[357fba] | 1 | /*
|
---|
| 2 | * TesselationHelpers.cpp
|
---|
| 3 | *
|
---|
| 4 | * Created on: Aug 3, 2009
|
---|
| 5 | * Author: heber
|
---|
| 6 | */
|
---|
| 7 |
|
---|
[f66195] | 8 | #include <fstream>
|
---|
| 9 |
|
---|
| 10 | #include "linkedcell.hpp"
|
---|
| 11 | #include "tesselation.hpp"
|
---|
[357fba] | 12 | #include "tesselationhelpers.hpp"
|
---|
[f66195] | 13 | #include "vector.hpp"
|
---|
| 14 | #include "verbose.hpp"
|
---|
[357fba] | 15 |
|
---|
[f1cccd] | 16 | double DetGet(gsl_matrix *A, int inPlace) {
|
---|
[357fba] | 17 | /*
|
---|
| 18 | inPlace = 1 => A is replaced with the LU decomposed copy.
|
---|
| 19 | inPlace = 0 => A is retained, and a copy is used for LU.
|
---|
| 20 | */
|
---|
| 21 |
|
---|
| 22 | double det;
|
---|
| 23 | int signum;
|
---|
| 24 | gsl_permutation *p = gsl_permutation_alloc(A->size1);
|
---|
| 25 | gsl_matrix *tmpA;
|
---|
| 26 |
|
---|
| 27 | if (inPlace)
|
---|
| 28 | tmpA = A;
|
---|
| 29 | else {
|
---|
| 30 | gsl_matrix *tmpA = gsl_matrix_alloc(A->size1, A->size2);
|
---|
| 31 | gsl_matrix_memcpy(tmpA , A);
|
---|
| 32 | }
|
---|
| 33 |
|
---|
| 34 |
|
---|
| 35 | gsl_linalg_LU_decomp(tmpA , p , &signum);
|
---|
| 36 | det = gsl_linalg_LU_det(tmpA , signum);
|
---|
| 37 | gsl_permutation_free(p);
|
---|
| 38 | if (! inPlace)
|
---|
| 39 | gsl_matrix_free(tmpA);
|
---|
| 40 |
|
---|
| 41 | return det;
|
---|
| 42 | };
|
---|
| 43 |
|
---|
[f1cccd] | 44 | void GetSphere(Vector *center, Vector &a, Vector &b, Vector &c, double RADIUS)
|
---|
[357fba] | 45 | {
|
---|
| 46 | gsl_matrix *A = gsl_matrix_calloc(3,3);
|
---|
| 47 | double m11, m12, m13, m14;
|
---|
| 48 |
|
---|
| 49 | for(int i=0;i<3;i++) {
|
---|
| 50 | gsl_matrix_set(A, i, 0, a.x[i]);
|
---|
| 51 | gsl_matrix_set(A, i, 1, b.x[i]);
|
---|
| 52 | gsl_matrix_set(A, i, 2, c.x[i]);
|
---|
| 53 | }
|
---|
[f1cccd] | 54 | m11 = DetGet(A, 1);
|
---|
[357fba] | 55 |
|
---|
| 56 | for(int i=0;i<3;i++) {
|
---|
| 57 | gsl_matrix_set(A, i, 0, a.x[i]*a.x[i] + b.x[i]*b.x[i] + c.x[i]*c.x[i]);
|
---|
| 58 | gsl_matrix_set(A, i, 1, b.x[i]);
|
---|
| 59 | gsl_matrix_set(A, i, 2, c.x[i]);
|
---|
| 60 | }
|
---|
[f1cccd] | 61 | m12 = DetGet(A, 1);
|
---|
[357fba] | 62 |
|
---|
| 63 | for(int i=0;i<3;i++) {
|
---|
| 64 | gsl_matrix_set(A, i, 0, a.x[i]*a.x[i] + b.x[i]*b.x[i] + c.x[i]*c.x[i]);
|
---|
| 65 | gsl_matrix_set(A, i, 1, a.x[i]);
|
---|
| 66 | gsl_matrix_set(A, i, 2, c.x[i]);
|
---|
| 67 | }
|
---|
[f1cccd] | 68 | m13 = DetGet(A, 1);
|
---|
[357fba] | 69 |
|
---|
| 70 | for(int i=0;i<3;i++) {
|
---|
| 71 | gsl_matrix_set(A, i, 0, a.x[i]*a.x[i] + b.x[i]*b.x[i] + c.x[i]*c.x[i]);
|
---|
| 72 | gsl_matrix_set(A, i, 1, a.x[i]);
|
---|
| 73 | gsl_matrix_set(A, i, 2, b.x[i]);
|
---|
| 74 | }
|
---|
[f1cccd] | 75 | m14 = DetGet(A, 1);
|
---|
[357fba] | 76 |
|
---|
| 77 | if (fabs(m11) < MYEPSILON)
|
---|
| 78 | cerr << "ERROR: three points are colinear." << endl;
|
---|
| 79 |
|
---|
| 80 | center->x[0] = 0.5 * m12/ m11;
|
---|
| 81 | center->x[1] = -0.5 * m13/ m11;
|
---|
| 82 | center->x[2] = 0.5 * m14/ m11;
|
---|
| 83 |
|
---|
| 84 | if (fabs(a.Distance(center) - RADIUS) > MYEPSILON)
|
---|
| 85 | cerr << "ERROR: The given center is further way by " << fabs(a.Distance(center) - RADIUS) << " from a than RADIUS." << endl;
|
---|
| 86 |
|
---|
| 87 | gsl_matrix_free(A);
|
---|
| 88 | };
|
---|
| 89 |
|
---|
| 90 |
|
---|
| 91 |
|
---|
| 92 | /**
|
---|
| 93 | * Function returns center of sphere with RADIUS, which rests on points a, b, c
|
---|
| 94 | * @param Center this vector will be used for return
|
---|
| 95 | * @param a vector first point of triangle
|
---|
| 96 | * @param b vector second point of triangle
|
---|
| 97 | * @param c vector third point of triangle
|
---|
| 98 | * @param *Umkreismittelpunkt new cneter point of circumference
|
---|
| 99 | * @param Direction vector indicates up/down
|
---|
| 100 | * @param AlternativeDirection vecotr, needed in case the triangles have 90 deg angle
|
---|
| 101 | * @param Halfplaneindicator double indicates whether Direction is up or down
|
---|
| 102 | * @param AlternativeIndicator doube indicates in case of orthogonal triangles which direction of AlternativeDirection is suitable
|
---|
| 103 | * @param alpha double angle at a
|
---|
| 104 | * @param beta double, angle at b
|
---|
| 105 | * @param gamma, double, angle at c
|
---|
| 106 | * @param Radius, double
|
---|
| 107 | * @param Umkreisradius double radius of circumscribing circle
|
---|
| 108 | */
|
---|
[f1cccd] | 109 | void GetCenterOfSphere(Vector* Center, Vector a, Vector b, Vector c, Vector *NewUmkreismittelpunkt, Vector* Direction, Vector* AlternativeDirection,
|
---|
[357fba] | 110 | double HalfplaneIndicator, double AlternativeIndicator, double alpha, double beta, double gamma, double RADIUS, double Umkreisradius)
|
---|
| 111 | {
|
---|
| 112 | Vector TempNormal, helper;
|
---|
| 113 | double Restradius;
|
---|
| 114 | Vector OtherCenter;
|
---|
[f1cccd] | 115 | cout << Verbose(3) << "Begin of GetCenterOfSphere.\n";
|
---|
[357fba] | 116 | Center->Zero();
|
---|
| 117 | helper.CopyVector(&a);
|
---|
| 118 | helper.Scale(sin(2.*alpha));
|
---|
| 119 | Center->AddVector(&helper);
|
---|
| 120 | helper.CopyVector(&b);
|
---|
| 121 | helper.Scale(sin(2.*beta));
|
---|
| 122 | Center->AddVector(&helper);
|
---|
| 123 | helper.CopyVector(&c);
|
---|
| 124 | helper.Scale(sin(2.*gamma));
|
---|
| 125 | Center->AddVector(&helper);
|
---|
| 126 | //*Center = a * sin(2.*alpha) + b * sin(2.*beta) + c * sin(2.*gamma) ;
|
---|
| 127 | Center->Scale(1./(sin(2.*alpha) + sin(2.*beta) + sin(2.*gamma)));
|
---|
| 128 | NewUmkreismittelpunkt->CopyVector(Center);
|
---|
| 129 | cout << Verbose(4) << "Center of new circumference is " << *NewUmkreismittelpunkt << ".\n";
|
---|
| 130 | // Here we calculated center of circumscribing circle, using barycentric coordinates
|
---|
| 131 | cout << Verbose(4) << "Center of circumference is " << *Center << " in direction " << *Direction << ".\n";
|
---|
| 132 |
|
---|
| 133 | TempNormal.CopyVector(&a);
|
---|
| 134 | TempNormal.SubtractVector(&b);
|
---|
| 135 | helper.CopyVector(&a);
|
---|
| 136 | helper.SubtractVector(&c);
|
---|
| 137 | TempNormal.VectorProduct(&helper);
|
---|
| 138 | if (fabs(HalfplaneIndicator) < MYEPSILON)
|
---|
| 139 | {
|
---|
| 140 | if ((TempNormal.ScalarProduct(AlternativeDirection) <0 and AlternativeIndicator >0) or (TempNormal.ScalarProduct(AlternativeDirection) >0 and AlternativeIndicator <0))
|
---|
| 141 | {
|
---|
| 142 | TempNormal.Scale(-1);
|
---|
| 143 | }
|
---|
| 144 | }
|
---|
| 145 | else
|
---|
| 146 | {
|
---|
| 147 | if (TempNormal.ScalarProduct(Direction)<0 && HalfplaneIndicator >0 || TempNormal.ScalarProduct(Direction)>0 && HalfplaneIndicator<0)
|
---|
| 148 | {
|
---|
| 149 | TempNormal.Scale(-1);
|
---|
| 150 | }
|
---|
| 151 | }
|
---|
| 152 |
|
---|
| 153 | TempNormal.Normalize();
|
---|
| 154 | Restradius = sqrt(RADIUS*RADIUS - Umkreisradius*Umkreisradius);
|
---|
| 155 | cout << Verbose(4) << "Height of center of circumference to center of sphere is " << Restradius << ".\n";
|
---|
| 156 | TempNormal.Scale(Restradius);
|
---|
| 157 | cout << Verbose(4) << "Shift vector to sphere of circumference is " << TempNormal << ".\n";
|
---|
| 158 |
|
---|
| 159 | Center->AddVector(&TempNormal);
|
---|
| 160 | cout << Verbose(0) << "Center of sphere of circumference is " << *Center << ".\n";
|
---|
[f1cccd] | 161 | GetSphere(&OtherCenter, a, b, c, RADIUS);
|
---|
[357fba] | 162 | cout << Verbose(0) << "OtherCenter of sphere of circumference is " << OtherCenter << ".\n";
|
---|
[f1cccd] | 163 | cout << Verbose(3) << "End of GetCenterOfSphere.\n";
|
---|
[357fba] | 164 | };
|
---|
| 165 |
|
---|
| 166 |
|
---|
| 167 | /** Constructs the center of the circumcircle defined by three points \a *a, \a *b and \a *c.
|
---|
| 168 | * \param *Center new center on return
|
---|
| 169 | * \param *a first point
|
---|
| 170 | * \param *b second point
|
---|
| 171 | * \param *c third point
|
---|
| 172 | */
|
---|
| 173 | void GetCenterofCircumcircle(Vector *Center, Vector *a, Vector *b, Vector *c)
|
---|
| 174 | {
|
---|
| 175 | Vector helper;
|
---|
| 176 | double alpha, beta, gamma;
|
---|
| 177 | Vector SideA, SideB, SideC;
|
---|
| 178 | SideA.CopyVector(b);
|
---|
| 179 | SideA.SubtractVector(c);
|
---|
| 180 | SideB.CopyVector(c);
|
---|
| 181 | SideB.SubtractVector(a);
|
---|
| 182 | SideC.CopyVector(a);
|
---|
| 183 | SideC.SubtractVector(b);
|
---|
| 184 | alpha = M_PI - SideB.Angle(&SideC);
|
---|
| 185 | beta = M_PI - SideC.Angle(&SideA);
|
---|
| 186 | gamma = M_PI - SideA.Angle(&SideB);
|
---|
| 187 | //cout << Verbose(3) << "INFO: alpha = " << alpha/M_PI*180. << ", beta = " << beta/M_PI*180. << ", gamma = " << gamma/M_PI*180. << "." << endl;
|
---|
| 188 | if (fabs(M_PI - alpha - beta - gamma) > HULLEPSILON)
|
---|
| 189 | cerr << "GetCenterofCircumcircle: Sum of angles " << (alpha+beta+gamma)/M_PI*180. << " > 180 degrees by " << fabs(M_PI - alpha - beta - gamma)/M_PI*180. << "!" << endl;
|
---|
| 190 |
|
---|
| 191 | Center->Zero();
|
---|
| 192 | helper.CopyVector(a);
|
---|
| 193 | helper.Scale(sin(2.*alpha));
|
---|
| 194 | Center->AddVector(&helper);
|
---|
| 195 | helper.CopyVector(b);
|
---|
| 196 | helper.Scale(sin(2.*beta));
|
---|
| 197 | Center->AddVector(&helper);
|
---|
| 198 | helper.CopyVector(c);
|
---|
| 199 | helper.Scale(sin(2.*gamma));
|
---|
| 200 | Center->AddVector(&helper);
|
---|
| 201 | Center->Scale(1./(sin(2.*alpha) + sin(2.*beta) + sin(2.*gamma)));
|
---|
| 202 | };
|
---|
| 203 |
|
---|
| 204 | /** Returns the parameter "path length" for a given \a NewSphereCenter relative to \a OldSphereCenter on a circle on the plane \a CirclePlaneNormal with center \a CircleCenter and radius \a CircleRadius.
|
---|
| 205 | * Test whether the \a NewSphereCenter is really on the given plane and in distance \a CircleRadius from \a CircleCenter.
|
---|
| 206 | * It calculates the angle, making it unique on [0,2.*M_PI) by comparing to SearchDirection.
|
---|
| 207 | * Also the new center is invalid if it the same as the old one and does not lie right above (\a NormalVector) the base line (\a CircleCenter).
|
---|
| 208 | * \param CircleCenter Center of the parameter circle
|
---|
| 209 | * \param CirclePlaneNormal normal vector to plane of the parameter circle
|
---|
| 210 | * \param CircleRadius radius of the parameter circle
|
---|
| 211 | * \param NewSphereCenter new center of a circumcircle
|
---|
| 212 | * \param OldSphereCenter old center of a circumcircle, defining the zero "path length" on the parameter circle
|
---|
| 213 | * \param NormalVector normal vector
|
---|
| 214 | * \param SearchDirection search direction to make angle unique on return.
|
---|
| 215 | * \return Angle between \a NewSphereCenter and \a OldSphereCenter relative to \a CircleCenter, 2.*M_PI if one test fails
|
---|
| 216 | */
|
---|
| 217 | double GetPathLengthonCircumCircle(Vector &CircleCenter, Vector &CirclePlaneNormal, double CircleRadius, Vector &NewSphereCenter, Vector &OldSphereCenter, Vector &NormalVector, Vector &SearchDirection)
|
---|
| 218 | {
|
---|
| 219 | Vector helper;
|
---|
| 220 | double radius, alpha;
|
---|
| 221 |
|
---|
| 222 | helper.CopyVector(&NewSphereCenter);
|
---|
| 223 | // test whether new center is on the parameter circle's plane
|
---|
| 224 | if (fabs(helper.ScalarProduct(&CirclePlaneNormal)) > HULLEPSILON) {
|
---|
| 225 | cerr << "ERROR: Something's very wrong here: NewSphereCenter is not on the band's plane as desired by " <<fabs(helper.ScalarProduct(&CirclePlaneNormal)) << "!" << endl;
|
---|
| 226 | helper.ProjectOntoPlane(&CirclePlaneNormal);
|
---|
| 227 | }
|
---|
| 228 | radius = helper.ScalarProduct(&helper);
|
---|
| 229 | // test whether the new center vector has length of CircleRadius
|
---|
| 230 | if (fabs(radius - CircleRadius) > HULLEPSILON)
|
---|
| 231 | cerr << Verbose(1) << "ERROR: The projected center of the new sphere has radius " << radius << " instead of " << CircleRadius << "." << endl;
|
---|
| 232 | alpha = helper.Angle(&OldSphereCenter);
|
---|
| 233 | // make the angle unique by checking the halfplanes/search direction
|
---|
| 234 | if (helper.ScalarProduct(&SearchDirection) < -HULLEPSILON) // acos is not unique on [0, 2.*M_PI), hence extra check to decide between two half intervals
|
---|
| 235 | alpha = 2.*M_PI - alpha;
|
---|
| 236 | //cout << Verbose(2) << "INFO: RelativeNewSphereCenter is " << helper << ", RelativeOldSphereCenter is " << OldSphereCenter << " and resulting angle is " << alpha << "." << endl;
|
---|
| 237 | radius = helper.Distance(&OldSphereCenter);
|
---|
| 238 | helper.ProjectOntoPlane(&NormalVector);
|
---|
| 239 | // check whether new center is somewhat away or at least right over the current baseline to prevent intersecting triangles
|
---|
| 240 | if ((radius > HULLEPSILON) || (helper.Norm() < HULLEPSILON)) {
|
---|
| 241 | //cout << Verbose(2) << "INFO: Distance between old and new center is " << radius << " and between new center and baseline center is " << helper.Norm() << "." << endl;
|
---|
| 242 | return alpha;
|
---|
| 243 | } else {
|
---|
| 244 | //cout << Verbose(1) << "INFO: NewSphereCenter " << helper << " is too close to OldSphereCenter" << OldSphereCenter << "." << endl;
|
---|
| 245 | return 2.*M_PI;
|
---|
| 246 | }
|
---|
| 247 | };
|
---|
| 248 |
|
---|
| 249 | struct Intersection {
|
---|
| 250 | Vector x1;
|
---|
| 251 | Vector x2;
|
---|
| 252 | Vector x3;
|
---|
| 253 | Vector x4;
|
---|
| 254 | };
|
---|
| 255 |
|
---|
| 256 | /**
|
---|
| 257 | * Intersection calculation function.
|
---|
| 258 | *
|
---|
| 259 | * @param x to find the result for
|
---|
| 260 | * @param function parameter
|
---|
| 261 | */
|
---|
| 262 | double MinIntersectDistance(const gsl_vector * x, void *params)
|
---|
| 263 | {
|
---|
| 264 | double retval = 0;
|
---|
| 265 | struct Intersection *I = (struct Intersection *)params;
|
---|
| 266 | Vector intersection;
|
---|
| 267 | Vector SideA,SideB,HeightA, HeightB;
|
---|
| 268 | for (int i=0;i<NDIM;i++)
|
---|
| 269 | intersection.x[i] = gsl_vector_get(x, i);
|
---|
| 270 |
|
---|
| 271 | SideA.CopyVector(&(I->x1));
|
---|
| 272 | SideA.SubtractVector(&I->x2);
|
---|
| 273 | HeightA.CopyVector(&intersection);
|
---|
| 274 | HeightA.SubtractVector(&I->x1);
|
---|
| 275 | HeightA.ProjectOntoPlane(&SideA);
|
---|
| 276 |
|
---|
| 277 | SideB.CopyVector(&I->x3);
|
---|
| 278 | SideB.SubtractVector(&I->x4);
|
---|
| 279 | HeightB.CopyVector(&intersection);
|
---|
| 280 | HeightB.SubtractVector(&I->x3);
|
---|
| 281 | HeightB.ProjectOntoPlane(&SideB);
|
---|
| 282 |
|
---|
| 283 | retval = HeightA.ScalarProduct(&HeightA) + HeightB.ScalarProduct(&HeightB);
|
---|
| 284 | //cout << Verbose(2) << "MinIntersectDistance called, result: " << retval << endl;
|
---|
| 285 |
|
---|
| 286 | return retval;
|
---|
| 287 | };
|
---|
| 288 |
|
---|
| 289 |
|
---|
| 290 | /**
|
---|
| 291 | * Calculates whether there is an intersection between two lines. The first line
|
---|
| 292 | * always goes through point 1 and point 2 and the second line is given by the
|
---|
| 293 | * connection between point 4 and point 5.
|
---|
| 294 | *
|
---|
| 295 | * @param point 1 of line 1
|
---|
| 296 | * @param point 2 of line 1
|
---|
| 297 | * @param point 1 of line 2
|
---|
| 298 | * @param point 2 of line 2
|
---|
| 299 | *
|
---|
| 300 | * @return true if there is an intersection between the given lines, false otherwise
|
---|
| 301 | */
|
---|
| 302 | bool existsIntersection(Vector point1, Vector point2, Vector point3, Vector point4)
|
---|
| 303 | {
|
---|
| 304 | bool result;
|
---|
| 305 |
|
---|
| 306 | struct Intersection par;
|
---|
| 307 | par.x1.CopyVector(&point1);
|
---|
| 308 | par.x2.CopyVector(&point2);
|
---|
| 309 | par.x3.CopyVector(&point3);
|
---|
| 310 | par.x4.CopyVector(&point4);
|
---|
| 311 |
|
---|
| 312 | const gsl_multimin_fminimizer_type *T = gsl_multimin_fminimizer_nmsimplex;
|
---|
| 313 | gsl_multimin_fminimizer *s = NULL;
|
---|
| 314 | gsl_vector *ss, *x;
|
---|
[f1cccd] | 315 | gsl_multimin_function minexFunction;
|
---|
[357fba] | 316 |
|
---|
| 317 | size_t iter = 0;
|
---|
| 318 | int status;
|
---|
| 319 | double size;
|
---|
| 320 |
|
---|
| 321 | /* Starting point */
|
---|
| 322 | x = gsl_vector_alloc(NDIM);
|
---|
| 323 | gsl_vector_set(x, 0, point1.x[0]);
|
---|
| 324 | gsl_vector_set(x, 1, point1.x[1]);
|
---|
| 325 | gsl_vector_set(x, 2, point1.x[2]);
|
---|
| 326 |
|
---|
| 327 | /* Set initial step sizes to 1 */
|
---|
| 328 | ss = gsl_vector_alloc(NDIM);
|
---|
| 329 | gsl_vector_set_all(ss, 1.0);
|
---|
| 330 |
|
---|
| 331 | /* Initialize method and iterate */
|
---|
[f1cccd] | 332 | minexFunction.n = NDIM;
|
---|
| 333 | minexFunction.f = &MinIntersectDistance;
|
---|
| 334 | minexFunction.params = (void *)∥
|
---|
[357fba] | 335 |
|
---|
| 336 | s = gsl_multimin_fminimizer_alloc(T, NDIM);
|
---|
[f1cccd] | 337 | gsl_multimin_fminimizer_set(s, &minexFunction, x, ss);
|
---|
[357fba] | 338 |
|
---|
| 339 | do {
|
---|
| 340 | iter++;
|
---|
| 341 | status = gsl_multimin_fminimizer_iterate(s);
|
---|
| 342 |
|
---|
| 343 | if (status) {
|
---|
| 344 | break;
|
---|
| 345 | }
|
---|
| 346 |
|
---|
| 347 | size = gsl_multimin_fminimizer_size(s);
|
---|
| 348 | status = gsl_multimin_test_size(size, 1e-2);
|
---|
| 349 |
|
---|
| 350 | if (status == GSL_SUCCESS) {
|
---|
| 351 | cout << Verbose(2) << "converged to minimum" << endl;
|
---|
| 352 | }
|
---|
| 353 | } while (status == GSL_CONTINUE && iter < 100);
|
---|
| 354 |
|
---|
| 355 | // check whether intersection is in between or not
|
---|
| 356 | Vector intersection, SideA, SideB, HeightA, HeightB;
|
---|
| 357 | double t1, t2;
|
---|
| 358 | for (int i = 0; i < NDIM; i++) {
|
---|
| 359 | intersection.x[i] = gsl_vector_get(s->x, i);
|
---|
| 360 | }
|
---|
| 361 |
|
---|
| 362 | SideA.CopyVector(&par.x2);
|
---|
| 363 | SideA.SubtractVector(&par.x1);
|
---|
| 364 | HeightA.CopyVector(&intersection);
|
---|
| 365 | HeightA.SubtractVector(&par.x1);
|
---|
| 366 |
|
---|
[658efb] | 367 | t1 = HeightA.ScalarProduct(&SideA)/SideA.ScalarProduct(&SideA);
|
---|
[357fba] | 368 |
|
---|
| 369 | SideB.CopyVector(&par.x4);
|
---|
| 370 | SideB.SubtractVector(&par.x3);
|
---|
| 371 | HeightB.CopyVector(&intersection);
|
---|
| 372 | HeightB.SubtractVector(&par.x3);
|
---|
| 373 |
|
---|
[658efb] | 374 | t2 = HeightB.ScalarProduct(&SideB)/SideB.ScalarProduct(&SideB);
|
---|
[357fba] | 375 |
|
---|
| 376 | cout << Verbose(2) << "Intersection " << intersection << " is at "
|
---|
| 377 | << t1 << " for (" << point1 << "," << point2 << ") and at "
|
---|
| 378 | << t2 << " for (" << point3 << "," << point4 << "): ";
|
---|
| 379 |
|
---|
| 380 | if (((t1 >= 0) && (t1 <= 1)) && ((t2 >= 0) && (t2 <= 1))) {
|
---|
| 381 | cout << "true intersection." << endl;
|
---|
| 382 | result = true;
|
---|
| 383 | } else {
|
---|
| 384 | cout << "intersection out of region of interest." << endl;
|
---|
| 385 | result = false;
|
---|
| 386 | }
|
---|
| 387 |
|
---|
| 388 | // free minimizer stuff
|
---|
| 389 | gsl_vector_free(x);
|
---|
| 390 | gsl_vector_free(ss);
|
---|
| 391 | gsl_multimin_fminimizer_free(s);
|
---|
| 392 |
|
---|
| 393 | return result;
|
---|
[91e7e4a] | 394 | };
|
---|
| 395 |
|
---|
[57066a] | 396 | /** Gets the angle between a point and a reference relative to the provided center.
|
---|
| 397 | * We have two shanks point and reference between which the angle is calculated
|
---|
| 398 | * and by scalar product with OrthogonalVector we decide the interval.
|
---|
| 399 | * @param point to calculate the angle for
|
---|
| 400 | * @param reference to which to calculate the angle
|
---|
| 401 | * @param OrthogonalVector points in direction of [pi,2pi] interval
|
---|
| 402 | *
|
---|
| 403 | * @return angle between point and reference
|
---|
| 404 | */
|
---|
| 405 | double GetAngle(const Vector &point, const Vector &reference, const Vector OrthogonalVector)
|
---|
| 406 | {
|
---|
| 407 | if (reference.IsZero())
|
---|
| 408 | return M_PI;
|
---|
| 409 |
|
---|
| 410 | // calculate both angles and correct with in-plane vector
|
---|
| 411 | if (point.IsZero())
|
---|
| 412 | return M_PI;
|
---|
| 413 | double phi = point.Angle(&reference);
|
---|
| 414 | if (OrthogonalVector.ScalarProduct(&point) > 0) {
|
---|
| 415 | phi = 2.*M_PI - phi;
|
---|
| 416 | }
|
---|
| 417 |
|
---|
| 418 | cout << Verbose(4) << "INFO: " << point << " has angle " << phi << " with respect to reference " << reference << "." << endl;
|
---|
| 419 |
|
---|
| 420 | return phi;
|
---|
| 421 | }
|
---|
| 422 |
|
---|
[91e7e4a] | 423 |
|
---|
| 424 | /** Calculates the volume of a general tetraeder.
|
---|
| 425 | * \param *a first vector
|
---|
| 426 | * \param *a first vector
|
---|
| 427 | * \param *a first vector
|
---|
| 428 | * \param *a first vector
|
---|
| 429 | * \return \f$ \frac{1}{6} \cdot ((a-d) \times (a-c) \cdot (a-b)) \f$
|
---|
| 430 | */
|
---|
| 431 | double CalculateVolumeofGeneralTetraeder(Vector *a, Vector *b, Vector *c, Vector *d)
|
---|
| 432 | {
|
---|
| 433 | Vector Point, TetraederVector[3];
|
---|
| 434 | double volume;
|
---|
| 435 |
|
---|
| 436 | TetraederVector[0].CopyVector(a);
|
---|
| 437 | TetraederVector[1].CopyVector(b);
|
---|
| 438 | TetraederVector[2].CopyVector(c);
|
---|
| 439 | for (int j=0;j<3;j++)
|
---|
| 440 | TetraederVector[j].SubtractVector(d);
|
---|
| 441 | Point.CopyVector(&TetraederVector[0]);
|
---|
| 442 | Point.VectorProduct(&TetraederVector[1]);
|
---|
| 443 | volume = 1./6. * fabs(Point.ScalarProduct(&TetraederVector[2]));
|
---|
| 444 | return volume;
|
---|
| 445 | };
|
---|
[357fba] | 446 |
|
---|
[57066a] | 447 |
|
---|
| 448 | /** Checks for a new special triangle whether one of its edges is already present with one one triangle connected.
|
---|
| 449 | * This enforces that special triangles (i.e. degenerated ones) should at last close the open-edge frontier and not
|
---|
| 450 | * make it bigger (i.e. closing one (the baseline) and opening two new ones).
|
---|
| 451 | * \param TPS[3] nodes of the triangle
|
---|
| 452 | * \return true - there is such a line (i.e. creation of degenerated triangle is valid), false - no such line (don't create)
|
---|
| 453 | */
|
---|
| 454 | bool CheckLineCriteriaForDegeneratedTriangle(class BoundaryPointSet *nodes[3])
|
---|
| 455 | {
|
---|
| 456 | bool result = false;
|
---|
| 457 | int counter = 0;
|
---|
| 458 |
|
---|
| 459 | // check all three points
|
---|
| 460 | for (int i=0;i<3;i++)
|
---|
| 461 | for (int j=i+1; j<3; j++) {
|
---|
| 462 | if (nodes[i]->lines.find(nodes[j]->node->nr) != nodes[i]->lines.end()) { // there already is a line
|
---|
| 463 | LineMap::iterator FindLine;
|
---|
| 464 | pair<LineMap::iterator,LineMap::iterator> FindPair;
|
---|
| 465 | FindPair = nodes[i]->lines.equal_range(nodes[j]->node->nr);
|
---|
| 466 | for (FindLine = FindPair.first; FindLine != FindPair.second; ++FindLine) {
|
---|
| 467 | // If there is a line with less than two attached triangles, we don't need a new line.
|
---|
| 468 | if (FindLine->second->triangles.size() < 2) {
|
---|
| 469 | counter++;
|
---|
| 470 | break; // increase counter only once per edge
|
---|
| 471 | }
|
---|
| 472 | }
|
---|
| 473 | } else { // no line
|
---|
| 474 | cout << Verbose(1) << "The line between " << *nodes[i] << " and " << *nodes[j] << " is not yet present, hence no need for a degenerate triangle." << endl;
|
---|
| 475 | result = true;
|
---|
| 476 | }
|
---|
| 477 | }
|
---|
| 478 | if ((!result) && (counter > 1)) {
|
---|
| 479 | cout << Verbose(2) << "INFO: Degenerate triangle is ok, at least two, here " << counter << ", existing lines are used." << endl;
|
---|
| 480 | result = true;
|
---|
| 481 | }
|
---|
| 482 | return result;
|
---|
| 483 | };
|
---|
| 484 |
|
---|
| 485 |
|
---|
| 486 | /** Sort function for the candidate list.
|
---|
| 487 | */
|
---|
| 488 | bool SortCandidates(CandidateForTesselation* candidate1, CandidateForTesselation* candidate2)
|
---|
| 489 | {
|
---|
| 490 | Vector BaseLineVector, OrthogonalVector, helper;
|
---|
| 491 | if (candidate1->BaseLine != candidate2->BaseLine) { // sanity check
|
---|
| 492 | cout << Verbose(0) << "ERROR: sortCandidates was called for two different baselines: " << candidate1->BaseLine << " and " << candidate2->BaseLine << "." << endl;
|
---|
| 493 | //return false;
|
---|
| 494 | exit(1);
|
---|
| 495 | }
|
---|
| 496 | // create baseline vector
|
---|
| 497 | BaseLineVector.CopyVector(candidate1->BaseLine->endpoints[1]->node->node);
|
---|
| 498 | BaseLineVector.SubtractVector(candidate1->BaseLine->endpoints[0]->node->node);
|
---|
| 499 | BaseLineVector.Normalize();
|
---|
| 500 |
|
---|
| 501 | // create normal in-plane vector to cope with acos() non-uniqueness on [0,2pi] (note that is pointing in the "right" direction already, hence ">0" test!)
|
---|
| 502 | helper.CopyVector(candidate1->BaseLine->endpoints[0]->node->node);
|
---|
| 503 | helper.SubtractVector(candidate1->point->node);
|
---|
| 504 | OrthogonalVector.CopyVector(&helper);
|
---|
| 505 | helper.VectorProduct(&BaseLineVector);
|
---|
| 506 | OrthogonalVector.SubtractVector(&helper);
|
---|
| 507 | OrthogonalVector.Normalize();
|
---|
| 508 |
|
---|
| 509 | // calculate both angles and correct with in-plane vector
|
---|
| 510 | helper.CopyVector(candidate1->point->node);
|
---|
| 511 | helper.SubtractVector(candidate1->BaseLine->endpoints[0]->node->node);
|
---|
| 512 | double phi = BaseLineVector.Angle(&helper);
|
---|
| 513 | if (OrthogonalVector.ScalarProduct(&helper) > 0) {
|
---|
| 514 | phi = 2.*M_PI - phi;
|
---|
| 515 | }
|
---|
| 516 | helper.CopyVector(candidate2->point->node);
|
---|
| 517 | helper.SubtractVector(candidate1->BaseLine->endpoints[0]->node->node);
|
---|
| 518 | double psi = BaseLineVector.Angle(&helper);
|
---|
| 519 | if (OrthogonalVector.ScalarProduct(&helper) > 0) {
|
---|
| 520 | psi = 2.*M_PI - psi;
|
---|
| 521 | }
|
---|
| 522 |
|
---|
| 523 | cout << Verbose(2) << *candidate1->point << " has angle " << phi << endl;
|
---|
| 524 | cout << Verbose(2) << *candidate2->point << " has angle " << psi << endl;
|
---|
| 525 |
|
---|
| 526 | // return comparison
|
---|
| 527 | return phi < psi;
|
---|
| 528 | };
|
---|
| 529 |
|
---|
| 530 | /**
|
---|
| 531 | * Finds the point which is second closest to the provided one.
|
---|
| 532 | *
|
---|
| 533 | * @param Point to which to find the second closest other point
|
---|
| 534 | * @param linked cell structure
|
---|
| 535 | *
|
---|
| 536 | * @return point which is second closest to the provided one
|
---|
| 537 | */
|
---|
| 538 | TesselPoint* FindSecondClosestPoint(const Vector* Point, LinkedCell* LC)
|
---|
| 539 | {
|
---|
| 540 | LinkedNodes *List = NULL;
|
---|
| 541 | TesselPoint* closestPoint = NULL;
|
---|
| 542 | TesselPoint* secondClosestPoint = NULL;
|
---|
| 543 | double distance = 1e16;
|
---|
| 544 | double secondDistance = 1e16;
|
---|
| 545 | Vector helper;
|
---|
| 546 | int N[NDIM], Nlower[NDIM], Nupper[NDIM];
|
---|
| 547 |
|
---|
| 548 | LC->SetIndexToVector(Point); // ignore status as we calculate bounds below sensibly
|
---|
| 549 | for(int i=0;i<NDIM;i++) // store indices of this cell
|
---|
| 550 | N[i] = LC->n[i];
|
---|
| 551 | cout << Verbose(2) << "INFO: Center cell is " << N[0] << ", " << N[1] << ", " << N[2] << " with No. " << LC->index << "." << endl;
|
---|
| 552 |
|
---|
| 553 | LC->GetNeighbourBounds(Nlower, Nupper);
|
---|
| 554 | //cout << endl;
|
---|
| 555 | for (LC->n[0] = Nlower[0]; LC->n[0] <= Nupper[0]; LC->n[0]++)
|
---|
| 556 | for (LC->n[1] = Nlower[1]; LC->n[1] <= Nupper[1]; LC->n[1]++)
|
---|
| 557 | for (LC->n[2] = Nlower[2]; LC->n[2] <= Nupper[2]; LC->n[2]++) {
|
---|
| 558 | List = LC->GetCurrentCell();
|
---|
| 559 | //cout << Verbose(3) << "The current cell " << LC->n[0] << "," << LC->n[1] << "," << LC->n[2] << endl;
|
---|
| 560 | if (List != NULL) {
|
---|
| 561 | for (LinkedNodes::iterator Runner = List->begin(); Runner != List->end(); Runner++) {
|
---|
| 562 | helper.CopyVector(Point);
|
---|
| 563 | helper.SubtractVector((*Runner)->node);
|
---|
| 564 | double currentNorm = helper. Norm();
|
---|
| 565 | if (currentNorm < distance) {
|
---|
| 566 | // remember second point
|
---|
| 567 | secondDistance = distance;
|
---|
| 568 | secondClosestPoint = closestPoint;
|
---|
| 569 | // mark down new closest point
|
---|
| 570 | distance = currentNorm;
|
---|
| 571 | closestPoint = (*Runner);
|
---|
| 572 | //cout << Verbose(2) << "INFO: New Second Nearest Neighbour is " << *secondClosestPoint << "." << endl;
|
---|
| 573 | }
|
---|
| 574 | }
|
---|
| 575 | } else {
|
---|
| 576 | cerr << "ERROR: The current cell " << LC->n[0] << "," << LC->n[1] << ","
|
---|
| 577 | << LC->n[2] << " is invalid!" << endl;
|
---|
| 578 | }
|
---|
| 579 | }
|
---|
| 580 |
|
---|
| 581 | return secondClosestPoint;
|
---|
| 582 | };
|
---|
| 583 |
|
---|
| 584 | /**
|
---|
| 585 | * Finds the point which is closest to the provided one.
|
---|
| 586 | *
|
---|
| 587 | * @param Point to which to find the closest other point
|
---|
| 588 | * @param SecondPoint the second closest other point on return, NULL if none found
|
---|
| 589 | * @param linked cell structure
|
---|
| 590 | *
|
---|
| 591 | * @return point which is closest to the provided one, NULL if none found
|
---|
| 592 | */
|
---|
| 593 | TesselPoint* FindClosestPoint(const Vector* Point, TesselPoint *&SecondPoint, LinkedCell* LC)
|
---|
| 594 | {
|
---|
| 595 | LinkedNodes *List = NULL;
|
---|
| 596 | TesselPoint* closestPoint = NULL;
|
---|
| 597 | SecondPoint = NULL;
|
---|
| 598 | double distance = 1e16;
|
---|
| 599 | double secondDistance = 1e16;
|
---|
| 600 | Vector helper;
|
---|
| 601 | int N[NDIM], Nlower[NDIM], Nupper[NDIM];
|
---|
| 602 |
|
---|
| 603 | LC->SetIndexToVector(Point); // ignore status as we calculate bounds below sensibly
|
---|
| 604 | for(int i=0;i<NDIM;i++) // store indices of this cell
|
---|
| 605 | N[i] = LC->n[i];
|
---|
[7dea7c] | 606 | cout << Verbose(3) << "INFO: Center cell is " << N[0] << ", " << N[1] << ", " << N[2] << " with No. " << LC->index << "." << endl;
|
---|
[57066a] | 607 |
|
---|
| 608 | LC->GetNeighbourBounds(Nlower, Nupper);
|
---|
| 609 | //cout << endl;
|
---|
| 610 | for (LC->n[0] = Nlower[0]; LC->n[0] <= Nupper[0]; LC->n[0]++)
|
---|
| 611 | for (LC->n[1] = Nlower[1]; LC->n[1] <= Nupper[1]; LC->n[1]++)
|
---|
| 612 | for (LC->n[2] = Nlower[2]; LC->n[2] <= Nupper[2]; LC->n[2]++) {
|
---|
| 613 | List = LC->GetCurrentCell();
|
---|
| 614 | //cout << Verbose(3) << "The current cell " << LC->n[0] << "," << LC->n[1] << "," << LC->n[2] << endl;
|
---|
| 615 | if (List != NULL) {
|
---|
| 616 | for (LinkedNodes::iterator Runner = List->begin(); Runner != List->end(); Runner++) {
|
---|
| 617 | helper.CopyVector(Point);
|
---|
| 618 | helper.SubtractVector((*Runner)->node);
|
---|
| 619 | double currentNorm = helper. Norm();
|
---|
| 620 | if (currentNorm < distance) {
|
---|
| 621 | secondDistance = distance;
|
---|
| 622 | SecondPoint = closestPoint;
|
---|
| 623 | distance = currentNorm;
|
---|
| 624 | closestPoint = (*Runner);
|
---|
| 625 | //cout << Verbose(2) << "INFO: New Nearest Neighbour is " << *closestPoint << "." << endl;
|
---|
| 626 | } else if (currentNorm < secondDistance) {
|
---|
| 627 | secondDistance = currentNorm;
|
---|
| 628 | SecondPoint = (*Runner);
|
---|
| 629 | //cout << Verbose(2) << "INFO: New Second Nearest Neighbour is " << *SecondPoint << "." << endl;
|
---|
| 630 | }
|
---|
| 631 | }
|
---|
| 632 | } else {
|
---|
| 633 | cerr << "ERROR: The current cell " << LC->n[0] << "," << LC->n[1] << ","
|
---|
| 634 | << LC->n[2] << " is invalid!" << endl;
|
---|
| 635 | }
|
---|
| 636 | }
|
---|
[a2028e] | 637 | // output
|
---|
| 638 | if (closestPoint != NULL) {
|
---|
| 639 | cout << Verbose(2) << "Closest point is " << *closestPoint;
|
---|
| 640 | if (SecondPoint != NULL)
|
---|
| 641 | cout << " and second closest is " << *SecondPoint;
|
---|
| 642 | cout << "." << endl;
|
---|
| 643 | }
|
---|
[57066a] | 644 | return closestPoint;
|
---|
| 645 | };
|
---|
| 646 |
|
---|
| 647 | /** Returns the closest point on \a *Base with respect to \a *OtherBase.
|
---|
| 648 | * \param *out output stream for debugging
|
---|
| 649 | * \param *Base reference line
|
---|
| 650 | * \param *OtherBase other base line
|
---|
| 651 | * \return Vector on reference line that has closest distance
|
---|
| 652 | */
|
---|
| 653 | Vector * GetClosestPointBetweenLine(ofstream *out, class BoundaryLineSet *Base, class BoundaryLineSet *OtherBase)
|
---|
| 654 | {
|
---|
| 655 | // construct the plane of the two baselines (i.e. take both their directional vectors)
|
---|
| 656 | Vector Normal;
|
---|
| 657 | Vector Baseline, OtherBaseline;
|
---|
| 658 | Baseline.CopyVector(Base->endpoints[1]->node->node);
|
---|
| 659 | Baseline.SubtractVector(Base->endpoints[0]->node->node);
|
---|
| 660 | OtherBaseline.CopyVector(OtherBase->endpoints[1]->node->node);
|
---|
| 661 | OtherBaseline.SubtractVector(OtherBase->endpoints[0]->node->node);
|
---|
| 662 | Normal.CopyVector(&Baseline);
|
---|
| 663 | Normal.VectorProduct(&OtherBaseline);
|
---|
| 664 | Normal.Normalize();
|
---|
| 665 | *out << Verbose(4) << "First direction is " << Baseline << ", second direction is " << OtherBaseline << ", normal of intersection plane is " << Normal << "." << endl;
|
---|
| 666 |
|
---|
| 667 | // project one offset point of OtherBase onto this plane (and add plane offset vector)
|
---|
| 668 | Vector NewOffset;
|
---|
| 669 | NewOffset.CopyVector(OtherBase->endpoints[0]->node->node);
|
---|
| 670 | NewOffset.SubtractVector(Base->endpoints[0]->node->node);
|
---|
| 671 | NewOffset.ProjectOntoPlane(&Normal);
|
---|
| 672 | NewOffset.AddVector(Base->endpoints[0]->node->node);
|
---|
| 673 | Vector NewDirection;
|
---|
| 674 | NewDirection.CopyVector(&NewOffset);
|
---|
| 675 | NewDirection.AddVector(&OtherBaseline);
|
---|
| 676 |
|
---|
| 677 | // calculate the intersection between this projected baseline and Base
|
---|
| 678 | Vector *Intersection = new Vector;
|
---|
| 679 | Intersection->GetIntersectionOfTwoLinesOnPlane(out, Base->endpoints[0]->node->node, Base->endpoints[1]->node->node, &NewOffset, &NewDirection, &Normal);
|
---|
| 680 | Normal.CopyVector(Intersection);
|
---|
| 681 | Normal.SubtractVector(Base->endpoints[0]->node->node);
|
---|
| 682 | *out << Verbose(3) << "Found closest point on " << *Base << " at " << *Intersection << ", factor in line is " << fabs(Normal.ScalarProduct(&Baseline)/Baseline.NormSquared()) << "." << endl;
|
---|
| 683 |
|
---|
| 684 | return Intersection;
|
---|
| 685 | };
|
---|
| 686 |
|
---|
[c4d4df] | 687 | /** Returns the distance to the plane defined by \a *triangle
|
---|
| 688 | * \param *out output stream for debugging
|
---|
| 689 | * \param *x Vector to calculate distance to
|
---|
| 690 | * \param *triangle triangle defining plane
|
---|
| 691 | * \return distance between \a *x and plane defined by \a *triangle, -1 - if something went wrong
|
---|
| 692 | */
|
---|
| 693 | double DistanceToTrianglePlane(ofstream *out, Vector *x, BoundaryTriangleSet *triangle)
|
---|
| 694 | {
|
---|
| 695 | double distance = 0.;
|
---|
| 696 | if (x == NULL) {
|
---|
| 697 | return -1;
|
---|
| 698 | }
|
---|
| 699 | distance = x->DistanceToPlane(out, &triangle->NormalVector, triangle->endpoints[0]->node->node);
|
---|
| 700 | return distance;
|
---|
| 701 | };
|
---|
[57066a] | 702 |
|
---|
| 703 | /** Creates the objects in a VRML file.
|
---|
| 704 | * \param *out output stream for debugging
|
---|
| 705 | * \param *vrmlfile output stream for tecplot data
|
---|
| 706 | * \param *Tess Tesselation structure with constructed triangles
|
---|
| 707 | * \param *mol molecule structure with atom positions
|
---|
| 708 | */
|
---|
| 709 | void WriteVrmlFile(ofstream *out, ofstream *vrmlfile, class Tesselation *Tess, PointCloud *cloud)
|
---|
| 710 | {
|
---|
| 711 | TesselPoint *Walker = NULL;
|
---|
| 712 | int i;
|
---|
| 713 | Vector *center = cloud->GetCenter(out);
|
---|
| 714 | if (vrmlfile != NULL) {
|
---|
| 715 | //cout << Verbose(1) << "Writing Raster3D file ... ";
|
---|
| 716 | *vrmlfile << "#VRML V2.0 utf8" << endl;
|
---|
| 717 | *vrmlfile << "#Created by molecuilder" << endl;
|
---|
| 718 | *vrmlfile << "#All atoms as spheres" << endl;
|
---|
| 719 | cloud->GoToFirst();
|
---|
| 720 | while (!cloud->IsEnd()) {
|
---|
| 721 | Walker = cloud->GetPoint();
|
---|
| 722 | *vrmlfile << "Sphere {" << endl << " "; // 2 is sphere type
|
---|
| 723 | for (i=0;i<NDIM;i++)
|
---|
| 724 | *vrmlfile << Walker->node->x[i]-center->x[i] << " ";
|
---|
| 725 | *vrmlfile << "\t0.1\t1. 1. 1." << endl; // radius 0.05 and white as colour
|
---|
| 726 | cloud->GoToNext();
|
---|
| 727 | }
|
---|
| 728 |
|
---|
| 729 | *vrmlfile << "# All tesselation triangles" << endl;
|
---|
| 730 | for (TriangleMap::iterator TriangleRunner = Tess->TrianglesOnBoundary.begin(); TriangleRunner != Tess->TrianglesOnBoundary.end(); TriangleRunner++) {
|
---|
| 731 | *vrmlfile << "1" << endl << " "; // 1 is triangle type
|
---|
| 732 | for (i=0;i<3;i++) { // print each node
|
---|
| 733 | for (int j=0;j<NDIM;j++) // and for each node all NDIM coordinates
|
---|
| 734 | *vrmlfile << TriangleRunner->second->endpoints[i]->node->node->x[j]-center->x[j] << " ";
|
---|
| 735 | *vrmlfile << "\t";
|
---|
| 736 | }
|
---|
| 737 | *vrmlfile << "1. 0. 0." << endl; // red as colour
|
---|
| 738 | *vrmlfile << "18" << endl << " 0.5 0.5 0.5" << endl; // 18 is transparency type for previous object
|
---|
| 739 | }
|
---|
| 740 | } else {
|
---|
| 741 | cerr << "ERROR: Given vrmlfile is " << vrmlfile << "." << endl;
|
---|
| 742 | }
|
---|
| 743 | delete(center);
|
---|
| 744 | };
|
---|
| 745 |
|
---|
| 746 | /** Writes additionally the current sphere (i.e. the last triangle to file).
|
---|
| 747 | * \param *out output stream for debugging
|
---|
| 748 | * \param *rasterfile output stream for tecplot data
|
---|
| 749 | * \param *Tess Tesselation structure with constructed triangles
|
---|
| 750 | * \param *mol molecule structure with atom positions
|
---|
| 751 | */
|
---|
| 752 | void IncludeSphereinRaster3D(ofstream *out, ofstream *rasterfile, class Tesselation *Tess, PointCloud *cloud)
|
---|
| 753 | {
|
---|
| 754 | Vector helper;
|
---|
| 755 | // include the current position of the virtual sphere in the temporary raster3d file
|
---|
| 756 | Vector *center = cloud->GetCenter(out);
|
---|
| 757 | // make the circumsphere's center absolute again
|
---|
| 758 | helper.CopyVector(Tess->LastTriangle->endpoints[0]->node->node);
|
---|
| 759 | helper.AddVector(Tess->LastTriangle->endpoints[1]->node->node);
|
---|
| 760 | helper.AddVector(Tess->LastTriangle->endpoints[2]->node->node);
|
---|
| 761 | helper.Scale(1./3.);
|
---|
| 762 | helper.SubtractVector(center);
|
---|
| 763 | // and add to file plus translucency object
|
---|
| 764 | *rasterfile << "# current virtual sphere\n";
|
---|
| 765 | *rasterfile << "8\n 25.0 0.6 -1.0 -1.0 -1.0 0.2 0 0 0 0\n";
|
---|
| 766 | *rasterfile << "2\n " << helper.x[0] << " " << helper.x[1] << " " << helper.x[2] << "\t" << 5. << "\t1 0 0\n";
|
---|
| 767 | *rasterfile << "9\n terminating special property\n";
|
---|
| 768 | delete(center);
|
---|
| 769 | };
|
---|
| 770 |
|
---|
| 771 | /** Creates the objects in a raster3d file (renderable with a header.r3d).
|
---|
| 772 | * \param *out output stream for debugging
|
---|
| 773 | * \param *rasterfile output stream for tecplot data
|
---|
| 774 | * \param *Tess Tesselation structure with constructed triangles
|
---|
| 775 | * \param *mol molecule structure with atom positions
|
---|
| 776 | */
|
---|
| 777 | void WriteRaster3dFile(ofstream *out, ofstream *rasterfile, class Tesselation *Tess, PointCloud *cloud)
|
---|
| 778 | {
|
---|
| 779 | TesselPoint *Walker = NULL;
|
---|
| 780 | int i;
|
---|
| 781 | Vector *center = cloud->GetCenter(out);
|
---|
| 782 | if (rasterfile != NULL) {
|
---|
| 783 | //cout << Verbose(1) << "Writing Raster3D file ... ";
|
---|
| 784 | *rasterfile << "# Raster3D object description, created by MoleCuilder" << endl;
|
---|
| 785 | *rasterfile << "@header.r3d" << endl;
|
---|
| 786 | *rasterfile << "# All atoms as spheres" << endl;
|
---|
| 787 | cloud->GoToFirst();
|
---|
| 788 | while (!cloud->IsEnd()) {
|
---|
| 789 | Walker = cloud->GetPoint();
|
---|
| 790 | *rasterfile << "2" << endl << " "; // 2 is sphere type
|
---|
| 791 | for (i=0;i<NDIM;i++)
|
---|
| 792 | *rasterfile << Walker->node->x[i]-center->x[i] << " ";
|
---|
| 793 | *rasterfile << "\t0.1\t1. 1. 1." << endl; // radius 0.05 and white as colour
|
---|
| 794 | cloud->GoToNext();
|
---|
| 795 | }
|
---|
| 796 |
|
---|
| 797 | *rasterfile << "# All tesselation triangles" << endl;
|
---|
| 798 | *rasterfile << "8\n 25. -1. 1. 1. 1. 0.0 0 0 0 2\n SOLID 1.0 0.0 0.0\n BACKFACE 0.3 0.3 1.0 0 0\n";
|
---|
| 799 | for (TriangleMap::iterator TriangleRunner = Tess->TrianglesOnBoundary.begin(); TriangleRunner != Tess->TrianglesOnBoundary.end(); TriangleRunner++) {
|
---|
| 800 | *rasterfile << "1" << endl << " "; // 1 is triangle type
|
---|
| 801 | for (i=0;i<3;i++) { // print each node
|
---|
| 802 | for (int j=0;j<NDIM;j++) // and for each node all NDIM coordinates
|
---|
| 803 | *rasterfile << TriangleRunner->second->endpoints[i]->node->node->x[j]-center->x[j] << " ";
|
---|
| 804 | *rasterfile << "\t";
|
---|
| 805 | }
|
---|
| 806 | *rasterfile << "1. 0. 0." << endl; // red as colour
|
---|
| 807 | //*rasterfile << "18" << endl << " 0.5 0.5 0.5" << endl; // 18 is transparency type for previous object
|
---|
| 808 | }
|
---|
| 809 | *rasterfile << "9\n# terminating special property\n";
|
---|
| 810 | } else {
|
---|
| 811 | cerr << "ERROR: Given rasterfile is " << rasterfile << "." << endl;
|
---|
| 812 | }
|
---|
| 813 | IncludeSphereinRaster3D(out, rasterfile, Tess, cloud);
|
---|
| 814 | delete(center);
|
---|
| 815 | };
|
---|
| 816 |
|
---|
| 817 | /** This function creates the tecplot file, displaying the tesselation of the hull.
|
---|
| 818 | * \param *out output stream for debugging
|
---|
| 819 | * \param *tecplot output stream for tecplot data
|
---|
| 820 | * \param N arbitrary number to differentiate various zones in the tecplot format
|
---|
| 821 | */
|
---|
| 822 | void WriteTecplotFile(ofstream *out, ofstream *tecplot, class Tesselation *TesselStruct, PointCloud *cloud, int N)
|
---|
| 823 | {
|
---|
| 824 | if ((tecplot != NULL) && (TesselStruct != NULL)) {
|
---|
| 825 | // write header
|
---|
| 826 | *tecplot << "TITLE = \"3D CONVEX SHELL\"" << endl;
|
---|
| 827 | *tecplot << "VARIABLES = \"X\" \"Y\" \"Z\" \"U\"" << endl;
|
---|
| 828 | *tecplot << "ZONE T=\"" << N << "-";
|
---|
| 829 | for (int i=0;i<3;i++)
|
---|
| 830 | *tecplot << (i==0 ? "" : "_") << TesselStruct->LastTriangle->endpoints[i]->node->Name;
|
---|
| 831 | *tecplot << "\", N=" << TesselStruct->PointsOnBoundary.size() << ", E=" << TesselStruct->TrianglesOnBoundary.size() << ", DATAPACKING=POINT, ZONETYPE=FETRIANGLE" << endl;
|
---|
| 832 | int i=0;
|
---|
| 833 | for (cloud->GoToFirst(); !cloud->IsEnd(); cloud->GoToNext(), i++);
|
---|
| 834 | int *LookupList = new int[i];
|
---|
| 835 | for (cloud->GoToFirst(), i=0; !cloud->IsEnd(); cloud->GoToNext(), i++)
|
---|
| 836 | LookupList[i] = -1;
|
---|
| 837 |
|
---|
| 838 | // print atom coordinates
|
---|
| 839 | *out << Verbose(2) << "The following triangles were created:";
|
---|
| 840 | int Counter = 1;
|
---|
| 841 | TesselPoint *Walker = NULL;
|
---|
| 842 | for (PointMap::iterator target = TesselStruct->PointsOnBoundary.begin(); target != TesselStruct->PointsOnBoundary.end(); target++) {
|
---|
| 843 | Walker = target->second->node;
|
---|
| 844 | LookupList[Walker->nr] = Counter++;
|
---|
| 845 | *tecplot << Walker->node->x[0] << " " << Walker->node->x[1] << " " << Walker->node->x[2] << " " << target->second->value << endl;
|
---|
| 846 | }
|
---|
| 847 | *tecplot << endl;
|
---|
| 848 | // print connectivity
|
---|
| 849 | for (TriangleMap::iterator runner = TesselStruct->TrianglesOnBoundary.begin(); runner != TesselStruct->TrianglesOnBoundary.end(); runner++) {
|
---|
| 850 | *out << " " << runner->second->endpoints[0]->node->Name << "<->" << runner->second->endpoints[1]->node->Name << "<->" << runner->second->endpoints[2]->node->Name;
|
---|
| 851 | *tecplot << LookupList[runner->second->endpoints[0]->node->nr] << " " << LookupList[runner->second->endpoints[1]->node->nr] << " " << LookupList[runner->second->endpoints[2]->node->nr] << endl;
|
---|
| 852 | }
|
---|
| 853 | delete[] (LookupList);
|
---|
| 854 | *out << endl;
|
---|
| 855 | }
|
---|
| 856 | };
|
---|
[7dea7c] | 857 |
|
---|
| 858 | /** Calculates the concavity for each of the BoundaryPointSet's in a Tesselation.
|
---|
| 859 | * Sets BoundaryPointSet::value equal to the number of connected lines that are not convex.
|
---|
| 860 | * \param *out output stream for debugging
|
---|
| 861 | * \param *TesselStruct pointer to Tesselation structure
|
---|
| 862 | */
|
---|
| 863 | void CalculateConcavityPerBoundaryPoint(ofstream *out, class Tesselation *TesselStruct)
|
---|
| 864 | {
|
---|
| 865 | class BoundaryPointSet *point = NULL;
|
---|
| 866 | class BoundaryLineSet *line = NULL;
|
---|
| 867 |
|
---|
| 868 | //*out << Verbose(2) << "Begin of CalculateConcavityPerBoundaryPoint" << endl;
|
---|
| 869 | // calculate remaining concavity
|
---|
| 870 | for (PointMap::iterator PointRunner = TesselStruct->PointsOnBoundary.begin(); PointRunner != TesselStruct->PointsOnBoundary.end(); PointRunner++) {
|
---|
| 871 | point = PointRunner->second;
|
---|
| 872 | *out << Verbose(1) << "INFO: Current point is " << *point << "." << endl;
|
---|
| 873 | point->value = 0;
|
---|
| 874 | for (LineMap::iterator LineRunner = point->lines.begin(); LineRunner != point->lines.end(); LineRunner++) {
|
---|
| 875 | line = LineRunner->second;
|
---|
| 876 | //*out << Verbose(2) << "INFO: Current line of point " << *point << " is " << *line << "." << endl;
|
---|
| 877 | if (!line->CheckConvexityCriterion(out))
|
---|
| 878 | point->value += 1;
|
---|
| 879 | }
|
---|
| 880 | }
|
---|
| 881 | //*out << Verbose(2) << "End of CalculateConcavityPerBoundaryPoint" << endl;
|
---|
| 882 | };
|
---|
| 883 |
|
---|
| 884 |
|
---|
| 885 | /** Checks whether each BoundaryLineSet in the Tesselation has two triangles.
|
---|
| 886 | * \param *out output stream for debugging
|
---|
| 887 | * \param *TesselStruct
|
---|
| 888 | * \return true - all have exactly two triangles, false - some not, list is printed to screen
|
---|
| 889 | */
|
---|
| 890 | bool CheckListOfBaselines(ofstream *out, Tesselation *TesselStruct)
|
---|
| 891 | {
|
---|
| 892 | LineMap::iterator testline;
|
---|
| 893 | bool result = false;
|
---|
| 894 | int counter = 0;
|
---|
| 895 |
|
---|
| 896 | *out << Verbose(1) << "Check: List of Baselines with not two connected triangles:" << endl;
|
---|
| 897 | for (testline = TesselStruct->LinesOnBoundary.begin(); testline != TesselStruct->LinesOnBoundary.end(); testline++) {
|
---|
| 898 | if (testline->second->triangles.size() != 2) {
|
---|
| 899 | *out << Verbose(1) << *testline->second << "\t" << testline->second->triangles.size() << endl;
|
---|
| 900 | counter++;
|
---|
| 901 | }
|
---|
| 902 | }
|
---|
| 903 | if (counter == 0) {
|
---|
| 904 | *out << Verbose(1) << "None." << endl;
|
---|
| 905 | result = true;
|
---|
| 906 | }
|
---|
| 907 | return result;
|
---|
| 908 | }
|
---|
| 909 |
|
---|