source: src/tesselationhelpers.cpp@ 906822

Action_Thermostats Add_AtomRandomPerturbation Add_FitFragmentPartialChargesAction Add_RotateAroundBondAction Add_SelectAtomByNameAction Added_ParseSaveFragmentResults AddingActions_SaveParseParticleParameters Adding_Graph_to_ChangeBondActions Adding_MD_integration_tests Adding_ParticleName_to_Atom Adding_StructOpt_integration_tests AtomFragments Automaking_mpqc_open AutomationFragmentation_failures Candidate_v1.5.4 Candidate_v1.6.0 Candidate_v1.6.1 ChangeBugEmailaddress ChangingTestPorts ChemicalSpaceEvaluator CombiningParticlePotentialParsing Combining_Subpackages Debian_Package_split Debian_package_split_molecuildergui_only Disabling_MemDebug Docu_Python_wait EmpiricalPotential_contain_HomologyGraph EmpiricalPotential_contain_HomologyGraph_documentation Enable_parallel_make_install Enhance_userguide Enhanced_StructuralOptimization Enhanced_StructuralOptimization_continued Example_ManyWaysToTranslateAtom Exclude_Hydrogens_annealWithBondGraph FitPartialCharges_GlobalError Fix_BoundInBox_CenterInBox_MoleculeActions Fix_ChargeSampling_PBC Fix_ChronosMutex Fix_FitPartialCharges Fix_FitPotential_needs_atomicnumbers Fix_ForceAnnealing Fix_IndependentFragmentGrids Fix_ParseParticles Fix_ParseParticles_split_forward_backward_Actions Fix_PopActions Fix_QtFragmentList_sorted_selection Fix_Restrictedkeyset_FragmentMolecule Fix_StatusMsg Fix_StepWorldTime_single_argument Fix_Verbose_Codepatterns Fix_fitting_potentials Fixes ForceAnnealing_goodresults ForceAnnealing_oldresults ForceAnnealing_tocheck ForceAnnealing_with_BondGraph ForceAnnealing_with_BondGraph_continued ForceAnnealing_with_BondGraph_continued_betteresults ForceAnnealing_with_BondGraph_contraction-expansion FragmentAction_writes_AtomFragments FragmentMolecule_checks_bonddegrees GeometryObjects Gui_Fixes Gui_displays_atomic_force_velocity ImplicitCharges IndependentFragmentGrids IndependentFragmentGrids_IndividualZeroInstances IndependentFragmentGrids_IntegrationTest IndependentFragmentGrids_Sole_NN_Calculation JobMarket_RobustOnKillsSegFaults JobMarket_StableWorkerPool JobMarket_unresolvable_hostname_fix MoreRobust_FragmentAutomation ODR_violation_mpqc_open PartialCharges_OrthogonalSummation PdbParser_setsAtomName PythonUI_with_named_parameters QtGui_reactivate_TimeChanged_changes Recreated_GuiChecks Rewrite_FitPartialCharges RotateToPrincipalAxisSystem_UndoRedo SaturateAtoms_findBestMatching SaturateAtoms_singleDegree StoppableMakroAction Subpackage_CodePatterns Subpackage_JobMarket Subpackage_LinearAlgebra Subpackage_levmar Subpackage_mpqc_open Subpackage_vmg Switchable_LogView ThirdParty_MPQC_rebuilt_buildsystem TrajectoryDependenant_MaxOrder TremoloParser_IncreasedPrecision TremoloParser_MultipleTimesteps TremoloParser_setsAtomName Ubuntu_1604_changes stable
Last change on this file since 906822 was 112b09, checked in by Tillmann Crueger <crueger@…>, 15 years ago

Added #include "Helpers/MemDebug.hpp" to all .cpp files

  • Property mode set to 100644
File size: 40.2 KB
Line 
1/*
2 * TesselationHelpers.cpp
3 *
4 * Created on: Aug 3, 2009
5 * Author: heber
6 */
7
8#include "Helpers/MemDebug.hpp"
9
10#include <fstream>
11
12#include "info.hpp"
13#include "linkedcell.hpp"
14#include "log.hpp"
15#include "tesselation.hpp"
16#include "tesselationhelpers.hpp"
17#include "vector.hpp"
18#include "Line.hpp"
19#include "vector_ops.hpp"
20#include "verbose.hpp"
21#include "Plane.hpp"
22
23double DetGet(gsl_matrix * const A, const int inPlace)
24{
25 Info FunctionInfo(__func__);
26 /*
27 inPlace = 1 => A is replaced with the LU decomposed copy.
28 inPlace = 0 => A is retained, and a copy is used for LU.
29 */
30
31 double det;
32 int signum;
33 gsl_permutation *p = gsl_permutation_alloc(A->size1);
34 gsl_matrix *tmpA=0;
35
36 if (inPlace)
37 tmpA = A;
38 else {
39 gsl_matrix *tmpA = gsl_matrix_alloc(A->size1, A->size2);
40 gsl_matrix_memcpy(tmpA , A);
41 }
42
43
44 gsl_linalg_LU_decomp(tmpA , p , &signum);
45 det = gsl_linalg_LU_det(tmpA , signum);
46 gsl_permutation_free(p);
47 if (! inPlace)
48 gsl_matrix_free(tmpA);
49
50 return det;
51};
52
53void GetSphere(Vector * const center, const Vector &a, const Vector &b, const Vector &c, const double RADIUS)
54{
55 Info FunctionInfo(__func__);
56 gsl_matrix *A = gsl_matrix_calloc(3,3);
57 double m11, m12, m13, m14;
58
59 for(int i=0;i<3;i++) {
60 gsl_matrix_set(A, i, 0, a[i]);
61 gsl_matrix_set(A, i, 1, b[i]);
62 gsl_matrix_set(A, i, 2, c[i]);
63 }
64 m11 = DetGet(A, 1);
65
66 for(int i=0;i<3;i++) {
67 gsl_matrix_set(A, i, 0, a[i]*a[i] + b[i]*b[i] + c[i]*c[i]);
68 gsl_matrix_set(A, i, 1, b[i]);
69 gsl_matrix_set(A, i, 2, c[i]);
70 }
71 m12 = DetGet(A, 1);
72
73 for(int i=0;i<3;i++) {
74 gsl_matrix_set(A, i, 0, a[i]*a[i] + b[i]*b[i] + c[i]*c[i]);
75 gsl_matrix_set(A, i, 1, a[i]);
76 gsl_matrix_set(A, i, 2, c[i]);
77 }
78 m13 = DetGet(A, 1);
79
80 for(int i=0;i<3;i++) {
81 gsl_matrix_set(A, i, 0, a[i]*a[i] + b[i]*b[i] + c[i]*c[i]);
82 gsl_matrix_set(A, i, 1, a[i]);
83 gsl_matrix_set(A, i, 2, b[i]);
84 }
85 m14 = DetGet(A, 1);
86
87 if (fabs(m11) < MYEPSILON)
88 DoeLog(1) && (eLog()<< Verbose(1) << "three points are colinear." << endl);
89
90 center->at(0) = 0.5 * m12/ m11;
91 center->at(1) = -0.5 * m13/ m11;
92 center->at(2) = 0.5 * m14/ m11;
93
94 if (fabs(a.distance(*center) - RADIUS) > MYEPSILON)
95 DoeLog(1) && (eLog()<< Verbose(1) << "The given center is further way by " << fabs(a.distance(*center) - RADIUS) << " from a than RADIUS." << endl);
96
97 gsl_matrix_free(A);
98};
99
100
101
102/**
103 * Function returns center of sphere with RADIUS, which rests on points a, b, c
104 * @param Center this vector will be used for return
105 * @param a vector first point of triangle
106 * @param b vector second point of triangle
107 * @param c vector third point of triangle
108 * @param *Umkreismittelpunkt new center point of circumference
109 * @param Direction vector indicates up/down
110 * @param AlternativeDirection Vector, needed in case the triangles have 90 deg angle
111 * @param Halfplaneindicator double indicates whether Direction is up or down
112 * @param AlternativeIndicator double indicates in case of orthogonal triangles which direction of AlternativeDirection is suitable
113 * @param alpha double angle at a
114 * @param beta double, angle at b
115 * @param gamma, double, angle at c
116 * @param Radius, double
117 * @param Umkreisradius double radius of circumscribing circle
118 */
119void GetCenterOfSphere(Vector* const & Center, const Vector &a, const Vector &b, const Vector &c, Vector * const NewUmkreismittelpunkt, const Vector* const Direction, const Vector* const AlternativeDirection,
120 const double HalfplaneIndicator, const double AlternativeIndicator, const double alpha, const double beta, const double gamma, const double RADIUS, const double Umkreisradius)
121{
122 Info FunctionInfo(__func__);
123 Vector TempNormal, helper;
124 double Restradius;
125 Vector OtherCenter;
126 Center->Zero();
127 helper = sin(2.*alpha) * a;
128 (*Center) += helper;
129 helper = sin(2.*beta) * b;
130 (*Center) += helper;
131 helper = sin(2.*gamma) * c;
132 (*Center) += helper;
133 //*Center = a * sin(2.*alpha) + b * sin(2.*beta) + c * sin(2.*gamma) ;
134 Center->Scale(1./(sin(2.*alpha) + sin(2.*beta) + sin(2.*gamma)));
135 (*NewUmkreismittelpunkt) = (*Center);
136 DoLog(1) && (Log() << Verbose(1) << "Center of new circumference is " << *NewUmkreismittelpunkt << ".\n");
137 // Here we calculated center of circumscribing circle, using barycentric coordinates
138 DoLog(1) && (Log() << Verbose(1) << "Center of circumference is " << *Center << " in direction " << *Direction << ".\n");
139
140 TempNormal = a - b;
141 helper = a - c;
142 TempNormal.VectorProduct(helper);
143 if (fabs(HalfplaneIndicator) < MYEPSILON)
144 {
145 if ((TempNormal.ScalarProduct(*AlternativeDirection) <0 && AlternativeIndicator >0) || (TempNormal.ScalarProduct(*AlternativeDirection) >0 && AlternativeIndicator <0))
146 {
147 TempNormal *= -1;
148 }
149 }
150 else
151 {
152 if (((TempNormal.ScalarProduct(*Direction)<0) && (HalfplaneIndicator >0)) || ((TempNormal.ScalarProduct(*Direction)>0) && (HalfplaneIndicator<0)))
153 {
154 TempNormal *= -1;
155 }
156 }
157
158 TempNormal.Normalize();
159 Restradius = sqrt(RADIUS*RADIUS - Umkreisradius*Umkreisradius);
160 DoLog(1) && (Log() << Verbose(1) << "Height of center of circumference to center of sphere is " << Restradius << ".\n");
161 TempNormal.Scale(Restradius);
162 DoLog(1) && (Log() << Verbose(1) << "Shift vector to sphere of circumference is " << TempNormal << ".\n");
163 (*Center) += TempNormal;
164 DoLog(1) && (Log() << Verbose(1) << "Center of sphere of circumference is " << *Center << ".\n");
165 GetSphere(&OtherCenter, a, b, c, RADIUS);
166 DoLog(1) && (Log() << Verbose(1) << "OtherCenter of sphere of circumference is " << OtherCenter << ".\n");
167};
168
169
170/** Constructs the center of the circumcircle defined by three points \a *a, \a *b and \a *c.
171 * \param *Center new center on return
172 * \param *a first point
173 * \param *b second point
174 * \param *c third point
175 */
176void GetCenterofCircumcircle(Vector * const Center, const Vector &a, const Vector &b, const Vector &c)
177{
178 Info FunctionInfo(__func__);
179 Vector helper;
180 double alpha, beta, gamma;
181 Vector SideA = b - c;
182 Vector SideB = c - a;
183 Vector SideC = a - b;
184 alpha = M_PI - SideB.Angle(SideC);
185 beta = M_PI - SideC.Angle(SideA);
186 gamma = M_PI - SideA.Angle(SideB);
187 //Log() << Verbose(1) << "INFO: alpha = " << alpha/M_PI*180. << ", beta = " << beta/M_PI*180. << ", gamma = " << gamma/M_PI*180. << "." << endl;
188 if (fabs(M_PI - alpha - beta - gamma) > HULLEPSILON) {
189 DoeLog(2) && (eLog()<< Verbose(2) << "GetCenterofCircumcircle: Sum of angles " << (alpha+beta+gamma)/M_PI*180. << " > 180 degrees by " << fabs(M_PI - alpha - beta - gamma)/M_PI*180. << "!" << endl);
190 }
191
192 Center->Zero();
193 helper = sin(2.*alpha) * a;
194 (*Center) += helper;
195 helper = sin(2.*beta) * b;
196 (*Center) += helper;
197 helper = sin(2.*gamma) * c;
198 (*Center) += helper;
199 Center->Scale(1./(sin(2.*alpha) + sin(2.*beta) + sin(2.*gamma)));
200};
201
202/** Returns the parameter "path length" for a given \a NewSphereCenter relative to \a OldSphereCenter on a circle on the plane \a CirclePlaneNormal with center \a CircleCenter and radius \a CircleRadius.
203 * Test whether the \a NewSphereCenter is really on the given plane and in distance \a CircleRadius from \a CircleCenter.
204 * It calculates the angle, making it unique on [0,2.*M_PI) by comparing to SearchDirection.
205 * Also the new center is invalid if it the same as the old one and does not lie right above (\a NormalVector) the base line (\a CircleCenter).
206 * \param CircleCenter Center of the parameter circle
207 * \param CirclePlaneNormal normal vector to plane of the parameter circle
208 * \param CircleRadius radius of the parameter circle
209 * \param NewSphereCenter new center of a circumcircle
210 * \param OldSphereCenter old center of a circumcircle, defining the zero "path length" on the parameter circle
211 * \param NormalVector normal vector
212 * \param SearchDirection search direction to make angle unique on return.
213 * \return Angle between \a NewSphereCenter and \a OldSphereCenter relative to \a CircleCenter, 2.*M_PI if one test fails
214 */
215double GetPathLengthonCircumCircle(const Vector &CircleCenter, const Vector &CirclePlaneNormal, const double CircleRadius, const Vector &NewSphereCenter, const Vector &OldSphereCenter, const Vector &NormalVector, const Vector &SearchDirection)
216{
217 Info FunctionInfo(__func__);
218 Vector helper;
219 double radius, alpha;
220
221 Vector RelativeOldSphereCenter = OldSphereCenter - CircleCenter;
222 Vector RelativeNewSphereCenter = NewSphereCenter - CircleCenter;
223 helper = RelativeNewSphereCenter;
224 // test whether new center is on the parameter circle's plane
225 if (fabs(helper.ScalarProduct(CirclePlaneNormal)) > HULLEPSILON) {
226 DoeLog(1) && (eLog()<< Verbose(1) << "Something's very wrong here: NewSphereCenter is not on the band's plane as desired by " <<fabs(helper.ScalarProduct(CirclePlaneNormal)) << "!" << endl);
227 helper.ProjectOntoPlane(CirclePlaneNormal);
228 }
229 radius = helper.NormSquared();
230 // test whether the new center vector has length of CircleRadius
231 if (fabs(radius - CircleRadius) > HULLEPSILON)
232 DoeLog(1) && (eLog()<< Verbose(1) << "The projected center of the new sphere has radius " << radius << " instead of " << CircleRadius << "." << endl);
233 alpha = helper.Angle(RelativeOldSphereCenter);
234 // make the angle unique by checking the halfplanes/search direction
235 if (helper.ScalarProduct(SearchDirection) < -HULLEPSILON) // acos is not unique on [0, 2.*M_PI), hence extra check to decide between two half intervals
236 alpha = 2.*M_PI - alpha;
237 DoLog(1) && (Log() << Verbose(1) << "INFO: RelativeNewSphereCenter is " << helper << ", RelativeOldSphereCenter is " << RelativeOldSphereCenter << " and resulting angle is " << alpha << "." << endl);
238 radius = helper.distance(RelativeOldSphereCenter);
239 helper.ProjectOntoPlane(NormalVector);
240 // check whether new center is somewhat away or at least right over the current baseline to prevent intersecting triangles
241 if ((radius > HULLEPSILON) || (helper.Norm() < HULLEPSILON)) {
242 DoLog(1) && (Log() << Verbose(1) << "INFO: Distance between old and new center is " << radius << " and between new center and baseline center is " << helper.Norm() << "." << endl);
243 return alpha;
244 } else {
245 DoLog(1) && (Log() << Verbose(1) << "INFO: NewSphereCenter " << RelativeNewSphereCenter << " is too close to RelativeOldSphereCenter" << RelativeOldSphereCenter << "." << endl);
246 return 2.*M_PI;
247 }
248};
249
250struct Intersection {
251 Vector x1;
252 Vector x2;
253 Vector x3;
254 Vector x4;
255};
256
257/**
258 * Intersection calculation function.
259 *
260 * @param x to find the result for
261 * @param function parameter
262 */
263double MinIntersectDistance(const gsl_vector * x, void *params)
264{
265 Info FunctionInfo(__func__);
266 double retval = 0;
267 struct Intersection *I = (struct Intersection *)params;
268 Vector intersection;
269 for (int i=0;i<NDIM;i++)
270 intersection[i] = gsl_vector_get(x, i);
271
272 Vector SideA = I->x1 -I->x2 ;
273 Vector HeightA = intersection - I->x1;
274 HeightA.ProjectOntoPlane(SideA);
275
276 Vector SideB = I->x3 - I->x4;
277 Vector HeightB = intersection - I->x3;
278 HeightB.ProjectOntoPlane(SideB);
279
280 retval = HeightA.ScalarProduct(HeightA) + HeightB.ScalarProduct(HeightB);
281 //Log() << Verbose(1) << "MinIntersectDistance called, result: " << retval << endl;
282
283 return retval;
284};
285
286
287/**
288 * Calculates whether there is an intersection between two lines. The first line
289 * always goes through point 1 and point 2 and the second line is given by the
290 * connection between point 4 and point 5.
291 *
292 * @param point 1 of line 1
293 * @param point 2 of line 1
294 * @param point 1 of line 2
295 * @param point 2 of line 2
296 *
297 * @return true if there is an intersection between the given lines, false otherwise
298 */
299bool existsIntersection(const Vector &point1, const Vector &point2, const Vector &point3, const Vector &point4)
300{
301 Info FunctionInfo(__func__);
302 bool result;
303
304 struct Intersection par;
305 par.x1 = point1;
306 par.x2 = point2;
307 par.x3 = point3;
308 par.x4 = point4;
309
310 const gsl_multimin_fminimizer_type *T = gsl_multimin_fminimizer_nmsimplex;
311 gsl_multimin_fminimizer *s = NULL;
312 gsl_vector *ss, *x;
313 gsl_multimin_function minexFunction;
314
315 size_t iter = 0;
316 int status;
317 double size;
318
319 /* Starting point */
320 x = gsl_vector_alloc(NDIM);
321 gsl_vector_set(x, 0, point1[0]);
322 gsl_vector_set(x, 1, point1[1]);
323 gsl_vector_set(x, 2, point1[2]);
324
325 /* Set initial step sizes to 1 */
326 ss = gsl_vector_alloc(NDIM);
327 gsl_vector_set_all(ss, 1.0);
328
329 /* Initialize method and iterate */
330 minexFunction.n = NDIM;
331 minexFunction.f = &MinIntersectDistance;
332 minexFunction.params = (void *)&par;
333
334 s = gsl_multimin_fminimizer_alloc(T, NDIM);
335 gsl_multimin_fminimizer_set(s, &minexFunction, x, ss);
336
337 do {
338 iter++;
339 status = gsl_multimin_fminimizer_iterate(s);
340
341 if (status) {
342 break;
343 }
344
345 size = gsl_multimin_fminimizer_size(s);
346 status = gsl_multimin_test_size(size, 1e-2);
347
348 if (status == GSL_SUCCESS) {
349 DoLog(1) && (Log() << Verbose(1) << "converged to minimum" << endl);
350 }
351 } while (status == GSL_CONTINUE && iter < 100);
352
353 // check whether intersection is in between or not
354 Vector intersection;
355 double t1, t2;
356 for (int i = 0; i < NDIM; i++) {
357 intersection[i] = gsl_vector_get(s->x, i);
358 }
359
360 Vector SideA = par.x2 - par.x1;
361 Vector HeightA = intersection - par.x1;
362
363 t1 = HeightA.ScalarProduct(SideA)/SideA.ScalarProduct(SideA);
364
365 Vector SideB = par.x4 - par.x3;
366 Vector HeightB = intersection - par.x3;
367
368 t2 = HeightB.ScalarProduct(SideB)/SideB.ScalarProduct(SideB);
369
370 Log() << Verbose(1) << "Intersection " << intersection << " is at "
371 << t1 << " for (" << point1 << "," << point2 << ") and at "
372 << t2 << " for (" << point3 << "," << point4 << "): ";
373
374 if (((t1 >= 0) && (t1 <= 1)) && ((t2 >= 0) && (t2 <= 1))) {
375 DoLog(1) && (Log() << Verbose(1) << "true intersection." << endl);
376 result = true;
377 } else {
378 DoLog(1) && (Log() << Verbose(1) << "intersection out of region of interest." << endl);
379 result = false;
380 }
381
382 // free minimizer stuff
383 gsl_vector_free(x);
384 gsl_vector_free(ss);
385 gsl_multimin_fminimizer_free(s);
386
387 return result;
388};
389
390/** Gets the angle between a point and a reference relative to the provided center.
391 * We have two shanks point and reference between which the angle is calculated
392 * and by scalar product with OrthogonalVector we decide the interval.
393 * @param point to calculate the angle for
394 * @param reference to which to calculate the angle
395 * @param OrthogonalVector points in direction of [pi,2pi] interval
396 *
397 * @return angle between point and reference
398 */
399double GetAngle(const Vector &point, const Vector &reference, const Vector &OrthogonalVector)
400{
401 Info FunctionInfo(__func__);
402 if (reference.IsZero())
403 return M_PI;
404
405 // calculate both angles and correct with in-plane vector
406 if (point.IsZero())
407 return M_PI;
408 double phi = point.Angle(reference);
409 if (OrthogonalVector.ScalarProduct(point) > 0) {
410 phi = 2.*M_PI - phi;
411 }
412
413 DoLog(1) && (Log() << Verbose(1) << "INFO: " << point << " has angle " << phi << " with respect to reference " << reference << "." << endl);
414
415 return phi;
416}
417
418
419/** Calculates the volume of a general tetraeder.
420 * \param *a first vector
421 * \param *a first vector
422 * \param *a first vector
423 * \param *a first vector
424 * \return \f$ \frac{1}{6} \cdot ((a-d) \times (a-c) \cdot (a-b)) \f$
425 */
426double CalculateVolumeofGeneralTetraeder(const Vector &a, const Vector &b, const Vector &c, const Vector &d)
427{
428 Info FunctionInfo(__func__);
429 Vector Point, TetraederVector[3];
430 double volume;
431
432 TetraederVector[0] = a;
433 TetraederVector[1] = b;
434 TetraederVector[2] = c;
435 for (int j=0;j<3;j++)
436 TetraederVector[j].SubtractVector(d);
437 Point = TetraederVector[0];
438 Point.VectorProduct(TetraederVector[1]);
439 volume = 1./6. * fabs(Point.ScalarProduct(TetraederVector[2]));
440 return volume;
441};
442
443
444/** Checks for a new special triangle whether one of its edges is already present with one one triangle connected.
445 * This enforces that special triangles (i.e. degenerated ones) should at last close the open-edge frontier and not
446 * make it bigger (i.e. closing one (the baseline) and opening two new ones).
447 * \param TPS[3] nodes of the triangle
448 * \return true - there is such a line (i.e. creation of degenerated triangle is valid), false - no such line (don't create)
449 */
450bool CheckLineCriteriaForDegeneratedTriangle(const BoundaryPointSet * const nodes[3])
451{
452 Info FunctionInfo(__func__);
453 bool result = false;
454 int counter = 0;
455
456 // check all three points
457 for (int i=0;i<3;i++)
458 for (int j=i+1; j<3; j++) {
459 if (nodes[i] == NULL) {
460 DoLog(1) && (Log() << Verbose(1) << "Node nr. " << i << " is not yet present." << endl);
461 result = true;
462 } else if (nodes[i]->lines.find(nodes[j]->node->nr) != nodes[i]->lines.end()) { // there already is a line
463 LineMap::const_iterator FindLine;
464 pair<LineMap::const_iterator,LineMap::const_iterator> FindPair;
465 FindPair = nodes[i]->lines.equal_range(nodes[j]->node->nr);
466 for (FindLine = FindPair.first; FindLine != FindPair.second; ++FindLine) {
467 // If there is a line with less than two attached triangles, we don't need a new line.
468 if (FindLine->second->triangles.size() < 2) {
469 counter++;
470 break; // increase counter only once per edge
471 }
472 }
473 } else { // no line
474 DoLog(1) && (Log() << Verbose(1) << "The line between " << *nodes[i] << " and " << *nodes[j] << " is not yet present, hence no need for a degenerate triangle." << endl);
475 result = true;
476 }
477 }
478 if ((!result) && (counter > 1)) {
479 DoLog(1) && (Log() << Verbose(1) << "INFO: Degenerate triangle is ok, at least two, here " << counter << ", existing lines are used." << endl);
480 result = true;
481 }
482 return result;
483};
484
485
486///** Sort function for the candidate list.
487// */
488//bool SortCandidates(const CandidateForTesselation* candidate1, const CandidateForTesselation* candidate2)
489//{
490// Info FunctionInfo(__func__);
491// Vector BaseLineVector, OrthogonalVector, helper;
492// if (candidate1->BaseLine != candidate2->BaseLine) { // sanity check
493// DoeLog(1) && (eLog()<< Verbose(1) << "sortCandidates was called for two different baselines: " << candidate1->BaseLine << " and " << candidate2->BaseLine << "." << endl);
494// //return false;
495// exit(1);
496// }
497// // create baseline vector
498// BaseLineVector.CopyVector(candidate1->BaseLine->endpoints[1]->node->node);
499// BaseLineVector.SubtractVector(candidate1->BaseLine->endpoints[0]->node->node);
500// BaseLineVector.Normalize();
501//
502// // create normal in-plane vector to cope with acos() non-uniqueness on [0,2pi] (note that is pointing in the "right" direction already, hence ">0" test!)
503// helper.CopyVector(candidate1->BaseLine->endpoints[0]->node->node);
504// helper.SubtractVector(candidate1->point->node);
505// OrthogonalVector.CopyVector(&helper);
506// helper.VectorProduct(&BaseLineVector);
507// OrthogonalVector.SubtractVector(&helper);
508// OrthogonalVector.Normalize();
509//
510// // calculate both angles and correct with in-plane vector
511// helper.CopyVector(candidate1->point->node);
512// helper.SubtractVector(candidate1->BaseLine->endpoints[0]->node->node);
513// double phi = BaseLineVector.Angle(&helper);
514// if (OrthogonalVector.ScalarProduct(&helper) > 0) {
515// phi = 2.*M_PI - phi;
516// }
517// helper.CopyVector(candidate2->point->node);
518// helper.SubtractVector(candidate1->BaseLine->endpoints[0]->node->node);
519// double psi = BaseLineVector.Angle(&helper);
520// if (OrthogonalVector.ScalarProduct(&helper) > 0) {
521// psi = 2.*M_PI - psi;
522// }
523//
524// Log() << Verbose(1) << *candidate1->point << " has angle " << phi << endl;
525// Log() << Verbose(1) << *candidate2->point << " has angle " << psi << endl;
526//
527// // return comparison
528// return phi < psi;
529//};
530
531/**
532 * Finds the point which is second closest to the provided one.
533 *
534 * @param Point to which to find the second closest other point
535 * @param linked cell structure
536 *
537 * @return point which is second closest to the provided one
538 */
539TesselPoint* FindSecondClosestTesselPoint(const Vector* Point, const LinkedCell* const LC)
540{
541 Info FunctionInfo(__func__);
542 TesselPoint* closestPoint = NULL;
543 TesselPoint* secondClosestPoint = NULL;
544 double distance = 1e16;
545 double secondDistance = 1e16;
546 Vector helper;
547 int N[NDIM], Nlower[NDIM], Nupper[NDIM];
548
549 LC->SetIndexToVector(Point); // ignore status as we calculate bounds below sensibly
550 for(int i=0;i<NDIM;i++) // store indices of this cell
551 N[i] = LC->n[i];
552 DoLog(1) && (Log() << Verbose(1) << "INFO: Center cell is " << N[0] << ", " << N[1] << ", " << N[2] << " with No. " << LC->index << "." << endl);
553
554 LC->GetNeighbourBounds(Nlower, Nupper);
555 //Log() << Verbose(1) << endl;
556 for (LC->n[0] = Nlower[0]; LC->n[0] <= Nupper[0]; LC->n[0]++)
557 for (LC->n[1] = Nlower[1]; LC->n[1] <= Nupper[1]; LC->n[1]++)
558 for (LC->n[2] = Nlower[2]; LC->n[2] <= Nupper[2]; LC->n[2]++) {
559 const LinkedCell::LinkedNodes *List = LC->GetCurrentCell();
560 //Log() << Verbose(1) << "The current cell " << LC->n[0] << "," << LC->n[1] << "," << LC->n[2] << endl;
561 if (List != NULL) {
562 for (LinkedCell::LinkedNodes::const_iterator Runner = List->begin(); Runner != List->end(); Runner++) {
563 helper = (*Point) - (*(*Runner)->node);
564 double currentNorm = helper. Norm();
565 if (currentNorm < distance) {
566 // remember second point
567 secondDistance = distance;
568 secondClosestPoint = closestPoint;
569 // mark down new closest point
570 distance = currentNorm;
571 closestPoint = (*Runner);
572 //Log() << Verbose(2) << "INFO: New Second Nearest Neighbour is " << *secondClosestPoint << "." << endl;
573 }
574 }
575 } else {
576 eLog() << Verbose(1) << "The current cell " << LC->n[0] << "," << LC->n[1] << ","
577 << LC->n[2] << " is invalid!" << endl;
578 }
579 }
580
581 return secondClosestPoint;
582};
583
584/**
585 * Finds the point which is closest to the provided one.
586 *
587 * @param Point to which to find the closest other point
588 * @param SecondPoint the second closest other point on return, NULL if none found
589 * @param linked cell structure
590 *
591 * @return point which is closest to the provided one, NULL if none found
592 */
593TesselPoint* FindClosestTesselPoint(const Vector* Point, TesselPoint *&SecondPoint, const LinkedCell* const LC)
594{
595 Info FunctionInfo(__func__);
596 TesselPoint* closestPoint = NULL;
597 SecondPoint = NULL;
598 double distance = 1e16;
599 double secondDistance = 1e16;
600 Vector helper;
601 int N[NDIM], Nlower[NDIM], Nupper[NDIM];
602
603 LC->SetIndexToVector(Point); // ignore status as we calculate bounds below sensibly
604 for(int i=0;i<NDIM;i++) // store indices of this cell
605 N[i] = LC->n[i];
606 DoLog(1) && (Log() << Verbose(1) << "INFO: Center cell is " << N[0] << ", " << N[1] << ", " << N[2] << " with No. " << LC->index << "." << endl);
607
608 LC->GetNeighbourBounds(Nlower, Nupper);
609 //Log() << Verbose(1) << endl;
610 for (LC->n[0] = Nlower[0]; LC->n[0] <= Nupper[0]; LC->n[0]++)
611 for (LC->n[1] = Nlower[1]; LC->n[1] <= Nupper[1]; LC->n[1]++)
612 for (LC->n[2] = Nlower[2]; LC->n[2] <= Nupper[2]; LC->n[2]++) {
613 const LinkedCell::LinkedNodes *List = LC->GetCurrentCell();
614 //Log() << Verbose(1) << "The current cell " << LC->n[0] << "," << LC->n[1] << "," << LC->n[2] << endl;
615 if (List != NULL) {
616 for (LinkedCell::LinkedNodes::const_iterator Runner = List->begin(); Runner != List->end(); Runner++) {
617 helper = (*Point) - (*(*Runner)->node);
618 double currentNorm = helper.NormSquared();
619 if (currentNorm < distance) {
620 secondDistance = distance;
621 SecondPoint = closestPoint;
622 distance = currentNorm;
623 closestPoint = (*Runner);
624 //Log() << Verbose(1) << "INFO: New Nearest Neighbour is " << *closestPoint << "." << endl;
625 } else if (currentNorm < secondDistance) {
626 secondDistance = currentNorm;
627 SecondPoint = (*Runner);
628 //Log() << Verbose(1) << "INFO: New Second Nearest Neighbour is " << *SecondPoint << "." << endl;
629 }
630 }
631 } else {
632 eLog() << Verbose(1) << "The current cell " << LC->n[0] << "," << LC->n[1] << ","
633 << LC->n[2] << " is invalid!" << endl;
634 }
635 }
636 // output
637 if (closestPoint != NULL) {
638 DoLog(1) && (Log() << Verbose(1) << "Closest point is " << *closestPoint);
639 if (SecondPoint != NULL)
640 DoLog(0) && (Log() << Verbose(0) << " and second closest is " << *SecondPoint);
641 DoLog(0) && (Log() << Verbose(0) << "." << endl);
642 }
643 return closestPoint;
644};
645
646/** Returns the closest point on \a *Base with respect to \a *OtherBase.
647 * \param *out output stream for debugging
648 * \param *Base reference line
649 * \param *OtherBase other base line
650 * \return Vector on reference line that has closest distance
651 */
652Vector * GetClosestPointBetweenLine(const BoundaryLineSet * const Base, const BoundaryLineSet * const OtherBase)
653{
654 Info FunctionInfo(__func__);
655 // construct the plane of the two baselines (i.e. take both their directional vectors)
656 Vector Baseline = (*Base->endpoints[1]->node->node) - (*Base->endpoints[0]->node->node);
657 Vector OtherBaseline = (*OtherBase->endpoints[1]->node->node) - (*OtherBase->endpoints[0]->node->node);
658 Vector Normal = Baseline;
659 Normal.VectorProduct(OtherBaseline);
660 Normal.Normalize();
661 DoLog(1) && (Log() << Verbose(1) << "First direction is " << Baseline << ", second direction is " << OtherBaseline << ", normal of intersection plane is " << Normal << "." << endl);
662
663 // project one offset point of OtherBase onto this plane (and add plane offset vector)
664 Vector NewOffset = (*OtherBase->endpoints[0]->node->node) - (*Base->endpoints[0]->node->node);
665 NewOffset.ProjectOntoPlane(Normal);
666 NewOffset += (*Base->endpoints[0]->node->node);
667 Vector NewDirection = NewOffset + OtherBaseline;
668
669 // calculate the intersection between this projected baseline and Base
670 Vector *Intersection = new Vector;
671 Line line1 = makeLineThrough(*(Base->endpoints[0]->node->node),*(Base->endpoints[1]->node->node));
672 Line line2 = makeLineThrough(NewOffset, NewDirection);
673 *Intersection = line1.getIntersection(line2);
674 Normal = (*Intersection) - (*Base->endpoints[0]->node->node);
675 DoLog(1) && (Log() << Verbose(1) << "Found closest point on " << *Base << " at " << *Intersection << ", factor in line is " << fabs(Normal.ScalarProduct(Baseline)/Baseline.NormSquared()) << "." << endl);
676
677 return Intersection;
678};
679
680/** Returns the distance to the plane defined by \a *triangle
681 * \param *out output stream for debugging
682 * \param *x Vector to calculate distance to
683 * \param *triangle triangle defining plane
684 * \return distance between \a *x and plane defined by \a *triangle, -1 - if something went wrong
685 */
686double DistanceToTrianglePlane(const Vector *x, const BoundaryTriangleSet * const triangle)
687{
688 Info FunctionInfo(__func__);
689 double distance = 0.;
690 if (x == NULL) {
691 return -1;
692 }
693 distance = x->DistanceToSpace(triangle->getPlane());
694 return distance;
695};
696
697/** Creates the objects in a VRML file.
698 * \param *out output stream for debugging
699 * \param *vrmlfile output stream for tecplot data
700 * \param *Tess Tesselation structure with constructed triangles
701 * \param *mol molecule structure with atom positions
702 */
703void WriteVrmlFile(ofstream * const vrmlfile, const Tesselation * const Tess, const PointCloud * const cloud)
704{
705 Info FunctionInfo(__func__);
706 TesselPoint *Walker = NULL;
707 int i;
708 Vector *center = cloud->GetCenter();
709 if (vrmlfile != NULL) {
710 //Log() << Verbose(1) << "Writing Raster3D file ... ";
711 *vrmlfile << "#VRML V2.0 utf8" << endl;
712 *vrmlfile << "#Created by molecuilder" << endl;
713 *vrmlfile << "#All atoms as spheres" << endl;
714 cloud->GoToFirst();
715 while (!cloud->IsEnd()) {
716 Walker = cloud->GetPoint();
717 *vrmlfile << "Sphere {" << endl << " "; // 2 is sphere type
718 for (i=0;i<NDIM;i++)
719 *vrmlfile << Walker->node->at(i)-center->at(i) << " ";
720 *vrmlfile << "\t0.1\t1. 1. 1." << endl; // radius 0.05 and white as colour
721 cloud->GoToNext();
722 }
723
724 *vrmlfile << "# All tesselation triangles" << endl;
725 for (TriangleMap::const_iterator TriangleRunner = Tess->TrianglesOnBoundary.begin(); TriangleRunner != Tess->TrianglesOnBoundary.end(); TriangleRunner++) {
726 *vrmlfile << "1" << endl << " "; // 1 is triangle type
727 for (i=0;i<3;i++) { // print each node
728 for (int j=0;j<NDIM;j++) // and for each node all NDIM coordinates
729 *vrmlfile << TriangleRunner->second->endpoints[i]->node->node->at(j)-center->at(j) << " ";
730 *vrmlfile << "\t";
731 }
732 *vrmlfile << "1. 0. 0." << endl; // red as colour
733 *vrmlfile << "18" << endl << " 0.5 0.5 0.5" << endl; // 18 is transparency type for previous object
734 }
735 } else {
736 DoeLog(1) && (eLog()<< Verbose(1) << "Given vrmlfile is " << vrmlfile << "." << endl);
737 }
738 delete(center);
739};
740
741/** Writes additionally the current sphere (i.e. the last triangle to file).
742 * \param *out output stream for debugging
743 * \param *rasterfile output stream for tecplot data
744 * \param *Tess Tesselation structure with constructed triangles
745 * \param *mol molecule structure with atom positions
746 */
747void IncludeSphereinRaster3D(ofstream * const rasterfile, const Tesselation * const Tess, const PointCloud * const cloud)
748{
749 Info FunctionInfo(__func__);
750 Vector helper;
751
752 if (Tess->LastTriangle != NULL) {
753 // include the current position of the virtual sphere in the temporary raster3d file
754 Vector *center = cloud->GetCenter();
755 // make the circumsphere's center absolute again
756 Vector helper = (1./3.) * ((*Tess->LastTriangle->endpoints[0]->node->node) +
757 (*Tess->LastTriangle->endpoints[1]->node->node) +
758 (*Tess->LastTriangle->endpoints[2]->node->node));
759 helper -= (*center);
760 // and add to file plus translucency object
761 *rasterfile << "# current virtual sphere\n";
762 *rasterfile << "8\n 25.0 0.6 -1.0 -1.0 -1.0 0.2 0 0 0 0\n";
763 *rasterfile << "2\n " << helper[0] << " " << helper[1] << " " << helper[2] << "\t" << 5. << "\t1 0 0\n";
764 *rasterfile << "9\n terminating special property\n";
765 delete(center);
766 }
767};
768
769/** Creates the objects in a raster3d file (renderable with a header.r3d).
770 * \param *out output stream for debugging
771 * \param *rasterfile output stream for tecplot data
772 * \param *Tess Tesselation structure with constructed triangles
773 * \param *mol molecule structure with atom positions
774 */
775void WriteRaster3dFile(ofstream * const rasterfile, const Tesselation * const Tess, const PointCloud * const cloud)
776{
777 Info FunctionInfo(__func__);
778 TesselPoint *Walker = NULL;
779 int i;
780 Vector *center = cloud->GetCenter();
781 if (rasterfile != NULL) {
782 //Log() << Verbose(1) << "Writing Raster3D file ... ";
783 *rasterfile << "# Raster3D object description, created by MoleCuilder" << endl;
784 *rasterfile << "@header.r3d" << endl;
785 *rasterfile << "# All atoms as spheres" << endl;
786 cloud->GoToFirst();
787 while (!cloud->IsEnd()) {
788 Walker = cloud->GetPoint();
789 *rasterfile << "2" << endl << " "; // 2 is sphere type
790 for (int j=0;j<NDIM;j++) { // and for each node all NDIM coordinates
791 const double tmp = Walker->node->at(j)-center->at(j);
792 *rasterfile << ((fabs(tmp) < MYEPSILON) ? 0 : tmp) << " ";
793 }
794 *rasterfile << "\t0.1\t1. 1. 1." << endl; // radius 0.05 and white as colour
795 cloud->GoToNext();
796 }
797
798 *rasterfile << "# All tesselation triangles" << endl;
799 *rasterfile << "8\n 25. -1. 1. 1. 1. 0.0 0 0 0 2\n SOLID 1.0 0.0 0.0\n BACKFACE 0.3 0.3 1.0 0 0\n";
800 for (TriangleMap::const_iterator TriangleRunner = Tess->TrianglesOnBoundary.begin(); TriangleRunner != Tess->TrianglesOnBoundary.end(); TriangleRunner++) {
801 *rasterfile << "1" << endl << " "; // 1 is triangle type
802 for (i=0;i<3;i++) { // print each node
803 for (int j=0;j<NDIM;j++) { // and for each node all NDIM coordinates
804 const double tmp = TriangleRunner->second->endpoints[i]->node->node->at(j)-center->at(j);
805 *rasterfile << ((fabs(tmp) < MYEPSILON) ? 0 : tmp) << " ";
806 }
807 *rasterfile << "\t";
808 }
809 *rasterfile << "1. 0. 0." << endl; // red as colour
810 //*rasterfile << "18" << endl << " 0.5 0.5 0.5" << endl; // 18 is transparency type for previous object
811 }
812 *rasterfile << "9\n# terminating special property\n";
813 } else {
814 DoeLog(1) && (eLog()<< Verbose(1) << "Given rasterfile is " << rasterfile << "." << endl);
815 }
816 IncludeSphereinRaster3D(rasterfile, Tess, cloud);
817 delete(center);
818};
819
820/** This function creates the tecplot file, displaying the tesselation of the hull.
821 * \param *out output stream for debugging
822 * \param *tecplot output stream for tecplot data
823 * \param N arbitrary number to differentiate various zones in the tecplot format
824 */
825void WriteTecplotFile(ofstream * const tecplot, const Tesselation * const TesselStruct, const PointCloud * const cloud, const int N)
826{
827 Info FunctionInfo(__func__);
828 if ((tecplot != NULL) && (TesselStruct != NULL)) {
829 // write header
830 *tecplot << "TITLE = \"3D CONVEX SHELL\"" << endl;
831 *tecplot << "VARIABLES = \"X\" \"Y\" \"Z\" \"U\"" << endl;
832 *tecplot << "ZONE T=\"";
833 if (N < 0) {
834 *tecplot << cloud->GetName();
835 } else {
836 *tecplot << N << "-";
837 if (TesselStruct->LastTriangle != NULL) {
838 for (int i=0;i<3;i++)
839 *tecplot << (i==0 ? "" : "_") << TesselStruct->LastTriangle->endpoints[i]->node->getName();
840 } else {
841 *tecplot << "none";
842 }
843 }
844 *tecplot << "\", N=" << TesselStruct->PointsOnBoundary.size() << ", E=" << TesselStruct->TrianglesOnBoundary.size() << ", DATAPACKING=POINT, ZONETYPE=FETRIANGLE" << endl;
845 const int MaxId=cloud->GetMaxId();
846 int *LookupList = new int[MaxId];
847 for (int i=0; i< MaxId ; i++){
848 LookupList[i] = -1;
849 }
850
851 // print atom coordinates
852 int Counter = 1;
853 TesselPoint *Walker = NULL;
854 for (PointMap::const_iterator target = TesselStruct->PointsOnBoundary.begin(); target != TesselStruct->PointsOnBoundary.end(); ++target) {
855 Walker = target->second->node;
856 LookupList[Walker->nr] = Counter++;
857 for (int i=0;i<NDIM;i++) {
858 const double tmp = Walker->node->at(i);
859 *tecplot << ((fabs(tmp) < MYEPSILON) ? 0 : tmp) << " ";
860 }
861 *tecplot << target->second->value << endl;
862 }
863 *tecplot << endl;
864 // print connectivity
865 DoLog(1) && (Log() << Verbose(1) << "The following triangles were created:" << endl);
866 for (TriangleMap::const_iterator runner = TesselStruct->TrianglesOnBoundary.begin(); runner != TesselStruct->TrianglesOnBoundary.end(); runner++) {
867 DoLog(1) && (Log() << Verbose(1) << " " << runner->second->endpoints[0]->node->getName() << "<->" << runner->second->endpoints[1]->node->getName() << "<->" << runner->second->endpoints[2]->node->getName() << endl);
868 *tecplot << LookupList[runner->second->endpoints[0]->node->nr] << " " << LookupList[runner->second->endpoints[1]->node->nr] << " " << LookupList[runner->second->endpoints[2]->node->nr] << endl;
869 }
870 delete[] (LookupList);
871 }
872};
873
874/** Calculates the concavity for each of the BoundaryPointSet's in a Tesselation.
875 * Sets BoundaryPointSet::value equal to the number of connected lines that are not convex.
876 * \param *out output stream for debugging
877 * \param *TesselStruct pointer to Tesselation structure
878 */
879void CalculateConcavityPerBoundaryPoint(const Tesselation * const TesselStruct)
880{
881 Info FunctionInfo(__func__);
882 class BoundaryPointSet *point = NULL;
883 class BoundaryLineSet *line = NULL;
884
885 // calculate remaining concavity
886 for (PointMap::const_iterator PointRunner = TesselStruct->PointsOnBoundary.begin(); PointRunner != TesselStruct->PointsOnBoundary.end(); PointRunner++) {
887 point = PointRunner->second;
888 DoLog(1) && (Log() << Verbose(1) << "INFO: Current point is " << *point << "." << endl);
889 point->value = 0;
890 for (LineMap::iterator LineRunner = point->lines.begin(); LineRunner != point->lines.end(); LineRunner++) {
891 line = LineRunner->second;
892 //Log() << Verbose(1) << "INFO: Current line of point " << *point << " is " << *line << "." << endl;
893 if (!line->CheckConvexityCriterion())
894 point->value += 1;
895 }
896 }
897};
898
899
900/** Checks whether each BoundaryLineSet in the Tesselation has two triangles.
901 * \param *out output stream for debugging
902 * \param *TesselStruct
903 * \return true - all have exactly two triangles, false - some not, list is printed to screen
904 */
905bool CheckListOfBaselines(const Tesselation * const TesselStruct)
906{
907 Info FunctionInfo(__func__);
908 LineMap::const_iterator testline;
909 bool result = false;
910 int counter = 0;
911
912 DoLog(1) && (Log() << Verbose(1) << "Check: List of Baselines with not two connected triangles:" << endl);
913 for (testline = TesselStruct->LinesOnBoundary.begin(); testline != TesselStruct->LinesOnBoundary.end(); testline++) {
914 if (testline->second->triangles.size() != 2) {
915 DoLog(2) && (Log() << Verbose(2) << *testline->second << "\t" << testline->second->triangles.size() << endl);
916 counter++;
917 }
918 }
919 if (counter == 0) {
920 DoLog(1) && (Log() << Verbose(1) << "None." << endl);
921 result = true;
922 }
923 return result;
924}
925
926/** Counts the number of triangle pairs that contain the given polygon.
927 * \param *P polygon with endpoints to look for
928 * \param *T set of triangles to create pairs from containing \a *P
929 */
930int CountTrianglePairContainingPolygon(const BoundaryPolygonSet * const P, const TriangleSet * const T)
931{
932 Info FunctionInfo(__func__);
933 // check number of endpoints in *P
934 if (P->endpoints.size() != 4) {
935 DoeLog(1) && (eLog()<< Verbose(1) << "CountTrianglePairContainingPolygon works only on polygons with 4 nodes!" << endl);
936 return 0;
937 }
938
939 // check number of triangles in *T
940 if (T->size() < 2) {
941 DoeLog(1) && (eLog()<< Verbose(1) << "Not enough triangles to have pairs!" << endl);
942 return 0;
943 }
944
945 DoLog(0) && (Log() << Verbose(0) << "Polygon is " << *P << endl);
946 // create each pair, get the endpoints and check whether *P is contained.
947 int counter = 0;
948 PointSet Trianglenodes;
949 class BoundaryPolygonSet PairTrianglenodes;
950 for(TriangleSet::iterator Walker = T->begin(); Walker != T->end(); Walker++) {
951 for (int i=0;i<3;i++)
952 Trianglenodes.insert((*Walker)->endpoints[i]);
953
954 for(TriangleSet::iterator PairWalker = Walker; PairWalker != T->end(); PairWalker++) {
955 if (Walker != PairWalker) { // skip first
956 PairTrianglenodes.endpoints = Trianglenodes;
957 for (int i=0;i<3;i++)
958 PairTrianglenodes.endpoints.insert((*PairWalker)->endpoints[i]);
959 const int size = PairTrianglenodes.endpoints.size();
960 if (size == 4) {
961 DoLog(0) && (Log() << Verbose(0) << " Current pair of triangles: " << **Walker << "," << **PairWalker << " with " << size << " distinct endpoints:" << PairTrianglenodes << endl);
962 // now check
963 if (PairTrianglenodes.ContainsPresentTupel(P)) {
964 counter++;
965 DoLog(0) && (Log() << Verbose(0) << " ACCEPT: Matches with " << *P << endl);
966 } else {
967 DoLog(0) && (Log() << Verbose(0) << " REJECT: No match with " << *P << endl);
968 }
969 } else {
970 DoLog(0) && (Log() << Verbose(0) << " REJECT: Less than four endpoints." << endl);
971 }
972 }
973 }
974 Trianglenodes.clear();
975 }
976 return counter;
977};
978
979/** Checks whether two give polygons have two or more points in common.
980 * \param *P1 first polygon
981 * \param *P2 second polygon
982 * \return true - are connected, false = are note
983 */
984bool ArePolygonsEdgeConnected(const BoundaryPolygonSet * const P1, const BoundaryPolygonSet * const P2)
985{
986 Info FunctionInfo(__func__);
987 int counter = 0;
988 for(PointSet::const_iterator Runner = P1->endpoints.begin(); Runner != P1->endpoints.end(); Runner++) {
989 if (P2->ContainsBoundaryPoint((*Runner))) {
990 counter++;
991 DoLog(1) && (Log() << Verbose(1) << *(*Runner) << " of second polygon is found in the first one." << endl);
992 return true;
993 }
994 }
995 return false;
996};
997
998/** Combines second into the first and deletes the second.
999 * \param *P1 first polygon, contains all nodes on return
1000 * \param *&P2 second polygon, is deleted.
1001 */
1002void CombinePolygons(BoundaryPolygonSet * const P1, BoundaryPolygonSet * &P2)
1003{
1004 Info FunctionInfo(__func__);
1005 pair <PointSet::iterator, bool> Tester;
1006 for(PointSet::iterator Runner = P2->endpoints.begin(); Runner != P2->endpoints.end(); Runner++) {
1007 Tester = P1->endpoints.insert((*Runner));
1008 if (Tester.second)
1009 DoLog(0) && (Log() << Verbose(0) << "Inserting endpoint " << *(*Runner) << " into first polygon." << endl);
1010 }
1011 P2->endpoints.clear();
1012 delete(P2);
1013};
1014
Note: See TracBrowser for help on using the repository browser.