselation * const Tess, const PointCloud * const cloud)
832{
833 Info FunctionInfo(__func__);
834 TesselPoint *Walker = NULL;
835 int i;
836 Vector *center = cloud->GetCenter();
837 if (rasterfile != NULL) {
838 //Log() << Verbose(1) << "Writing Raster3D file ... ";
839 *rasterfile << "# Raster3D object description, created by MoleCuilder" << endl;
840 *rasterfile << "@header.r3d" << endl;
841 *rasterfile << "# All atoms as spheres" << endl;
842 cloud->GoToFirst();
843 while (!cloud->IsEnd()) {
844 Walker = cloud->GetPoint();
845 *rasterfile << "2" << endl << " "; // 2 is sphere type
846 for (i=0;i<NDIM;i++)
847 *rasterfile << Walker->node->at(i)-center->at(i) << " ";
848 *rasterfile << "\t0.1\t1. 1. 1." << endl; // radius 0.05 and white as colour
849 cloud->GoToNext();
850 }
851
852 *rasterfile << "# All tesselation triangles" << endl;
853 *rasterfile << "8\n 25. -1. 1. 1. 1. 0.0 0 0 0 2\n SOLID 1.0 0.0 0.0\n BACKFACE 0.3 0.3 1.0 0 0\n";
854 for (TriangleMap::const_iterator TriangleRunner = Tess->TrianglesOnBoundary.begin(); TriangleRunner != Tess->TrianglesOnBoundary.end(); TriangleRunner++) {
855 *rasterfile << "1" << endl << " "; // 1 is triangle type
856 for (i=0;i<3;i++) { // print each node
857 for (int j=0;j<NDIM;j++) // and for each node all NDIM coordinates
858 *rasterfile << TriangleRunner->second->endpoints[i]->node->node->at(j)-center->at(j) << " ";
859 *rasterfile << "\t";
860 }
861 *rasterfile << "1. 0. 0." << endl; // red as colour
862 //*rasterfile << "18" << endl << " 0.5 0.5 0.5" << endl; // 18 is transparency type for previous object
863 }
864 *rasterfile << "9\n# terminating special property\n";
865 } else {
866 DoeLog(1) && (eLog()<< Verbose(1) << "Given rasterfile is " << rasterfile << "." << endl);
867 }
868 IncludeSphereinRaster3D(rasterfile, Tess, cloud);
869 delete(center);
870};
871
872/** This function creates the tecplot file, displaying the tesselation of the hull.
873 * \param *out output stream for debugging
874 * \param *tecplot output stream for tecplot data
875 * \param N arbitrary number to differentiate various zones in the tecplot format
876 */
877void WriteTecplotFile(ofstream * const tecplot, const Tesselation * const TesselStruct, const PointCloud * const cloud, const int N)
878{
879 Info FunctionInfo(__func__);
880 if ((tecplot != NULL) && (TesselStruct != NULL)) {
881 // write header
882 *tecplot << "TITLE = \"3D CONVEX SHELL\"" << endl;
883 *tecplot << "VARIABLES = \"X\" \"Y\" \"Z\" \"U\"" << endl;
884 *tecplot << "ZONE T=\"";
885 if (N < 0) {
886 *tecplot << cloud->GetName();
887 } else {
888 *tecplot << N << "-";
889 if (TesselStruct->LastTriangle != NULL) {
890 for (int i=0;i<3;i++)
891 *tecplot << (i==0 ? "" : "_") << TesselStruct->LastTriangle->endpoints[i]->node->getName();
892 } else {
893 *tecplot << "none";
894 }
895 }
896 *tecplot << "\", N=" << TesselStruct->PointsOnBoundary.size() << ", E=" << TesselStruct->TrianglesOnBoundary.size() << ", DATAPACKING=POINT, ZONETYPE=FETRIANGLE" << endl;
897 int i=cloud->GetMaxId();
898 int *LookupList = new int[i];
899 for (cloud->GoToFirst(), i=0; !cloud->IsEnd(); cloud->GoToNext(), i++)
900 LookupList[i] = -1;
901
902 // print atom coordinates
903 int Counter = 1;
904 TesselPoint *Walker = NULL;
905 for (PointMap::const_iterator target = TesselStruct->PointsOnBoundary.begin(); target != TesselStruct->PointsOnBoundary.end(); target++) {
906 Walker = target->second->node;
907 LookupList[Walker->nr] = Counter++;
908 *tecplot << Walker->node->at(0) << " " << Walker->node->at(1) << " " << Walker->node->at(2) << " " << target->second->value << endl;
909 }
910 *tecplot << endl;
911 // print connectivity
912 DoLog(1) && (Log() << Verbose(1) << "The following triangles were created:" << endl);
913 for (TriangleMap::const_iterator runner = TesselStruct->TrianglesOnBoundary.begin(); runner != TesselStruct->TrianglesOnBoundary.end(); runner++) {
914 DoLog(1) && (Log() << Verbose(1) << " " << runner->second->endpoints[0]->node->getName() << "<->" << runner->second->endpoints[1]->node->getName() << "<->" << runner->second->endpoints[2]->node->getName() << endl);
915 *tecplot << LookupList[runner->second->endpoints[0]->node->nr] << " " << LookupList[runner->second->endpoints[1]->node->nr] << " " << LookupList[runner->second->endpoints[2]->node->nr] << endl;
916 }
917 delete[] (LookupList);
918 }
919};
920
921/** Calculates the concavity for each of the BoundaryPointSet's in a Tesselation.
922 * Sets BoundaryPointSet::value equal to the number of connected lines that are not convex.
923 * \param *out output stream for debugging
924 * \param *TesselStruct pointer to Tesselation structure
925 */
926void CalculateConcavityPerBoundaryPoint(const Tesselation * const TesselStruct)
927{
928 Info FunctionInfo(__func__);
929 class BoundaryPointSet *point = NULL;
930 class BoundaryLineSet *line = NULL;
931 class BoundaryTriangleSet *triangle = NULL;
932 double ConcavityPerLine = 0.;
933 double ConcavityPerTriangle = 0.;
934 double area = 0.;
935 double totalarea = 0.;
936
937 for (PointMap::const_iterator PointRunner = TesselStruct->PointsOnBoundary.begin(); PointRunner != TesselStruct->PointsOnBoundary.end(); PointRunner++) {
938 point = PointRunner->second;
939 DoLog(1) && (Log() << Verbose(1) << "INFO: Current point is " << *point << "." << endl);
940
941 // calculate mean concavity over all connected line
942 ConcavityPerLine = 0.;
943 for (LineMap::iterator LineRunner = point->lines.begin(); LineRunner != point->lines.end(); LineRunner++) {
944 line = LineRunner->second;
945 //Log() << Verbose(1) << "INFO: Current line of point " << *point << " is " << *line << "." << endl;
946 ConcavityPerLine -= line->CalculateConvexity();
947 }
948 ConcavityPerLine /= point->lines.size();
949
950 // weigh with total area of the surrounding triangles
951 totalarea = 0.;
952 TriangleSet *triangles = TesselStruct->GetAllTriangles(PointRunner->second);
953 for (TriangleSet::iterator TriangleRunner = triangles->begin(); TriangleRunner != triangles->end(); ++TriangleRunner) {
954 totalarea += CalculateAreaofGeneralTriangle(*(*TriangleRunner)->endpoints[0]->node->node, *(*TriangleRunner)->endpoints[1]->node->node, *(*TriangleRunner)->endpoints[2]->node->node);
955 }
956 ConcavityPerLine *= totalarea;
957
958 // calculate mean concavity over all attached triangles
959 ConcavityPerTriangle = 0.;
960 for (TriangleSet::const_iterator TriangleRunner = triangles->begin(); TriangleRunner != triangles->end(); ++TriangleRunner) {
961 line = (*TriangleRunner)->GetThirdLine(PointRunner->second);
962 triangle = line->GetOtherTriangle(*TriangleRunner);
963 area = CalculateAreaofGeneralTriangle(*triangle->endpoints[0]->node->node, *triangle->endpoints[1]->node->node, *triangle->endpoints[2]->node->node);
964 area += CalculateAreaofGeneralTriangle(*(*TriangleRunner)->endpoints[0]->node->node, *(*TriangleRunner)->endpoints[1]->node->node, *(*TriangleRunner)->endpoints[2]->node->node);
965 area *= -line->CalculateConvexity();
966 if (area > 0)
967 ConcavityPerTriangle += area;
968// else
969// ConcavityPerTriangle -= area;
970 }
971 ConcavityPerTriangle /= triangles->size()/totalarea;
972 delete(triangles);
973
974 // add up
975 point->value = ConcavityPerLine + ConcavityPerTriangle;
976 }
977};
978
979
980
981/** Calculates the concavity for each of the BoundaryPointSet's in a Tesselation.
982 * Sets BoundaryPointSet::value equal to the nearest distance to convex envelope.
983 * \param *out output stream for debugging
984 * \param *TesselStruct pointer to Tesselation structure
985 * \param *Convex pointer to convex Tesselation structure as reference
986 */
987void CalculateConstrictionPerBoundaryPoint(const Tesselation * const TesselStruct, const Tesselation * const Convex)
988{
989 Info FunctionInfo(__func__);
990 double distance = 0.;
991
992 for (PointMap::const_iterator PointRunner = TesselStruct->PointsOnBoundary.begin(); PointRunner != TesselStruct->PointsOnBoundary.end(); PointRunner++) {
993 DoeLog(1) && (eLog() << Verbose(1) << "INFO: Current point is " << * PointRunner->second << "." << endl);
994
995 distance = 0.;
996 for (TriangleMap::const_iterator TriangleRunner = Convex->TrianglesOnBoundary.begin(); TriangleRunner != Convex->TrianglesOnBoundary.end(); TriangleRunner++) {
997 const double CurrentDistance = Convex->GetDistanceSquaredToTriangle(*PointRunner->second->node->node, TriangleRunner->second);
998 if (CurrentDistance < distance)
999 distance = CurrentDistance;
1000 }
1001
1002 PointRunner->second->value = distance;
1003 }
1004};
1005
1006/** Checks whether each BoundaryLineSet in the Tesselation has two triangles.
1007 * \param *out output stream for debugging
1008 * \param *TesselStruct
1009 * \return true - all have exactly two triangles, false - some not, list is printed to screen
1010 */
1011bool CheckListOfBaselines(const Tesselation * const TesselStruct)
1012{
1013 Info FunctionInfo(__func__);
1014 LineMap::const_iterator testline;
1015 bool result = false;
1016 int counter = 0;
1017
1018 DoLog(1) && (Log() << Verbose(1) << "Check: List of Baselines with not two connected triangles:" << endl);
1019 for (testline = TesselStruct->LinesOnBoundary.begin(); testline != TesselStruct->LinesOnBoundary.end(); testline++) {
1020 if (testline->second->triangles.size() != 2) {
1021 DoLog(2) && (Log() << Verbose(2) << *testline->second << "\t" << testline->second->triangles.size() << endl);
1022 counter++;
1023 }
1024 }
1025 if (counter == 0) {
1026 DoLog(1) && (Log() << Verbose(1) << "None." << endl);
1027 result = true;
1028 }
1029 return result;
1030}
1031
1032/** Counts the number of triangle pairs that contain the given polygon.
1033 * \param *P polygon with endpoints to look for
1034 * \param *T set of triangles to create pairs from containing \a *P
1035 */
1036int CountTrianglePairContainingPolygon(const BoundaryPolygonSet * const P, const TriangleSet * const T)
1037{
1038 Info FunctionInfo(__func__);
1039 // check number of endpoints in *P
1040 if (P->endpoints.size() != 4) {
1041 DoeLog(1) && (eLog()<< Verbose(1) << "CountTrianglePairContainingPolygon works only on polygons with 4 nodes!" << endl);
1042 return 0;
1043 }
1044
1045 // check number of triangles in *T
1046 if (T->size() < 2) {
1047 DoeLog(1) && (eLog()<< Verbose(1) << "Not enough triangles to have pairs!" << endl);
1048 return 0;
1049 }
1050
1051 DoLog(0) && (Log() << Verbose(0) << "Polygon is " << *P << endl);
1052 // create each pair, get the endpoints and check whether *P is contained.
1053 int counter = 0;
1054 PointSet Trianglenodes;
1055 class BoundaryPolygonSet PairTrianglenodes;
1056 for(TriangleSet::iterator Walker = T->begin(); Walker != T->end(); Walker++) {
1057 for (int i=0;i<3;i++)
1058 Trianglenodes.insert((*Walker)->endpoints[i]);
1059
1060 for(TriangleSet::iterator PairWalker = Walker; PairWalker != T->end(); PairWalker++) {
1061 if (Walker != PairWalker) { // skip first
1062 PairTrianglenodes.endpoints = Trianglenodes;
1063 for (int i=0;i<3;i++)
1064 PairTrianglenodes.endpoints.insert((*PairWalker)->endpoints[i]);
1065 const int size = PairTrianglenodes.endpoints.size();
1066 if (size == 4) {
1067 DoLog(0) && (Log() << Verbose(0) << " Current pair of triangles: " << **Walker << "," << **PairWalker << " with " << size << " distinct endpoints:" << PairTrianglenodes << endl);
1068 // now check
1069 if (PairTrianglenodes.ContainsPresentTupel(P)) {
1070 counter++;
1071 DoLog(0) && (Log() << Verbose(0) << " ACCEPT: Matches with " << *P << endl);
1072 } else {
1073 DoLog(0) && (Log() << Verbose(0) << " REJECT: No match with " << *P << endl);
1074 }
1075 } else {
1076 DoLog(0) && (Log() << Verbose(0) << " REJECT: Less than four endpoints." << endl);
1077 }
1078 }
1079 }
1080 Trianglenodes.clear();
1081 }
1082 return counter;
1083};
1084
1085/** Checks whether two give polygons have two or more points in common.
1086 * \param *P1 first polygon
1087 * \param *P2 second polygon
1088 * \return true - are connected, false = are note
1089 */
1090bool ArePolygonsEdgeConnected(const BoundaryPolygonSet * const P1, const BoundaryPolygonSet * const P2)
1091{
1092 Info FunctionInfo(__func__);
1093 int counter = 0;
1094 for(PointSet::const_iterator Runner = P1->endpoints.begin(); Runner != P1->endpoints.end(); Runner++) {
1095 if (P2->ContainsBoundaryPoint((*Runner))) {
1096 counter++;
1097 DoLog(1) && (Log() << Verbose(1) << *(*Runner) << " of second polygon is found in the first one." << endl);
1098 return true;
1099 }
1100 }
1101 return false;
1102};
1103
1104/** Combines second into the first and deletes the second.
1105 * \param *P1 first polygon, contains all nodes on return
1106 * \param *&P2 second polygon, is deleted.
1107 */
1108void CombinePolygons(BoundaryPolygonSet * const P1, BoundaryPolygonSet * &P2)
1109{
1110 Info FunctionInfo(__func__);
1111 pair <PointSet::iterator, bool> Tester;
1112 for(PointSet::iterator Runner = P2->endpoints.begin(); Runner != P2->endpoints.end(); Runner++) {
1113 Tester = P1->endpoints.insert((*Runner));
1114 if (Tester.second)
1115 DoLog(0) && (Log() << Verbose(0) << "Inserting endpoint " << *(*Runner) << " into first polygon." << endl);
1116 }
1117 P2->endpoints.clear();
1118 delete(P2);
1119};
1120
Note: See TracBrowser for help on using the repository browser.