source: src/tesselationhelpers.cpp@ a5a630

Action_Thermostats Add_AtomRandomPerturbation Add_FitFragmentPartialChargesAction Add_RotateAroundBondAction Add_SelectAtomByNameAction Added_ParseSaveFragmentResults AddingActions_SaveParseParticleParameters Adding_Graph_to_ChangeBondActions Adding_MD_integration_tests Adding_ParticleName_to_Atom Adding_StructOpt_integration_tests AtomFragments Automaking_mpqc_open AutomationFragmentation_failures Candidate_v1.5.4 Candidate_v1.6.0 Candidate_v1.6.1 ChangeBugEmailaddress ChangingTestPorts ChemicalSpaceEvaluator CombiningParticlePotentialParsing Combining_Subpackages Debian_Package_split Debian_package_split_molecuildergui_only Disabling_MemDebug Docu_Python_wait EmpiricalPotential_contain_HomologyGraph EmpiricalPotential_contain_HomologyGraph_documentation Enable_parallel_make_install Enhance_userguide Enhanced_StructuralOptimization Enhanced_StructuralOptimization_continued Example_ManyWaysToTranslateAtom Exclude_Hydrogens_annealWithBondGraph FitPartialCharges_GlobalError Fix_BoundInBox_CenterInBox_MoleculeActions Fix_ChargeSampling_PBC Fix_ChronosMutex Fix_FitPartialCharges Fix_FitPotential_needs_atomicnumbers Fix_ForceAnnealing Fix_IndependentFragmentGrids Fix_ParseParticles Fix_ParseParticles_split_forward_backward_Actions Fix_PopActions Fix_QtFragmentList_sorted_selection Fix_Restrictedkeyset_FragmentMolecule Fix_StatusMsg Fix_StepWorldTime_single_argument Fix_Verbose_Codepatterns Fix_fitting_potentials Fixes ForceAnnealing_goodresults ForceAnnealing_oldresults ForceAnnealing_tocheck ForceAnnealing_with_BondGraph ForceAnnealing_with_BondGraph_continued ForceAnnealing_with_BondGraph_continued_betteresults ForceAnnealing_with_BondGraph_contraction-expansion FragmentAction_writes_AtomFragments FragmentMolecule_checks_bonddegrees GeometryObjects Gui_Fixes Gui_displays_atomic_force_velocity ImplicitCharges IndependentFragmentGrids IndependentFragmentGrids_IndividualZeroInstances IndependentFragmentGrids_IntegrationTest IndependentFragmentGrids_Sole_NN_Calculation JobMarket_RobustOnKillsSegFaults JobMarket_StableWorkerPool JobMarket_unresolvable_hostname_fix MoreRobust_FragmentAutomation ODR_violation_mpqc_open PartialCharges_OrthogonalSummation PdbParser_setsAtomName PythonUI_with_named_parameters QtGui_reactivate_TimeChanged_changes Recreated_GuiChecks Rewrite_FitPartialCharges RotateToPrincipalAxisSystem_UndoRedo SaturateAtoms_findBestMatching SaturateAtoms_singleDegree StoppableMakroAction Subpackage_CodePatterns Subpackage_JobMarket Subpackage_LinearAlgebra Subpackage_levmar Subpackage_mpqc_open Subpackage_vmg Switchable_LogView ThirdParty_MPQC_rebuilt_buildsystem TrajectoryDependenant_MaxOrder TremoloParser_IncreasedPrecision TremoloParser_MultipleTimesteps TremoloParser_setsAtomName Ubuntu_1604_changes stable
Last change on this file since a5a630 was a5a630, checked in by Frederik Heber <heber@…>, 15 years ago

BUGFIX - GetCenterOfSphere(): condition were not put correctly in brackets.

Signed-off-by: Frederik Heber <heber@tabletINS.(none)>

  • Property mode set to 100644
File size: 40.4 KB
Line 
1/*
2 * TesselationHelpers.cpp
3 *
4 * Created on: Aug 3, 2009
5 * Author: heber
6 */
7
8#include <fstream>
9
10#include "info.hpp"
11#include "linkedcell.hpp"
12#include "log.hpp"
13#include "tesselation.hpp"
14#include "tesselationhelpers.hpp"
15#include "vector.hpp"
16#include "verbose.hpp"
17
18double DetGet(gsl_matrix * const A, const int inPlace)
19{
20 Info FunctionInfo(__func__);
21 /*
22 inPlace = 1 => A is replaced with the LU decomposed copy.
23 inPlace = 0 => A is retained, and a copy is used for LU.
24 */
25
26 double det;
27 int signum;
28 gsl_permutation *p = gsl_permutation_alloc(A->size1);
29 gsl_matrix *tmpA;
30
31 if (inPlace)
32 tmpA = A;
33 else {
34 gsl_matrix *tmpA = gsl_matrix_alloc(A->size1, A->size2);
35 gsl_matrix_memcpy(tmpA , A);
36 }
37
38
39 gsl_linalg_LU_decomp(tmpA , p , &signum);
40 det = gsl_linalg_LU_det(tmpA , signum);
41 gsl_permutation_free(p);
42 if (! inPlace)
43 gsl_matrix_free(tmpA);
44
45 return det;
46};
47
48void GetSphere(Vector * const center, const Vector &a, const Vector &b, const Vector &c, const double RADIUS)
49{
50 Info FunctionInfo(__func__);
51 gsl_matrix *A = gsl_matrix_calloc(3,3);
52 double m11, m12, m13, m14;
53
54 for(int i=0;i<3;i++) {
55 gsl_matrix_set(A, i, 0, a.x[i]);
56 gsl_matrix_set(A, i, 1, b.x[i]);
57 gsl_matrix_set(A, i, 2, c.x[i]);
58 }
59 m11 = DetGet(A, 1);
60
61 for(int i=0;i<3;i++) {
62 gsl_matrix_set(A, i, 0, a.x[i]*a.x[i] + b.x[i]*b.x[i] + c.x[i]*c.x[i]);
63 gsl_matrix_set(A, i, 1, b.x[i]);
64 gsl_matrix_set(A, i, 2, c.x[i]);
65 }
66 m12 = DetGet(A, 1);
67
68 for(int i=0;i<3;i++) {
69 gsl_matrix_set(A, i, 0, a.x[i]*a.x[i] + b.x[i]*b.x[i] + c.x[i]*c.x[i]);
70 gsl_matrix_set(A, i, 1, a.x[i]);
71 gsl_matrix_set(A, i, 2, c.x[i]);
72 }
73 m13 = DetGet(A, 1);
74
75 for(int i=0;i<3;i++) {
76 gsl_matrix_set(A, i, 0, a.x[i]*a.x[i] + b.x[i]*b.x[i] + c.x[i]*c.x[i]);
77 gsl_matrix_set(A, i, 1, a.x[i]);
78 gsl_matrix_set(A, i, 2, b.x[i]);
79 }
80 m14 = DetGet(A, 1);
81
82 if (fabs(m11) < MYEPSILON)
83 eLog() << Verbose(1) << "three points are colinear." << endl;
84
85 center->x[0] = 0.5 * m12/ m11;
86 center->x[1] = -0.5 * m13/ m11;
87 center->x[2] = 0.5 * m14/ m11;
88
89 if (fabs(a.Distance(center) - RADIUS) > MYEPSILON)
90 eLog() << Verbose(1) << "The given center is further way by " << fabs(a.Distance(center) - RADIUS) << " from a than RADIUS." << endl;
91
92 gsl_matrix_free(A);
93};
94
95
96
97/**
98 * Function returns center of sphere with RADIUS, which rests on points a, b, c
99 * @param Center this vector will be used for return
100 * @param a vector first point of triangle
101 * @param b vector second point of triangle
102 * @param c vector third point of triangle
103 * @param *Umkreismittelpunkt new center point of circumference
104 * @param Direction vector indicates up/down
105 * @param AlternativeDirection Vector, needed in case the triangles have 90 deg angle
106 * @param Halfplaneindicator double indicates whether Direction is up or down
107 * @param AlternativeIndicator double indicates in case of orthogonal triangles which direction of AlternativeDirection is suitable
108 * @param alpha double angle at a
109 * @param beta double, angle at b
110 * @param gamma, double, angle at c
111 * @param Radius, double
112 * @param Umkreisradius double radius of circumscribing circle
113 */
114void GetCenterOfSphere(Vector* const & Center, const Vector &a, const Vector &b, const Vector &c, Vector * const NewUmkreismittelpunkt, const Vector* const Direction, const Vector* const AlternativeDirection,
115 const double HalfplaneIndicator, const double AlternativeIndicator, const double alpha, const double beta, const double gamma, const double RADIUS, const double Umkreisradius)
116{
117 Info FunctionInfo(__func__);
118 Vector TempNormal, helper;
119 double Restradius;
120 Vector OtherCenter;
121 Center->Zero();
122 helper.CopyVector(&a);
123 helper.Scale(sin(2.*alpha));
124 Center->AddVector(&helper);
125 helper.CopyVector(&b);
126 helper.Scale(sin(2.*beta));
127 Center->AddVector(&helper);
128 helper.CopyVector(&c);
129 helper.Scale(sin(2.*gamma));
130 Center->AddVector(&helper);
131 //*Center = a * sin(2.*alpha) + b * sin(2.*beta) + c * sin(2.*gamma) ;
132 Center->Scale(1./(sin(2.*alpha) + sin(2.*beta) + sin(2.*gamma)));
133 NewUmkreismittelpunkt->CopyVector(Center);
134 Log() << Verbose(1) << "Center of new circumference is " << *NewUmkreismittelpunkt << ".\n";
135 // Here we calculated center of circumscribing circle, using barycentric coordinates
136 Log() << Verbose(1) << "Center of circumference is " << *Center << " in direction " << *Direction << ".\n";
137
138 TempNormal.CopyVector(&a);
139 TempNormal.SubtractVector(&b);
140 helper.CopyVector(&a);
141 helper.SubtractVector(&c);
142 TempNormal.VectorProduct(&helper);
143 if (fabs(HalfplaneIndicator) < MYEPSILON)
144 {
145 if ((TempNormal.ScalarProduct(AlternativeDirection) <0 && AlternativeIndicator >0) || (TempNormal.ScalarProduct(AlternativeDirection) >0 && AlternativeIndicator <0))
146 {
147 TempNormal.Scale(-1);
148 }
149 }
150 else
151 {
152 if (((TempNormal.ScalarProduct(Direction)<0) && (HalfplaneIndicator >0)) || ((TempNormal.ScalarProduct(Direction)>0) && (HalfplaneIndicator<0)))
153 {
154 TempNormal.Scale(-1);
155 }
156 }
157
158 TempNormal.Normalize();
159 Restradius = sqrt(RADIUS*RADIUS - Umkreisradius*Umkreisradius);
160 Log() << Verbose(1) << "Height of center of circumference to center of sphere is " << Restradius << ".\n";
161 TempNormal.Scale(Restradius);
162 Log() << Verbose(1) << "Shift vector to sphere of circumference is " << TempNormal << ".\n";
163
164 Center->AddVector(&TempNormal);
165 Log() << Verbose(1) << "Center of sphere of circumference is " << *Center << ".\n";
166 GetSphere(&OtherCenter, a, b, c, RADIUS);
167 Log() << Verbose(1) << "OtherCenter of sphere of circumference is " << OtherCenter << ".\n";
168};
169
170
171/** Constructs the center of the circumcircle defined by three points \a *a, \a *b and \a *c.
172 * \param *Center new center on return
173 * \param *a first point
174 * \param *b second point
175 * \param *c third point
176 */
177void GetCenterofCircumcircle(Vector * const Center, const Vector &a, const Vector &b, const Vector &c)
178{
179 Info FunctionInfo(__func__);
180 Vector helper;
181 double alpha, beta, gamma;
182 Vector SideA, SideB, SideC;
183 SideA.CopyVector(b);
184 SideA.SubtractVector(&c);
185 SideB.CopyVector(c);
186 SideB.SubtractVector(&a);
187 SideC.CopyVector(a);
188 SideC.SubtractVector(&b);
189 alpha = M_PI - SideB.Angle(&SideC);
190 beta = M_PI - SideC.Angle(&SideA);
191 gamma = M_PI - SideA.Angle(&SideB);
192 //Log() << Verbose(1) << "INFO: alpha = " << alpha/M_PI*180. << ", beta = " << beta/M_PI*180. << ", gamma = " << gamma/M_PI*180. << "." << endl;
193 if (fabs(M_PI - alpha - beta - gamma) > HULLEPSILON) {
194 eLog() << Verbose(1) << "GetCenterofCircumcircle: Sum of angles " << (alpha+beta+gamma)/M_PI*180. << " > 180 degrees by " << fabs(M_PI - alpha - beta - gamma)/M_PI*180. << "!" << endl;
195 }
196
197 Center->Zero();
198 helper.CopyVector(a);
199 helper.Scale(sin(2.*alpha));
200 Center->AddVector(&helper);
201 helper.CopyVector(b);
202 helper.Scale(sin(2.*beta));
203 Center->AddVector(&helper);
204 helper.CopyVector(c);
205 helper.Scale(sin(2.*gamma));
206 Center->AddVector(&helper);
207 Center->Scale(1./(sin(2.*alpha) + sin(2.*beta) + sin(2.*gamma)));
208};
209
210/** Returns the parameter "path length" for a given \a NewSphereCenter relative to \a OldSphereCenter on a circle on the plane \a CirclePlaneNormal with center \a CircleCenter and radius \a CircleRadius.
211 * Test whether the \a NewSphereCenter is really on the given plane and in distance \a CircleRadius from \a CircleCenter.
212 * It calculates the angle, making it unique on [0,2.*M_PI) by comparing to SearchDirection.
213 * Also the new center is invalid if it the same as the old one and does not lie right above (\a NormalVector) the base line (\a CircleCenter).
214 * \param CircleCenter Center of the parameter circle
215 * \param CirclePlaneNormal normal vector to plane of the parameter circle
216 * \param CircleRadius radius of the parameter circle
217 * \param NewSphereCenter new center of a circumcircle
218 * \param OldSphereCenter old center of a circumcircle, defining the zero "path length" on the parameter circle
219 * \param NormalVector normal vector
220 * \param SearchDirection search direction to make angle unique on return.
221 * \return Angle between \a NewSphereCenter and \a OldSphereCenter relative to \a CircleCenter, 2.*M_PI if one test fails
222 */
223double GetPathLengthonCircumCircle(const Vector &CircleCenter, const Vector &CirclePlaneNormal, const double CircleRadius, const Vector &NewSphereCenter, const Vector &OldSphereCenter, const Vector &NormalVector, const Vector &SearchDirection)
224{
225 Info FunctionInfo(__func__);
226 Vector helper;
227 double radius, alpha;
228 Vector RelativeOldSphereCenter;
229 Vector RelativeNewSphereCenter;
230
231 RelativeOldSphereCenter.CopyVector(&OldSphereCenter);
232 RelativeOldSphereCenter.SubtractVector(&CircleCenter);
233 RelativeNewSphereCenter.CopyVector(&NewSphereCenter);
234 RelativeNewSphereCenter.SubtractVector(&CircleCenter);
235 helper.CopyVector(&RelativeNewSphereCenter);
236 // test whether new center is on the parameter circle's plane
237 if (fabs(helper.ScalarProduct(&CirclePlaneNormal)) > HULLEPSILON) {
238 eLog() << Verbose(1) << "Something's very wrong here: NewSphereCenter is not on the band's plane as desired by " <<fabs(helper.ScalarProduct(&CirclePlaneNormal)) << "!" << endl;
239 helper.ProjectOntoPlane(&CirclePlaneNormal);
240 }
241 radius = helper.NormSquared();
242 // test whether the new center vector has length of CircleRadius
243 if (fabs(radius - CircleRadius) > HULLEPSILON)
244 eLog() << Verbose(1) << "The projected center of the new sphere has radius " << radius << " instead of " << CircleRadius << "." << endl;
245 alpha = helper.Angle(&RelativeOldSphereCenter);
246 // make the angle unique by checking the halfplanes/search direction
247 if (helper.ScalarProduct(&SearchDirection) < -HULLEPSILON) // acos is not unique on [0, 2.*M_PI), hence extra check to decide between two half intervals
248 alpha = 2.*M_PI - alpha;
249 Log() << Verbose(1) << "INFO: RelativeNewSphereCenter is " << helper << ", RelativeOldSphereCenter is " << RelativeOldSphereCenter << " and resulting angle is " << alpha << "." << endl;
250 radius = helper.Distance(&RelativeOldSphereCenter);
251 helper.ProjectOntoPlane(&NormalVector);
252 // check whether new center is somewhat away or at least right over the current baseline to prevent intersecting triangles
253 if ((radius > HULLEPSILON) || (helper.Norm() < HULLEPSILON)) {
254 Log() << Verbose(1) << "INFO: Distance between old and new center is " << radius << " and between new center and baseline center is " << helper.Norm() << "." << endl;
255 return alpha;
256 } else {
257 Log() << Verbose(1) << "INFO: NewSphereCenter " << RelativeNewSphereCenter << " is too close to RelativeOldSphereCenter" << RelativeOldSphereCenter << "." << endl;
258 return 2.*M_PI;
259 }
260};
261
262struct Intersection {
263 Vector x1;
264 Vector x2;
265 Vector x3;
266 Vector x4;
267};
268
269/**
270 * Intersection calculation function.
271 *
272 * @param x to find the result for
273 * @param function parameter
274 */
275double MinIntersectDistance(const gsl_vector * x, void *params)
276{
277 Info FunctionInfo(__func__);
278 double retval = 0;
279 struct Intersection *I = (struct Intersection *)params;
280 Vector intersection;
281 Vector SideA,SideB,HeightA, HeightB;
282 for (int i=0;i<NDIM;i++)
283 intersection.x[i] = gsl_vector_get(x, i);
284
285 SideA.CopyVector(&(I->x1));
286 SideA.SubtractVector(&I->x2);
287 HeightA.CopyVector(&intersection);
288 HeightA.SubtractVector(&I->x1);
289 HeightA.ProjectOntoPlane(&SideA);
290
291 SideB.CopyVector(&I->x3);
292 SideB.SubtractVector(&I->x4);
293 HeightB.CopyVector(&intersection);
294 HeightB.SubtractVector(&I->x3);
295 HeightB.ProjectOntoPlane(&SideB);
296
297 retval = HeightA.ScalarProduct(&HeightA) + HeightB.ScalarProduct(&HeightB);
298 //Log() << Verbose(1) << "MinIntersectDistance called, result: " << retval << endl;
299
300 return retval;
301};
302
303
304/**
305 * Calculates whether there is an intersection between two lines. The first line
306 * always goes through point 1 and point 2 and the second line is given by the
307 * connection between point 4 and point 5.
308 *
309 * @param point 1 of line 1
310 * @param point 2 of line 1
311 * @param point 1 of line 2
312 * @param point 2 of line 2
313 *
314 * @return true if there is an intersection between the given lines, false otherwise
315 */
316bool existsIntersection(const Vector &point1, const Vector &point2, const Vector &point3, const Vector &point4)
317{
318 Info FunctionInfo(__func__);
319 bool result;
320
321 struct Intersection par;
322 par.x1.CopyVector(&point1);
323 par.x2.CopyVector(&point2);
324 par.x3.CopyVector(&point3);
325 par.x4.CopyVector(&point4);
326
327 const gsl_multimin_fminimizer_type *T = gsl_multimin_fminimizer_nmsimplex;
328 gsl_multimin_fminimizer *s = NULL;
329 gsl_vector *ss, *x;
330 gsl_multimin_function minexFunction;
331
332 size_t iter = 0;
333 int status;
334 double size;
335
336 /* Starting point */
337 x = gsl_vector_alloc(NDIM);
338 gsl_vector_set(x, 0, point1.x[0]);
339 gsl_vector_set(x, 1, point1.x[1]);
340 gsl_vector_set(x, 2, point1.x[2]);
341
342 /* Set initial step sizes to 1 */
343 ss = gsl_vector_alloc(NDIM);
344 gsl_vector_set_all(ss, 1.0);
345
346 /* Initialize method and iterate */
347 minexFunction.n = NDIM;
348 minexFunction.f = &MinIntersectDistance;
349 minexFunction.params = (void *)&par;
350
351 s = gsl_multimin_fminimizer_alloc(T, NDIM);
352 gsl_multimin_fminimizer_set(s, &minexFunction, x, ss);
353
354 do {
355 iter++;
356 status = gsl_multimin_fminimizer_iterate(s);
357
358 if (status) {
359 break;
360 }
361
362 size = gsl_multimin_fminimizer_size(s);
363 status = gsl_multimin_test_size(size, 1e-2);
364
365 if (status == GSL_SUCCESS) {
366 Log() << Verbose(1) << "converged to minimum" << endl;
367 }
368 } while (status == GSL_CONTINUE && iter < 100);
369
370 // check whether intersection is in between or not
371 Vector intersection, SideA, SideB, HeightA, HeightB;
372 double t1, t2;
373 for (int i = 0; i < NDIM; i++) {
374 intersection.x[i] = gsl_vector_get(s->x, i);
375 }
376
377 SideA.CopyVector(&par.x2);
378 SideA.SubtractVector(&par.x1);
379 HeightA.CopyVector(&intersection);
380 HeightA.SubtractVector(&par.x1);
381
382 t1 = HeightA.ScalarProduct(&SideA)/SideA.ScalarProduct(&SideA);
383
384 SideB.CopyVector(&par.x4);
385 SideB.SubtractVector(&par.x3);
386 HeightB.CopyVector(&intersection);
387 HeightB.SubtractVector(&par.x3);
388
389 t2 = HeightB.ScalarProduct(&SideB)/SideB.ScalarProduct(&SideB);
390
391 Log() << Verbose(1) << "Intersection " << intersection << " is at "
392 << t1 << " for (" << point1 << "," << point2 << ") and at "
393 << t2 << " for (" << point3 << "," << point4 << "): ";
394
395 if (((t1 >= 0) && (t1 <= 1)) && ((t2 >= 0) && (t2 <= 1))) {
396 Log() << Verbose(1) << "true intersection." << endl;
397 result = true;
398 } else {
399 Log() << Verbose(1) << "intersection out of region of interest." << endl;
400 result = false;
401 }
402
403 // free minimizer stuff
404 gsl_vector_free(x);
405 gsl_vector_free(ss);
406 gsl_multimin_fminimizer_free(s);
407
408 return result;
409};
410
411/** Gets the angle between a point and a reference relative to the provided center.
412 * We have two shanks point and reference between which the angle is calculated
413 * and by scalar product with OrthogonalVector we decide the interval.
414 * @param point to calculate the angle for
415 * @param reference to which to calculate the angle
416 * @param OrthogonalVector points in direction of [pi,2pi] interval
417 *
418 * @return angle between point and reference
419 */
420double GetAngle(const Vector &point, const Vector &reference, const Vector &OrthogonalVector)
421{
422 Info FunctionInfo(__func__);
423 if (reference.IsZero())
424 return M_PI;
425
426 // calculate both angles and correct with in-plane vector
427 if (point.IsZero())
428 return M_PI;
429 double phi = point.Angle(&reference);
430 if (OrthogonalVector.ScalarProduct(&point) > 0) {
431 phi = 2.*M_PI - phi;
432 }
433
434 Log() << Verbose(1) << "INFO: " << point << " has angle " << phi << " with respect to reference " << reference << "." << endl;
435
436 return phi;
437}
438
439
440/** Calculates the volume of a general tetraeder.
441 * \param *a first vector
442 * \param *a first vector
443 * \param *a first vector
444 * \param *a first vector
445 * \return \f$ \frac{1}{6} \cdot ((a-d) \times (a-c) \cdot (a-b)) \f$
446 */
447double CalculateVolumeofGeneralTetraeder(const Vector &a, const Vector &b, const Vector &c, const Vector &d)
448{
449 Info FunctionInfo(__func__);
450 Vector Point, TetraederVector[3];
451 double volume;
452
453 TetraederVector[0].CopyVector(a);
454 TetraederVector[1].CopyVector(b);
455 TetraederVector[2].CopyVector(c);
456 for (int j=0;j<3;j++)
457 TetraederVector[j].SubtractVector(&d);
458 Point.CopyVector(&TetraederVector[0]);
459 Point.VectorProduct(&TetraederVector[1]);
460 volume = 1./6. * fabs(Point.ScalarProduct(&TetraederVector[2]));
461 return volume;
462};
463
464
465/** Checks for a new special triangle whether one of its edges is already present with one one triangle connected.
466 * This enforces that special triangles (i.e. degenerated ones) should at last close the open-edge frontier and not
467 * make it bigger (i.e. closing one (the baseline) and opening two new ones).
468 * \param TPS[3] nodes of the triangle
469 * \return true - there is such a line (i.e. creation of degenerated triangle is valid), false - no such line (don't create)
470 */
471bool CheckLineCriteriaForDegeneratedTriangle(const BoundaryPointSet * const nodes[3])
472{
473 Info FunctionInfo(__func__);
474 bool result = false;
475 int counter = 0;
476
477 // check all three points
478 for (int i=0;i<3;i++)
479 for (int j=i+1; j<3; j++) {
480 if (nodes[i] == NULL) {
481 Log() << Verbose(1) << "Node nr. " << i << " is not yet present." << endl;
482 result = true;
483 } else if (nodes[i]->lines.find(nodes[j]->node->nr) != nodes[i]->lines.end()) { // there already is a line
484 LineMap::const_iterator FindLine;
485 pair<LineMap::const_iterator,LineMap::const_iterator> FindPair;
486 FindPair = nodes[i]->lines.equal_range(nodes[j]->node->nr);
487 for (FindLine = FindPair.first; FindLine != FindPair.second; ++FindLine) {
488 // If there is a line with less than two attached triangles, we don't need a new line.
489 if (FindLine->second->triangles.size() < 2) {
490 counter++;
491 break; // increase counter only once per edge
492 }
493 }
494 } else { // no line
495 Log() << Verbose(1) << "The line between " << *nodes[i] << " and " << *nodes[j] << " is not yet present, hence no need for a degenerate triangle." << endl;
496 result = true;
497 }
498 }
499 if ((!result) && (counter > 1)) {
500 Log() << Verbose(1) << "INFO: Degenerate triangle is ok, at least two, here " << counter << ", existing lines are used." << endl;
501 result = true;
502 }
503 return result;
504};
505
506
507///** Sort function for the candidate list.
508// */
509//bool SortCandidates(const CandidateForTesselation* candidate1, const CandidateForTesselation* candidate2)
510//{
511// Info FunctionInfo(__func__);
512// Vector BaseLineVector, OrthogonalVector, helper;
513// if (candidate1->BaseLine != candidate2->BaseLine) { // sanity check
514// eLog() << Verbose(1) << "sortCandidates was called for two different baselines: " << candidate1->BaseLine << " and " << candidate2->BaseLine << "." << endl;
515// //return false;
516// exit(1);
517// }
518// // create baseline vector
519// BaseLineVector.CopyVector(candidate1->BaseLine->endpoints[1]->node->node);
520// BaseLineVector.SubtractVector(candidate1->BaseLine->endpoints[0]->node->node);
521// BaseLineVector.Normalize();
522//
523// // create normal in-plane vector to cope with acos() non-uniqueness on [0,2pi] (note that is pointing in the "right" direction already, hence ">0" test!)
524// helper.CopyVector(candidate1->BaseLine->endpoints[0]->node->node);
525// helper.SubtractVector(candidate1->point->node);
526// OrthogonalVector.CopyVector(&helper);
527// helper.VectorProduct(&BaseLineVector);
528// OrthogonalVector.SubtractVector(&helper);
529// OrthogonalVector.Normalize();
530//
531// // calculate both angles and correct with in-plane vector
532// helper.CopyVector(candidate1->point->node);
533// helper.SubtractVector(candidate1->BaseLine->endpoints[0]->node->node);
534// double phi = BaseLineVector.Angle(&helper);
535// if (OrthogonalVector.ScalarProduct(&helper) > 0) {
536// phi = 2.*M_PI - phi;
537// }
538// helper.CopyVector(candidate2->point->node);
539// helper.SubtractVector(candidate1->BaseLine->endpoints[0]->node->node);
540// double psi = BaseLineVector.Angle(&helper);
541// if (OrthogonalVector.ScalarProduct(&helper) > 0) {
542// psi = 2.*M_PI - psi;
543// }
544//
545// Log() << Verbose(1) << *candidate1->point << " has angle " << phi << endl;
546// Log() << Verbose(1) << *candidate2->point << " has angle " << psi << endl;
547//
548// // return comparison
549// return phi < psi;
550//};
551
552/**
553 * Finds the point which is second closest to the provided one.
554 *
555 * @param Point to which to find the second closest other point
556 * @param linked cell structure
557 *
558 * @return point which is second closest to the provided one
559 */
560TesselPoint* FindSecondClosestTesselPoint(const Vector* Point, const LinkedCell* const LC)
561{
562 Info FunctionInfo(__func__);
563 TesselPoint* closestPoint = NULL;
564 TesselPoint* secondClosestPoint = NULL;
565 double distance = 1e16;
566 double secondDistance = 1e16;
567 Vector helper;
568 int N[NDIM], Nlower[NDIM], Nupper[NDIM];
569
570 LC->SetIndexToVector(Point); // ignore status as we calculate bounds below sensibly
571 for(int i=0;i<NDIM;i++) // store indices of this cell
572 N[i] = LC->n[i];
573 Log() << Verbose(1) << "INFO: Center cell is " << N[0] << ", " << N[1] << ", " << N[2] << " with No. " << LC->index << "." << endl;
574
575 LC->GetNeighbourBounds(Nlower, Nupper);
576 //Log() << Verbose(1) << endl;
577 for (LC->n[0] = Nlower[0]; LC->n[0] <= Nupper[0]; LC->n[0]++)
578 for (LC->n[1] = Nlower[1]; LC->n[1] <= Nupper[1]; LC->n[1]++)
579 for (LC->n[2] = Nlower[2]; LC->n[2] <= Nupper[2]; LC->n[2]++) {
580 const LinkedNodes *List = LC->GetCurrentCell();
581 //Log() << Verbose(1) << "The current cell " << LC->n[0] << "," << LC->n[1] << "," << LC->n[2] << endl;
582 if (List != NULL) {
583 for (LinkedNodes::const_iterator Runner = List->begin(); Runner != List->end(); Runner++) {
584 helper.CopyVector(Point);
585 helper.SubtractVector((*Runner)->node);
586 double currentNorm = helper. Norm();
587 if (currentNorm < distance) {
588 // remember second point
589 secondDistance = distance;
590 secondClosestPoint = closestPoint;
591 // mark down new closest point
592 distance = currentNorm;
593 closestPoint = (*Runner);
594 //Log() << Verbose(2) << "INFO: New Second Nearest Neighbour is " << *secondClosestPoint << "." << endl;
595 }
596 }
597 } else {
598 eLog() << Verbose(1) << "The current cell " << LC->n[0] << "," << LC->n[1] << ","
599 << LC->n[2] << " is invalid!" << endl;
600 }
601 }
602
603 return secondClosestPoint;
604};
605
606/**
607 * Finds the point which is closest to the provided one.
608 *
609 * @param Point to which to find the closest other point
610 * @param SecondPoint the second closest other point on return, NULL if none found
611 * @param linked cell structure
612 *
613 * @return point which is closest to the provided one, NULL if none found
614 */
615TesselPoint* FindClosestTesselPoint(const Vector* Point, TesselPoint *&SecondPoint, const LinkedCell* const LC)
616{
617 Info FunctionInfo(__func__);
618 TesselPoint* closestPoint = NULL;
619 SecondPoint = NULL;
620 double distance = 1e16;
621 double secondDistance = 1e16;
622 Vector helper;
623 int N[NDIM], Nlower[NDIM], Nupper[NDIM];
624
625 LC->SetIndexToVector(Point); // ignore status as we calculate bounds below sensibly
626 for(int i=0;i<NDIM;i++) // store indices of this cell
627 N[i] = LC->n[i];
628 Log() << Verbose(1) << "INFO: Center cell is " << N[0] << ", " << N[1] << ", " << N[2] << " with No. " << LC->index << "." << endl;
629
630 LC->GetNeighbourBounds(Nlower, Nupper);
631 //Log() << Verbose(1) << endl;
632 for (LC->n[0] = Nlower[0]; LC->n[0] <= Nupper[0]; LC->n[0]++)
633 for (LC->n[1] = Nlower[1]; LC->n[1] <= Nupper[1]; LC->n[1]++)
634 for (LC->n[2] = Nlower[2]; LC->n[2] <= Nupper[2]; LC->n[2]++) {
635 const LinkedNodes *List = LC->GetCurrentCell();
636 //Log() << Verbose(1) << "The current cell " << LC->n[0] << "," << LC->n[1] << "," << LC->n[2] << endl;
637 if (List != NULL) {
638 for (LinkedNodes::const_iterator Runner = List->begin(); Runner != List->end(); Runner++) {
639 helper.CopyVector(Point);
640 helper.SubtractVector((*Runner)->node);
641 double currentNorm = helper.NormSquared();
642 if (currentNorm < distance) {
643 secondDistance = distance;
644 SecondPoint = closestPoint;
645 distance = currentNorm;
646 closestPoint = (*Runner);
647 //Log() << Verbose(1) << "INFO: New Nearest Neighbour is " << *closestPoint << "." << endl;
648 } else if (currentNorm < secondDistance) {
649 secondDistance = currentNorm;
650 SecondPoint = (*Runner);
651 //Log() << Verbose(1) << "INFO: New Second Nearest Neighbour is " << *SecondPoint << "." << endl;
652 }
653 }
654 } else {
655 eLog() << Verbose(1) << "The current cell " << LC->n[0] << "," << LC->n[1] << ","
656 << LC->n[2] << " is invalid!" << endl;
657 }
658 }
659 // output
660 if (closestPoint != NULL) {
661 Log() << Verbose(1) << "Closest point is " << *closestPoint;
662 if (SecondPoint != NULL)
663 Log() << Verbose(0) << " and second closest is " << *SecondPoint;
664 Log() << Verbose(0) << "." << endl;
665 }
666 return closestPoint;
667};
668
669/** Returns the closest point on \a *Base with respect to \a *OtherBase.
670 * \param *out output stream for debugging
671 * \param *Base reference line
672 * \param *OtherBase other base line
673 * \return Vector on reference line that has closest distance
674 */
675Vector * GetClosestPointBetweenLine(const BoundaryLineSet * const Base, const BoundaryLineSet * const OtherBase)
676{
677 Info FunctionInfo(__func__);
678 // construct the plane of the two baselines (i.e. take both their directional vectors)
679 Vector Normal;
680 Vector Baseline, OtherBaseline;
681 Baseline.CopyVector(Base->endpoints[1]->node->node);
682 Baseline.SubtractVector(Base->endpoints[0]->node->node);
683 OtherBaseline.CopyVector(OtherBase->endpoints[1]->node->node);
684 OtherBaseline.SubtractVector(OtherBase->endpoints[0]->node->node);
685 Normal.CopyVector(&Baseline);
686 Normal.VectorProduct(&OtherBaseline);
687 Normal.Normalize();
688 Log() << Verbose(1) << "First direction is " << Baseline << ", second direction is " << OtherBaseline << ", normal of intersection plane is " << Normal << "." << endl;
689
690 // project one offset point of OtherBase onto this plane (and add plane offset vector)
691 Vector NewOffset;
692 NewOffset.CopyVector(OtherBase->endpoints[0]->node->node);
693 NewOffset.SubtractVector(Base->endpoints[0]->node->node);
694 NewOffset.ProjectOntoPlane(&Normal);
695 NewOffset.AddVector(Base->endpoints[0]->node->node);
696 Vector NewDirection;
697 NewDirection.CopyVector(&NewOffset);
698 NewDirection.AddVector(&OtherBaseline);
699
700 // calculate the intersection between this projected baseline and Base
701 Vector *Intersection = new Vector;
702 Intersection->GetIntersectionOfTwoLinesOnPlane(Base->endpoints[0]->node->node, Base->endpoints[1]->node->node, &NewOffset, &NewDirection, &Normal);
703 Normal.CopyVector(Intersection);
704 Normal.SubtractVector(Base->endpoints[0]->node->node);
705 Log() << Verbose(1) << "Found closest point on " << *Base << " at " << *Intersection << ", factor in line is " << fabs(Normal.ScalarProduct(&Baseline)/Baseline.NormSquared()) << "." << endl;
706
707 return Intersection;
708};
709
710/** Returns the distance to the plane defined by \a *triangle
711 * \param *out output stream for debugging
712 * \param *x Vector to calculate distance to
713 * \param *triangle triangle defining plane
714 * \return distance between \a *x and plane defined by \a *triangle, -1 - if something went wrong
715 */
716double DistanceToTrianglePlane(const Vector *x, const BoundaryTriangleSet * const triangle)
717{
718 Info FunctionInfo(__func__);
719 double distance = 0.;
720 if (x == NULL) {
721 return -1;
722 }
723 distance = x->DistanceToPlane(&triangle->NormalVector, triangle->endpoints[0]->node->node);
724 return distance;
725};
726
727/** Creates the objects in a VRML file.
728 * \param *out output stream for debugging
729 * \param *vrmlfile output stream for tecplot data
730 * \param *Tess Tesselation structure with constructed triangles
731 * \param *mol molecule structure with atom positions
732 */
733void WriteVrmlFile(ofstream * const vrmlfile, const Tesselation * const Tess, const PointCloud * const cloud)
734{
735 Info FunctionInfo(__func__);
736 TesselPoint *Walker = NULL;
737 int i;
738 Vector *center = cloud->GetCenter();
739 if (vrmlfile != NULL) {
740 //Log() << Verbose(1) << "Writing Raster3D file ... ";
741 *vrmlfile << "#VRML V2.0 utf8" << endl;
742 *vrmlfile << "#Created by molecuilder" << endl;
743 *vrmlfile << "#All atoms as spheres" << endl;
744 cloud->GoToFirst();
745 while (!cloud->IsEnd()) {
746 Walker = cloud->GetPoint();
747 *vrmlfile << "Sphere {" << endl << " "; // 2 is sphere type
748 for (i=0;i<NDIM;i++)
749 *vrmlfile << Walker->node->x[i]-center->x[i] << " ";
750 *vrmlfile << "\t0.1\t1. 1. 1." << endl; // radius 0.05 and white as colour
751 cloud->GoToNext();
752 }
753
754 *vrmlfile << "# All tesselation triangles" << endl;
755 for (TriangleMap::const_iterator TriangleRunner = Tess->TrianglesOnBoundary.begin(); TriangleRunner != Tess->TrianglesOnBoundary.end(); TriangleRunner++) {
756 *vrmlfile << "1" << endl << " "; // 1 is triangle type
757 for (i=0;i<3;i++) { // print each node
758 for (int j=0;j<NDIM;j++) // and for each node all NDIM coordinates
759 *vrmlfile << TriangleRunner->second->endpoints[i]->node->node->x[j]-center->x[j] << " ";
760 *vrmlfile << "\t";
761 }
762 *vrmlfile << "1. 0. 0." << endl; // red as colour
763 *vrmlfile << "18" << endl << " 0.5 0.5 0.5" << endl; // 18 is transparency type for previous object
764 }
765 } else {
766 eLog() << Verbose(1) << "Given vrmlfile is " << vrmlfile << "." << endl;
767 }
768 delete(center);
769};
770
771/** Writes additionally the current sphere (i.e. the last triangle to file).
772 * \param *out output stream for debugging
773 * \param *rasterfile output stream for tecplot data
774 * \param *Tess Tesselation structure with constructed triangles
775 * \param *mol molecule structure with atom positions
776 */
777void IncludeSphereinRaster3D(ofstream * const rasterfile, const Tesselation * const Tess, const PointCloud * const cloud)
778{
779 Info FunctionInfo(__func__);
780 Vector helper;
781
782 if (Tess->LastTriangle != NULL) {
783 // include the current position of the virtual sphere in the temporary raster3d file
784 Vector *center = cloud->GetCenter();
785 // make the circumsphere's center absolute again
786 helper.CopyVector(Tess->LastTriangle->endpoints[0]->node->node);
787 helper.AddVector(Tess->LastTriangle->endpoints[1]->node->node);
788 helper.AddVector(Tess->LastTriangle->endpoints[2]->node->node);
789 helper.Scale(1./3.);
790 helper.SubtractVector(center);
791 // and add to file plus translucency object
792 *rasterfile << "# current virtual sphere\n";
793 *rasterfile << "8\n 25.0 0.6 -1.0 -1.0 -1.0 0.2 0 0 0 0\n";
794 *rasterfile << "2\n " << helper.x[0] << " " << helper.x[1] << " " << helper.x[2] << "\t" << 5. << "\t1 0 0\n";
795 *rasterfile << "9\n terminating special property\n";
796 delete(center);
797 }
798};
799
800/** Creates the objects in a raster3d file (renderable with a header.r3d).
801 * \param *out output stream for debugging
802 * \param *rasterfile output stream for tecplot data
803 * \param *Tess Tesselation structure with constructed triangles
804 * \param *mol molecule structure with atom positions
805 */
806void WriteRaster3dFile(ofstream * const rasterfile, const Tesselation * const Tess, const PointCloud * const cloud)
807{
808 Info FunctionInfo(__func__);
809 TesselPoint *Walker = NULL;
810 int i;
811 Vector *center = new Vector(); //cloud->GetCenter();
812 if (rasterfile != NULL) {
813 //Log() << Verbose(1) << "Writing Raster3D file ... ";
814 *rasterfile << "# Raster3D object description, created by MoleCuilder" << endl;
815 *rasterfile << "@header.r3d" << endl;
816 *rasterfile << "# All atoms as spheres" << endl;
817 cloud->GoToFirst();
818 while (!cloud->IsEnd()) {
819 Walker = cloud->GetPoint();
820 *rasterfile << "2" << endl << " "; // 2 is sphere type
821 for (i=0;i<NDIM;i++)
822 *rasterfile << Walker->node->x[i]-center->x[i] << " ";
823 *rasterfile << "\t0.1\t1. 1. 1." << endl; // radius 0.05 and white as colour
824 cloud->GoToNext();
825 }
826
827 *rasterfile << "# All tesselation triangles" << endl;
828 *rasterfile << "8\n 25. -1. 1. 1. 1. 0.0 0 0 0 2\n SOLID 1.0 0.0 0.0\n BACKFACE 0.3 0.3 1.0 0 0\n";
829 for (TriangleMap::const_iterator TriangleRunner = Tess->TrianglesOnBoundary.begin(); TriangleRunner != Tess->TrianglesOnBoundary.end(); TriangleRunner++) {
830 *rasterfile << "1" << endl << " "; // 1 is triangle type
831 for (i=0;i<3;i++) { // print each node
832 for (int j=0;j<NDIM;j++) // and for each node all NDIM coordinates
833 *rasterfile << TriangleRunner->second->endpoints[i]->node->node->x[j]-center->x[j] << " ";
834 *rasterfile << "\t";
835 }
836 *rasterfile << "1. 0. 0." << endl; // red as colour
837 //*rasterfile << "18" << endl << " 0.5 0.5 0.5" << endl; // 18 is transparency type for previous object
838 }
839 *rasterfile << "9\n# terminating special property\n";
840 } else {
841 eLog() << Verbose(1) << "Given rasterfile is " << rasterfile << "." << endl;
842 }
843 IncludeSphereinRaster3D(rasterfile, Tess, cloud);
844 delete(center);
845};
846
847/** This function creates the tecplot file, displaying the tesselation of the hull.
848 * \param *out output stream for debugging
849 * \param *tecplot output stream for tecplot data
850 * \param N arbitrary number to differentiate various zones in the tecplot format
851 */
852void WriteTecplotFile(ofstream * const tecplot, const Tesselation * const TesselStruct, const PointCloud * const cloud, const int N)
853{
854 Info FunctionInfo(__func__);
855 if ((tecplot != NULL) && (TesselStruct != NULL)) {
856 // write header
857 *tecplot << "TITLE = \"3D CONVEX SHELL\"" << endl;
858 *tecplot << "VARIABLES = \"X\" \"Y\" \"Z\" \"U\"" << endl;
859 *tecplot << "ZONE T=\"";
860 if (N < 0) {
861 *tecplot << cloud->GetName();
862 } else {
863 *tecplot << N << "-";
864 for (int i=0;i<3;i++)
865 *tecplot << (i==0 ? "" : "_") << TesselStruct->LastTriangle->endpoints[i]->node->Name;
866 }
867 *tecplot << "\", N=" << TesselStruct->PointsOnBoundary.size() << ", E=" << TesselStruct->TrianglesOnBoundary.size() << ", DATAPACKING=POINT, ZONETYPE=FETRIANGLE" << endl;
868 int i=cloud->GetMaxId();
869 int *LookupList = new int[i];
870 for (cloud->GoToFirst(), i=0; !cloud->IsEnd(); cloud->GoToNext(), i++)
871 LookupList[i] = -1;
872
873 // print atom coordinates
874 int Counter = 1;
875 TesselPoint *Walker = NULL;
876 for (PointMap::const_iterator target = TesselStruct->PointsOnBoundary.begin(); target != TesselStruct->PointsOnBoundary.end(); target++) {
877 Walker = target->second->node;
878 LookupList[Walker->nr] = Counter++;
879 *tecplot << Walker->node->x[0] << " " << Walker->node->x[1] << " " << Walker->node->x[2] << " " << target->second->value << endl;
880 }
881 *tecplot << endl;
882 // print connectivity
883 Log() << Verbose(1) << "The following triangles were created:" << endl;
884 for (TriangleMap::const_iterator runner = TesselStruct->TrianglesOnBoundary.begin(); runner != TesselStruct->TrianglesOnBoundary.end(); runner++) {
885 Log() << Verbose(1) << " " << runner->second->endpoints[0]->node->Name << "<->" << runner->second->endpoints[1]->node->Name << "<->" << runner->second->endpoints[2]->node->Name << endl;
886 *tecplot << LookupList[runner->second->endpoints[0]->node->nr] << " " << LookupList[runner->second->endpoints[1]->node->nr] << " " << LookupList[runner->second->endpoints[2]->node->nr] << endl;
887 }
888 delete[] (LookupList);
889 }
890};
891
892/** Calculates the concavity for each of the BoundaryPointSet's in a Tesselation.
893 * Sets BoundaryPointSet::value equal to the number of connected lines that are not convex.
894 * \param *out output stream for debugging
895 * \param *TesselStruct pointer to Tesselation structure
896 */
897void CalculateConcavityPerBoundaryPoint(const Tesselation * const TesselStruct)
898{
899 Info FunctionInfo(__func__);
900 class BoundaryPointSet *point = NULL;
901 class BoundaryLineSet *line = NULL;
902
903 // calculate remaining concavity
904 for (PointMap::const_iterator PointRunner = TesselStruct->PointsOnBoundary.begin(); PointRunner != TesselStruct->PointsOnBoundary.end(); PointRunner++) {
905 point = PointRunner->second;
906 Log() << Verbose(1) << "INFO: Current point is " << *point << "." << endl;
907 point->value = 0;
908 for (LineMap::iterator LineRunner = point->lines.begin(); LineRunner != point->lines.end(); LineRunner++) {
909 line = LineRunner->second;
910 //Log() << Verbose(1) << "INFO: Current line of point " << *point << " is " << *line << "." << endl;
911 if (!line->CheckConvexityCriterion())
912 point->value += 1;
913 }
914 }
915};
916
917
918/** Checks whether each BoundaryLineSet in the Tesselation has two triangles.
919 * \param *out output stream for debugging
920 * \param *TesselStruct
921 * \return true - all have exactly two triangles, false - some not, list is printed to screen
922 */
923bool CheckListOfBaselines(const Tesselation * const TesselStruct)
924{
925 Info FunctionInfo(__func__);
926 LineMap::const_iterator testline;
927 bool result = false;
928 int counter = 0;
929
930 Log() << Verbose(1) << "Check: List of Baselines with not two connected triangles:" << endl;
931 for (testline = TesselStruct->LinesOnBoundary.begin(); testline != TesselStruct->LinesOnBoundary.end(); testline++) {
932 if (testline->second->triangles.size() != 2) {
933 Log() << Verbose(2) << *testline->second << "\t" << testline->second->triangles.size() << endl;
934 counter++;
935 }
936 }
937 if (counter == 0) {
938 Log() << Verbose(1) << "None." << endl;
939 result = true;
940 }
941 return result;
942}
943
944/** Counts the number of triangle pairs that contain the given polygon.
945 * \param *P polygon with endpoints to look for
946 * \param *T set of triangles to create pairs from containing \a *P
947 */
948int CountTrianglePairContainingPolygon(const BoundaryPolygonSet * const P, const TriangleSet * const T)
949{
950 Info FunctionInfo(__func__);
951 // check number of endpoints in *P
952 if (P->endpoints.size() != 4) {
953 eLog() << Verbose(1) << "CountTrianglePairContainingPolygon works only on polygons with 4 nodes!" << endl;
954 return 0;
955 }
956
957 // check number of triangles in *T
958 if (T->size() < 2) {
959 eLog() << Verbose(1) << "Not enough triangles to have pairs!" << endl;
960 return 0;
961 }
962
963 Log() << Verbose(0) << "Polygon is " << *P << endl;
964 // create each pair, get the endpoints and check whether *P is contained.
965 int counter = 0;
966 PointSet Trianglenodes;
967 class BoundaryPolygonSet PairTrianglenodes;
968 for(TriangleSet::iterator Walker = T->begin(); Walker != T->end(); Walker++) {
969 for (int i=0;i<3;i++)
970 Trianglenodes.insert((*Walker)->endpoints[i]);
971
972 for(TriangleSet::iterator PairWalker = Walker; PairWalker != T->end(); PairWalker++) {
973 if (Walker != PairWalker) { // skip first
974 PairTrianglenodes.endpoints = Trianglenodes;
975 for (int i=0;i<3;i++)
976 PairTrianglenodes.endpoints.insert((*PairWalker)->endpoints[i]);
977 const int size = PairTrianglenodes.endpoints.size();
978 if (size == 4) {
979 Log() << Verbose(0) << " Current pair of triangles: " << **Walker << "," << **PairWalker << " with " << size << " distinct endpoints:" << PairTrianglenodes << endl;
980 // now check
981 if (PairTrianglenodes.ContainsPresentTupel(P)) {
982 counter++;
983 Log() << Verbose(0) << " ACCEPT: Matches with " << *P << endl;
984 } else {
985 Log() << Verbose(0) << " REJECT: No match with " << *P << endl;
986 }
987 } else {
988 Log() << Verbose(0) << " REJECT: Less than four endpoints." << endl;
989 }
990 }
991 }
992 Trianglenodes.clear();
993 }
994 return counter;
995};
996
997/** Checks whether two give polygons have two or more points in common.
998 * \param *P1 first polygon
999 * \param *P2 second polygon
1000 * \return true - are connected, false = are note
1001 */
1002bool ArePolygonsEdgeConnected(const BoundaryPolygonSet * const P1, const BoundaryPolygonSet * const P2)
1003{
1004 Info FunctionInfo(__func__);
1005 int counter = 0;
1006 for(PointSet::const_iterator Runner = P1->endpoints.begin(); Runner != P1->endpoints.end(); Runner++) {
1007 if (P2->ContainsBoundaryPoint((*Runner))) {
1008 counter++;
1009 Log() << Verbose(1) << *(*Runner) << " of second polygon is found in the first one." << endl;
1010 return true;
1011 }
1012 }
1013 return false;
1014};
1015
1016/** Combines second into the first and deletes the second.
1017 * \param *P1 first polygon, contains all nodes on return
1018 * \param *&P2 second polygon, is deleted.
1019 */
1020void CombinePolygons(BoundaryPolygonSet * const P1, BoundaryPolygonSet * &P2)
1021{
1022 Info FunctionInfo(__func__);
1023 pair <PointSet::iterator, bool> Tester;
1024 for(PointSet::iterator Runner = P2->endpoints.begin(); Runner != P2->endpoints.end(); Runner++) {
1025 Tester = P1->endpoints.insert((*Runner));
1026 if (Tester.second)
1027 Log() << Verbose(0) << "Inserting endpoint " << *(*Runner) << " into first polygon." << endl;
1028 }
1029 P2->endpoints.clear();
1030 delete(P2);
1031};
1032
Note: See TracBrowser for help on using the repository browser.