/* * TesselationHelpers.cpp * * Created on: Aug 3, 2009 * Author: heber */ #include "Helpers/MemDebug.hpp" #include #include "info.hpp" #include "linkedcell.hpp" #include "linearsystemofequations.hpp" #include "log.hpp" #include "tesselation.hpp" #include "tesselationhelpers.hpp" #include "vector.hpp" #include "Line.hpp" #include "vector_ops.hpp" #include "verbose.hpp" #include "Plane.hpp" #include "Matrix.hpp" void GetSphere(Vector * const center, const Vector &a, const Vector &b, const Vector &c, const double RADIUS) { Info FunctionInfo(__func__); Matrix mat; double m11, m12, m13, m14; for(int i=0;i<3;i++) { mat.set(i, 0, a[i]); mat.set(i, 1, b[i]); mat.set(i, 2, c[i]); } m11 = mat.determinant(); for(int i=0;i<3;i++) { mat.set(i, 0, a[i]*a[i] + b[i]*b[i] + c[i]*c[i]); mat.set(i, 1, b[i]); mat.set(i, 2, c[i]); } m12 = mat.determinant(); for(int i=0;i<3;i++) { mat.set(i, 0, a[i]*a[i] + b[i]*b[i] + c[i]*c[i]); mat.set(i, 1, a[i]); mat.set(i, 2, c[i]); } m13 = mat.determinant(); for(int i=0;i<3;i++) { mat.set(i, 0, a[i]*a[i] + b[i]*b[i] + c[i]*c[i]); mat.set(i, 1, a[i]); mat.set(i, 2, b[i]); } m14 = mat.determinant(); if (fabs(m11) < MYEPSILON) DoeLog(1) && (eLog()<< Verbose(1) << "three points are colinear." << endl); center->at(0) = 0.5 * m12/ m11; center->at(1) = -0.5 * m13/ m11; center->at(2) = 0.5 * m14/ m11; if (fabs(a.distance(*center) - RADIUS) > MYEPSILON) DoeLog(1) && (eLog()<< Verbose(1) << "The given center is further way by " << fabs(a.distance(*center) - RADIUS) << " from a than RADIUS." << endl); }; /** * Function returns center of sphere with RADIUS, which rests on points a, b, c * @param Center this vector will be used for return * @param a vector first point of triangle * @param b vector second point of triangle * @param c vector third point of triangle * @param *Umkreismittelpunkt new center point of circumference * @param Direction vector indicates up/down * @param AlternativeDirection Vector, needed in case the triangles have 90 deg angle * @param Halfplaneindicator double indicates whether Direction is up or down * @param AlternativeIndicator double indicates in case of orthogonal triangles which direction of AlternativeDirection is suitable * @param alpha double angle at a * @param beta double, angle at b * @param gamma, double, angle at c * @param Radius, double * @param Umkreisradius double radius of circumscribing circle */ void GetCenterOfSphere(Vector* const & Center, const Vector &a, const Vector &b, const Vector &c, Vector * const NewUmkreismittelpunkt, const Vector* const Direction, const Vector* const AlternativeDirection, const double HalfplaneIndicator, const double AlternativeIndicator, const double alpha, const double beta, const double gamma, const double RADIUS, const double Umkreisradius) { Info FunctionInfo(__func__); Vector TempNormal, helper; double Restradius; Vector OtherCenter; Center->Zero(); helper = sin(2.*alpha) * a; (*Center) += helper; helper = sin(2.*beta) * b; (*Center) += helper; helper = sin(2.*gamma) * c; (*Center) += helper; //*Center = a * sin(2.*alpha) + b * sin(2.*beta) + c * sin(2.*gamma) ; Center->Scale(1./(sin(2.*alpha) + sin(2.*beta) + sin(2.*gamma))); (*NewUmkreismittelpunkt) = (*Center); DoLog(1) && (Log() << Verbose(1) << "Center of new circumference is " << *NewUmkreismittelpunkt << ".\n"); // Here we calculated center of circumscribing circle, using barycentric coordinates DoLog(1) && (Log() << Verbose(1) << "Center of circumference is " << *Center << " in direction " << *Direction << ".\n"); TempNormal = a - b; helper = a - c; TempNormal.VectorProduct(helper); if (fabs(HalfplaneIndicator) < MYEPSILON) { if ((TempNormal.ScalarProduct(*AlternativeDirection) <0 && AlternativeIndicator >0) || (TempNormal.ScalarProduct(*AlternativeDirection) >0 && AlternativeIndicator <0)) { TempNormal *= -1; } } else { if (((TempNormal.ScalarProduct(*Direction)<0) && (HalfplaneIndicator >0)) || ((TempNormal.ScalarProduct(*Direction)>0) && (HalfplaneIndicator<0))) { TempNormal *= -1; } } TempNormal.Normalize(); Restradius = sqrt(RADIUS*RADIUS - Umkreisradius*Umkreisradius); DoLog(1) && (Log() << Verbose(1) << "Height of center of circumference to center of sphere is " << Restradius << ".\n"); TempNormal.Scale(Restradius); DoLog(1) && (Log() << Verbose(1) << "Shift vector to sphere of circumference is " << TempNormal << ".\n"); (*Center) += TempNormal; DoLog(1) && (Log() << Verbose(1) << "Center of sphere of circumference is " << *Center << ".\n"); GetSphere(&OtherCenter, a, b, c, RADIUS); DoLog(1) && (Log() << Verbose(1) << "OtherCenter of sphere of circumference is " << OtherCenter << ".\n"); }; /** Constructs the center of the circumcircle defined by three points \a *a, \a *b and \a *c. * \param *Center new center on return * \param *a first point * \param *b second point * \param *c third point */ void GetCenterofCircumcircle(Vector * const Center, const Vector &a, const Vector &b, const Vector &c) { Info FunctionInfo(__func__); Vector helper; Vector SideA = b - c; Vector SideB = c - a; Vector SideC = a - b; helper[0] = SideA.NormSquared()*(SideB.NormSquared()+SideC.NormSquared() - SideA.NormSquared()); helper[1] = SideB.NormSquared()*(SideC.NormSquared()+SideA.NormSquared() - SideB.NormSquared()); helper[2] = SideC.NormSquared()*(SideA.NormSquared()+SideB.NormSquared() - SideC.NormSquared()); Center->Zero(); *Center += helper[0] * a; *Center += helper[1] * b; *Center += helper[2] * c; Center->Scale(1./(helper[0]+helper[1]+helper[2])); Log() << Verbose(1) << "INFO: Center (2nd algo) is at " << *Center << "." << endl; }; /** Returns the parameter "path length" for a given \a NewSphereCenter relative to \a OldSphereCenter on a circle on the plane \a CirclePlaneNormal with center \a CircleCenter and radius \a CircleRadius. * Test whether the \a NewSphereCenter is really on the given plane and in distance \a CircleRadius from \a CircleCenter. * It calculates the angle, making it unique on [0,2.*M_PI) by comparing to SearchDirection. * Also the new center is invalid if it the same as the old one and does not lie right above (\a NormalVector) the base line (\a CircleCenter). * \param CircleCenter Center of the parameter circle * \param CirclePlaneNormal normal vector to plane of the parameter circle * \param CircleRadius radius of the parameter circle * \param NewSphereCenter new center of a circumcircle * \param OldSphereCenter old center of a circumcircle, defining the zero "path length" on the parameter circle * \param NormalVector normal vector * \param SearchDirection search direction to make angle unique on return. * \return Angle between \a NewSphereCenter and \a OldSphereCenter relative to \a CircleCenter, 2.*M_PI if one test fails */ double GetPathLengthonCircumCircle(const Vector &CircleCenter, const Vector &CirclePlaneNormal, const double CircleRadius, const Vector &NewSphereCenter, const Vector &OldSphereCenter, const Vector &NormalVector, const Vector &SearchDirection) { Info FunctionInfo(__func__); Vector helper; double radius, alpha; Vector RelativeOldSphereCenter = OldSphereCenter - CircleCenter; Vector RelativeNewSphereCenter = NewSphereCenter - CircleCenter; helper = RelativeNewSphereCenter; // test whether new center is on the parameter circle's plane if (fabs(helper.ScalarProduct(CirclePlaneNormal)) > HULLEPSILON) { DoeLog(1) && (eLog()<< Verbose(1) << "Something's very wrong here: NewSphereCenter is not on the band's plane as desired by " < HULLEPSILON) DoeLog(1) && (eLog()<< Verbose(1) << "The projected center of the new sphere has radius " << radius << " instead of " << CircleRadius << "." << endl); alpha = helper.Angle(RelativeOldSphereCenter); // make the angle unique by checking the halfplanes/search direction if (helper.ScalarProduct(SearchDirection) < -HULLEPSILON) // acos is not unique on [0, 2.*M_PI), hence extra check to decide between two half intervals alpha = 2.*M_PI - alpha; DoLog(1) && (Log() << Verbose(1) << "INFO: RelativeNewSphereCenter is " << helper << ", RelativeOldSphereCenter is " << RelativeOldSphereCenter << " and resulting angle is " << alpha << "." << endl); radius = helper.distance(RelativeOldSphereCenter); helper.ProjectOntoPlane(NormalVector); // check whether new center is somewhat away or at least right over the current baseline to prevent intersecting triangles if ((radius > HULLEPSILON) || (helper.Norm() < HULLEPSILON)) { DoLog(1) && (Log() << Verbose(1) << "INFO: Distance between old and new center is " << radius << " and between new center and baseline center is " << helper.Norm() << "." << endl); return alpha; } else { DoLog(1) && (Log() << Verbose(1) << "INFO: NewSphereCenter " << RelativeNewSphereCenter << " is too close to RelativeOldSphereCenter" << RelativeOldSphereCenter << "." << endl); return 2.*M_PI; } }; struct Intersection { Vector x1; Vector x2; Vector x3; Vector x4; }; /** Gets the angle between a point and a reference relative to the provided center. * We have two shanks point and reference between which the angle is calculated * and by scalar product with OrthogonalVector we decide the interval. * @param point to calculate the angle for * @param reference to which to calculate the angle * @param OrthogonalVector points in direction of [pi,2pi] interval * * @return angle between point and reference */ double GetAngle(const Vector &point, const Vector &reference, const Vector &OrthogonalVector) { Info FunctionInfo(__func__); if (reference.IsZero()) return M_PI; // calculate both angles and correct with in-plane vector if (point.IsZero()) return M_PI; double phi = point.Angle(reference); if (OrthogonalVector.ScalarProduct(point) > 0) { phi = 2.*M_PI - phi; } DoLog(1) && (Log() << Verbose(1) << "INFO: " << point << " has angle " << phi << " with respect to reference " << reference << "." << endl); return phi; } /** Calculates the volume of a general tetraeder. * \param *a first vector * \param *b second vector * \param *c third vector * \param *d fourth vector * \return \f$ \frac{1}{6} \cdot ((a-d) \times (a-c) \cdot (a-b)) \f$ */ double CalculateVolumeofGeneralTetraeder(const Vector &a, const Vector &b, const Vector &c, const Vector &d) { Info FunctionInfo(__func__); Vector Point, TetraederVector[3]; double volume; TetraederVector[0] = a; TetraederVector[1] = b; TetraederVector[2] = c; for (int j=0;j<3;j++) TetraederVector[j].SubtractVector(d); Point = TetraederVector[0]; Point.VectorProduct(TetraederVector[1]); volume = 1./6. * fabs(Point.ScalarProduct(TetraederVector[2])); return volume; }; /** Calculates the area of a general triangle. * We use the Heron's formula of area, [Bronstein, S. 138] * \param &A first vector * \param &B second vector * \param &C third vector * \return \f$ \frac{1}{6} \cdot ((a-d) \times (a-c) \cdot (a-b)) \f$ */ double CalculateAreaofGeneralTriangle(const Vector &A, const Vector &B, const Vector &C) { Info FunctionInfo(__func__); const double sidea = B.distance(C); const double sideb = A.distance(C); const double sidec = A.distance(B); const double s = (sidea+sideb+sidec)/2.; const double area = sqrt(s*(s-sidea)*(s-sideb)*(s-sidec)); return area; }; /** Checks for a new special triangle whether one of its edges is already present with one one triangle connected. * This enforces that special triangles (i.e. degenerated ones) should at last close the open-edge frontier and not * make it bigger (i.e. closing one (the baseline) and opening two new ones). * \param TPS[3] nodes of the triangle * \return true - there is such a line (i.e. creation of degenerated triangle is valid), false - no such line (don't create) */ bool CheckLineCriteriaForDegeneratedTriangle(const BoundaryPointSet * const nodes[3]) { Info FunctionInfo(__func__); bool result = false; int counter = 0; // check all three points for (int i=0;i<3;i++) for (int j=i+1; j<3; j++) { if (nodes[i] == NULL) { DoLog(1) && (Log() << Verbose(1) << "Node nr. " << i << " is not yet present." << endl); result = true; } else if (nodes[i]->lines.find(nodes[j]->node->nr) != nodes[i]->lines.end()) { // there already is a line LineMap::const_iterator FindLine; pair FindPair; FindPair = nodes[i]->lines.equal_range(nodes[j]->node->nr); for (FindLine = FindPair.first; FindLine != FindPair.second; ++FindLine) { // If there is a line with less than two attached triangles, we don't need a new line. if (FindLine->second->triangles.size() < 2) { counter++; break; // increase counter only once per edge } } } else { // no line DoLog(1) && (Log() << Verbose(1) << "The line between " << *nodes[i] << " and " << *nodes[j] << " is not yet present, hence no need for a degenerate triangle." << endl); result = true; } } if ((!result) && (counter > 1)) { DoLog(1) && (Log() << Verbose(1) << "INFO: Degenerate triangle is ok, at least two, here " << counter << ", existing lines are used." << endl); result = true; } return result; }; ///** Sort function for the candidate list. // */ //bool SortCandidates(const CandidateForTesselation* candidate1, const CandidateForTesselation* candidate2) //{ // Info FunctionInfo(__func__); // Vector BaseLineVector, OrthogonalVector, helper; // if (candidate1->BaseLine != candidate2->BaseLine) { // sanity check // DoeLog(1) && (eLog()<< Verbose(1) << "sortCandidates was called for two different baselines: " << candidate1->BaseLine << " and " << candidate2->BaseLine << "." << endl); // //return false; // exit(1); // } // // create baseline vector // BaseLineVector.CopyVector(candidate1->BaseLine->endpoints[1]->node->node); // BaseLineVector.SubtractVector(candidate1->BaseLine->endpoints[0]->node->node); // BaseLineVector.Normalize(); // // // create normal in-plane vector to cope with acos() non-uniqueness on [0,2pi] (note that is pointing in the "right" direction already, hence ">0" test!) // helper.CopyVector(candidate1->BaseLine->endpoints[0]->node->node); // helper.SubtractVector(candidate1->point->node); // OrthogonalVector.CopyVector(&helper); // helper.VectorProduct(&BaseLineVector); // OrthogonalVector.SubtractVector(&helper); // OrthogonalVector.Normalize(); // // // calculate both angles and correct with in-plane vector // helper.CopyVector(candidate1->point->node); // helper.SubtractVector(candidate1->BaseLine->endpoints[0]->node->node); // double phi = BaseLineVector.Angle(&helper); // if (OrthogonalVector.ScalarProduct(&helper) > 0) { // phi = 2.*M_PI - phi; // } // helper.CopyVector(candidate2->point->node); // helper.SubtractVector(candidate1->BaseLine->endpoints[0]->node->node); // double psi = BaseLineVector.Angle(&helper); // if (OrthogonalVector.ScalarProduct(&helper) > 0) { // psi = 2.*M_PI - psi; // } // // Log() << Verbose(1) << *candidate1->point << " has angle " << phi << endl; // Log() << Verbose(1) << *candidate2->point << " has angle " << psi << endl; // // // return comparison // return phi < psi; //}; /** * Finds the point which is second closest to the provided one. * * @param Point to which to find the second closest other point * @param linked cell structure * * @return point which is second closest to the provided one */ TesselPoint* FindSecondClosestTesselPoint(const Vector* Point, const LinkedCell* const LC) { Info FunctionInfo(__func__); TesselPoint* closestPoint = NULL; TesselPoint* secondClosestPoint = NULL; double distance = 1e16; double secondDistance = 1e16; Vector helper; int N[NDIM], Nlower[NDIM], Nupper[NDIM]; LC->SetIndexToVector(Point); // ignore status as we calculate bounds below sensibly for(int i=0;in[i]; DoLog(1) && (Log() << Verbose(1) << "INFO: Center cell is " << N[0] << ", " << N[1] << ", " << N[2] << " with No. " << LC->index << "." << endl); LC->GetNeighbourBounds(Nlower, Nupper); //Log() << Verbose(1) << endl; for (LC->n[0] = Nlower[0]; LC->n[0] <= Nupper[0]; LC->n[0]++) for (LC->n[1] = Nlower[1]; LC->n[1] <= Nupper[1]; LC->n[1]++) for (LC->n[2] = Nlower[2]; LC->n[2] <= Nupper[2]; LC->n[2]++) { const LinkedCell::LinkedNodes *List = LC->GetCurrentCell(); //Log() << Verbose(1) << "The current cell " << LC->n[0] << "," << LC->n[1] << "," << LC->n[2] << endl; if (List != NULL) { for (LinkedCell::LinkedNodes::const_iterator Runner = List->begin(); Runner != List->end(); Runner++) { helper = (*Point) - (*(*Runner)->node); double currentNorm = helper. Norm(); if (currentNorm < distance) { // remember second point secondDistance = distance; secondClosestPoint = closestPoint; // mark down new closest point distance = currentNorm; closestPoint = (*Runner); //Log() << Verbose(2) << "INFO: New Second Nearest Neighbour is " << *secondClosestPoint << "." << endl; } } } else { DoeLog(1) && (eLog() << Verbose(1) << "The current cell " << LC->n[0] << "," << LC->n[1] << "," << LC->n[2] << " is invalid!" << endl); } } return secondClosestPoint; }; /** * Finds the point which is closest to the provided one. * * @param Point to which to find the closest other point * @param SecondPoint the second closest other point on return, NULL if none found * @param linked cell structure * * @return point which is closest to the provided one, NULL if none found */ TesselPoint* FindClosestTesselPoint(const Vector* Point, TesselPoint *&SecondPoint, const LinkedCell* const LC) { Info FunctionInfo(__func__); TesselPoint* closestPoint = NULL; SecondPoint = NULL; double distance = 1e16; double secondDistance = 1e16; Vector helper; int N[NDIM], Nlower[NDIM], Nupper[NDIM]; LC->SetIndexToVector(Point); // ignore status as we calculate bounds below sensibly for(int i=0;in[i]; DoLog(1) && (Log() << Verbose(1) << "INFO: Center cell is " << N[0] << ", " << N[1] << ", " << N[2] << " with No. " << LC->index << "." << endl); LC->GetNeighbourBounds(Nlower, Nupper); //Log() << Verbose(1) << endl; for (LC->n[0] = Nlower[0]; LC->n[0] <= Nupper[0]; LC->n[0]++) for (LC->n[1] = Nlower[1]; LC->n[1] <= Nupper[1]; LC->n[1]++) for (LC->n[2] = Nlower[2]; LC->n[2] <= Nupper[2]; LC->n[2]++) { const LinkedCell::LinkedNodes *List = LC->GetCurrentCell(); //Log() << Verbose(1) << "The current cell " << LC->n[0] << "," << LC->n[1] << "," << LC->n[2] << endl; if (List != NULL) { for (LinkedCell::LinkedNodes::const_iterator Runner = List->begin(); Runner != List->end(); Runner++) { helper = (*Point) - (*(*Runner)->node); double currentNorm = helper.NormSquared(); if (currentNorm < distance) { secondDistance = distance; SecondPoint = closestPoint; distance = currentNorm; closestPoint = (*Runner); //Log() << Verbose(1) << "INFO: New Nearest Neighbour is " << *closestPoint << "." << endl; } else if (currentNorm < secondDistance) { secondDistance = currentNorm; SecondPoint = (*Runner); //Log() << Verbose(1) << "INFO: New Second Nearest Neighbour is " << *SecondPoint << "." << endl; } } } else { DoeLog(1) && (eLog() << Verbose(1) << "The current cell " << LC->n[0] << "," << LC->n[1] << "," << LC->n[2] << " is invalid!" << endl); } } // output if (closestPoint != NULL) { DoLog(1) && (Log() << Verbose(1) << "Closest point is " << *closestPoint); if (SecondPoint != NULL) DoLog(0) && (Log() << Verbose(0) << " and second closest is " << *SecondPoint); DoLog(0) && (Log() << Verbose(0) << "." << endl); } return closestPoint; }; /** Returns the closest point on \a *Base with respect to \a *OtherBase. * \param *out output stream for debugging * \param *Base reference line * \param *OtherBase other base line * \return Vector on reference line that has closest distance */ Vector * GetClosestPointBetweenLine(const BoundaryLineSet * const Base, const BoundaryLineSet * const OtherBase) { Info FunctionInfo(__func__); // construct the plane of the two baselines (i.e. take both their directional vectors) Vector Baseline = (*Base->endpoints[1]->node->node) - (*Base->endpoints[0]->node->node); Vector OtherBaseline = (*OtherBase->endpoints[1]->node->node) - (*OtherBase->endpoints[0]->node->node); Vector Normal = Baseline; Normal.VectorProduct(OtherBaseline); Normal.Normalize(); DoLog(1) && (Log() << Verbose(1) << "First direction is " << Baseline << ", second direction is " << OtherBaseline << ", normal of intersection plane is " << Normal << "." << endl); // project one offset point of OtherBase onto this plane (and add plane offset vector) Vector NewOffset = (*OtherBase->endpoints[0]->node->node) - (*Base->endpoints[0]->node->node); NewOffset.ProjectOntoPlane(Normal); NewOffset += (*Base->endpoints[0]->node->node); Vector NewDirection = NewOffset + OtherBaseline; // calculate the intersection between this projected baseline and Base Vector *Intersection = new Vector; Line line1 = makeLineThrough(*(Base->endpoints[0]->node->node),*(Base->endpoints[1]->node->node)); Line line2 = makeLineThrough(NewOffset, NewDirection); *Intersection = line1.getIntersection(line2); Normal = (*Intersection) - (*Base->endpoints[0]->node->node); DoLog(1) && (Log() << Verbose(1) << "Found closest point on " << *Base << " at " << *Intersection << ", factor in line is " << fabs(Normal.ScalarProduct(Baseline)/Baseline.NormSquared()) << "." << endl); return Intersection; }; /** Returns the distance to the plane defined by \a *triangle * \param *out output stream for debugging * \param *x Vector to calculate distance to * \param *triangle triangle defining plane * \return distance between \a *x and plane defined by \a *triangle, -1 - if something went wrong */ double DistanceToTrianglePlane(const Vector *x, const BoundaryTriangleSet * const triangle) { Info FunctionInfo(__func__); double distance = 0.; if (x == NULL) { return -1; } distance = x->DistanceToSpace(triangle->getPlane()); return distance; }; /** Creates the objects in a VRML file. * \param *out output stream for debugging * \param *vrmlfile output stream for tecplot data * \param *Tess Tesselation structure with constructed triangles * \param *mol molecule structure with atom positions */ void WriteVrmlFile(ofstream * const vrmlfile, const Tesselation * const Tess, const PointCloud * const cloud) { Info FunctionInfo(__func__); TesselPoint *Walker = NULL; int i; Vector *center = cloud->GetCenter(); if (vrmlfile != NULL) { //Log() << Verbose(1) << "Writing Raster3D file ... "; *vrmlfile << "#VRML V2.0 utf8" << endl; *vrmlfile << "#Created by molecuilder" << endl; *vrmlfile << "#All atoms as spheres" << endl; cloud->GoToFirst(); while (!cloud->IsEnd()) { Walker = cloud->GetPoint(); *vrmlfile << "Sphere {" << endl << " "; // 2 is sphere type for (i=0;inode->at(i)-center->at(i) << " "; *vrmlfile << "\t0.1\t1. 1. 1." << endl; // radius 0.05 and white as colour cloud->GoToNext(); } *vrmlfile << "# All tesselation triangles" << endl; for (TriangleMap::const_iterator TriangleRunner = Tess->TrianglesOnBoundary.begin(); TriangleRunner != Tess->TrianglesOnBoundary.end(); TriangleRunner++) { *vrmlfile << "1" << endl << " "; // 1 is triangle type for (i=0;i<3;i++) { // print each node for (int j=0;jsecond->endpoints[i]->node->node->at(j)-center->at(j) << " "; *vrmlfile << "\t"; } *vrmlfile << "1. 0. 0." << endl; // red as colour *vrmlfile << "18" << endl << " 0.5 0.5 0.5" << endl; // 18 is transparency type for previous object } } else { DoeLog(1) && (eLog()<< Verbose(1) << "Given vrmlfile is " << vrmlfile << "." << endl); } delete(center); }; /** Writes additionally the current sphere (i.e. the last triangle to file). * \param *out output stream for debugging * \param *rasterfile output stream for tecplot data * \param *Tess Tesselation structure with constructed triangles * \param *mol molecule structure with atom positions */ void IncludeSphereinRaster3D(ofstream * const rasterfile, const Tesselation * const Tess, const PointCloud * const cloud) { Info FunctionInfo(__func__); Vector helper; if (Tess->LastTriangle != NULL) { // include the current position of the virtual sphere in the temporary raster3d file Vector *center = cloud->GetCenter(); // make the circumsphere's center absolute again Vector helper = (1./3.) * ((*Tess->LastTriangle->endpoints[0]->node->node) + (*Tess->LastTriangle->endpoints[1]->node->node) + (*Tess->LastTriangle->endpoints[2]->node->node)); helper -= (*center); // and add to file plus translucency object *rasterfile << "# current virtual sphere\n"; *rasterfile << "8\n 25.0 0.6 -1.0 -1.0 -1.0 0.2 0 0 0 0\n"; *rasterfile << "2\n " << helper[0] << " " << helper[1] << " " << helper[2] << "\t" << 5. << "\t1 0 0\n"; *rasterfile << "9\n terminating special property\n"; delete(center); } }; /** Creates the objects in a raster3d file (renderable with a header.r3d). * \param *out output stream for debugging * \param *rasterfile output stream for tecplot data * \param *Tess Tesselation structure with constructed triangles * \param *mol molecule structure with atom positions */ void WriteRaster3dFile(ofstream * const rasterfile, const Tesselation * const Tess, const PointCloud * const cloud) { Info FunctionInfo(__func__); TesselPoint *Walker = NULL; int i; Vector *center = cloud->GetCenter(); if (rasterfile != NULL) { //Log() << Verbose(1) << "Writing Raster3D file ... "; *rasterfile << "# Raster3D object description, created by MoleCuilder" << endl; *rasterfile << "@header.r3d" << endl; *rasterfile << "# All atoms as spheres" << endl; cloud->GoToFirst(); while (!cloud->IsEnd()) { Walker = cloud->GetPoint(); *rasterfile << "2" << endl << " "; // 2 is sphere type for (int j=0;jnode->at(j)-center->at(j); *rasterfile << ((fabs(tmp) < MYEPSILON) ? 0 : tmp) << " "; } *rasterfile << "\t0.1\t1. 1. 1." << endl; // radius 0.05 and white as colour cloud->GoToNext(); } *rasterfile << "# All tesselation triangles" << endl; *rasterfile << "8\n 25. -1. 1. 1. 1. 0.0 0 0 0 2\n SOLID 1.0 0.0 0.0\n BACKFACE 0.3 0.3 1.0 0 0\n"; for (TriangleMap::const_iterator TriangleRunner = Tess->TrianglesOnBoundary.begin(); TriangleRunner != Tess->TrianglesOnBoundary.end(); TriangleRunner++) { *rasterfile << "1" << endl << " "; // 1 is triangle type for (i=0;i<3;i++) { // print each node for (int j=0;jsecond->endpoints[i]->node->node->at(j)-center->at(j); *rasterfile << ((fabs(tmp) < MYEPSILON) ? 0 : tmp) << " "; } *rasterfile << "\t"; } *rasterfile << "1. 0. 0." << endl; // red as colour //*rasterfile << "18" << endl << " 0.5 0.5 0.5" << endl; // 18 is transparency type for previous object } *rasterfile << "9\n# terminating special property\n"; } else { DoeLog(1) && (eLog()<< Verbose(1) << "Given rasterfile is " << rasterfile << "." << endl); } IncludeSphereinRaster3D(rasterfile, Tess, cloud); delete(center); }; /** This function creates the tecplot file, displaying the tesselation of the hull. * \param *out output stream for debugging * \param *tecplot output stream for tecplot data * \param N arbitrary number to differentiate various zones in the tecplot format */ void WriteTecplotFile(ofstream * const tecplot, const Tesselation * const TesselStruct, const PointCloud * const cloud, const int N) { Info FunctionInfo(__func__); if ((tecplot != NULL) && (TesselStruct != NULL)) { // write header *tecplot << "TITLE = \"3D CONVEX SHELL\"" << endl; *tecplot << "VARIABLES = \"X\" \"Y\" \"Z\" \"U\"" << endl; *tecplot << "ZONE T=\""; if (N < 0) { *tecplot << cloud->GetName(); } else { *tecplot << N << "-"; if (TesselStruct->LastTriangle != NULL) { for (int i=0;i<3;i++) *tecplot << (i==0 ? "" : "_") << TesselStruct->LastTriangle->endpoints[i]->node->getName(); } else { *tecplot << "none"; } } *tecplot << "\", N=" << TesselStruct->PointsOnBoundary.size() << ", E=" << TesselStruct->TrianglesOnBoundary.size() << ", DATAPACKING=POINT, ZONETYPE=FETRIANGLE" << endl; const int MaxId=cloud->GetMaxId(); int *LookupList = new int[MaxId]; for (int i=0; i< MaxId ; i++){ LookupList[i] = -1; } // print atom coordinates int Counter = 1; TesselPoint *Walker = NULL; for (PointMap::const_iterator target = TesselStruct->PointsOnBoundary.begin(); target != TesselStruct->PointsOnBoundary.end(); ++target) { Walker = target->second->node; LookupList[Walker->nr] = Counter++; for (int i=0;inode->at(i); *tecplot << ((fabs(tmp) < MYEPSILON) ? 0 : tmp) << " "; } *tecplot << target->second->value << endl; } *tecplot << endl; // print connectivity DoLog(1) && (Log() << Verbose(1) << "The following triangles were created:" << endl); for (TriangleMap::const_iterator runner = TesselStruct->TrianglesOnBoundary.begin(); runner != TesselStruct->TrianglesOnBoundary.end(); runner++) { DoLog(1) && (Log() << Verbose(1) << " " << runner->second->endpoints[0]->node->getName() << "<->" << runner->second->endpoints[1]->node->getName() << "<->" << runner->second->endpoints[2]->node->getName() << endl); *tecplot << LookupList[runner->second->endpoints[0]->node->nr] << " " << LookupList[runner->second->endpoints[1]->node->nr] << " " << LookupList[runner->second->endpoints[2]->node->nr] << endl; } delete[] (LookupList); } }; /** Calculates the concavity for each of the BoundaryPointSet's in a Tesselation. * Sets BoundaryPointSet::value equal to the number of connected lines that are not convex. * \param *out output stream for debugging * \param *TesselStruct pointer to Tesselation structure */ void CalculateConcavityPerBoundaryPoint(const Tesselation * const TesselStruct) { Info FunctionInfo(__func__); class BoundaryPointSet *point = NULL; class BoundaryLineSet *line = NULL; class BoundaryTriangleSet *triangle = NULL; double ConcavityPerLine = 0.; double ConcavityPerTriangle = 0.; double area = 0.; double totalarea = 0.; for (PointMap::const_iterator PointRunner = TesselStruct->PointsOnBoundary.begin(); PointRunner != TesselStruct->PointsOnBoundary.end(); PointRunner++) { point = PointRunner->second; DoLog(1) && (Log() << Verbose(1) << "INFO: Current point is " << *point << "." << endl); // calculate mean concavity over all connected line ConcavityPerLine = 0.; for (LineMap::iterator LineRunner = point->lines.begin(); LineRunner != point->lines.end(); LineRunner++) { line = LineRunner->second; //Log() << Verbose(1) << "INFO: Current line of point " << *point << " is " << *line << "." << endl; ConcavityPerLine -= line->CalculateConvexity(); } ConcavityPerLine /= point->lines.size(); // weigh with total area of the surrounding triangles totalarea = 0.; TriangleSet *triangles = TesselStruct->GetAllTriangles(PointRunner->second); for (TriangleSet::iterator TriangleRunner = triangles->begin(); TriangleRunner != triangles->end(); ++TriangleRunner) { totalarea += CalculateAreaofGeneralTriangle(*(*TriangleRunner)->endpoints[0]->node->node, *(*TriangleRunner)->endpoints[1]->node->node, *(*TriangleRunner)->endpoints[2]->node->node); } ConcavityPerLine *= totalarea; // calculate mean concavity over all attached triangles ConcavityPerTriangle = 0.; for (TriangleSet::const_iterator TriangleRunner = triangles->begin(); TriangleRunner != triangles->end(); ++TriangleRunner) { line = (*TriangleRunner)->GetThirdLine(PointRunner->second); triangle = line->GetOtherTriangle(*TriangleRunner); area = CalculateAreaofGeneralTriangle(*triangle->endpoints[0]->node->node, *triangle->endpoints[1]->node->node, *triangle->endpoints[2]->node->node); area += CalculateAreaofGeneralTriangle(*(*TriangleRunner)->endpoints[0]->node->node, *(*TriangleRunner)->endpoints[1]->node->node, *(*TriangleRunner)->endpoints[2]->node->node); area *= -line->CalculateConvexity(); if (area > 0) ConcavityPerTriangle += area; // else // ConcavityPerTriangle -= area; } ConcavityPerTriangle /= triangles->size()/totalarea; delete(triangles); // add up point->value = ConcavityPerLine + ConcavityPerTriangle; } }; /** Calculates the concavity for each of the BoundaryPointSet's in a Tesselation. * Sets BoundaryPointSet::value equal to the nearest distance to convex envelope. * \param *out output stream for debugging * \param *TesselStruct pointer to Tesselation structure * \param *Convex pointer to convex Tesselation structure as reference */ void CalculateConstrictionPerBoundaryPoint(const Tesselation * const TesselStruct, const Tesselation * const Convex) { Info FunctionInfo(__func__); double distance = 0.; for (PointMap::const_iterator PointRunner = TesselStruct->PointsOnBoundary.begin(); PointRunner != TesselStruct->PointsOnBoundary.end(); PointRunner++) { DoeLog(1) && (eLog() << Verbose(1) << "INFO: Current point is " << * PointRunner->second << "." << endl); distance = 0.; for (TriangleMap::const_iterator TriangleRunner = Convex->TrianglesOnBoundary.begin(); TriangleRunner != Convex->TrianglesOnBoundary.end(); TriangleRunner++) { const double CurrentDistance = Convex->GetDistanceSquaredToTriangle(*PointRunner->second->node->node, TriangleRunner->second); if (CurrentDistance < distance) distance = CurrentDistance; } PointRunner->second->value = distance; } }; /** Checks whether each BoundaryLineSet in the Tesselation has two triangles. * \param *out output stream for debugging * \param *TesselStruct * \return true - all have exactly two triangles, false - some not, list is printed to screen */ bool CheckListOfBaselines(const Tesselation * const TesselStruct) { Info FunctionInfo(__func__); LineMap::const_iterator testline; bool result = false; int counter = 0; DoLog(1) && (Log() << Verbose(1) << "Check: List of Baselines with not two connected triangles:" << endl); for (testline = TesselStruct->LinesOnBoundary.begin(); testline != TesselStruct->LinesOnBoundary.end(); testline++) { if (testline->second->triangles.size() != 2) { DoLog(2) && (Log() << Verbose(2) << *testline->second << "\t" << testline->second->triangles.size() << endl); counter++; } } if (counter == 0) { DoLog(1) && (Log() << Verbose(1) << "None." << endl); result = true; } return result; } /** Counts the number of triangle pairs that contain the given polygon. * \param *P polygon with endpoints to look for * \param *T set of triangles to create pairs from containing \a *P */ int CountTrianglePairContainingPolygon(const BoundaryPolygonSet * const P, const TriangleSet * const T) { Info FunctionInfo(__func__); // check number of endpoints in *P if (P->endpoints.size() != 4) { DoeLog(1) && (eLog()<< Verbose(1) << "CountTrianglePairContainingPolygon works only on polygons with 4 nodes!" << endl); return 0; } // check number of triangles in *T if (T->size() < 2) { DoeLog(1) && (eLog()<< Verbose(1) << "Not enough triangles to have pairs!" << endl); return 0; } DoLog(0) && (Log() << Verbose(0) << "Polygon is " << *P << endl); // create each pair, get the endpoints and check whether *P is contained. int counter = 0; PointSet Trianglenodes; class BoundaryPolygonSet PairTrianglenodes; for(TriangleSet::iterator Walker = T->begin(); Walker != T->end(); Walker++) { for (int i=0;i<3;i++) Trianglenodes.insert((*Walker)->endpoints[i]); for(TriangleSet::iterator PairWalker = Walker; PairWalker != T->end(); PairWalker++) { if (Walker != PairWalker) { // skip first PairTrianglenodes.endpoints = Trianglenodes; for (int i=0;i<3;i++) PairTrianglenodes.endpoints.insert((*PairWalker)->endpoints[i]); const int size = PairTrianglenodes.endpoints.size(); if (size == 4) { DoLog(0) && (Log() << Verbose(0) << " Current pair of triangles: " << **Walker << "," << **PairWalker << " with " << size << " distinct endpoints:" << PairTrianglenodes << endl); // now check if (PairTrianglenodes.ContainsPresentTupel(P)) { counter++; DoLog(0) && (Log() << Verbose(0) << " ACCEPT: Matches with " << *P << endl); } else { DoLog(0) && (Log() << Verbose(0) << " REJECT: No match with " << *P << endl); } } else { DoLog(0) && (Log() << Verbose(0) << " REJECT: Less than four endpoints." << endl); } } } Trianglenodes.clear(); } return counter; }; /** Checks whether two give polygons have two or more points in common. * \param *P1 first polygon * \param *P2 second polygon * \return true - are connected, false = are note */ bool ArePolygonsEdgeConnected(const BoundaryPolygonSet * const P1, const BoundaryPolygonSet * const P2) { Info FunctionInfo(__func__); int counter = 0; for(PointSet::const_iterator Runner = P1->endpoints.begin(); Runner != P1->endpoints.end(); Runner++) { if (P2->ContainsBoundaryPoint((*Runner))) { counter++; DoLog(1) && (Log() << Verbose(1) << *(*Runner) << " of second polygon is found in the first one." << endl); return true; } } return false; }; /** Combines second into the first and deletes the second. * \param *P1 first polygon, contains all nodes on return * \param *&P2 second polygon, is deleted. */ void CombinePolygons(BoundaryPolygonSet * const P1, BoundaryPolygonSet * &P2) { Info FunctionInfo(__func__); pair Tester; for(PointSet::iterator Runner = P2->endpoints.begin(); Runner != P2->endpoints.end(); Runner++) { Tester = P1->endpoints.insert((*Runner)); if (Tester.second) DoLog(0) && (Log() << Verbose(0) << "Inserting endpoint " << *(*Runner) << " into first polygon." << endl); } P2->endpoints.clear(); delete(P2); };