source: src/tesselation.cpp@ cb2146

Action_Thermostats Add_AtomRandomPerturbation Add_FitFragmentPartialChargesAction Add_RotateAroundBondAction Add_SelectAtomByNameAction Added_ParseSaveFragmentResults AddingActions_SaveParseParticleParameters Adding_Graph_to_ChangeBondActions Adding_MD_integration_tests Adding_ParticleName_to_Atom Adding_StructOpt_integration_tests AtomFragments Automaking_mpqc_open AutomationFragmentation_failures Candidate_v1.5.4 Candidate_v1.6.0 Candidate_v1.6.1 ChangeBugEmailaddress ChangingTestPorts ChemicalSpaceEvaluator CombiningParticlePotentialParsing Combining_Subpackages Debian_Package_split Debian_package_split_molecuildergui_only Disabling_MemDebug Docu_Python_wait EmpiricalPotential_contain_HomologyGraph EmpiricalPotential_contain_HomologyGraph_documentation Enable_parallel_make_install Enhance_userguide Enhanced_StructuralOptimization Enhanced_StructuralOptimization_continued Example_ManyWaysToTranslateAtom Exclude_Hydrogens_annealWithBondGraph FitPartialCharges_GlobalError Fix_BoundInBox_CenterInBox_MoleculeActions Fix_ChargeSampling_PBC Fix_ChronosMutex Fix_FitPartialCharges Fix_FitPotential_needs_atomicnumbers Fix_ForceAnnealing Fix_IndependentFragmentGrids Fix_ParseParticles Fix_ParseParticles_split_forward_backward_Actions Fix_PopActions Fix_QtFragmentList_sorted_selection Fix_Restrictedkeyset_FragmentMolecule Fix_StatusMsg Fix_StepWorldTime_single_argument Fix_Verbose_Codepatterns Fix_fitting_potentials Fixes ForceAnnealing_goodresults ForceAnnealing_oldresults ForceAnnealing_tocheck ForceAnnealing_with_BondGraph ForceAnnealing_with_BondGraph_continued ForceAnnealing_with_BondGraph_continued_betteresults ForceAnnealing_with_BondGraph_contraction-expansion FragmentAction_writes_AtomFragments FragmentMolecule_checks_bonddegrees GeometryObjects Gui_Fixes Gui_displays_atomic_force_velocity ImplicitCharges IndependentFragmentGrids IndependentFragmentGrids_IndividualZeroInstances IndependentFragmentGrids_IntegrationTest IndependentFragmentGrids_Sole_NN_Calculation JobMarket_RobustOnKillsSegFaults JobMarket_StableWorkerPool JobMarket_unresolvable_hostname_fix MoreRobust_FragmentAutomation ODR_violation_mpqc_open PartialCharges_OrthogonalSummation PdbParser_setsAtomName PythonUI_with_named_parameters QtGui_reactivate_TimeChanged_changes Recreated_GuiChecks Rewrite_FitPartialCharges RotateToPrincipalAxisSystem_UndoRedo SaturateAtoms_findBestMatching SaturateAtoms_singleDegree StoppableMakroAction Subpackage_CodePatterns Subpackage_JobMarket Subpackage_LinearAlgebra Subpackage_levmar Subpackage_mpqc_open Subpackage_vmg Switchable_LogView ThirdParty_MPQC_rebuilt_buildsystem TrajectoryDependenant_MaxOrder TremoloParser_IncreasedPrecision TremoloParser_MultipleTimesteps TremoloParser_setsAtomName Ubuntu_1604_changes stable
Last change on this file since cb2146 was 9d4c20, checked in by Frederik Heber <heber@…>, 15 years ago

MEMLEAK: Tesselation::CorrectAllDegeneratedPolygons() forgot to remove DegeneratedTriangles.

  • Property mode set to 100644
File size: 210.6 KB
Line 
1/*
2 * tesselation.cpp
3 *
4 * Created on: Aug 3, 2009
5 * Author: heber
6 */
7
8#include <fstream>
9
10#include "helpers.hpp"
11#include "info.hpp"
12#include "linkedcell.hpp"
13#include "log.hpp"
14#include "tesselation.hpp"
15#include "tesselationhelpers.hpp"
16#include "vector.hpp"
17#include "verbose.hpp"
18
19class molecule;
20
21// ======================================== Points on Boundary =================================
22
23/** Constructor of BoundaryPointSet.
24 */
25BoundaryPointSet::BoundaryPointSet() :
26 LinesCount(0),
27 value(0.),
28 Nr(-1)
29{
30 Info FunctionInfo(__func__);
31 Log() << Verbose(1) << "Adding noname." << endl;
32};
33
34/** Constructor of BoundaryPointSet with Tesselpoint.
35 * \param *Walker TesselPoint this boundary point represents
36 */
37BoundaryPointSet::BoundaryPointSet(TesselPoint * const Walker) :
38 LinesCount(0),
39 node(Walker),
40 value(0.),
41 Nr(Walker->nr)
42{
43 Info FunctionInfo(__func__);
44 Log() << Verbose(1) << "Adding Node " << *Walker << endl;
45};
46
47/** Destructor of BoundaryPointSet.
48 * Sets node to NULL to avoid removing the original, represented TesselPoint.
49 * \note When removing point from a class Tesselation, use RemoveTesselationPoint()
50 */
51BoundaryPointSet::~BoundaryPointSet()
52{
53 Info FunctionInfo(__func__);
54 //Log() << Verbose(0) << "Erasing point nr. " << Nr << "." << endl;
55 if (!lines.empty())
56 eLog() << Verbose(2) << "Memory Leak! I " << *this << " am still connected to some lines." << endl;
57 node = NULL;
58};
59
60/** Add a line to the LineMap of this point.
61 * \param *line line to add
62 */
63void BoundaryPointSet::AddLine(BoundaryLineSet * const line)
64{
65 Info FunctionInfo(__func__);
66 Log() << Verbose(1) << "Adding " << *this << " to line " << *line << "."
67 << endl;
68 if (line->endpoints[0] == this)
69 {
70 lines.insert(LinePair(line->endpoints[1]->Nr, line));
71 }
72 else
73 {
74 lines.insert(LinePair(line->endpoints[0]->Nr, line));
75 }
76 LinesCount++;
77};
78
79/** output operator for BoundaryPointSet.
80 * \param &ost output stream
81 * \param &a boundary point
82 */
83ostream & operator <<(ostream &ost, const BoundaryPointSet &a)
84{
85 ost << "[" << a.Nr << "|" << a.node->Name << " at " << *a.node->node << "]";
86 return ost;
87}
88;
89
90// ======================================== Lines on Boundary =================================
91
92/** Constructor of BoundaryLineSet.
93 */
94BoundaryLineSet::BoundaryLineSet() :
95 Nr(-1)
96{
97 Info FunctionInfo(__func__);
98 for (int i = 0; i < 2; i++)
99 endpoints[i] = NULL;
100};
101
102/** Constructor of BoundaryLineSet with two endpoints.
103 * Adds line automatically to each endpoints' LineMap
104 * \param *Point[2] array of two boundary points
105 * \param number number of the list
106 */
107BoundaryLineSet::BoundaryLineSet(BoundaryPointSet * const Point[2], const int number)
108{
109 Info FunctionInfo(__func__);
110 // set number
111 Nr = number;
112 // set endpoints in ascending order
113 SetEndpointsOrdered(endpoints, Point[0], Point[1]);
114 // add this line to the hash maps of both endpoints
115 Point[0]->AddLine(this); //Taken out, to check whether we can avoid unwanted double adding.
116 Point[1]->AddLine(this); //
117 // set skipped to false
118 skipped = false;
119 // clear triangles list
120 Log() << Verbose(0) << "New Line with endpoints " << *this << "." << endl;
121};
122
123/** Constructor of BoundaryLineSet with two endpoints.
124 * Adds line automatically to each endpoints' LineMap
125 * \param *Point1 first boundary point
126 * \param *Point2 second boundary point
127 * \param number number of the list
128 */
129BoundaryLineSet::BoundaryLineSet(BoundaryPointSet * const Point1, BoundaryPointSet * const Point2, const int number)
130{
131 Info FunctionInfo(__func__);
132 // set number
133 Nr = number;
134 // set endpoints in ascending order
135 SetEndpointsOrdered(endpoints, Point1, Point2);
136 // add this line to the hash maps of both endpoints
137 Point1->AddLine(this); //Taken out, to check whether we can avoid unwanted double adding.
138 Point2->AddLine(this); //
139 // set skipped to false
140 skipped = false;
141 // clear triangles list
142 Log() << Verbose(0) << "New Line with endpoints " << *this << "." << endl;
143};
144
145/** Destructor for BoundaryLineSet.
146 * Removes itself from each endpoints' LineMap, calling RemoveTrianglePoint() when point not connected anymore.
147 * \note When removing lines from a class Tesselation, use RemoveTesselationLine()
148 */
149BoundaryLineSet::~BoundaryLineSet()
150{
151 Info FunctionInfo(__func__);
152 int Numbers[2];
153
154 // get other endpoint number of finding copies of same line
155 if (endpoints[1] != NULL)
156 Numbers[0] = endpoints[1]->Nr;
157 else
158 Numbers[0] = -1;
159 if (endpoints[0] != NULL)
160 Numbers[1] = endpoints[0]->Nr;
161 else
162 Numbers[1] = -1;
163
164 for (int i = 0; i < 2; i++) {
165 if (endpoints[i] != NULL) {
166 if (Numbers[i] != -1) { // as there may be multiple lines with same endpoints, we have to go through each and find in the endpoint's line list this line set
167 pair<LineMap::iterator, LineMap::iterator> erasor = endpoints[i]->lines.equal_range(Numbers[i]);
168 for (LineMap::iterator Runner = erasor.first; Runner != erasor.second; Runner++)
169 if ((*Runner).second == this) {
170 //Log() << Verbose(0) << "Removing Line Nr. " << Nr << " in boundary point " << *endpoints[i] << "." << endl;
171 endpoints[i]->lines.erase(Runner);
172 break;
173 }
174 } else { // there's just a single line left
175 if (endpoints[i]->lines.erase(Nr)) {
176 //Log() << Verbose(0) << "Removing Line Nr. " << Nr << " in boundary point " << *endpoints[i] << "." << endl;
177 }
178 }
179 if (endpoints[i]->lines.empty()) {
180 //Log() << Verbose(0) << *endpoints[i] << " has no more lines it's attached to, erasing." << endl;
181 if (endpoints[i] != NULL) {
182 delete(endpoints[i]);
183 endpoints[i] = NULL;
184 }
185 }
186 }
187 }
188 if (!triangles.empty())
189 eLog() << Verbose(2) << "Memory Leak! I " << *this << " am still connected to some triangles." << endl;
190};
191
192/** Add triangle to TriangleMap of this boundary line.
193 * \param *triangle to add
194 */
195void BoundaryLineSet::AddTriangle(BoundaryTriangleSet * const triangle)
196{
197 Info FunctionInfo(__func__);
198 Log() << Verbose(0) << "Add " << triangle->Nr << " to line " << *this << "." << endl;
199 triangles.insert(TrianglePair(triangle->Nr, triangle));
200};
201
202/** Checks whether we have a common endpoint with given \a *line.
203 * \param *line other line to test
204 * \return true - common endpoint present, false - not connected
205 */
206bool BoundaryLineSet::IsConnectedTo(const BoundaryLineSet * const line) const
207{
208 Info FunctionInfo(__func__);
209 if ((endpoints[0] == line->endpoints[0]) || (endpoints[1] == line->endpoints[0]) || (endpoints[0] == line->endpoints[1]) || (endpoints[1] == line->endpoints[1]))
210 return true;
211 else
212 return false;
213};
214
215/** Checks whether the adjacent triangles of a baseline are convex or not.
216 * We sum the two angles of each height vector with respect to the center of the baseline.
217 * If greater/equal M_PI than we are convex.
218 * \param *out output stream for debugging
219 * \return true - triangles are convex, false - concave or less than two triangles connected
220 */
221bool BoundaryLineSet::CheckConvexityCriterion() const
222{
223 Info FunctionInfo(__func__);
224 Vector BaseLineCenter, BaseLineNormal, BaseLine, helper[2], NormalCheck;
225 // get the two triangles
226 if (triangles.size() != 2) {
227 eLog() << Verbose(0) << "Baseline " << *this << " is connected to less than two triangles, Tesselation incomplete!" << endl;
228 return true;
229 }
230 // check normal vectors
231 // have a normal vector on the base line pointing outwards
232 //Log() << Verbose(0) << "INFO: " << *this << " has vectors at " << *(endpoints[0]->node->node) << " and at " << *(endpoints[1]->node->node) << "." << endl;
233 BaseLineCenter.CopyVector(endpoints[0]->node->node);
234 BaseLineCenter.AddVector(endpoints[1]->node->node);
235 BaseLineCenter.Scale(1./2.);
236 BaseLine.CopyVector(endpoints[0]->node->node);
237 BaseLine.SubtractVector(endpoints[1]->node->node);
238 //Log() << Verbose(0) << "INFO: Baseline is " << BaseLine << " and its center is at " << BaseLineCenter << "." << endl;
239
240 BaseLineNormal.Zero();
241 NormalCheck.Zero();
242 double sign = -1.;
243 int i=0;
244 class BoundaryPointSet *node = NULL;
245 for(TriangleMap::const_iterator runner = triangles.begin(); runner != triangles.end(); runner++) {
246 //Log() << Verbose(0) << "INFO: NormalVector of " << *(runner->second) << " is " << runner->second->NormalVector << "." << endl;
247 NormalCheck.AddVector(&runner->second->NormalVector);
248 NormalCheck.Scale(sign);
249 sign = -sign;
250 if (runner->second->NormalVector.NormSquared() > MYEPSILON)
251 BaseLineNormal.CopyVector(&runner->second->NormalVector); // yes, copy second on top of first
252 else {
253 eLog() << Verbose(0) << "Triangle " << *runner->second << " has zero normal vector!" << endl;
254 }
255 node = runner->second->GetThirdEndpoint(this);
256 if (node != NULL) {
257 //Log() << Verbose(0) << "INFO: Third node for triangle " << *(runner->second) << " is " << *node << " at " << *(node->node->node) << "." << endl;
258 helper[i].CopyVector(node->node->node);
259 helper[i].SubtractVector(&BaseLineCenter);
260 helper[i].MakeNormalVector(&BaseLine); // we want to compare the triangle's heights' angles!
261 //Log() << Verbose(0) << "INFO: Height vector with respect to baseline is " << helper[i] << "." << endl;
262 i++;
263 } else {
264 eLog() << Verbose(1) << "I cannot find third node in triangle, something's wrong." << endl;
265 return true;
266 }
267 }
268 //Log() << Verbose(0) << "INFO: BaselineNormal is " << BaseLineNormal << "." << endl;
269 if (NormalCheck.NormSquared() < MYEPSILON) {
270 Log() << Verbose(0) << "ACCEPT: Normalvectors of both triangles are the same: convex." << endl;
271 return true;
272 }
273 BaseLineNormal.Scale(-1.);
274 double angle = GetAngle(helper[0], helper[1], BaseLineNormal);
275 if ((angle - M_PI) > -MYEPSILON) {
276 Log() << Verbose(0) << "ACCEPT: Angle is greater than pi: convex." << endl;
277 return true;
278 } else {
279 Log() << Verbose(0) << "REJECT: Angle is less than pi: concave." << endl;
280 return false;
281 }
282}
283
284/** Checks whether point is any of the two endpoints this line contains.
285 * \param *point point to test
286 * \return true - point is of the line, false - is not
287 */
288bool BoundaryLineSet::ContainsBoundaryPoint(const BoundaryPointSet * const point) const
289{
290 Info FunctionInfo(__func__);
291 for(int i=0;i<2;i++)
292 if (point == endpoints[i])
293 return true;
294 return false;
295};
296
297/** Returns other endpoint of the line.
298 * \param *point other endpoint
299 * \return NULL - if endpoint not contained in BoundaryLineSet, or pointer to BoundaryPointSet otherwise
300 */
301class BoundaryPointSet *BoundaryLineSet::GetOtherEndpoint(const BoundaryPointSet * const point) const
302{
303 Info FunctionInfo(__func__);
304 if (endpoints[0] == point)
305 return endpoints[1];
306 else if (endpoints[1] == point)
307 return endpoints[0];
308 else
309 return NULL;
310};
311
312/** output operator for BoundaryLineSet.
313 * \param &ost output stream
314 * \param &a boundary line
315 */
316ostream & operator <<(ostream &ost, const BoundaryLineSet &a)
317{
318 ost << "[" << a.Nr << "|" << a.endpoints[0]->node->Name << " at " << *a.endpoints[0]->node->node << "," << a.endpoints[1]->node->Name << " at " << *a.endpoints[1]->node->node << "]";
319 return ost;
320};
321
322// ======================================== Triangles on Boundary =================================
323
324/** Constructor for BoundaryTriangleSet.
325 */
326BoundaryTriangleSet::BoundaryTriangleSet() :
327 Nr(-1)
328{
329 Info FunctionInfo(__func__);
330 for (int i = 0; i < 3; i++)
331 {
332 endpoints[i] = NULL;
333 lines[i] = NULL;
334 }
335};
336
337/** Constructor for BoundaryTriangleSet with three lines.
338 * \param *line[3] lines that make up the triangle
339 * \param number number of triangle
340 */
341BoundaryTriangleSet::BoundaryTriangleSet(class BoundaryLineSet * const line[3], const int number) :
342 Nr(number)
343{
344 Info FunctionInfo(__func__);
345 // set number
346 // set lines
347 for (int i = 0; i < 3; i++) {
348 lines[i] = line[i];
349 lines[i]->AddTriangle(this);
350 }
351 // get ascending order of endpoints
352 PointMap OrderMap;
353 for (int i = 0; i < 3; i++)
354 // for all three lines
355 for (int j = 0; j < 2; j++) { // for both endpoints
356 OrderMap.insert(pair<int, class BoundaryPointSet *> (
357 line[i]->endpoints[j]->Nr, line[i]->endpoints[j]));
358 // and we don't care whether insertion fails
359 }
360 // set endpoints
361 int Counter = 0;
362 Log() << Verbose(0) << "New triangle " << Nr << " with end points: " << endl;
363 for (PointMap::iterator runner = OrderMap.begin(); runner != OrderMap.end(); runner++) {
364 endpoints[Counter] = runner->second;
365 Log() << Verbose(0) << " " << *endpoints[Counter] << endl;
366 Counter++;
367 }
368 if (Counter < 3) {
369 eLog() << Verbose(0) << "We have a triangle with only two distinct endpoints!" << endl;
370 performCriticalExit();
371 }
372};
373
374/** Destructor of BoundaryTriangleSet.
375 * Removes itself from each of its lines' LineMap and removes them if necessary.
376 * \note When removing triangles from a class Tesselation, use RemoveTesselationTriangle()
377 */
378BoundaryTriangleSet::~BoundaryTriangleSet()
379{
380 Info FunctionInfo(__func__);
381 for (int i = 0; i < 3; i++) {
382 if (lines[i] != NULL) {
383 if (lines[i]->triangles.erase(Nr)) {
384 //Log() << Verbose(0) << "Triangle Nr." << Nr << " erased in line " << *lines[i] << "." << endl;
385 }
386 if (lines[i]->triangles.empty()) {
387 //Log() << Verbose(0) << *lines[i] << " is no more attached to any triangle, erasing." << endl;
388 delete (lines[i]);
389 lines[i] = NULL;
390 }
391 }
392 }
393 //Log() << Verbose(0) << "Erasing triangle Nr." << Nr << " itself." << endl;
394};
395
396/** Calculates the normal vector for this triangle.
397 * Is made unique by comparison with \a OtherVector to point in the other direction.
398 * \param &OtherVector direction vector to make normal vector unique.
399 */
400void BoundaryTriangleSet::GetNormalVector(const Vector &OtherVector)
401{
402 Info FunctionInfo(__func__);
403 // get normal vector
404 NormalVector.MakeNormalVector(endpoints[0]->node->node, endpoints[1]->node->node, endpoints[2]->node->node);
405
406 // make it always point inward (any offset vector onto plane projected onto normal vector suffices)
407 if (NormalVector.ScalarProduct(&OtherVector) > 0.)
408 NormalVector.Scale(-1.);
409 Log() << Verbose(1) << "Normal Vector is " << NormalVector << "." << endl;
410};
411
412/** Finds the point on the triangle \a *BTS through which the line defined by \a *MolCenter and \a *x crosses.
413 * We call Vector::GetIntersectionWithPlane() to receive the intersection point with the plane
414 * Thus we test if it's really on the plane and whether it's inside the triangle on the plane or not.
415 * The latter is done as follows: We calculate the cross point of one of the triangle's baseline with the line
416 * given by the intersection and the third basepoint. Then, we check whether it's on the baseline (i.e. between
417 * the first two basepoints) or not.
418 * \param *out output stream for debugging
419 * \param *MolCenter offset vector of line
420 * \param *x second endpoint of line, minus \a *MolCenter is directional vector of line
421 * \param *Intersection intersection on plane on return
422 * \return true - \a *Intersection contains intersection on plane defined by triangle, false - zero vector if outside of triangle.
423 */
424bool BoundaryTriangleSet::GetIntersectionInsideTriangle(const Vector * const MolCenter, const Vector * const x, Vector * const Intersection) const
425{
426 Info FunctionInfo(__func__);
427 Vector CrossPoint;
428 Vector helper;
429
430 if (!Intersection->GetIntersectionWithPlane(&NormalVector, endpoints[0]->node->node, MolCenter, x)) {
431 eLog() << Verbose(1) << "Alas! Intersection with plane failed - at least numerically - the intersection is not on the plane!" << endl;
432 return false;
433 }
434
435 Log() << Verbose(1) << "INFO: Triangle is " << *this << "." << endl;
436 Log() << Verbose(1) << "INFO: Line is from " << *MolCenter << " to " << *x << "." << endl;
437 Log() << Verbose(1) << "INFO: Intersection is " << *Intersection << "." << endl;
438
439 if (Intersection->DistanceSquared(endpoints[0]->node->node) < MYEPSILON) {
440 Log() << Verbose(1) << "Intersection coindices with first endpoint." << endl;
441 return true;
442 } else if (Intersection->DistanceSquared(endpoints[1]->node->node) < MYEPSILON) {
443 Log() << Verbose(1) << "Intersection coindices with second endpoint." << endl;
444 return true;
445 } else if (Intersection->DistanceSquared(endpoints[2]->node->node) < MYEPSILON) {
446 Log() << Verbose(1) << "Intersection coindices with third endpoint." << endl;
447 return true;
448 }
449 // Calculate cross point between one baseline and the line from the third endpoint to intersection
450 int i=0;
451 do {
452 if (CrossPoint.GetIntersectionOfTwoLinesOnPlane(endpoints[i%3]->node->node, endpoints[(i+1)%3]->node->node, endpoints[(i+2)%3]->node->node, Intersection, &NormalVector)) {
453 helper.CopyVector(endpoints[(i+1)%3]->node->node);
454 helper.SubtractVector(endpoints[i%3]->node->node);
455 CrossPoint.SubtractVector(endpoints[i%3]->node->node); // cross point was returned as absolute vector
456 const double s = CrossPoint.ScalarProduct(&helper)/helper.NormSquared();
457 Log() << Verbose(1) << "INFO: Factor s is " << s << "." << endl;
458 if ((s < -MYEPSILON) || ((s-1.) > MYEPSILON)) {
459 Log() << Verbose(1) << "INFO: Crosspoint " << CrossPoint << "outside of triangle." << endl;
460 i=4;
461 break;
462 }
463 i++;
464 } else
465 break;
466 } while (i<3);
467 if (i==3) {
468 Log() << Verbose(1) << "INFO: Crosspoint " << CrossPoint << " inside of triangle." << endl;
469 return true;
470 } else {
471 Log() << Verbose(1) << "INFO: Crosspoint " << CrossPoint << " outside of triangle." << endl;
472 return false;
473 }
474};
475
476/** Finds the point on the triangle \a *BTS through which the line defined by \a *MolCenter and \a *x crosses.
477 * We call Vector::GetIntersectionWithPlane() to receive the intersection point with the plane
478 * Thus we test if it's really on the plane and whether it's inside the triangle on the plane or not.
479 * The latter is done as follows: We calculate the cross point of one of the triangle's baseline with the line
480 * given by the intersection and the third basepoint. Then, we check whether it's on the baseline (i.e. between
481 * the first two basepoints) or not.
482 * \param *x point
483 * \param *ClosestPoint desired closest point inside triangle to \a *x, is absolute vector
484 * \return Distance squared between \a *x and closest point inside triangle
485 */
486double BoundaryTriangleSet::GetClosestPointInsideTriangle(const Vector * const x, Vector * const ClosestPoint) const
487{
488 Info FunctionInfo(__func__);
489 Vector Direction;
490
491 // 1. get intersection with plane
492 Log() << Verbose(1) << "INFO: Looking for closest point of triangle " << *this << " to " << *x << "." << endl;
493 GetCenter(&Direction);
494 if (!ClosestPoint->GetIntersectionWithPlane(&NormalVector, endpoints[0]->node->node, x, &Direction)) {
495 ClosestPoint->CopyVector(x);
496 }
497
498 // 2. Calculate in plane part of line (x, intersection)
499 Vector InPlane;
500 InPlane.CopyVector(x);
501 InPlane.SubtractVector(ClosestPoint); // points from plane intersection to straight-down point
502 InPlane.ProjectOntoPlane(&NormalVector);
503 InPlane.AddVector(ClosestPoint);
504
505 Log() << Verbose(2) << "INFO: Triangle is " << *this << "." << endl;
506 Log() << Verbose(2) << "INFO: Line is from " << Direction << " to " << *x << "." << endl;
507 Log() << Verbose(2) << "INFO: In-plane part is " << InPlane << "." << endl;
508
509 // Calculate cross point between one baseline and the desired point such that distance is shortest
510 double ShortestDistance = -1.;
511 bool InsideFlag = false;
512 Vector CrossDirection[3];
513 Vector CrossPoint[3];
514 Vector helper;
515 for (int i=0;i<3;i++) {
516 // treat direction of line as normal of a (cut)plane and the desired point x as the plane offset, the intersect line with point
517 Direction.CopyVector(endpoints[(i+1)%3]->node->node);
518 Direction.SubtractVector(endpoints[i%3]->node->node);
519 // calculate intersection, line can never be parallel to Direction (is the same vector as PlaneNormal);
520 CrossPoint[i].GetIntersectionWithPlane(&Direction, &InPlane, endpoints[i%3]->node->node, endpoints[(i+1)%3]->node->node);
521 CrossDirection[i].CopyVector(&CrossPoint[i]);
522 CrossDirection[i].SubtractVector(&InPlane);
523 CrossPoint[i].SubtractVector(endpoints[i%3]->node->node); // cross point was returned as absolute vector
524 const double s = CrossPoint[i].ScalarProduct(&Direction)/Direction.NormSquared();
525 Log() << Verbose(2) << "INFO: Factor s is " << s << "." << endl;
526 if ((s >= -MYEPSILON) && ((s-1.) <= MYEPSILON)) {
527 CrossPoint[i].AddVector(endpoints[i%3]->node->node); // make cross point absolute again
528 Log() << Verbose(2) << "INFO: Crosspoint is " << CrossPoint[i] << ", intersecting BoundaryLine between " << *endpoints[i%3]->node->node << " and " << *endpoints[(i+1)%3]->node->node << "." << endl;
529 const double distance = CrossPoint[i].DistanceSquared(x);
530 if ((ShortestDistance < 0.) || (ShortestDistance > distance)) {
531 ShortestDistance = distance;
532 ClosestPoint->CopyVector(&CrossPoint[i]);
533 }
534 } else
535 CrossPoint[i].Zero();
536 }
537 InsideFlag = true;
538 for (int i=0;i<3;i++) {
539 const double sign = CrossDirection[i].ScalarProduct(&CrossDirection[(i+1)%3]);
540 const double othersign = CrossDirection[i].ScalarProduct(&CrossDirection[(i+2)%3]);;
541 if ((sign > -MYEPSILON) && (othersign > -MYEPSILON)) // have different sign
542 InsideFlag = false;
543 }
544 if (InsideFlag) {
545 ClosestPoint->CopyVector(&InPlane);
546 ShortestDistance = InPlane.DistanceSquared(x);
547 } else { // also check endnodes
548 for (int i=0;i<3;i++) {
549 const double distance = x->DistanceSquared(endpoints[i]->node->node);
550 if ((ShortestDistance < 0.) || (ShortestDistance > distance)) {
551 ShortestDistance = distance;
552 ClosestPoint->CopyVector(endpoints[i]->node->node);
553 }
554 }
555 }
556 Log() << Verbose(1) << "INFO: Closest Point is " << *ClosestPoint << " with shortest squared distance is " << ShortestDistance << "." << endl;
557 return ShortestDistance;
558};
559
560/** Checks whether lines is any of the three boundary lines this triangle contains.
561 * \param *line line to test
562 * \return true - line is of the triangle, false - is not
563 */
564bool BoundaryTriangleSet::ContainsBoundaryLine(const BoundaryLineSet * const line) const
565{
566 Info FunctionInfo(__func__);
567 for(int i=0;i<3;i++)
568 if (line == lines[i])
569 return true;
570 return false;
571};
572
573/** Checks whether point is any of the three endpoints this triangle contains.
574 * \param *point point to test
575 * \return true - point is of the triangle, false - is not
576 */
577bool BoundaryTriangleSet::ContainsBoundaryPoint(const BoundaryPointSet * const point) const
578{
579 Info FunctionInfo(__func__);
580 for(int i=0;i<3;i++)
581 if (point == endpoints[i])
582 return true;
583 return false;
584};
585
586/** Checks whether point is any of the three endpoints this triangle contains.
587 * \param *point TesselPoint to test
588 * \return true - point is of the triangle, false - is not
589 */
590bool BoundaryTriangleSet::ContainsBoundaryPoint(const TesselPoint * const point) const
591{
592 Info FunctionInfo(__func__);
593 for(int i=0;i<3;i++)
594 if (point == endpoints[i]->node)
595 return true;
596 return false;
597};
598
599/** Checks whether three given \a *Points coincide with triangle's endpoints.
600 * \param *Points[3] pointer to BoundaryPointSet
601 * \return true - is the very triangle, false - is not
602 */
603bool BoundaryTriangleSet::IsPresentTupel(const BoundaryPointSet * const Points[3]) const
604{
605 Info FunctionInfo(__func__);
606 Log() << Verbose(1) << "INFO: Checking " << Points[0] << "," << Points[1] << "," << Points[2] << " against " << endpoints[0] << "," << endpoints[1] << "," << endpoints[2] << "." << endl;
607 return (((endpoints[0] == Points[0])
608 || (endpoints[0] == Points[1])
609 || (endpoints[0] == Points[2])
610 ) && (
611 (endpoints[1] == Points[0])
612 || (endpoints[1] == Points[1])
613 || (endpoints[1] == Points[2])
614 ) && (
615 (endpoints[2] == Points[0])
616 || (endpoints[2] == Points[1])
617 || (endpoints[2] == Points[2])
618
619 ));
620};
621
622/** Checks whether three given \a *Points coincide with triangle's endpoints.
623 * \param *Points[3] pointer to BoundaryPointSet
624 * \return true - is the very triangle, false - is not
625 */
626bool BoundaryTriangleSet::IsPresentTupel(const BoundaryTriangleSet * const T) const
627{
628 Info FunctionInfo(__func__);
629 return (((endpoints[0] == T->endpoints[0])
630 || (endpoints[0] == T->endpoints[1])
631 || (endpoints[0] == T->endpoints[2])
632 ) && (
633 (endpoints[1] == T->endpoints[0])
634 || (endpoints[1] == T->endpoints[1])
635 || (endpoints[1] == T->endpoints[2])
636 ) && (
637 (endpoints[2] == T->endpoints[0])
638 || (endpoints[2] == T->endpoints[1])
639 || (endpoints[2] == T->endpoints[2])
640
641 ));
642};
643
644/** Returns the endpoint which is not contained in the given \a *line.
645 * \param *line baseline defining two endpoints
646 * \return pointer third endpoint or NULL if line does not belong to triangle.
647 */
648class BoundaryPointSet *BoundaryTriangleSet::GetThirdEndpoint(const BoundaryLineSet * const line) const
649{
650 Info FunctionInfo(__func__);
651 // sanity check
652 if (!ContainsBoundaryLine(line))
653 return NULL;
654 for(int i=0;i<3;i++)
655 if (!line->ContainsBoundaryPoint(endpoints[i]))
656 return endpoints[i];
657 // actually, that' impossible :)
658 return NULL;
659};
660
661/** Calculates the center point of the triangle.
662 * Is third of the sum of all endpoints.
663 * \param *center central point on return.
664 */
665void BoundaryTriangleSet::GetCenter(Vector * const center) const
666{
667 Info FunctionInfo(__func__);
668 center->Zero();
669 for(int i=0;i<3;i++)
670 center->AddVector(endpoints[i]->node->node);
671 center->Scale(1./3.);
672 Log() << Verbose(1) << "INFO: Center is at " << *center << "." << endl;
673}
674
675/** output operator for BoundaryTriangleSet.
676 * \param &ost output stream
677 * \param &a boundary triangle
678 */
679ostream &operator <<(ostream &ost, const BoundaryTriangleSet &a)
680{
681 ost << "[" << a.Nr << "|" << a.endpoints[0]->node->Name << "," << a.endpoints[1]->node->Name << "," << a.endpoints[2]->node->Name << "]";
682// ost << "[" << a.Nr << "|" << a.endpoints[0]->node->Name << " at " << *a.endpoints[0]->node->node << ","
683// << a.endpoints[1]->node->Name << " at " << *a.endpoints[1]->node->node << "," << a.endpoints[2]->node->Name << " at " << *a.endpoints[2]->node->node << "]";
684 return ost;
685};
686
687// ======================================== Polygons on Boundary =================================
688
689/** Constructor for BoundaryPolygonSet.
690 */
691BoundaryPolygonSet::BoundaryPolygonSet() :
692 Nr(-1)
693{
694 Info FunctionInfo(__func__);
695};
696
697/** Destructor of BoundaryPolygonSet.
698 * Just clears endpoints.
699 * \note When removing triangles from a class Tesselation, use RemoveTesselationTriangle()
700 */
701BoundaryPolygonSet::~BoundaryPolygonSet()
702{
703 Info FunctionInfo(__func__);
704 endpoints.clear();
705 Log() << Verbose(1) << "Erasing polygon Nr." << Nr << " itself." << endl;
706};
707
708/** Calculates the normal vector for this triangle.
709 * Is made unique by comparison with \a OtherVector to point in the other direction.
710 * \param &OtherVector direction vector to make normal vector unique.
711 * \return allocated vector in normal direction
712 */
713Vector * BoundaryPolygonSet::GetNormalVector(const Vector &OtherVector) const
714{
715 Info FunctionInfo(__func__);
716 // get normal vector
717 Vector TemporaryNormal;
718 Vector *TotalNormal = new Vector;
719 PointSet::const_iterator Runner[3];
720 for (int i=0;i<3; i++) {
721 Runner[i] = endpoints.begin();
722 for (int j = 0; j<i; j++) { // go as much further
723 Runner[i]++;
724 if (Runner[i] == endpoints.end()) {
725 eLog() << Verbose(0) << "There are less than three endpoints in the polygon!" << endl;
726 performCriticalExit();
727 }
728 }
729 }
730 TotalNormal->Zero();
731 int counter=0;
732 for (; Runner[2] != endpoints.end(); ) {
733 TemporaryNormal.MakeNormalVector((*Runner[0])->node->node, (*Runner[1])->node->node, (*Runner[2])->node->node);
734 for (int i=0;i<3;i++) // increase each of them
735 Runner[i]++;
736 TotalNormal->AddVector(&TemporaryNormal);
737 }
738 TotalNormal->Scale(1./(double)counter);
739
740 // make it always point inward (any offset vector onto plane projected onto normal vector suffices)
741 if (TotalNormal->ScalarProduct(&OtherVector) > 0.)
742 TotalNormal->Scale(-1.);
743 Log() << Verbose(1) << "Normal Vector is " << *TotalNormal << "." << endl;
744
745 return TotalNormal;
746};
747
748/** Calculates the center point of the triangle.
749 * Is third of the sum of all endpoints.
750 * \param *center central point on return.
751 */
752void BoundaryPolygonSet::GetCenter(Vector * const center) const
753{
754 Info FunctionInfo(__func__);
755 center->Zero();
756 int counter = 0;
757 for(PointSet::const_iterator Runner = endpoints.begin(); Runner != endpoints.end(); Runner++) {
758 center->AddVector((*Runner)->node->node);
759 counter++;
760 }
761 center->Scale(1./(double)counter);
762 Log() << Verbose(1) << "Center is at " << *center << "." << endl;
763}
764
765/** Checks whether the polygons contains all three endpoints of the triangle.
766 * \param *triangle triangle to test
767 * \return true - triangle is contained polygon, false - is not
768 */
769bool BoundaryPolygonSet::ContainsBoundaryTriangle(const BoundaryTriangleSet * const triangle) const
770{
771 Info FunctionInfo(__func__);
772 return ContainsPresentTupel(triangle->endpoints, 3);
773};
774
775/** Checks whether the polygons contains both endpoints of the line.
776 * \param *line line to test
777 * \return true - line is of the triangle, false - is not
778 */
779bool BoundaryPolygonSet::ContainsBoundaryLine(const BoundaryLineSet * const line) const
780{
781 Info FunctionInfo(__func__);
782 return ContainsPresentTupel(line->endpoints, 2);
783};
784
785/** Checks whether point is any of the three endpoints this triangle contains.
786 * \param *point point to test
787 * \return true - point is of the triangle, false - is not
788 */
789bool BoundaryPolygonSet::ContainsBoundaryPoint(const BoundaryPointSet * const point) const
790{
791 Info FunctionInfo(__func__);
792 for(PointSet::const_iterator Runner = endpoints.begin(); Runner != endpoints.end(); Runner++) {
793 Log() << Verbose(0) << "Checking against " << **Runner << endl;
794 if (point == (*Runner)) {
795 Log() << Verbose(0) << " Contained." << endl;
796 return true;
797 }
798 }
799 Log() << Verbose(0) << " Not contained." << endl;
800 return false;
801};
802
803/** Checks whether point is any of the three endpoints this triangle contains.
804 * \param *point TesselPoint to test
805 * \return true - point is of the triangle, false - is not
806 */
807bool BoundaryPolygonSet::ContainsBoundaryPoint(const TesselPoint * const point) const
808{
809 Info FunctionInfo(__func__);
810 for(PointSet::const_iterator Runner = endpoints.begin(); Runner != endpoints.end(); Runner++)
811 if (point == (*Runner)->node) {
812 Log() << Verbose(0) << " Contained." << endl;
813 return true;
814 }
815 Log() << Verbose(0) << " Not contained." << endl;
816 return false;
817};
818
819/** Checks whether given array of \a *Points coincide with polygons's endpoints.
820 * \param **Points pointer to an array of BoundaryPointSet
821 * \param dim dimension of array
822 * \return true - set of points is contained in polygon, false - is not
823 */
824bool BoundaryPolygonSet::ContainsPresentTupel(const BoundaryPointSet * const * Points, const int dim) const
825{
826 Info FunctionInfo(__func__);
827 int counter = 0;
828 Log() << Verbose(1) << "Polygon is " << *this << endl;
829 for(int i=0;i<dim;i++) {
830 Log() << Verbose(1) << " Testing endpoint " << *Points[i] << endl;
831 if (ContainsBoundaryPoint(Points[i])) {
832 counter++;
833 }
834 }
835
836 if (counter == dim)
837 return true;
838 else
839 return false;
840};
841
842/** Checks whether given PointList coincide with polygons's endpoints.
843 * \param &endpoints PointList
844 * \return true - set of points is contained in polygon, false - is not
845 */
846bool BoundaryPolygonSet::ContainsPresentTupel(const PointSet &endpoints) const
847{
848 Info FunctionInfo(__func__);
849 size_t counter = 0;
850 Log() << Verbose(1) << "Polygon is " << *this << endl;
851 for(PointSet::const_iterator Runner = endpoints.begin(); Runner != endpoints.end(); Runner++) {
852 Log() << Verbose(1) << " Testing endpoint " << **Runner << endl;
853 if (ContainsBoundaryPoint(*Runner))
854 counter++;
855 }
856
857 if (counter == endpoints.size())
858 return true;
859 else
860 return false;
861};
862
863/** Checks whether given set of \a *Points coincide with polygons's endpoints.
864 * \param *P pointer to BoundaryPolygonSet
865 * \return true - is the very triangle, false - is not
866 */
867bool BoundaryPolygonSet::ContainsPresentTupel(const BoundaryPolygonSet * const P) const
868{
869 return ContainsPresentTupel((const PointSet)P->endpoints);
870};
871
872/** Gathers all the endpoints' triangles in a unique set.
873 * \return set of all triangles
874 */
875TriangleSet * BoundaryPolygonSet::GetAllContainedTrianglesFromEndpoints() const
876{
877 Info FunctionInfo(__func__);
878 pair <TriangleSet::iterator, bool> Tester;
879 TriangleSet *triangles = new TriangleSet;
880
881 for(PointSet::const_iterator Runner = endpoints.begin(); Runner != endpoints.end(); Runner++)
882 for(LineMap::const_iterator Walker = (*Runner)->lines.begin(); Walker != (*Runner)->lines.end(); Walker++)
883 for(TriangleMap::const_iterator Sprinter = (Walker->second)->triangles.begin(); Sprinter != (Walker->second)->triangles.end(); Sprinter++) {
884 //Log() << Verbose(0) << " Testing triangle " << *(Sprinter->second) << endl;
885 if (ContainsBoundaryTriangle(Sprinter->second)) {
886 Tester = triangles->insert(Sprinter->second);
887 if (Tester.second)
888 Log() << Verbose(0) << "Adding triangle " << *(Sprinter->second) << endl;
889 }
890 }
891
892 Log() << Verbose(1) << "The Polygon of " << endpoints.size() << " endpoints has " << triangles->size() << " unique triangles in total." << endl;
893 return triangles;
894};
895
896/** Fills the endpoints of this polygon from the triangles attached to \a *line.
897 * \param *line lines with triangles attached
898 * \return true - polygon contains endpoints, false - line was NULL
899 */
900bool BoundaryPolygonSet::FillPolygonFromTrianglesOfLine(const BoundaryLineSet * const line)
901{
902 Info FunctionInfo(__func__);
903 pair <PointSet::iterator, bool> Tester;
904 if (line == NULL)
905 return false;
906 Log() << Verbose(1) << "Filling polygon from line " << *line << endl;
907 for(TriangleMap::const_iterator Runner = line->triangles.begin(); Runner != line->triangles.end(); Runner++) {
908 for (int i=0;i<3;i++) {
909 Tester = endpoints.insert((Runner->second)->endpoints[i]);
910 if (Tester.second)
911 Log() << Verbose(1) << " Inserting endpoint " << *((Runner->second)->endpoints[i]) << endl;
912 }
913 }
914
915 return true;
916};
917
918/** output operator for BoundaryPolygonSet.
919 * \param &ost output stream
920 * \param &a boundary polygon
921 */
922ostream &operator <<(ostream &ost, const BoundaryPolygonSet &a)
923{
924 ost << "[" << a.Nr << "|";
925 for(PointSet::const_iterator Runner = a.endpoints.begin(); Runner != a.endpoints.end();) {
926 ost << (*Runner)->node->Name;
927 Runner++;
928 if (Runner != a.endpoints.end())
929 ost << ",";
930 }
931 ost<< "]";
932 return ost;
933};
934
935// =========================================================== class TESSELPOINT ===========================================
936
937/** Constructor of class TesselPoint.
938 */
939TesselPoint::TesselPoint()
940{
941 //Info FunctionInfo(__func__);
942 node = NULL;
943 nr = -1;
944 Name = NULL;
945};
946
947/** Destructor for class TesselPoint.
948 */
949TesselPoint::~TesselPoint()
950{
951 //Info FunctionInfo(__func__);
952};
953
954/** Prints LCNode to screen.
955 */
956ostream & operator << (ostream &ost, const TesselPoint &a)
957{
958 ost << "[" << (a.Name) << "|" << a.Name << " at " << *a.node << "]";
959 return ost;
960};
961
962/** Prints LCNode to screen.
963 */
964ostream & TesselPoint::operator << (ostream &ost)
965{
966 Info FunctionInfo(__func__);
967 ost << "[" << (nr) << "|" << this << "]";
968 return ost;
969};
970
971
972// =========================================================== class POINTCLOUD ============================================
973
974/** Constructor of class PointCloud.
975 */
976PointCloud::PointCloud()
977{
978 //Info FunctionInfo(__func__);
979};
980
981/** Destructor for class PointCloud.
982 */
983PointCloud::~PointCloud()
984{
985 //Info FunctionInfo(__func__);
986};
987
988// ============================ CandidateForTesselation =============================
989
990/** Constructor of class CandidateForTesselation.
991 */
992CandidateForTesselation::CandidateForTesselation (BoundaryLineSet* line) :
993 BaseLine(line),
994 ShortestAngle(2.*M_PI),
995 OtherShortestAngle(2.*M_PI)
996{
997 Info FunctionInfo(__func__);
998};
999
1000
1001/** Constructor of class CandidateForTesselation.
1002 */
1003CandidateForTesselation::CandidateForTesselation (TesselPoint *candidate, BoundaryLineSet* line, Vector OptCandidateCenter, Vector OtherOptCandidateCenter) :
1004 BaseLine(line),
1005 ShortestAngle(2.*M_PI),
1006 OtherShortestAngle(2.*M_PI)
1007{
1008 Info FunctionInfo(__func__);
1009 OptCenter.CopyVector(&OptCandidateCenter);
1010 OtherOptCenter.CopyVector(&OtherOptCandidateCenter);
1011};
1012
1013/** Destructor for class CandidateForTesselation.
1014 */
1015CandidateForTesselation::~CandidateForTesselation() {
1016 BaseLine = NULL;
1017};
1018
1019/** output operator for CandidateForTesselation.
1020 * \param &ost output stream
1021 * \param &a boundary line
1022 */
1023ostream & operator <<(ostream &ost, const CandidateForTesselation &a)
1024{
1025 ost << "[" << a.BaseLine->Nr << "|" << a.BaseLine->endpoints[0]->node->Name << "," << a.BaseLine->endpoints[1]->node->Name << "] with ";
1026 if (a.pointlist.empty())
1027 ost << "no candidate.";
1028 else {
1029 ost << "candidate";
1030 if (a.pointlist.size() != 1)
1031 ost << "s ";
1032 else
1033 ost << " ";
1034 for (TesselPointList::const_iterator Runner = a.pointlist.begin(); Runner != a.pointlist.end(); Runner++)
1035 ost << *(*Runner) << " ";
1036 ost << " at angle " << (a.ShortestAngle)<< ".";
1037 }
1038
1039 return ost;
1040};
1041
1042
1043// =========================================================== class TESSELATION ===========================================
1044
1045/** Constructor of class Tesselation.
1046 */
1047Tesselation::Tesselation() :
1048 PointsOnBoundaryCount(0),
1049 LinesOnBoundaryCount(0),
1050 TrianglesOnBoundaryCount(0),
1051 LastTriangle(NULL),
1052 TriangleFilesWritten(0),
1053 InternalPointer(PointsOnBoundary.begin())
1054{
1055 Info FunctionInfo(__func__);
1056}
1057;
1058
1059/** Destructor of class Tesselation.
1060 * We have to free all points, lines and triangles.
1061 */
1062Tesselation::~Tesselation()
1063{
1064 Info FunctionInfo(__func__);
1065 Log() << Verbose(0) << "Free'ing TesselStruct ... " << endl;
1066 for (TriangleMap::iterator runner = TrianglesOnBoundary.begin(); runner != TrianglesOnBoundary.end(); runner++) {
1067 if (runner->second != NULL) {
1068 delete (runner->second);
1069 runner->second = NULL;
1070 } else
1071 eLog() << Verbose(1) << "The triangle " << runner->first << " has already been free'd." << endl;
1072 }
1073 Log() << Verbose(0) << "This envelope was written to file " << TriangleFilesWritten << " times(s)." << endl;
1074}
1075;
1076
1077/** PointCloud implementation of GetCenter
1078 * Uses PointsOnBoundary and STL stuff.
1079 */
1080Vector * Tesselation::GetCenter(ofstream *out) const
1081{
1082 Info FunctionInfo(__func__);
1083 Vector *Center = new Vector(0.,0.,0.);
1084 int num=0;
1085 for (GoToFirst(); (!IsEnd()); GoToNext()) {
1086 Center->AddVector(GetPoint()->node);
1087 num++;
1088 }
1089 Center->Scale(1./num);
1090 return Center;
1091};
1092
1093/** PointCloud implementation of GoPoint
1094 * Uses PointsOnBoundary and STL stuff.
1095 */
1096TesselPoint * Tesselation::GetPoint() const
1097{
1098 Info FunctionInfo(__func__);
1099 return (InternalPointer->second->node);
1100};
1101
1102/** PointCloud implementation of GetTerminalPoint.
1103 * Uses PointsOnBoundary and STL stuff.
1104 */
1105TesselPoint * Tesselation::GetTerminalPoint() const
1106{
1107 Info FunctionInfo(__func__);
1108 PointMap::const_iterator Runner = PointsOnBoundary.end();
1109 Runner--;
1110 return (Runner->second->node);
1111};
1112
1113/** PointCloud implementation of GoToNext.
1114 * Uses PointsOnBoundary and STL stuff.
1115 */
1116void Tesselation::GoToNext() const
1117{
1118 Info FunctionInfo(__func__);
1119 if (InternalPointer != PointsOnBoundary.end())
1120 InternalPointer++;
1121};
1122
1123/** PointCloud implementation of GoToPrevious.
1124 * Uses PointsOnBoundary and STL stuff.
1125 */
1126void Tesselation::GoToPrevious() const
1127{
1128 Info FunctionInfo(__func__);
1129 if (InternalPointer != PointsOnBoundary.begin())
1130 InternalPointer--;
1131};
1132
1133/** PointCloud implementation of GoToFirst.
1134 * Uses PointsOnBoundary and STL stuff.
1135 */
1136void Tesselation::GoToFirst() const
1137{
1138 Info FunctionInfo(__func__);
1139 InternalPointer = PointsOnBoundary.begin();
1140};
1141
1142/** PointCloud implementation of GoToLast.
1143 * Uses PointsOnBoundary and STL stuff.
1144 */
1145void Tesselation::GoToLast() const
1146{
1147 Info FunctionInfo(__func__);
1148 InternalPointer = PointsOnBoundary.end();
1149 InternalPointer--;
1150};
1151
1152/** PointCloud implementation of IsEmpty.
1153 * Uses PointsOnBoundary and STL stuff.
1154 */
1155bool Tesselation::IsEmpty() const
1156{
1157 Info FunctionInfo(__func__);
1158 return (PointsOnBoundary.empty());
1159};
1160
1161/** PointCloud implementation of IsLast.
1162 * Uses PointsOnBoundary and STL stuff.
1163 */
1164bool Tesselation::IsEnd() const
1165{
1166 Info FunctionInfo(__func__);
1167 return (InternalPointer == PointsOnBoundary.end());
1168};
1169
1170
1171/** Gueses first starting triangle of the convex envelope.
1172 * We guess the starting triangle by taking the smallest distance between two points and looking for a fitting third.
1173 * \param *out output stream for debugging
1174 * \param PointsOnBoundary set of boundary points defining the convex envelope of the cluster
1175 */
1176void Tesselation::GuessStartingTriangle()
1177{
1178 Info FunctionInfo(__func__);
1179 // 4b. create a starting triangle
1180 // 4b1. create all distances
1181 DistanceMultiMap DistanceMMap;
1182 double distance, tmp;
1183 Vector PlaneVector, TrialVector;
1184 PointMap::iterator A, B, C; // three nodes of the first triangle
1185 A = PointsOnBoundary.begin(); // the first may be chosen arbitrarily
1186
1187 // with A chosen, take each pair B,C and sort
1188 if (A != PointsOnBoundary.end())
1189 {
1190 B = A;
1191 B++;
1192 for (; B != PointsOnBoundary.end(); B++)
1193 {
1194 C = B;
1195 C++;
1196 for (; C != PointsOnBoundary.end(); C++)
1197 {
1198 tmp = A->second->node->node->DistanceSquared(B->second->node->node);
1199 distance = tmp * tmp;
1200 tmp = A->second->node->node->DistanceSquared(C->second->node->node);
1201 distance += tmp * tmp;
1202 tmp = B->second->node->node->DistanceSquared(C->second->node->node);
1203 distance += tmp * tmp;
1204 DistanceMMap.insert(DistanceMultiMapPair(distance, pair<PointMap::iterator, PointMap::iterator> (B, C)));
1205 }
1206 }
1207 }
1208 // // listing distances
1209 // Log() << Verbose(1) << "Listing DistanceMMap:";
1210 // for(DistanceMultiMap::iterator runner = DistanceMMap.begin(); runner != DistanceMMap.end(); runner++) {
1211 // Log() << Verbose(0) << " " << runner->first << "(" << *runner->second.first->second << ", " << *runner->second.second->second << ")";
1212 // }
1213 // Log() << Verbose(0) << endl;
1214 // 4b2. pick three baselines forming a triangle
1215 // 1. we take from the smallest sum of squared distance as the base line BC (with peak A) onward as the triangle candidate
1216 DistanceMultiMap::iterator baseline = DistanceMMap.begin();
1217 for (; baseline != DistanceMMap.end(); baseline++)
1218 {
1219 // we take from the smallest sum of squared distance as the base line BC (with peak A) onward as the triangle candidate
1220 // 2. next, we have to check whether all points reside on only one side of the triangle
1221 // 3. construct plane vector
1222 PlaneVector.MakeNormalVector(A->second->node->node,
1223 baseline->second.first->second->node->node,
1224 baseline->second.second->second->node->node);
1225 Log() << Verbose(2) << "Plane vector of candidate triangle is " << PlaneVector << endl;
1226 // 4. loop over all points
1227 double sign = 0.;
1228 PointMap::iterator checker = PointsOnBoundary.begin();
1229 for (; checker != PointsOnBoundary.end(); checker++)
1230 {
1231 // (neglecting A,B,C)
1232 if ((checker == A) || (checker == baseline->second.first) || (checker
1233 == baseline->second.second))
1234 continue;
1235 // 4a. project onto plane vector
1236 TrialVector.CopyVector(checker->second->node->node);
1237 TrialVector.SubtractVector(A->second->node->node);
1238 distance = TrialVector.ScalarProduct(&PlaneVector);
1239 if (fabs(distance) < 1e-4) // we need to have a small epsilon around 0 which is still ok
1240 continue;
1241 Log() << Verbose(2) << "Projection of " << checker->second->node->Name << " yields distance of " << distance << "." << endl;
1242 tmp = distance / fabs(distance);
1243 // 4b. Any have different sign to than before? (i.e. would lie outside convex hull with this starting triangle)
1244 if ((sign != 0) && (tmp != sign))
1245 {
1246 // 4c. If so, break 4. loop and continue with next candidate in 1. loop
1247 Log() << Verbose(2) << "Current candidates: "
1248 << A->second->node->Name << ","
1249 << baseline->second.first->second->node->Name << ","
1250 << baseline->second.second->second->node->Name << " leaves "
1251 << checker->second->node->Name << " outside the convex hull."
1252 << endl;
1253 break;
1254 }
1255 else
1256 { // note the sign for later
1257 Log() << Verbose(2) << "Current candidates: "
1258 << A->second->node->Name << ","
1259 << baseline->second.first->second->node->Name << ","
1260 << baseline->second.second->second->node->Name << " leave "
1261 << checker->second->node->Name << " inside the convex hull."
1262 << endl;
1263 sign = tmp;
1264 }
1265 // 4d. Check whether the point is inside the triangle (check distance to each node
1266 tmp = checker->second->node->node->DistanceSquared(A->second->node->node);
1267 int innerpoint = 0;
1268 if ((tmp < A->second->node->node->DistanceSquared(
1269 baseline->second.first->second->node->node)) && (tmp
1270 < A->second->node->node->DistanceSquared(
1271 baseline->second.second->second->node->node)))
1272 innerpoint++;
1273 tmp = checker->second->node->node->DistanceSquared(
1274 baseline->second.first->second->node->node);
1275 if ((tmp < baseline->second.first->second->node->node->DistanceSquared(
1276 A->second->node->node)) && (tmp
1277 < baseline->second.first->second->node->node->DistanceSquared(
1278 baseline->second.second->second->node->node)))
1279 innerpoint++;
1280 tmp = checker->second->node->node->DistanceSquared(
1281 baseline->second.second->second->node->node);
1282 if ((tmp < baseline->second.second->second->node->node->DistanceSquared(
1283 baseline->second.first->second->node->node)) && (tmp
1284 < baseline->second.second->second->node->node->DistanceSquared(
1285 A->second->node->node)))
1286 innerpoint++;
1287 // 4e. If so, break 4. loop and continue with next candidate in 1. loop
1288 if (innerpoint == 3)
1289 break;
1290 }
1291 // 5. come this far, all on same side? Then break 1. loop and construct triangle
1292 if (checker == PointsOnBoundary.end())
1293 {
1294 Log() << Verbose(2) << "Looks like we have a candidate!" << endl;
1295 break;
1296 }
1297 }
1298 if (baseline != DistanceMMap.end())
1299 {
1300 BPS[0] = baseline->second.first->second;
1301 BPS[1] = baseline->second.second->second;
1302 BLS[0] = new class BoundaryLineSet(BPS, LinesOnBoundaryCount);
1303 BPS[0] = A->second;
1304 BPS[1] = baseline->second.second->second;
1305 BLS[1] = new class BoundaryLineSet(BPS, LinesOnBoundaryCount);
1306 BPS[0] = baseline->second.first->second;
1307 BPS[1] = A->second;
1308 BLS[2] = new class BoundaryLineSet(BPS, LinesOnBoundaryCount);
1309
1310 // 4b3. insert created triangle
1311 BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount);
1312 TrianglesOnBoundary.insert(TrianglePair(TrianglesOnBoundaryCount, BTS));
1313 TrianglesOnBoundaryCount++;
1314 for (int i = 0; i < NDIM; i++)
1315 {
1316 LinesOnBoundary.insert(LinePair(LinesOnBoundaryCount, BTS->lines[i]));
1317 LinesOnBoundaryCount++;
1318 }
1319
1320 Log() << Verbose(1) << "Starting triangle is " << *BTS << "." << endl;
1321 }
1322 else
1323 {
1324 eLog() << Verbose(0) << "No starting triangle found." << endl;
1325 }
1326}
1327;
1328
1329/** Tesselates the convex envelope of a cluster from a single starting triangle.
1330 * The starting triangle is made out of three baselines. Each line in the final tesselated cluster may belong to at most
1331 * 2 triangles. Hence, we go through all current lines:
1332 * -# if the lines contains to only one triangle
1333 * -# We search all points in the boundary
1334 * -# if the triangle is in forward direction of the baseline (at most 90 degrees angle between vector orthogonal to
1335 * baseline in triangle plane pointing out of the triangle and normal vector of new triangle)
1336 * -# if the triangle with the baseline and the current point has the smallest of angles (comparison between normal vectors)
1337 * -# then we have a new triangle, whose baselines we again add (or increase their TriangleCount)
1338 * \param *out output stream for debugging
1339 * \param *configuration for IsAngstroem
1340 * \param *cloud cluster of points
1341 */
1342void Tesselation::TesselateOnBoundary(const PointCloud * const cloud)
1343{
1344 Info FunctionInfo(__func__);
1345 bool flag;
1346 PointMap::iterator winner;
1347 class BoundaryPointSet *peak = NULL;
1348 double SmallestAngle, TempAngle;
1349 Vector NormalVector, VirtualNormalVector, CenterVector, TempVector, helper, PropagationVector, *Center = NULL;
1350 LineMap::iterator LineChecker[2];
1351
1352 Center = cloud->GetCenter();
1353 // create a first tesselation with the given BoundaryPoints
1354 do {
1355 flag = false;
1356 for (LineMap::iterator baseline = LinesOnBoundary.begin(); baseline != LinesOnBoundary.end(); baseline++)
1357 if (baseline->second->triangles.size() == 1) {
1358 // 5a. go through each boundary point if not _both_ edges between either endpoint of the current line and this point exist (and belong to 2 triangles)
1359 SmallestAngle = M_PI;
1360
1361 // get peak point with respect to this base line's only triangle
1362 BTS = baseline->second->triangles.begin()->second; // there is only one triangle so far
1363 Log() << Verbose(0) << "Current baseline is between " << *(baseline->second) << "." << endl;
1364 for (int i = 0; i < 3; i++)
1365 if ((BTS->endpoints[i] != baseline->second->endpoints[0]) && (BTS->endpoints[i] != baseline->second->endpoints[1]))
1366 peak = BTS->endpoints[i];
1367 Log() << Verbose(1) << " and has peak " << *peak << "." << endl;
1368
1369 // prepare some auxiliary vectors
1370 Vector BaseLineCenter, BaseLine;
1371 BaseLineCenter.CopyVector(baseline->second->endpoints[0]->node->node);
1372 BaseLineCenter.AddVector(baseline->second->endpoints[1]->node->node);
1373 BaseLineCenter.Scale(1. / 2.); // points now to center of base line
1374 BaseLine.CopyVector(baseline->second->endpoints[0]->node->node);
1375 BaseLine.SubtractVector(baseline->second->endpoints[1]->node->node);
1376
1377 // offset to center of triangle
1378 CenterVector.Zero();
1379 for (int i = 0; i < 3; i++)
1380 CenterVector.AddVector(BTS->endpoints[i]->node->node);
1381 CenterVector.Scale(1. / 3.);
1382 Log() << Verbose(2) << "CenterVector of base triangle is " << CenterVector << endl;
1383
1384 // normal vector of triangle
1385 NormalVector.CopyVector(Center);
1386 NormalVector.SubtractVector(&CenterVector);
1387 BTS->GetNormalVector(NormalVector);
1388 NormalVector.CopyVector(&BTS->NormalVector);
1389 Log() << Verbose(2) << "NormalVector of base triangle is " << NormalVector << endl;
1390
1391 // vector in propagation direction (out of triangle)
1392 // project center vector onto triangle plane (points from intersection plane-NormalVector to plane-CenterVector intersection)
1393 PropagationVector.MakeNormalVector(&BaseLine, &NormalVector);
1394 TempVector.CopyVector(&CenterVector);
1395 TempVector.SubtractVector(baseline->second->endpoints[0]->node->node); // TempVector is vector on triangle plane pointing from one baseline egde towards center!
1396 //Log() << Verbose(0) << "Projection of propagation onto temp: " << PropagationVector.Projection(&TempVector) << "." << endl;
1397 if (PropagationVector.ScalarProduct(&TempVector) > 0) // make sure normal propagation vector points outward from baseline
1398 PropagationVector.Scale(-1.);
1399 Log() << Verbose(2) << "PropagationVector of base triangle is " << PropagationVector << endl;
1400 winner = PointsOnBoundary.end();
1401
1402 // loop over all points and calculate angle between normal vector of new and present triangle
1403 for (PointMap::iterator target = PointsOnBoundary.begin(); target != PointsOnBoundary.end(); target++) {
1404 if ((target->second != baseline->second->endpoints[0]) && (target->second != baseline->second->endpoints[1])) { // don't take the same endpoints
1405 Log() << Verbose(1) << "Target point is " << *(target->second) << ":" << endl;
1406
1407 // first check direction, so that triangles don't intersect
1408 VirtualNormalVector.CopyVector(target->second->node->node);
1409 VirtualNormalVector.SubtractVector(&BaseLineCenter); // points from center of base line to target
1410 VirtualNormalVector.ProjectOntoPlane(&NormalVector);
1411 TempAngle = VirtualNormalVector.Angle(&PropagationVector);
1412 Log() << Verbose(2) << "VirtualNormalVector is " << VirtualNormalVector << " and PropagationVector is " << PropagationVector << "." << endl;
1413 if (TempAngle > (M_PI/2.)) { // no bends bigger than Pi/2 (90 degrees)
1414 Log() << Verbose(2) << "Angle on triangle plane between propagation direction and base line to " << *(target->second) << " is " << TempAngle << ", bad direction!" << endl;
1415 continue;
1416 } else
1417 Log() << Verbose(2) << "Angle on triangle plane between propagation direction and base line to " << *(target->second) << " is " << TempAngle << ", good direction!" << endl;
1418
1419 // check first and second endpoint (if any connecting line goes to target has at least not more than 1 triangle)
1420 LineChecker[0] = baseline->second->endpoints[0]->lines.find(target->first);
1421 LineChecker[1] = baseline->second->endpoints[1]->lines.find(target->first);
1422 if (((LineChecker[0] != baseline->second->endpoints[0]->lines.end()) && (LineChecker[0]->second->triangles.size() == 2))) {
1423 Log() << Verbose(2) << *(baseline->second->endpoints[0]) << " has line " << *(LineChecker[0]->second) << " to " << *(target->second) << " as endpoint with " << LineChecker[0]->second->triangles.size() << " triangles." << endl;
1424 continue;
1425 }
1426 if (((LineChecker[1] != baseline->second->endpoints[1]->lines.end()) && (LineChecker[1]->second->triangles.size() == 2))) {
1427 Log() << Verbose(2) << *(baseline->second->endpoints[1]) << " has line " << *(LineChecker[1]->second) << " to " << *(target->second) << " as endpoint with " << LineChecker[1]->second->triangles.size() << " triangles." << endl;
1428 continue;
1429 }
1430
1431 // check whether the envisaged triangle does not already exist (if both lines exist and have same endpoint)
1432 if ((((LineChecker[0] != baseline->second->endpoints[0]->lines.end()) && (LineChecker[1] != baseline->second->endpoints[1]->lines.end()) && (GetCommonEndpoint(LineChecker[0]->second, LineChecker[1]->second) == peak)))) {
1433 Log() << Verbose(4) << "Current target is peak!" << endl;
1434 continue;
1435 }
1436
1437 // check for linear dependence
1438 TempVector.CopyVector(baseline->second->endpoints[0]->node->node);
1439 TempVector.SubtractVector(target->second->node->node);
1440 helper.CopyVector(baseline->second->endpoints[1]->node->node);
1441 helper.SubtractVector(target->second->node->node);
1442 helper.ProjectOntoPlane(&TempVector);
1443 if (fabs(helper.NormSquared()) < MYEPSILON) {
1444 Log() << Verbose(2) << "Chosen set of vectors is linear dependent." << endl;
1445 continue;
1446 }
1447
1448 // in case NOT both were found, create virtually this triangle, get its normal vector, calculate angle
1449 flag = true;
1450 VirtualNormalVector.MakeNormalVector(baseline->second->endpoints[0]->node->node, baseline->second->endpoints[1]->node->node, target->second->node->node);
1451 TempVector.CopyVector(baseline->second->endpoints[0]->node->node);
1452 TempVector.AddVector(baseline->second->endpoints[1]->node->node);
1453 TempVector.AddVector(target->second->node->node);
1454 TempVector.Scale(1./3.);
1455 TempVector.SubtractVector(Center);
1456 // make it always point outward
1457 if (VirtualNormalVector.ScalarProduct(&TempVector) < 0)
1458 VirtualNormalVector.Scale(-1.);
1459 // calculate angle
1460 TempAngle = NormalVector.Angle(&VirtualNormalVector);
1461 Log() << Verbose(2) << "NormalVector is " << VirtualNormalVector << " and the angle is " << TempAngle << "." << endl;
1462 if ((SmallestAngle - TempAngle) > MYEPSILON) { // set to new possible winner
1463 SmallestAngle = TempAngle;
1464 winner = target;
1465 Log() << Verbose(2) << "New winner " << *winner->second->node << " due to smaller angle between normal vectors." << endl;
1466 } else if (fabs(SmallestAngle - TempAngle) < MYEPSILON) { // check the angle to propagation, both possible targets are in one plane! (their normals have same angle)
1467 // hence, check the angles to some normal direction from our base line but in this common plane of both targets...
1468 helper.CopyVector(target->second->node->node);
1469 helper.SubtractVector(&BaseLineCenter);
1470 helper.ProjectOntoPlane(&BaseLine);
1471 // ...the one with the smaller angle is the better candidate
1472 TempVector.CopyVector(target->second->node->node);
1473 TempVector.SubtractVector(&BaseLineCenter);
1474 TempVector.ProjectOntoPlane(&VirtualNormalVector);
1475 TempAngle = TempVector.Angle(&helper);
1476 TempVector.CopyVector(winner->second->node->node);
1477 TempVector.SubtractVector(&BaseLineCenter);
1478 TempVector.ProjectOntoPlane(&VirtualNormalVector);
1479 if (TempAngle < TempVector.Angle(&helper)) {
1480 TempAngle = NormalVector.Angle(&VirtualNormalVector);
1481 SmallestAngle = TempAngle;
1482 winner = target;
1483 Log() << Verbose(2) << "New winner " << *winner->second->node << " due to smaller angle " << TempAngle << " to propagation direction." << endl;
1484 } else
1485 Log() << Verbose(2) << "Keeping old winner " << *winner->second->node << " due to smaller angle to propagation direction." << endl;
1486 } else
1487 Log() << Verbose(2) << "Keeping old winner " << *winner->second->node << " due to smaller angle between normal vectors." << endl;
1488 }
1489 } // end of loop over all boundary points
1490
1491 // 5b. The point of the above whose triangle has the greatest angle with the triangle the current line belongs to (it only belongs to one, remember!): New triangle
1492 if (winner != PointsOnBoundary.end()) {
1493 Log() << Verbose(0) << "Winning target point is " << *(winner->second) << " with angle " << SmallestAngle << "." << endl;
1494 // create the lins of not yet present
1495 BLS[0] = baseline->second;
1496 // 5c. add lines to the line set if those were new (not yet part of a triangle), delete lines that belong to two triangles)
1497 LineChecker[0] = baseline->second->endpoints[0]->lines.find(winner->first);
1498 LineChecker[1] = baseline->second->endpoints[1]->lines.find(winner->first);
1499 if (LineChecker[0] == baseline->second->endpoints[0]->lines.end()) { // create
1500 BPS[0] = baseline->second->endpoints[0];
1501 BPS[1] = winner->second;
1502 BLS[1] = new class BoundaryLineSet(BPS, LinesOnBoundaryCount);
1503 LinesOnBoundary.insert(LinePair(LinesOnBoundaryCount, BLS[1]));
1504 LinesOnBoundaryCount++;
1505 } else
1506 BLS[1] = LineChecker[0]->second;
1507 if (LineChecker[1] == baseline->second->endpoints[1]->lines.end()) { // create
1508 BPS[0] = baseline->second->endpoints[1];
1509 BPS[1] = winner->second;
1510 BLS[2] = new class BoundaryLineSet(BPS, LinesOnBoundaryCount);
1511 LinesOnBoundary.insert(LinePair(LinesOnBoundaryCount, BLS[2]));
1512 LinesOnBoundaryCount++;
1513 } else
1514 BLS[2] = LineChecker[1]->second;
1515 BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount);
1516 BTS->GetCenter(&helper);
1517 helper.SubtractVector(Center);
1518 helper.Scale(-1);
1519 BTS->GetNormalVector(helper);
1520 TrianglesOnBoundary.insert(TrianglePair(TrianglesOnBoundaryCount, BTS));
1521 TrianglesOnBoundaryCount++;
1522 } else {
1523 eLog() << Verbose(2) << "I could not determine a winner for this baseline " << *(baseline->second) << "." << endl;
1524 }
1525
1526 // 5d. If the set of lines is not yet empty, go to 5. and continue
1527 } else
1528 Log() << Verbose(0) << "Baseline candidate " << *(baseline->second) << " has a triangle count of " << baseline->second->triangles.size() << "." << endl;
1529 } while (flag);
1530
1531 // exit
1532 delete(Center);
1533};
1534
1535/** Inserts all points outside of the tesselated surface into it by adding new triangles.
1536 * \param *out output stream for debugging
1537 * \param *cloud cluster of points
1538 * \param *LC LinkedCell structure to find nearest point quickly
1539 * \return true - all straddling points insert, false - something went wrong
1540 */
1541bool Tesselation::InsertStraddlingPoints(const PointCloud *cloud, const LinkedCell *LC)
1542{
1543 Info FunctionInfo(__func__);
1544 Vector Intersection, Normal;
1545 TesselPoint *Walker = NULL;
1546 Vector *Center = cloud->GetCenter();
1547 TriangleList *triangles = NULL;
1548 bool AddFlag = false;
1549 LinkedCell *BoundaryPoints = NULL;
1550
1551 cloud->GoToFirst();
1552 BoundaryPoints = new LinkedCell(this, 5.);
1553 while (!cloud->IsEnd()) { // we only have to go once through all points, as boundary can become only bigger
1554 if (AddFlag) {
1555 delete(BoundaryPoints);
1556 BoundaryPoints = new LinkedCell(this, 5.);
1557 AddFlag = false;
1558 }
1559 Walker = cloud->GetPoint();
1560 Log() << Verbose(0) << "Current point is " << *Walker << "." << endl;
1561 // get the next triangle
1562 triangles = FindClosestTrianglesToVector(Walker->node, BoundaryPoints);
1563 BTS = triangles->front();
1564 if ((triangles == NULL) || (BTS->ContainsBoundaryPoint(Walker))) {
1565 Log() << Verbose(0) << "No triangles found, probably a tesselation point itself." << endl;
1566 cloud->GoToNext();
1567 continue;
1568 } else {
1569 }
1570 Log() << Verbose(0) << "Closest triangle is " << *BTS << "." << endl;
1571 // get the intersection point
1572 if (BTS->GetIntersectionInsideTriangle(Center, Walker->node, &Intersection)) {
1573 Log() << Verbose(0) << "We have an intersection at " << Intersection << "." << endl;
1574 // we have the intersection, check whether in- or outside of boundary
1575 if ((Center->DistanceSquared(Walker->node) - Center->DistanceSquared(&Intersection)) < -MYEPSILON) {
1576 // inside, next!
1577 Log() << Verbose(0) << *Walker << " is inside wrt triangle " << *BTS << "." << endl;
1578 } else {
1579 // outside!
1580 Log() << Verbose(0) << *Walker << " is outside wrt triangle " << *BTS << "." << endl;
1581 class BoundaryLineSet *OldLines[3], *NewLines[3];
1582 class BoundaryPointSet *OldPoints[3], *NewPoint;
1583 // store the three old lines and old points
1584 for (int i=0;i<3;i++) {
1585 OldLines[i] = BTS->lines[i];
1586 OldPoints[i] = BTS->endpoints[i];
1587 }
1588 Normal.CopyVector(&BTS->NormalVector);
1589 // add Walker to boundary points
1590 Log() << Verbose(0) << "Adding " << *Walker << " to BoundaryPoints." << endl;
1591 AddFlag = true;
1592 if (AddBoundaryPoint(Walker,0))
1593 NewPoint = BPS[0];
1594 else
1595 continue;
1596 // remove triangle
1597 Log() << Verbose(0) << "Erasing triangle " << *BTS << "." << endl;
1598 TrianglesOnBoundary.erase(BTS->Nr);
1599 delete(BTS);
1600 // create three new boundary lines
1601 for (int i=0;i<3;i++) {
1602 BPS[0] = NewPoint;
1603 BPS[1] = OldPoints[i];
1604 NewLines[i] = new class BoundaryLineSet(BPS, LinesOnBoundaryCount);
1605 Log() << Verbose(1) << "Creating new line " << *NewLines[i] << "." << endl;
1606 LinesOnBoundary.insert(LinePair(LinesOnBoundaryCount, NewLines[i])); // no need for check for unique insertion as BPS[0] is definitely a new one
1607 LinesOnBoundaryCount++;
1608 }
1609 // create three new triangle with new point
1610 for (int i=0;i<3;i++) { // find all baselines
1611 BLS[0] = OldLines[i];
1612 int n = 1;
1613 for (int j=0;j<3;j++) {
1614 if (NewLines[j]->IsConnectedTo(BLS[0])) {
1615 if (n>2) {
1616 eLog() << Verbose(2) << BLS[0] << " connects to all of the new lines?!" << endl;
1617 return false;
1618 } else
1619 BLS[n++] = NewLines[j];
1620 }
1621 }
1622 // create the triangle
1623 BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount);
1624 Normal.Scale(-1.);
1625 BTS->GetNormalVector(Normal);
1626 Normal.Scale(-1.);
1627 Log() << Verbose(0) << "Created new triangle " << *BTS << "." << endl;
1628 TrianglesOnBoundary.insert(TrianglePair(TrianglesOnBoundaryCount, BTS));
1629 TrianglesOnBoundaryCount++;
1630 }
1631 }
1632 } else { // something is wrong with FindClosestTriangleToPoint!
1633 eLog() << Verbose(1) << "The closest triangle did not produce an intersection!" << endl;
1634 return false;
1635 }
1636 cloud->GoToNext();
1637 }
1638
1639 // exit
1640 delete(Center);
1641 return true;
1642};
1643
1644/** Adds a point to the tesselation::PointsOnBoundary list.
1645 * \param *Walker point to add
1646 * \param n TesselStruct::BPS index to put pointer into
1647 * \return true - new point was added, false - point already present
1648 */
1649bool Tesselation::AddBoundaryPoint(TesselPoint * Walker, const int n)
1650{
1651 Info FunctionInfo(__func__);
1652 PointTestPair InsertUnique;
1653 BPS[n] = new class BoundaryPointSet(Walker);
1654 InsertUnique = PointsOnBoundary.insert(PointPair(Walker->nr, BPS[n]));
1655 if (InsertUnique.second) { // if new point was not present before, increase counter
1656 PointsOnBoundaryCount++;
1657 return true;
1658 } else {
1659 delete(BPS[n]);
1660 BPS[n] = InsertUnique.first->second;
1661 return false;
1662 }
1663}
1664;
1665
1666/** Adds point to Tesselation::PointsOnBoundary if not yet present.
1667 * Tesselation::TPS is set to either this new BoundaryPointSet or to the existing one of not unique.
1668 * @param Candidate point to add
1669 * @param n index for this point in Tesselation::TPS array
1670 */
1671void Tesselation::AddTesselationPoint(TesselPoint* Candidate, const int n)
1672{
1673 Info FunctionInfo(__func__);
1674 PointTestPair InsertUnique;
1675 TPS[n] = new class BoundaryPointSet(Candidate);
1676 InsertUnique = PointsOnBoundary.insert(PointPair(Candidate->nr, TPS[n]));
1677 if (InsertUnique.second) { // if new point was not present before, increase counter
1678 PointsOnBoundaryCount++;
1679 } else {
1680 delete TPS[n];
1681 Log() << Verbose(0) << "Node " << *((InsertUnique.first)->second->node) << " is already present in PointsOnBoundary." << endl;
1682 TPS[n] = (InsertUnique.first)->second;
1683 }
1684}
1685;
1686
1687/** Sets point to a present Tesselation::PointsOnBoundary.
1688 * Tesselation::TPS is set to the existing one or NULL if not found.
1689 * @param Candidate point to set to
1690 * @param n index for this point in Tesselation::TPS array
1691 */
1692void Tesselation::SetTesselationPoint(TesselPoint* Candidate, const int n) const
1693{
1694 Info FunctionInfo(__func__);
1695 PointMap::const_iterator FindPoint = PointsOnBoundary.find(Candidate->nr);
1696 if (FindPoint != PointsOnBoundary.end())
1697 TPS[n] = FindPoint->second;
1698 else
1699 TPS[n] = NULL;
1700};
1701
1702/** Function tries to add line from current Points in BPS to BoundaryLineSet.
1703 * If successful it raises the line count and inserts the new line into the BLS,
1704 * if unsuccessful, it writes the line which had been present into the BLS, deleting the new constructed one.
1705 * @param *a first endpoint
1706 * @param *b second endpoint
1707 * @param n index of Tesselation::BLS giving the line with both endpoints
1708 */
1709void Tesselation::AddTesselationLine(class BoundaryPointSet *a, class BoundaryPointSet *b, const int n) {
1710 bool insertNewLine = true;
1711
1712 LineMap::iterator FindLine = a->lines.find(b->node->nr);
1713 if (FindLine != a->lines.end()) {
1714 Log() << Verbose(1) << "INFO: There is at least one line between " << *a << " and " << *b << ": " << *(FindLine->second) << "." << endl;
1715
1716 pair<LineMap::iterator,LineMap::iterator> FindPair;
1717 FindPair = a->lines.equal_range(b->node->nr);
1718
1719 for (FindLine = FindPair.first; FindLine != FindPair.second; FindLine++) {
1720 // If there is a line with less than two attached triangles, we don't need a new line.
1721 if (FindLine->second->triangles.size() < 2) {
1722 insertNewLine = false;
1723 Log() << Verbose(0) << "Using existing line " << *FindLine->second << endl;
1724
1725 BPS[0] = FindLine->second->endpoints[0];
1726 BPS[1] = FindLine->second->endpoints[1];
1727 BLS[n] = FindLine->second;
1728
1729 // remove existing line from OpenLines
1730 CandidateMap::iterator CandidateLine = OpenLines.find(BLS[n]);
1731 if (CandidateLine != OpenLines.end()) {
1732 Log() << Verbose(1) << " Removing line from OpenLines." << endl;
1733 delete(CandidateLine->second);
1734 OpenLines.erase(CandidateLine);
1735 } else {
1736 eLog() << Verbose(1) << "Line exists and is attached to less than two triangles, but not in OpenLines!" << endl;
1737 }
1738
1739 break;
1740 }
1741 }
1742 }
1743
1744 if (insertNewLine) {
1745 AlwaysAddTesselationTriangleLine(a, b, n);
1746 }
1747}
1748;
1749
1750/**
1751 * Adds lines from each of the current points in the BPS to BoundaryLineSet.
1752 * Raises the line count and inserts the new line into the BLS.
1753 *
1754 * @param *a first endpoint
1755 * @param *b second endpoint
1756 * @param n index of Tesselation::BLS giving the line with both endpoints
1757 */
1758void Tesselation::AlwaysAddTesselationTriangleLine(class BoundaryPointSet *a, class BoundaryPointSet *b, const int n)
1759{
1760 Info FunctionInfo(__func__);
1761 Log() << Verbose(0) << "Adding open line [" << LinesOnBoundaryCount << "|" << *(a->node) << " and " << *(b->node) << "." << endl;
1762 BPS[0] = a;
1763 BPS[1] = b;
1764 BLS[n] = new class BoundaryLineSet(BPS, LinesOnBoundaryCount); // this also adds the line to the local maps
1765 // add line to global map
1766 LinesOnBoundary.insert(LinePair(LinesOnBoundaryCount, BLS[n]));
1767 // increase counter
1768 LinesOnBoundaryCount++;
1769 // also add to open lines
1770 CandidateForTesselation *CFT = new CandidateForTesselation(BLS[n]);
1771 OpenLines.insert(pair< BoundaryLineSet *, CandidateForTesselation *> (BLS[n], CFT));
1772};
1773
1774/** Function adds triangle to global list.
1775 * Furthermore, the triangle receives the next free id and id counter \a TrianglesOnBoundaryCount is increased.
1776 */
1777void Tesselation::AddTesselationTriangle()
1778{
1779 Info FunctionInfo(__func__);
1780 Log() << Verbose(1) << "Adding triangle to global TrianglesOnBoundary map." << endl;
1781
1782 // add triangle to global map
1783 TrianglesOnBoundary.insert(TrianglePair(TrianglesOnBoundaryCount, BTS));
1784 TrianglesOnBoundaryCount++;
1785
1786 // set as last new triangle
1787 LastTriangle = BTS;
1788
1789 // NOTE: add triangle to local maps is done in constructor of BoundaryTriangleSet
1790};
1791
1792/** Function adds triangle to global list.
1793 * Furthermore, the triangle number is set to \a nr.
1794 * \param nr triangle number
1795 */
1796void Tesselation::AddTesselationTriangle(const int nr)
1797{
1798 Info FunctionInfo(__func__);
1799 Log() << Verbose(0) << "Adding triangle to global TrianglesOnBoundary map." << endl;
1800
1801 // add triangle to global map
1802 TrianglesOnBoundary.insert(TrianglePair(nr, BTS));
1803
1804 // set as last new triangle
1805 LastTriangle = BTS;
1806
1807 // NOTE: add triangle to local maps is done in constructor of BoundaryTriangleSet
1808};
1809
1810/** Removes a triangle from the tesselation.
1811 * Removes itself from the TriangleMap's of its lines, calls for them RemoveTriangleLine() if they are no more connected.
1812 * Removes itself from memory.
1813 * \param *triangle to remove
1814 */
1815void Tesselation::RemoveTesselationTriangle(class BoundaryTriangleSet *triangle)
1816{
1817 Info FunctionInfo(__func__);
1818 if (triangle == NULL)
1819 return;
1820 for (int i = 0; i < 3; i++) {
1821 if (triangle->lines[i] != NULL) {
1822 Log() << Verbose(0) << "Removing triangle Nr." << triangle->Nr << " in line " << *triangle->lines[i] << "." << endl;
1823 triangle->lines[i]->triangles.erase(triangle->Nr);
1824 if (triangle->lines[i]->triangles.empty()) {
1825 Log() << Verbose(0) << *triangle->lines[i] << " is no more attached to any triangle, erasing." << endl;
1826 RemoveTesselationLine(triangle->lines[i]);
1827 } else {
1828 Log() << Verbose(0) << *triangle->lines[i] << " is still attached to another triangle: ";
1829 OpenLines.insert(pair< BoundaryLineSet *, CandidateForTesselation *> (triangle->lines[i], NULL));
1830 for(TriangleMap::iterator TriangleRunner = triangle->lines[i]->triangles.begin(); TriangleRunner != triangle->lines[i]->triangles.end(); TriangleRunner++)
1831 Log() << Verbose(0) << "[" << (TriangleRunner->second)->Nr << "|" << *((TriangleRunner->second)->endpoints[0]) << ", " << *((TriangleRunner->second)->endpoints[1]) << ", " << *((TriangleRunner->second)->endpoints[2]) << "] \t";
1832 Log() << Verbose(0) << endl;
1833// for (int j=0;j<2;j++) {
1834// Log() << Verbose(0) << "Lines of endpoint " << *(triangle->lines[i]->endpoints[j]) << ": ";
1835// for(LineMap::iterator LineRunner = triangle->lines[i]->endpoints[j]->lines.begin(); LineRunner != triangle->lines[i]->endpoints[j]->lines.end(); LineRunner++)
1836// Log() << Verbose(0) << "[" << *(LineRunner->second) << "] \t";
1837// Log() << Verbose(0) << endl;
1838// }
1839 }
1840 triangle->lines[i] = NULL; // free'd or not: disconnect
1841 } else
1842 eLog() << Verbose(1) << "This line " << i << " has already been free'd." << endl;
1843 }
1844
1845 if (TrianglesOnBoundary.erase(triangle->Nr))
1846 Log() << Verbose(0) << "Removing triangle Nr. " << triangle->Nr << "." << endl;
1847 delete(triangle);
1848};
1849
1850/** Removes a line from the tesselation.
1851 * Removes itself from each endpoints' LineMap, then removes itself from global LinesOnBoundary list and free's the line.
1852 * \param *line line to remove
1853 */
1854void Tesselation::RemoveTesselationLine(class BoundaryLineSet *line)
1855{
1856 Info FunctionInfo(__func__);
1857 int Numbers[2];
1858
1859 if (line == NULL)
1860 return;
1861 // get other endpoint number for finding copies of same line
1862 if (line->endpoints[1] != NULL)
1863 Numbers[0] = line->endpoints[1]->Nr;
1864 else
1865 Numbers[0] = -1;
1866 if (line->endpoints[0] != NULL)
1867 Numbers[1] = line->endpoints[0]->Nr;
1868 else
1869 Numbers[1] = -1;
1870
1871 for (int i = 0; i < 2; i++) {
1872 if (line->endpoints[i] != NULL) {
1873 if (Numbers[i] != -1) { // as there may be multiple lines with same endpoints, we have to go through each and find in the endpoint's line list this line set
1874 pair<LineMap::iterator, LineMap::iterator> erasor = line->endpoints[i]->lines.equal_range(Numbers[i]);
1875 for (LineMap::iterator Runner = erasor.first; Runner != erasor.second; Runner++)
1876 if ((*Runner).second == line) {
1877 Log() << Verbose(0) << "Removing Line Nr. " << line->Nr << " in boundary point " << *line->endpoints[i] << "." << endl;
1878 line->endpoints[i]->lines.erase(Runner);
1879 break;
1880 }
1881 } else { // there's just a single line left
1882 if (line->endpoints[i]->lines.erase(line->Nr))
1883 Log() << Verbose(0) << "Removing Line Nr. " << line->Nr << " in boundary point " << *line->endpoints[i] << "." << endl;
1884 }
1885 if (line->endpoints[i]->lines.empty()) {
1886 Log() << Verbose(0) << *line->endpoints[i] << " has no more lines it's attached to, erasing." << endl;
1887 RemoveTesselationPoint(line->endpoints[i]);
1888 } else {
1889 Log() << Verbose(0) << *line->endpoints[i] << " has still lines it's attached to: ";
1890 for(LineMap::iterator LineRunner = line->endpoints[i]->lines.begin(); LineRunner != line->endpoints[i]->lines.end(); LineRunner++)
1891 Log() << Verbose(0) << "[" << *(LineRunner->second) << "] \t";
1892 Log() << Verbose(0) << endl;
1893 }
1894 line->endpoints[i] = NULL; // free'd or not: disconnect
1895 } else
1896 eLog() << Verbose(1) << "Endpoint " << i << " has already been free'd." << endl;
1897 }
1898 if (!line->triangles.empty())
1899 eLog() << Verbose(2) << "Memory Leak! I " << *line << " am still connected to some triangles." << endl;
1900
1901 if (LinesOnBoundary.erase(line->Nr))
1902 Log() << Verbose(0) << "Removing line Nr. " << line->Nr << "." << endl;
1903 delete(line);
1904};
1905
1906/** Removes a point from the tesselation.
1907 * Checks whether there are still lines connected, removes from global PointsOnBoundary list, then free's the point.
1908 * \note If a point should be removed, while keep the tesselated surface intact (i.e. closed), use RemovePointFromTesselatedSurface()
1909 * \param *point point to remove
1910 */
1911void Tesselation::RemoveTesselationPoint(class BoundaryPointSet *point)
1912{
1913 Info FunctionInfo(__func__);
1914 if (point == NULL)
1915 return;
1916 if (PointsOnBoundary.erase(point->Nr))
1917 Log() << Verbose(0) << "Removing point Nr. " << point->Nr << "." << endl;
1918 delete(point);
1919};
1920
1921/** Checks whether the triangle consisting of the three points is already present.
1922 * Searches for the points in Tesselation::PointsOnBoundary and checks their
1923 * lines. If any of the three edges already has two triangles attached, false is
1924 * returned.
1925 * \param *out output stream for debugging
1926 * \param *Candidates endpoints of the triangle candidate
1927 * \return integer 0 if no triangle exists, 1 if one triangle exists, 2 if two
1928 * triangles exist which is the maximum for three points
1929 */
1930int Tesselation::CheckPresenceOfTriangle(TesselPoint *Candidates[3]) const
1931{
1932 Info FunctionInfo(__func__);
1933 int adjacentTriangleCount = 0;
1934 class BoundaryPointSet *Points[3];
1935
1936 // builds a triangle point set (Points) of the end points
1937 for (int i = 0; i < 3; i++) {
1938 PointMap::const_iterator FindPoint = PointsOnBoundary.find(Candidates[i]->nr);
1939 if (FindPoint != PointsOnBoundary.end()) {
1940 Points[i] = FindPoint->second;
1941 } else {
1942 Points[i] = NULL;
1943 }
1944 }
1945
1946 // checks lines between the points in the Points for their adjacent triangles
1947 for (int i = 0; i < 3; i++) {
1948 if (Points[i] != NULL) {
1949 for (int j = i; j < 3; j++) {
1950 if (Points[j] != NULL) {
1951 LineMap::const_iterator FindLine = Points[i]->lines.find(Points[j]->node->nr);
1952 for (; (FindLine != Points[i]->lines.end()) && (FindLine->first == Points[j]->node->nr); FindLine++) {
1953 TriangleMap *triangles = &FindLine->second->triangles;
1954 Log() << Verbose(1) << "Current line is " << FindLine->first << ": " << *(FindLine->second) << " with triangles " << triangles << "." << endl;
1955 for (TriangleMap::const_iterator FindTriangle = triangles->begin(); FindTriangle != triangles->end(); FindTriangle++) {
1956 if (FindTriangle->second->IsPresentTupel(Points)) {
1957 adjacentTriangleCount++;
1958 }
1959 }
1960 Log() << Verbose(1) << "end." << endl;
1961 }
1962 // Only one of the triangle lines must be considered for the triangle count.
1963 //Log() << Verbose(0) << "Found " << adjacentTriangleCount << " adjacent triangles for the point set." << endl;
1964 //return adjacentTriangleCount;
1965 }
1966 }
1967 }
1968 }
1969
1970 Log() << Verbose(0) << "Found " << adjacentTriangleCount << " adjacent triangles for the point set." << endl;
1971 return adjacentTriangleCount;
1972};
1973
1974/** Checks whether the triangle consisting of the three points is already present.
1975 * Searches for the points in Tesselation::PointsOnBoundary and checks their
1976 * lines. If any of the three edges already has two triangles attached, false is
1977 * returned.
1978 * \param *out output stream for debugging
1979 * \param *Candidates endpoints of the triangle candidate
1980 * \return NULL - none found or pointer to triangle
1981 */
1982class BoundaryTriangleSet * Tesselation::GetPresentTriangle(TesselPoint *Candidates[3])
1983{
1984 Info FunctionInfo(__func__);
1985 class BoundaryTriangleSet *triangle = NULL;
1986 class BoundaryPointSet *Points[3];
1987
1988 // builds a triangle point set (Points) of the end points
1989 for (int i = 0; i < 3; i++) {
1990 PointMap::iterator FindPoint = PointsOnBoundary.find(Candidates[i]->nr);
1991 if (FindPoint != PointsOnBoundary.end()) {
1992 Points[i] = FindPoint->second;
1993 } else {
1994 Points[i] = NULL;
1995 }
1996 }
1997
1998 // checks lines between the points in the Points for their adjacent triangles
1999 for (int i = 0; i < 3; i++) {
2000 if (Points[i] != NULL) {
2001 for (int j = i; j < 3; j++) {
2002 if (Points[j] != NULL) {
2003 LineMap::iterator FindLine = Points[i]->lines.find(Points[j]->node->nr);
2004 for (; (FindLine != Points[i]->lines.end()) && (FindLine->first == Points[j]->node->nr); FindLine++) {
2005 TriangleMap *triangles = &FindLine->second->triangles;
2006 for (TriangleMap::iterator FindTriangle = triangles->begin(); FindTriangle != triangles->end(); FindTriangle++) {
2007 if (FindTriangle->second->IsPresentTupel(Points)) {
2008 if ((triangle == NULL) || (triangle->Nr > FindTriangle->second->Nr))
2009 triangle = FindTriangle->second;
2010 }
2011 }
2012 }
2013 // Only one of the triangle lines must be considered for the triangle count.
2014 //Log() << Verbose(0) << "Found " << adjacentTriangleCount << " adjacent triangles for the point set." << endl;
2015 //return adjacentTriangleCount;
2016 }
2017 }
2018 }
2019 }
2020
2021 return triangle;
2022};
2023
2024
2025/** Finds the starting triangle for FindNonConvexBorder().
2026 * Looks at the outermost point per axis, then FindSecondPointForTesselation()
2027 * for the second and FindNextSuitablePointViaAngleOfSphere() for the third
2028 * point are called.
2029 * \param *out output stream for debugging
2030 * \param RADIUS radius of virtual rolling sphere
2031 * \param *LC LinkedCell structure with neighbouring TesselPoint's
2032 */
2033void Tesselation::FindStartingTriangle(const double RADIUS, const LinkedCell *LC)
2034{
2035 Info FunctionInfo(__func__);
2036 int i = 0;
2037 TesselPoint* MaxPoint[NDIM];
2038 TesselPoint* Temporary;
2039 double maxCoordinate[NDIM];
2040 BoundaryLineSet BaseLine;
2041 Vector helper;
2042 Vector Chord;
2043 Vector SearchDirection;
2044 Vector CircleCenter; // center of the circle, i.e. of the band of sphere's centers
2045 Vector CirclePlaneNormal; // normal vector defining the plane this circle lives in
2046 Vector SphereCenter;
2047 Vector NormalVector;
2048
2049 NormalVector.Zero();
2050
2051 for (i = 0; i < 3; i++) {
2052 MaxPoint[i] = NULL;
2053 maxCoordinate[i] = -1;
2054 }
2055
2056 // 1. searching topmost point with respect to each axis
2057 for (int i=0;i<NDIM;i++) { // each axis
2058 LC->n[i] = LC->N[i]-1; // current axis is topmost cell
2059 for (LC->n[(i+1)%NDIM]=0;LC->n[(i+1)%NDIM]<LC->N[(i+1)%NDIM];LC->n[(i+1)%NDIM]++)
2060 for (LC->n[(i+2)%NDIM]=0;LC->n[(i+2)%NDIM]<LC->N[(i+2)%NDIM];LC->n[(i+2)%NDIM]++) {
2061 const LinkedNodes *List = LC->GetCurrentCell();
2062 //Log() << Verbose(1) << "Current cell is " << LC->n[0] << ", " << LC->n[1] << ", " << LC->n[2] << " with No. " << LC->index << "." << endl;
2063 if (List != NULL) {
2064 for (LinkedNodes::const_iterator Runner = List->begin();Runner != List->end();Runner++) {
2065 if ((*Runner)->node->x[i] > maxCoordinate[i]) {
2066 Log() << Verbose(1) << "New maximal for axis " << i << " node is " << *(*Runner) << " at " << *(*Runner)->node << "." << endl;
2067 maxCoordinate[i] = (*Runner)->node->x[i];
2068 MaxPoint[i] = (*Runner);
2069 }
2070 }
2071 } else {
2072 eLog() << Verbose(1) << "The current cell " << LC->n[0] << "," << LC->n[1] << "," << LC->n[2] << " is invalid!" << endl;
2073 }
2074 }
2075 }
2076
2077 Log() << Verbose(1) << "Found maximum coordinates: ";
2078 for (int i=0;i<NDIM;i++)
2079 Log() << Verbose(0) << i << ": " << *MaxPoint[i] << "\t";
2080 Log() << Verbose(0) << endl;
2081
2082 BTS = NULL;
2083 for (int k=0;k<NDIM;k++) {
2084 NormalVector.Zero();
2085 NormalVector.x[k] = 1.;
2086 BaseLine.endpoints[0] = new BoundaryPointSet(MaxPoint[k]);
2087 Log() << Verbose(0) << "Coordinates of start node at " << *BaseLine.endpoints[0]->node << "." << endl;
2088
2089 double ShortestAngle;
2090 ShortestAngle = 999999.; // This will contain the angle, which will be always positive (when looking for second point), when looking for third point this will be the quadrant.
2091
2092 FindSecondPointForTesselation(BaseLine.endpoints[0]->node, NormalVector, Temporary, &ShortestAngle, RADIUS, LC); // we give same point as next candidate as its bonds are looked into in find_second_...
2093 if (Temporary == NULL) // have we found a second point?
2094 continue;
2095 BaseLine.endpoints[1] = new BoundaryPointSet(Temporary);
2096
2097 // construct center of circle
2098 CircleCenter.CopyVector(BaseLine.endpoints[0]->node->node);
2099 CircleCenter.AddVector(BaseLine.endpoints[1]->node->node);
2100 CircleCenter.Scale(0.5);
2101
2102 // construct normal vector of circle
2103 CirclePlaneNormal.CopyVector(BaseLine.endpoints[0]->node->node);
2104 CirclePlaneNormal.SubtractVector(BaseLine.endpoints[1]->node->node);
2105
2106 double radius = CirclePlaneNormal.NormSquared();
2107 double CircleRadius = sqrt(RADIUS*RADIUS - radius/4.);
2108
2109 NormalVector.ProjectOntoPlane(&CirclePlaneNormal);
2110 NormalVector.Normalize();
2111 ShortestAngle = 2.*M_PI; // This will indicate the quadrant.
2112
2113 SphereCenter.CopyVector(&NormalVector);
2114 SphereCenter.Scale(CircleRadius);
2115 SphereCenter.AddVector(&CircleCenter);
2116 // Now, NormalVector and SphereCenter are two orthonormalized vectors in the plane defined by CirclePlaneNormal (not normalized)
2117
2118 // look in one direction of baseline for initial candidate
2119 SearchDirection.MakeNormalVector(&CirclePlaneNormal, &NormalVector); // whether we look "left" first or "right" first is not important ...
2120
2121 // adding point 1 and point 2 and add the line between them
2122 Log() << Verbose(0) << "Coordinates of start node at " << *BaseLine.endpoints[0]->node << "." << endl;
2123 Log() << Verbose(0) << "Found second point is at " << *BaseLine.endpoints[1]->node << ".\n";
2124
2125 //Log() << Verbose(1) << "INFO: OldSphereCenter is at " << helper << ".\n";
2126 CandidateForTesselation OptCandidates(&BaseLine);
2127 FindThirdPointForTesselation(NormalVector, SearchDirection, SphereCenter, OptCandidates, NULL, RADIUS, LC);
2128 Log() << Verbose(0) << "List of third Points is:" << endl;
2129 for (TesselPointList::iterator it = OptCandidates.pointlist.begin(); it != OptCandidates.pointlist.end(); it++) {
2130 Log() << Verbose(0) << " " << *(*it) << endl;
2131 }
2132
2133 BTS = NULL;
2134 AddCandidateTriangle(OptCandidates);
2135// delete(BaseLine.endpoints[0]);
2136// delete(BaseLine.endpoints[1]);
2137
2138 if (BTS != NULL) // we have created one starting triangle
2139 break;
2140 else {
2141 // remove all candidates from the list and then the list itself
2142 OptCandidates.pointlist.clear();
2143 }
2144 }
2145};
2146
2147/** Checks for a given baseline and a third point candidate whether baselines of the found triangle don't have even better candidates.
2148 * This is supposed to prevent early closing of the tesselation.
2149 * \param CandidateLine CandidateForTesselation with baseline and shortestangle , i.e. not \a *OptCandidate
2150 * \param *ThirdNode third point in triangle, not in BoundaryLineSet::endpoints
2151 * \param RADIUS radius of sphere
2152 * \param *LC LinkedCell structure
2153 * \return true - there is a better candidate (smaller angle than \a ShortestAngle), false - no better TesselPoint candidate found
2154 */
2155//bool Tesselation::HasOtherBaselineBetterCandidate(CandidateForTesselation &CandidateLine, const TesselPoint * const ThirdNode, double RADIUS, const LinkedCell * const LC) const
2156//{
2157// Info FunctionInfo(__func__);
2158// bool result = false;
2159// Vector CircleCenter;
2160// Vector CirclePlaneNormal;
2161// Vector OldSphereCenter;
2162// Vector SearchDirection;
2163// Vector helper;
2164// TesselPoint *OtherOptCandidate = NULL;
2165// double OtherShortestAngle = 2.*M_PI; // This will indicate the quadrant.
2166// double radius, CircleRadius;
2167// BoundaryLineSet *Line = NULL;
2168// BoundaryTriangleSet *T = NULL;
2169//
2170// // check both other lines
2171// PointMap::const_iterator FindPoint = PointsOnBoundary.find(ThirdNode->nr);
2172// if (FindPoint != PointsOnBoundary.end()) {
2173// for (int i=0;i<2;i++) {
2174// LineMap::const_iterator FindLine = (FindPoint->second)->lines.find(BaseRay->endpoints[0]->node->nr);
2175// if (FindLine != (FindPoint->second)->lines.end()) {
2176// Line = FindLine->second;
2177// Log() << Verbose(0) << "Found line " << *Line << "." << endl;
2178// if (Line->triangles.size() == 1) {
2179// T = Line->triangles.begin()->second;
2180// // construct center of circle
2181// CircleCenter.CopyVector(Line->endpoints[0]->node->node);
2182// CircleCenter.AddVector(Line->endpoints[1]->node->node);
2183// CircleCenter.Scale(0.5);
2184//
2185// // construct normal vector of circle
2186// CirclePlaneNormal.CopyVector(Line->endpoints[0]->node->node);
2187// CirclePlaneNormal.SubtractVector(Line->endpoints[1]->node->node);
2188//
2189// // calculate squared radius of circle
2190// radius = CirclePlaneNormal.ScalarProduct(&CirclePlaneNormal);
2191// if (radius/4. < RADIUS*RADIUS) {
2192// CircleRadius = RADIUS*RADIUS - radius/4.;
2193// CirclePlaneNormal.Normalize();
2194// //Log() << Verbose(1) << "INFO: CircleCenter is at " << CircleCenter << ", CirclePlaneNormal is " << CirclePlaneNormal << " with circle radius " << sqrt(CircleRadius) << "." << endl;
2195//
2196// // construct old center
2197// GetCenterofCircumcircle(&OldSphereCenter, *T->endpoints[0]->node->node, *T->endpoints[1]->node->node, *T->endpoints[2]->node->node);
2198// helper.CopyVector(&T->NormalVector); // normal vector ensures that this is correct center of the two possible ones
2199// radius = Line->endpoints[0]->node->node->DistanceSquared(&OldSphereCenter);
2200// helper.Scale(sqrt(RADIUS*RADIUS - radius));
2201// OldSphereCenter.AddVector(&helper);
2202// OldSphereCenter.SubtractVector(&CircleCenter);
2203// //Log() << Verbose(1) << "INFO: OldSphereCenter is at " << OldSphereCenter << "." << endl;
2204//
2205// // construct SearchDirection
2206// SearchDirection.MakeNormalVector(&T->NormalVector, &CirclePlaneNormal);
2207// helper.CopyVector(Line->endpoints[0]->node->node);
2208// helper.SubtractVector(ThirdNode->node);
2209// if (helper.ScalarProduct(&SearchDirection) < -HULLEPSILON)// ohoh, SearchDirection points inwards!
2210// SearchDirection.Scale(-1.);
2211// SearchDirection.ProjectOntoPlane(&OldSphereCenter);
2212// SearchDirection.Normalize();
2213// Log() << Verbose(1) << "INFO: SearchDirection is " << SearchDirection << "." << endl;
2214// if (fabs(OldSphereCenter.ScalarProduct(&SearchDirection)) > HULLEPSILON) {
2215// // rotated the wrong way!
2216// eLog() << Verbose(1) << "SearchDirection and RelativeOldSphereCenter are still not orthogonal!" << endl;
2217// }
2218//
2219// // add third point
2220// FindThirdPointForTesselation(T->NormalVector, SearchDirection, OldSphereCenter, OptCandidates, ThirdNode, RADIUS, LC);
2221// for (TesselPointList::iterator it = OptCandidates.pointlist.begin(); it != OptCandidates.pointlist.end(); ++it) {
2222// if (((*it) == BaseRay->endpoints[0]->node) || ((*it) == BaseRay->endpoints[1]->node)) // skip if it's the same triangle than suggested
2223// continue;
2224// Log() << Verbose(0) << " Third point candidate is " << (*it)
2225// << " with circumsphere's center at " << (*it)->OptCenter << "." << endl;
2226// Log() << Verbose(0) << " Baseline is " << *BaseRay << endl;
2227//
2228// // check whether all edges of the new triangle still have space for one more triangle (i.e. TriangleCount <2)
2229// TesselPoint *PointCandidates[3];
2230// PointCandidates[0] = (*it);
2231// PointCandidates[1] = BaseRay->endpoints[0]->node;
2232// PointCandidates[2] = BaseRay->endpoints[1]->node;
2233// bool check=false;
2234// int existentTrianglesCount = CheckPresenceOfTriangle(PointCandidates);
2235// // If there is no triangle, add it regularly.
2236// if (existentTrianglesCount == 0) {
2237// SetTesselationPoint((*it), 0);
2238// SetTesselationPoint(BaseRay->endpoints[0]->node, 1);
2239// SetTesselationPoint(BaseRay->endpoints[1]->node, 2);
2240//
2241// if (CheckLineCriteriaForDegeneratedTriangle((const BoundaryPointSet ** const )TPS)) {
2242// OtherOptCandidate = (*it);
2243// check = true;
2244// }
2245// } else if ((existentTrianglesCount >= 1) && (existentTrianglesCount <= 3)) { // If there is a planar region within the structure, we need this triangle a second time.
2246// SetTesselationPoint((*it), 0);
2247// SetTesselationPoint(BaseRay->endpoints[0]->node, 1);
2248// SetTesselationPoint(BaseRay->endpoints[1]->node, 2);
2249//
2250// // We demand that at most one new degenerate line is created and that this line also already exists (which has to be the case due to existentTrianglesCount == 1)
2251// // i.e. at least one of the three lines must be present with TriangleCount <= 1
2252// if (CheckLineCriteriaForDegeneratedTriangle((const BoundaryPointSet ** const)TPS)) {
2253// OtherOptCandidate = (*it);
2254// check = true;
2255// }
2256// }
2257//
2258// if (check) {
2259// if (ShortestAngle > OtherShortestAngle) {
2260// Log() << Verbose(0) << "There is a better candidate than " << *ThirdNode << " with " << ShortestAngle << " from baseline " << *Line << ": " << *OtherOptCandidate << " with " << OtherShortestAngle << "." << endl;
2261// result = true;
2262// break;
2263// }
2264// }
2265// }
2266// delete(OptCandidates);
2267// if (result)
2268// break;
2269// } else {
2270// Log() << Verbose(0) << "Circumcircle for base line " << *Line << " and base triangle " << T << " is too big!" << endl;
2271// }
2272// } else {
2273// eLog() << Verbose(2) << "Baseline is connected to two triangles already?" << endl;
2274// }
2275// } else {
2276// Log() << Verbose(1) << "No present baseline between " << BaseRay->endpoints[0] << " and candidate " << *ThirdNode << "." << endl;
2277// }
2278// }
2279// } else {
2280// eLog() << Verbose(1) << "Could not find the TesselPoint " << *ThirdNode << "." << endl;
2281// }
2282//
2283// return result;
2284//};
2285
2286/** This function finds a triangle to a line, adjacent to an existing one.
2287 * @param out output stream for debugging
2288 * @param CandidateLine current cadndiate baseline to search from
2289 * @param T current triangle which \a Line is edge of
2290 * @param RADIUS radius of the rolling ball
2291 * @param N number of found triangles
2292 * @param *LC LinkedCell structure with neighbouring points
2293 */
2294bool Tesselation::FindNextSuitableTriangle(CandidateForTesselation &CandidateLine, BoundaryTriangleSet &T, const double& RADIUS, const LinkedCell *LC)
2295{
2296 Info FunctionInfo(__func__);
2297 bool result = true;
2298
2299 Vector CircleCenter;
2300 Vector CirclePlaneNormal;
2301 Vector RelativeSphereCenter;
2302 Vector SearchDirection;
2303 Vector helper;
2304 TesselPoint *ThirdNode = NULL;
2305 LineMap::iterator testline;
2306 double radius, CircleRadius;
2307
2308 for (int i=0;i<3;i++)
2309 if ((T.endpoints[i]->node != CandidateLine.BaseLine->endpoints[0]->node) && (T.endpoints[i]->node != CandidateLine.BaseLine->endpoints[1]->node)) {
2310 ThirdNode = T.endpoints[i]->node;
2311 break;
2312 }
2313 Log() << Verbose(0) << "Current baseline is " << *CandidateLine.BaseLine << " with ThirdNode " << *ThirdNode << " of triangle " << T << "." << endl;
2314
2315 // construct center of circle
2316 CircleCenter.CopyVector(CandidateLine.BaseLine->endpoints[0]->node->node);
2317 CircleCenter.AddVector(CandidateLine.BaseLine->endpoints[1]->node->node);
2318 CircleCenter.Scale(0.5);
2319
2320 // construct normal vector of circle
2321 CirclePlaneNormal.CopyVector(CandidateLine.BaseLine->endpoints[0]->node->node);
2322 CirclePlaneNormal.SubtractVector(CandidateLine.BaseLine->endpoints[1]->node->node);
2323
2324 // calculate squared radius of circle
2325 radius = CirclePlaneNormal.ScalarProduct(&CirclePlaneNormal);
2326 if (radius/4. < RADIUS*RADIUS) {
2327 // construct relative sphere center with now known CircleCenter
2328 RelativeSphereCenter.CopyVector(&T.SphereCenter);
2329 RelativeSphereCenter.SubtractVector(&CircleCenter);
2330
2331 CircleRadius = RADIUS*RADIUS - radius/4.;
2332 CirclePlaneNormal.Normalize();
2333 Log() << Verbose(1) << "INFO: CircleCenter is at " << CircleCenter << ", CirclePlaneNormal is " << CirclePlaneNormal << " with circle radius " << sqrt(CircleRadius) << "." << endl;
2334
2335 Log() << Verbose(1) << "INFO: OldSphereCenter is at " << T.SphereCenter << "." << endl;
2336
2337 // construct SearchDirection and an "outward pointer"
2338 SearchDirection.MakeNormalVector(&RelativeSphereCenter, &CirclePlaneNormal);
2339 helper.CopyVector(&CircleCenter);
2340 helper.SubtractVector(ThirdNode->node);
2341 if (helper.ScalarProduct(&SearchDirection) < -HULLEPSILON)// ohoh, SearchDirection points inwards!
2342 SearchDirection.Scale(-1.);
2343 Log() << Verbose(1) << "INFO: SearchDirection is " << SearchDirection << "." << endl;
2344 if (fabs(RelativeSphereCenter.ScalarProduct(&SearchDirection)) > HULLEPSILON) {
2345 // rotated the wrong way!
2346 eLog() << Verbose(1) << "SearchDirection and RelativeOldSphereCenter are still not orthogonal!" << endl;
2347 }
2348
2349 // add third point
2350 FindThirdPointForTesselation(T.NormalVector, SearchDirection, T.SphereCenter, CandidateLine, ThirdNode, RADIUS, LC);
2351
2352 } else {
2353 Log() << Verbose(0) << "Circumcircle for base line " << *CandidateLine.BaseLine << " and base triangle " << T << " is too big!" << endl;
2354 }
2355
2356 if (CandidateLine.pointlist.empty()) {
2357 eLog() << Verbose(2) << "Could not find a suitable candidate." << endl;
2358 return false;
2359 }
2360 Log() << Verbose(0) << "Third Points are: " << endl;
2361 for (TesselPointList::iterator it = CandidateLine.pointlist.begin(); it != CandidateLine.pointlist.end(); ++it) {
2362 Log() << Verbose(0) << " " << *(*it) << endl;
2363 }
2364
2365 return true;
2366
2367// BoundaryLineSet *BaseRay = CandidateLine.BaseLine;
2368// for (CandidateList::iterator it = OptCandidates->begin(); it != OptCandidates->end(); ++it) {
2369// Log() << Verbose(0) << "Third point candidate is " << *(*it)->point
2370// << " with circumsphere's center at " << (*it)->OptCenter << "." << endl;
2371// Log() << Verbose(0) << "Baseline is " << *BaseRay << endl;
2372//
2373// // check whether all edges of the new triangle still have space for one more triangle (i.e. TriangleCount <2)
2374// TesselPoint *PointCandidates[3];
2375// PointCandidates[0] = (*it)->point;
2376// PointCandidates[1] = BaseRay->endpoints[0]->node;
2377// PointCandidates[2] = BaseRay->endpoints[1]->node;
2378// int existentTrianglesCount = CheckPresenceOfTriangle(PointCandidates);
2379//
2380// BTS = NULL;
2381// // check for present edges and whether we reach better candidates from them
2382// //if (HasOtherBaselineBetterCandidate(BaseRay, (*it)->point, ShortestAngle, RADIUS, LC) ) {
2383// if (0) {
2384// result = false;
2385// break;
2386// } else {
2387// // If there is no triangle, add it regularly.
2388// if (existentTrianglesCount == 0) {
2389// AddTesselationPoint((*it)->point, 0);
2390// AddTesselationPoint(BaseRay->endpoints[0]->node, 1);
2391// AddTesselationPoint(BaseRay->endpoints[1]->node, 2);
2392//
2393// if (CheckLineCriteriaForDegeneratedTriangle((const BoundaryPointSet ** const )TPS)) {
2394// CandidateLine.point = (*it)->point;
2395// CandidateLine.OptCenter.CopyVector(&((*it)->OptCenter));
2396// CandidateLine.OtherOptCenter.CopyVector(&((*it)->OtherOptCenter));
2397// CandidateLine.ShortestAngle = ShortestAngle;
2398// } else {
2399//// eLog() << Verbose(1) << "This triangle consisting of ";
2400//// Log() << Verbose(0) << *(*it)->point << ", ";
2401//// Log() << Verbose(0) << *BaseRay->endpoints[0]->node << " and ";
2402//// Log() << Verbose(0) << *BaseRay->endpoints[1]->node << " ";
2403//// Log() << Verbose(0) << "exists and is not added, as it 0x80000000006fc150(does not seem helpful!" << endl;
2404// result = false;
2405// }
2406// } else if ((existentTrianglesCount >= 1) && (existentTrianglesCount <= 3)) { // If there is a planar region within the structure, we need this triangle a second time.
2407// AddTesselationPoint((*it)->point, 0);
2408// AddTesselationPoint(BaseRay->endpoints[0]->node, 1);
2409// AddTesselationPoint(BaseRay->endpoints[1]->node, 2);
2410//
2411// // We demand that at most one new degenerate line is created and that this line also already exists (which has to be the case due to existentTrianglesCount == 1)
2412// // i.e. at least one of the three lines must be present with TriangleCount <= 1
2413// if (CheckLineCriteriaForDegeneratedTriangle((const BoundaryPointSet ** const)TPS) || CandidateLine.BaseLine->skipped) {
2414// CandidateLine.point = (*it)->point;
2415// CandidateLine.OptCenter.CopyVector(&(*it)->OptCenter);
2416// CandidateLine.OtherOptCenter.CopyVector(&(*it)->OtherOptCenter);
2417// CandidateLine.ShortestAngle = ShortestAngle+2.*M_PI;
2418//
2419// } else {
2420//// eLog() << Verbose(1) << "This triangle consisting of " << *(*it)->point << ", " << *BaseRay->endpoints[0]->node << " and " << *BaseRay->endpoints[1]->node << " " << "exists and is not added, as it does not seem helpful!" << endl;
2421// result = false;
2422// }
2423// } else {
2424//// Log() << Verbose(1) << "This triangle consisting of ";
2425//// Log() << Verbose(0) << *(*it)->point << ", ";
2426//// Log() << Verbose(0) << *BaseRay->endpoints[0]->node << " and ";
2427//// Log() << Verbose(0) << *BaseRay->endpoints[1]->node << " ";
2428//// Log() << Verbose(0) << "is invalid!" << endl;
2429// result = false;
2430// }
2431// }
2432//
2433// // set baseline to new ray from ref point (here endpoints[0]->node) to current candidate (here (*it)->point))
2434// BaseRay = BLS[0];
2435// if ((BTS != NULL) && (BTS->NormalVector.NormSquared() < MYEPSILON)) {
2436// eLog() << Verbose(1) << "Triangle " << *BTS << " has zero normal vector!" << endl;
2437// exit(255);
2438// }
2439//
2440// }
2441//
2442// // remove all candidates from the list and then the list itself
2443// class CandidateForTesselation *remover = NULL;
2444// for (CandidateList::iterator it = OptCandidates->begin(); it != OptCandidates->end(); ++it) {
2445// remover = *it;
2446// delete(remover);
2447// }
2448// delete(OptCandidates);
2449 return result;
2450};
2451
2452/** Adds the present line and candidate point from \a &CandidateLine to the Tesselation.
2453 * \param CandidateLine triangle to add
2454 * \NOTE we need the copy operator here as the original CandidateForTesselation is removed in AddTesselationLine()
2455 */
2456void Tesselation::AddCandidateTriangle(CandidateForTesselation CandidateLine)
2457{
2458 Info FunctionInfo(__func__);
2459 Vector Center;
2460 TesselPoint * const TurningPoint = CandidateLine.BaseLine->endpoints[0]->node;
2461
2462 // fill the set of neighbours
2463 TesselPointSet SetOfNeighbours;
2464 SetOfNeighbours.insert(CandidateLine.BaseLine->endpoints[1]->node);
2465 for (TesselPointList::iterator Runner = CandidateLine.pointlist.begin(); Runner != CandidateLine.pointlist.end(); Runner++)
2466 SetOfNeighbours.insert(*Runner);
2467 TesselPointList *connectedClosestPoints = GetCircleOfSetOfPoints(&SetOfNeighbours, TurningPoint, CandidateLine.BaseLine->endpoints[1]->node->node);
2468
2469 // go through all angle-sorted candidates (in degenerate n-nodes case we may have to add multiple triangles)
2470 Log() << Verbose(0) << "List of Candidates for Turning Point: " << *TurningPoint << "." << endl;
2471 for (TesselPointList::iterator TesselRunner = connectedClosestPoints->begin(); TesselRunner != connectedClosestPoints->end(); ++TesselRunner)
2472 Log() << Verbose(0) << **TesselRunner << endl;
2473 TesselPointList::iterator Runner = connectedClosestPoints->begin();
2474 TesselPointList::iterator Sprinter = Runner;
2475 Sprinter++;
2476 while(Sprinter != connectedClosestPoints->end()) {
2477 // add the points
2478 AddTesselationPoint(TurningPoint, 0);
2479 AddTesselationPoint((*Runner), 1);
2480 AddTesselationPoint((*Sprinter), 2);
2481
2482 // add the lines
2483 AddTesselationLine(TPS[0], TPS[1], 0);
2484 AddTesselationLine(TPS[0], TPS[2], 1);
2485 AddTesselationLine(TPS[1], TPS[2], 2);
2486
2487 // add the triangles
2488 BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount);
2489 AddTesselationTriangle();
2490 BTS->GetCenter(&Center);
2491 Center.SubtractVector(&CandidateLine.OptCenter);
2492 BTS->SphereCenter.CopyVector(&CandidateLine.OptCenter);
2493 BTS->GetNormalVector(Center);
2494
2495 Log() << Verbose(0) << "--> New triangle with " << *BTS << " and normal vector " << BTS->NormalVector << "." << endl;
2496 Runner = Sprinter;
2497 Sprinter++;
2498 Log() << Verbose(0) << "Current Runner is " << **Runner << "." << endl;
2499 if (Sprinter != connectedClosestPoints->end())
2500 Log() << Verbose(0) << " There are still more triangles to add." << endl;
2501 }
2502 delete(connectedClosestPoints);
2503};
2504
2505/** Checks whether the quadragon of the two triangles connect to \a *Base is convex.
2506 * We look whether the closest point on \a *Base with respect to the other baseline is outside
2507 * of the segment formed by both endpoints (concave) or not (convex).
2508 * \param *out output stream for debugging
2509 * \param *Base line to be flipped
2510 * \return NULL - convex, otherwise endpoint that makes it concave
2511 */
2512class BoundaryPointSet *Tesselation::IsConvexRectangle(class BoundaryLineSet *Base)
2513{
2514 Info FunctionInfo(__func__);
2515 class BoundaryPointSet *Spot = NULL;
2516 class BoundaryLineSet *OtherBase;
2517 Vector *ClosestPoint;
2518
2519 int m=0;
2520 for(TriangleMap::iterator runner = Base->triangles.begin(); runner != Base->triangles.end(); runner++)
2521 for (int j=0;j<3;j++) // all of their endpoints and baselines
2522 if (!Base->ContainsBoundaryPoint(runner->second->endpoints[j])) // and neither of its endpoints
2523 BPS[m++] = runner->second->endpoints[j];
2524 OtherBase = new class BoundaryLineSet(BPS,-1);
2525
2526 Log() << Verbose(1) << "INFO: Current base line is " << *Base << "." << endl;
2527 Log() << Verbose(1) << "INFO: Other base line is " << *OtherBase << "." << endl;
2528
2529 // get the closest point on each line to the other line
2530 ClosestPoint = GetClosestPointBetweenLine(Base, OtherBase);
2531
2532 // delete the temporary other base line
2533 delete(OtherBase);
2534
2535 // get the distance vector from Base line to OtherBase line
2536 Vector DistanceToIntersection[2], BaseLine;
2537 double distance[2];
2538 BaseLine.CopyVector(Base->endpoints[1]->node->node);
2539 BaseLine.SubtractVector(Base->endpoints[0]->node->node);
2540 for (int i=0;i<2;i++) {
2541 DistanceToIntersection[i].CopyVector(ClosestPoint);
2542 DistanceToIntersection[i].SubtractVector(Base->endpoints[i]->node->node);
2543 distance[i] = BaseLine.ScalarProduct(&DistanceToIntersection[i]);
2544 }
2545 delete(ClosestPoint);
2546 if ((distance[0] * distance[1]) > 0) { // have same sign?
2547 Log() << Verbose(1) << "REJECT: Both SKPs have same sign: " << distance[0] << " and " << distance[1] << ". " << *Base << "' rectangle is concave." << endl;
2548 if (distance[0] < distance[1]) {
2549 Spot = Base->endpoints[0];
2550 } else {
2551 Spot = Base->endpoints[1];
2552 }
2553 return Spot;
2554 } else { // different sign, i.e. we are in between
2555 Log() << Verbose(0) << "ACCEPT: Rectangle of triangles of base line " << *Base << " is convex." << endl;
2556 return NULL;
2557 }
2558
2559};
2560
2561void Tesselation::PrintAllBoundaryPoints(ofstream *out) const
2562{
2563 Info FunctionInfo(__func__);
2564 // print all lines
2565 Log() << Verbose(0) << "Printing all boundary points for debugging:" << endl;
2566 for (PointMap::const_iterator PointRunner = PointsOnBoundary.begin();PointRunner != PointsOnBoundary.end(); PointRunner++)
2567 Log() << Verbose(0) << *(PointRunner->second) << endl;
2568};
2569
2570void Tesselation::PrintAllBoundaryLines(ofstream *out) const
2571{
2572 Info FunctionInfo(__func__);
2573 // print all lines
2574 Log() << Verbose(0) << "Printing all boundary lines for debugging:" << endl;
2575 for (LineMap::const_iterator LineRunner = LinesOnBoundary.begin(); LineRunner != LinesOnBoundary.end(); LineRunner++)
2576 Log() << Verbose(0) << *(LineRunner->second) << endl;
2577};
2578
2579void Tesselation::PrintAllBoundaryTriangles(ofstream *out) const
2580{
2581 Info FunctionInfo(__func__);
2582 // print all triangles
2583 Log() << Verbose(0) << "Printing all boundary triangles for debugging:" << endl;
2584 for (TriangleMap::const_iterator TriangleRunner = TrianglesOnBoundary.begin(); TriangleRunner != TrianglesOnBoundary.end(); TriangleRunner++)
2585 Log() << Verbose(0) << *(TriangleRunner->second) << endl;
2586};
2587
2588/** For a given boundary line \a *Base and its two triangles, picks the central baseline that is "higher".
2589 * \param *out output stream for debugging
2590 * \param *Base line to be flipped
2591 * \return volume change due to flipping (0 - then no flipped occured)
2592 */
2593double Tesselation::PickFarthestofTwoBaselines(class BoundaryLineSet *Base)
2594{
2595 Info FunctionInfo(__func__);
2596 class BoundaryLineSet *OtherBase;
2597 Vector *ClosestPoint[2];
2598 double volume;
2599
2600 int m=0;
2601 for(TriangleMap::iterator runner = Base->triangles.begin(); runner != Base->triangles.end(); runner++)
2602 for (int j=0;j<3;j++) // all of their endpoints and baselines
2603 if (!Base->ContainsBoundaryPoint(runner->second->endpoints[j])) // and neither of its endpoints
2604 BPS[m++] = runner->second->endpoints[j];
2605 OtherBase = new class BoundaryLineSet(BPS,-1);
2606
2607 Log() << Verbose(0) << "INFO: Current base line is " << *Base << "." << endl;
2608 Log() << Verbose(0) << "INFO: Other base line is " << *OtherBase << "." << endl;
2609
2610 // get the closest point on each line to the other line
2611 ClosestPoint[0] = GetClosestPointBetweenLine(Base, OtherBase);
2612 ClosestPoint[1] = GetClosestPointBetweenLine(OtherBase, Base);
2613
2614 // get the distance vector from Base line to OtherBase line
2615 Vector Distance;
2616 Distance.CopyVector(ClosestPoint[1]);
2617 Distance.SubtractVector(ClosestPoint[0]);
2618
2619 // calculate volume
2620 volume = CalculateVolumeofGeneralTetraeder(*Base->endpoints[1]->node->node, *OtherBase->endpoints[0]->node->node, *OtherBase->endpoints[1]->node->node, *Base->endpoints[0]->node->node);
2621
2622 // delete the temporary other base line and the closest points
2623 delete(ClosestPoint[0]);
2624 delete(ClosestPoint[1]);
2625 delete(OtherBase);
2626
2627 if (Distance.NormSquared() < MYEPSILON) { // check for intersection
2628 Log() << Verbose(0) << "REJECT: Both lines have an intersection: Nothing to do." << endl;
2629 return false;
2630 } else { // check for sign against BaseLineNormal
2631 Vector BaseLineNormal;
2632 BaseLineNormal.Zero();
2633 if (Base->triangles.size() < 2) {
2634 eLog() << Verbose(1) << "Less than two triangles are attached to this baseline!" << endl;
2635 return 0.;
2636 }
2637 for (TriangleMap::iterator runner = Base->triangles.begin(); runner != Base->triangles.end(); runner++) {
2638 Log() << Verbose(1) << "INFO: Adding NormalVector " << runner->second->NormalVector << " of triangle " << *(runner->second) << "." << endl;
2639 BaseLineNormal.AddVector(&(runner->second->NormalVector));
2640 }
2641 BaseLineNormal.Scale(1./2.);
2642
2643 if (Distance.ScalarProduct(&BaseLineNormal) > MYEPSILON) { // Distance points outwards, hence OtherBase higher than Base -> flip
2644 Log() << Verbose(0) << "ACCEPT: Other base line would be higher: Flipping baseline." << endl;
2645 // calculate volume summand as a general tetraeder
2646 return volume;
2647 } else { // Base higher than OtherBase -> do nothing
2648 Log() << Verbose(0) << "REJECT: Base line is higher: Nothing to do." << endl;
2649 return 0.;
2650 }
2651 }
2652};
2653
2654/** For a given baseline and its two connected triangles, flips the baseline.
2655 * I.e. we create the new baseline between the other two endpoints of these four
2656 * endpoints and reconstruct the two triangles accordingly.
2657 * \param *out output stream for debugging
2658 * \param *Base line to be flipped
2659 * \return pointer to allocated new baseline - flipping successful, NULL - something went awry
2660 */
2661class BoundaryLineSet * Tesselation::FlipBaseline(class BoundaryLineSet *Base)
2662{
2663 Info FunctionInfo(__func__);
2664 class BoundaryLineSet *OldLines[4], *NewLine;
2665 class BoundaryPointSet *OldPoints[2];
2666 Vector BaseLineNormal;
2667 int OldTriangleNrs[2], OldBaseLineNr;
2668 int i,m;
2669
2670 // calculate NormalVector for later use
2671 BaseLineNormal.Zero();
2672 if (Base->triangles.size() < 2) {
2673 eLog() << Verbose(1) << "Less than two triangles are attached to this baseline!" << endl;
2674 return NULL;
2675 }
2676 for (TriangleMap::iterator runner = Base->triangles.begin(); runner != Base->triangles.end(); runner++) {
2677 Log() << Verbose(1) << "INFO: Adding NormalVector " << runner->second->NormalVector << " of triangle " << *(runner->second) << "." << endl;
2678 BaseLineNormal.AddVector(&(runner->second->NormalVector));
2679 }
2680 BaseLineNormal.Scale(-1./2.); // has to point inside for BoundaryTriangleSet::GetNormalVector()
2681
2682 // get the two triangles
2683 // gather four endpoints and four lines
2684 for (int j=0;j<4;j++)
2685 OldLines[j] = NULL;
2686 for (int j=0;j<2;j++)
2687 OldPoints[j] = NULL;
2688 i=0;
2689 m=0;
2690 Log() << Verbose(0) << "The four old lines are: ";
2691 for(TriangleMap::iterator runner = Base->triangles.begin(); runner != Base->triangles.end(); runner++)
2692 for (int j=0;j<3;j++) // all of their endpoints and baselines
2693 if (runner->second->lines[j] != Base) { // pick not the central baseline
2694 OldLines[i++] = runner->second->lines[j];
2695 Log() << Verbose(0) << *runner->second->lines[j] << "\t";
2696 }
2697 Log() << Verbose(0) << endl;
2698 Log() << Verbose(0) << "The two old points are: ";
2699 for(TriangleMap::iterator runner = Base->triangles.begin(); runner != Base->triangles.end(); runner++)
2700 for (int j=0;j<3;j++) // all of their endpoints and baselines
2701 if (!Base->ContainsBoundaryPoint(runner->second->endpoints[j])) { // and neither of its endpoints
2702 OldPoints[m++] = runner->second->endpoints[j];
2703 Log() << Verbose(0) << *runner->second->endpoints[j] << "\t";
2704 }
2705 Log() << Verbose(0) << endl;
2706
2707 // check whether everything is in place to create new lines and triangles
2708 if (i<4) {
2709 eLog() << Verbose(1) << "We have not gathered enough baselines!" << endl;
2710 return NULL;
2711 }
2712 for (int j=0;j<4;j++)
2713 if (OldLines[j] == NULL) {
2714 eLog() << Verbose(1) << "We have not gathered enough baselines!" << endl;
2715 return NULL;
2716 }
2717 for (int j=0;j<2;j++)
2718 if (OldPoints[j] == NULL) {
2719 eLog() << Verbose(1) << "We have not gathered enough endpoints!" << endl;
2720 return NULL;
2721 }
2722
2723 // remove triangles and baseline removes itself
2724 Log() << Verbose(0) << "INFO: Deleting baseline " << *Base << " from global list." << endl;
2725 OldBaseLineNr = Base->Nr;
2726 m=0;
2727 for(TriangleMap::iterator runner = Base->triangles.begin(); runner != Base->triangles.end(); runner++) {
2728 Log() << Verbose(0) << "INFO: Deleting triangle " << *(runner->second) << "." << endl;
2729 OldTriangleNrs[m++] = runner->second->Nr;
2730 RemoveTesselationTriangle(runner->second);
2731 }
2732
2733 // construct new baseline (with same number as old one)
2734 BPS[0] = OldPoints[0];
2735 BPS[1] = OldPoints[1];
2736 NewLine = new class BoundaryLineSet(BPS, OldBaseLineNr);
2737 LinesOnBoundary.insert(LinePair(OldBaseLineNr, NewLine)); // no need for check for unique insertion as NewLine is definitely a new one
2738 Log() << Verbose(0) << "INFO: Created new baseline " << *NewLine << "." << endl;
2739
2740 // construct new triangles with flipped baseline
2741 i=-1;
2742 if (OldLines[0]->IsConnectedTo(OldLines[2]))
2743 i=2;
2744 if (OldLines[0]->IsConnectedTo(OldLines[3]))
2745 i=3;
2746 if (i!=-1) {
2747 BLS[0] = OldLines[0];
2748 BLS[1] = OldLines[i];
2749 BLS[2] = NewLine;
2750 BTS = new class BoundaryTriangleSet(BLS, OldTriangleNrs[0]);
2751 BTS->GetNormalVector(BaseLineNormal);
2752 AddTesselationTriangle(OldTriangleNrs[0]);
2753 Log() << Verbose(0) << "INFO: Created new triangle " << *BTS << "." << endl;
2754
2755 BLS[0] = (i==2 ? OldLines[3] : OldLines[2]);
2756 BLS[1] = OldLines[1];
2757 BLS[2] = NewLine;
2758 BTS = new class BoundaryTriangleSet(BLS, OldTriangleNrs[1]);
2759 BTS->GetNormalVector(BaseLineNormal);
2760 AddTesselationTriangle(OldTriangleNrs[1]);
2761 Log() << Verbose(0) << "INFO: Created new triangle " << *BTS << "." << endl;
2762 } else {
2763 eLog() << Verbose(0) << "The four old lines do not connect, something's utterly wrong here!" << endl;
2764 return NULL;
2765 }
2766
2767 return NewLine;
2768};
2769
2770
2771/** Finds the second point of starting triangle.
2772 * \param *a first node
2773 * \param Oben vector indicating the outside
2774 * \param OptCandidate reference to recommended candidate on return
2775 * \param Storage[3] array storing angles and other candidate information
2776 * \param RADIUS radius of virtual sphere
2777 * \param *LC LinkedCell structure with neighbouring points
2778 */
2779void Tesselation::FindSecondPointForTesselation(TesselPoint* a, Vector Oben, TesselPoint*& OptCandidate, double Storage[3], double RADIUS, const LinkedCell *LC)
2780{
2781 Info FunctionInfo(__func__);
2782 Vector AngleCheck;
2783 class TesselPoint* Candidate = NULL;
2784 double norm = -1.;
2785 double angle = 0.;
2786 int N[NDIM];
2787 int Nlower[NDIM];
2788 int Nupper[NDIM];
2789
2790 if (LC->SetIndexToNode(a)) { // get cell for the starting point
2791 for(int i=0;i<NDIM;i++) // store indices of this cell
2792 N[i] = LC->n[i];
2793 } else {
2794 eLog() << Verbose(1) << "Point " << *a << " is not found in cell " << LC->index << "." << endl;
2795 return;
2796 }
2797 // then go through the current and all neighbouring cells and check the contained points for possible candidates
2798 for (int i=0;i<NDIM;i++) {
2799 Nlower[i] = ((N[i]-1) >= 0) ? N[i]-1 : 0;
2800 Nupper[i] = ((N[i]+1) < LC->N[i]) ? N[i]+1 : LC->N[i]-1;
2801 }
2802 Log() << Verbose(0) << "LC Intervals from [" << N[0] << "<->" << LC->N[0] << ", " << N[1] << "<->" << LC->N[1] << ", " << N[2] << "<->" << LC->N[2] << "] :"
2803 << " [" << Nlower[0] << "," << Nupper[0] << "], " << " [" << Nlower[1] << "," << Nupper[1] << "], " << " [" << Nlower[2] << "," << Nupper[2] << "], " << endl;
2804
2805 for (LC->n[0] = Nlower[0]; LC->n[0] <= Nupper[0]; LC->n[0]++)
2806 for (LC->n[1] = Nlower[1]; LC->n[1] <= Nupper[1]; LC->n[1]++)
2807 for (LC->n[2] = Nlower[2]; LC->n[2] <= Nupper[2]; LC->n[2]++) {
2808 const LinkedNodes *List = LC->GetCurrentCell();
2809 //Log() << Verbose(1) << "Current cell is " << LC->n[0] << ", " << LC->n[1] << ", " << LC->n[2] << " with No. " << LC->index << "." << endl;
2810 if (List != NULL) {
2811 for (LinkedNodes::const_iterator Runner = List->begin(); Runner != List->end(); Runner++) {
2812 Candidate = (*Runner);
2813 // check if we only have one unique point yet ...
2814 if (a != Candidate) {
2815 // Calculate center of the circle with radius RADIUS through points a and Candidate
2816 Vector OrthogonalizedOben, aCandidate, Center;
2817 double distance, scaleFactor;
2818
2819 OrthogonalizedOben.CopyVector(&Oben);
2820 aCandidate.CopyVector(a->node);
2821 aCandidate.SubtractVector(Candidate->node);
2822 OrthogonalizedOben.ProjectOntoPlane(&aCandidate);
2823 OrthogonalizedOben.Normalize();
2824 distance = 0.5 * aCandidate.Norm();
2825 scaleFactor = sqrt(((RADIUS * RADIUS) - (distance * distance)));
2826 OrthogonalizedOben.Scale(scaleFactor);
2827
2828 Center.CopyVector(Candidate->node);
2829 Center.AddVector(a->node);
2830 Center.Scale(0.5);
2831 Center.AddVector(&OrthogonalizedOben);
2832
2833 AngleCheck.CopyVector(&Center);
2834 AngleCheck.SubtractVector(a->node);
2835 norm = aCandidate.Norm();
2836 // second point shall have smallest angle with respect to Oben vector
2837 if (norm < RADIUS*2.) {
2838 angle = AngleCheck.Angle(&Oben);
2839 if (angle < Storage[0]) {
2840 //Log() << Verbose(1) << "Old values of Storage: %lf %lf \n", Storage[0], Storage[1]);
2841 Log() << Verbose(1) << "Current candidate is " << *Candidate << ": Is a better candidate with distance " << norm << " and angle " << angle << " to oben " << Oben << ".\n";
2842 OptCandidate = Candidate;
2843 Storage[0] = angle;
2844 //Log() << Verbose(1) << "Changing something in Storage: %lf %lf. \n", Storage[0], Storage[2]);
2845 } else {
2846 //Log() << Verbose(1) << "Current candidate is " << *Candidate << ": Looses with angle " << angle << " to a better candidate " << *OptCandidate << endl;
2847 }
2848 } else {
2849 //Log() << Verbose(1) << "Current candidate is " << *Candidate << ": Refused due to Radius " << norm << endl;
2850 }
2851 } else {
2852 //Log() << Verbose(1) << "Current candidate is " << *Candidate << ": Candidate is equal to first endpoint." << *a << "." << endl;
2853 }
2854 }
2855 } else {
2856 Log() << Verbose(0) << "Linked cell list is empty." << endl;
2857 }
2858 }
2859};
2860
2861
2862/** This recursive function finds a third point, to form a triangle with two given ones.
2863 * Note that this function is for the starting triangle.
2864 * The idea is as follows: A sphere with fixed radius is (almost) uniquely defined in space by three points
2865 * that sit on its boundary. Hence, when two points are given and we look for the (next) third point, then
2866 * the center of the sphere is still fixed up to a single parameter. The band of possible values
2867 * describes a circle in 3D-space. The old center of the sphere for the current base triangle gives
2868 * us the "null" on this circle, the new center of the candidate point will be some way along this
2869 * circle. The shorter the way the better is the candidate. Note that the direction is clearly given
2870 * by the normal vector of the base triangle that always points outwards by construction.
2871 * Hence, we construct a Center of this circle which sits right in the middle of the current base line.
2872 * We construct the normal vector that defines the plane this circle lies in, it is just in the
2873 * direction of the baseline. And finally, we need the radius of the circle, which is given by the rest
2874 * with respect to the length of the baseline and the sphere's fixed \a RADIUS.
2875 * Note that there is one difficulty: The circumcircle is uniquely defined, but for the circumsphere's center
2876 * there are two possibilities which becomes clear from the construction as seen below. Hence, we must check
2877 * both.
2878 * Note also that the acos() function is not unique on [0, 2.*M_PI). Hence, we need an additional check
2879 * to decide for one of the two possible angles. Therefore we need a SearchDirection and to make this check
2880 * sensible we need OldSphereCenter to be orthogonal to it. Either we construct SearchDirection orthogonal
2881 * right away, or -- what we do here -- we rotate the relative sphere centers such that this orthogonality
2882 * holds. Then, the normalized projection onto the SearchDirection is either +1 or -1 and thus states whether
2883 * the angle is uniquely in either (0,M_PI] or [M_PI, 2.*M_PI).
2884 * @param NormalVector normal direction of the base triangle (here the unit axis vector, \sa FindStartingTriangle())
2885 * @param SearchDirection general direction where to search for the next point, relative to center of BaseLine
2886 * @param OldSphereCenter center of sphere for base triangle, relative to center of BaseLine, giving null angle for the parameter circle
2887 * @param CandidateLine CandidateForTesselation with the current base line and list of candidates and ShortestAngle
2888 * @param ThirdNode third point to avoid in search
2889 * @param RADIUS radius of sphere
2890 * @param *LC LinkedCell structure with neighbouring points
2891 */
2892void Tesselation::FindThirdPointForTesselation(Vector &NormalVector, Vector &SearchDirection, Vector &OldSphereCenter, CandidateForTesselation &CandidateLine, const class TesselPoint * const ThirdNode, const double RADIUS, const LinkedCell *LC) const
2893{
2894 Info FunctionInfo(__func__);
2895 Vector CircleCenter; // center of the circle, i.e. of the band of sphere's centers
2896 Vector CirclePlaneNormal; // normal vector defining the plane this circle lives in
2897 Vector SphereCenter;
2898 Vector NewSphereCenter; // center of the sphere defined by the two points of BaseLine and the one of Candidate, first possibility
2899 Vector OtherNewSphereCenter; // center of the sphere defined by the two points of BaseLine and the one of Candidate, second possibility
2900 Vector NewNormalVector; // normal vector of the Candidate's triangle
2901 Vector helper, OptCandidateCenter, OtherOptCandidateCenter;
2902 Vector RelativeOldSphereCenter;
2903 Vector NewPlaneCenter;
2904 double CircleRadius; // radius of this circle
2905 double radius;
2906 double otherradius;
2907 double alpha, Otheralpha; // angles (i.e. parameter for the circle).
2908 int N[NDIM], Nlower[NDIM], Nupper[NDIM];
2909 TesselPoint *Candidate = NULL;
2910
2911 Log() << Verbose(1) << "INFO: NormalVector of BaseTriangle is " << NormalVector << "." << endl;
2912
2913 // construct center of circle
2914 CircleCenter.CopyVector(CandidateLine.BaseLine->endpoints[0]->node->node);
2915 CircleCenter.AddVector(CandidateLine.BaseLine->endpoints[1]->node->node);
2916 CircleCenter.Scale(0.5);
2917
2918 // construct normal vector of circle
2919 CirclePlaneNormal.CopyVector(CandidateLine.BaseLine->endpoints[0]->node->node);
2920 CirclePlaneNormal.SubtractVector(CandidateLine.BaseLine->endpoints[1]->node->node);
2921
2922 RelativeOldSphereCenter.CopyVector(&OldSphereCenter);
2923 RelativeOldSphereCenter.SubtractVector(&CircleCenter);
2924
2925 // calculate squared radius TesselPoint *ThirdNode,f circle
2926 radius = CirclePlaneNormal.NormSquared()/4.;
2927 if (radius < RADIUS*RADIUS) {
2928 CircleRadius = RADIUS*RADIUS - radius;
2929 CirclePlaneNormal.Normalize();
2930 Log() << Verbose(1) << "INFO: CircleCenter is at " << CircleCenter << ", CirclePlaneNormal is " << CirclePlaneNormal << " with circle radius " << sqrt(CircleRadius) << "." << endl;
2931
2932 // test whether old center is on the band's plane
2933 if (fabs(RelativeOldSphereCenter.ScalarProduct(&CirclePlaneNormal)) > HULLEPSILON) {
2934 eLog() << Verbose(1) << "Something's very wrong here: RelativeOldSphereCenter is not on the band's plane as desired by " << fabs(RelativeOldSphereCenter.ScalarProduct(&CirclePlaneNormal)) << "!" << endl;
2935 RelativeOldSphereCenter.ProjectOntoPlane(&CirclePlaneNormal);
2936 }
2937 radius = RelativeOldSphereCenter.NormSquared();
2938 if (fabs(radius - CircleRadius) < HULLEPSILON) {
2939 Log() << Verbose(1) << "INFO: RelativeOldSphereCenter is at " << RelativeOldSphereCenter << "." << endl;
2940
2941 // check SearchDirection
2942 Log() << Verbose(1) << "INFO: SearchDirection is " << SearchDirection << "." << endl;
2943 if (fabs(RelativeOldSphereCenter.ScalarProduct(&SearchDirection)) > HULLEPSILON) { // rotated the wrong way!
2944 eLog() << Verbose(1) << "SearchDirection and RelativeOldSphereCenter are not orthogonal!" << endl;
2945 }
2946
2947 // get cell for the starting point
2948 if (LC->SetIndexToVector(&CircleCenter)) {
2949 for(int i=0;i<NDIM;i++) // store indices of this cell
2950 N[i] = LC->n[i];
2951 //Log() << Verbose(1) << "INFO: Center cell is " << N[0] << ", " << N[1] << ", " << N[2] << " with No. " << LC->index << "." << endl;
2952 } else {
2953 eLog() << Verbose(1) << "Vector " << CircleCenter << " is outside of LinkedCell's bounding box." << endl;
2954 return;
2955 }
2956 // then go through the current and all neighbouring cells and check the contained points for possible candidates
2957 //Log() << Verbose(1) << "LC Intervals:";
2958 for (int i=0;i<NDIM;i++) {
2959 Nlower[i] = ((N[i]-1) >= 0) ? N[i]-1 : 0;
2960 Nupper[i] = ((N[i]+1) < LC->N[i]) ? N[i]+1 : LC->N[i]-1;
2961 //Log() << Verbose(0) << " [" << Nlower[i] << "," << Nupper[i] << "] ";
2962 }
2963 //Log() << Verbose(0) << endl;
2964 for (LC->n[0] = Nlower[0]; LC->n[0] <= Nupper[0]; LC->n[0]++)
2965 for (LC->n[1] = Nlower[1]; LC->n[1] <= Nupper[1]; LC->n[1]++)
2966 for (LC->n[2] = Nlower[2]; LC->n[2] <= Nupper[2]; LC->n[2]++) {
2967 const LinkedNodes *List = LC->GetCurrentCell();
2968 //Log() << Verbose(1) << "Current cell is " << LC->n[0] << ", " << LC->n[1] << ", " << LC->n[2] << " with No. " << LC->index << "." << endl;
2969 if (List != NULL) {
2970 for (LinkedNodes::const_iterator Runner = List->begin(); Runner != List->end(); Runner++) {
2971 Candidate = (*Runner);
2972
2973 // check for three unique points
2974 Log() << Verbose(2) << "INFO: Current Candidate is " << *Candidate << " for BaseLine " << *CandidateLine.BaseLine << " with OldSphereCenter " << OldSphereCenter << "." << endl;
2975 if ((Candidate != CandidateLine.BaseLine->endpoints[0]->node) && (Candidate != CandidateLine.BaseLine->endpoints[1]->node) ){
2976
2977 // find center on the plane
2978 GetCenterofCircumcircle(&NewPlaneCenter, *CandidateLine.BaseLine->endpoints[0]->node->node, *CandidateLine.BaseLine->endpoints[1]->node->node, *Candidate->node);
2979 Log() << Verbose(1) << "INFO: NewPlaneCenter is " << NewPlaneCenter << "." << endl;
2980
2981 if (NewNormalVector.MakeNormalVector(CandidateLine.BaseLine->endpoints[0]->node->node, CandidateLine.BaseLine->endpoints[1]->node->node, Candidate->node)
2982 && (fabs(NewNormalVector.NormSquared()) > HULLEPSILON)
2983 ) {
2984 Log() << Verbose(1) << "INFO: NewNormalVector is " << NewNormalVector << "." << endl;
2985 radius = CandidateLine.BaseLine->endpoints[0]->node->node->DistanceSquared(&NewPlaneCenter);
2986 Log() << Verbose(1) << "INFO: CircleCenter is at " << CircleCenter << ", CirclePlaneNormal is " << CirclePlaneNormal << " with circle radius " << sqrt(CircleRadius) << "." << endl;
2987 Log() << Verbose(1) << "INFO: SearchDirection is " << SearchDirection << "." << endl;
2988 Log() << Verbose(1) << "INFO: Radius of CircumCenterCircle is " << radius << "." << endl;
2989 if (radius < RADIUS*RADIUS) {
2990 otherradius = CandidateLine.BaseLine->endpoints[1]->node->node->DistanceSquared(&NewPlaneCenter);
2991 if (fabs(radius - otherradius) > HULLEPSILON) {
2992 eLog() << Verbose(1) << "Distance to center of circumcircle is not the same from each corner of the triangle: " << fabs(radius-otherradius) << endl;
2993 }
2994 // construct both new centers
2995 NewSphereCenter.CopyVector(&NewPlaneCenter);
2996 OtherNewSphereCenter.CopyVector(&NewPlaneCenter);
2997 helper.CopyVector(&NewNormalVector);
2998 helper.Scale(sqrt(RADIUS*RADIUS - radius));
2999 Log() << Verbose(2) << "INFO: Distance of NewPlaneCenter " << NewPlaneCenter << " to either NewSphereCenter is " << helper.Norm() << " of vector " << helper << " with sphere radius " << RADIUS << "." << endl;
3000 NewSphereCenter.AddVector(&helper);
3001 Log() << Verbose(2) << "INFO: NewSphereCenter is at " << NewSphereCenter << "." << endl;
3002 // OtherNewSphereCenter is created by the same vector just in the other direction
3003 helper.Scale(-1.);
3004 OtherNewSphereCenter.AddVector(&helper);
3005 Log() << Verbose(2) << "INFO: OtherNewSphereCenter is at " << OtherNewSphereCenter << "." << endl;
3006
3007 alpha = GetPathLengthonCircumCircle(CircleCenter, CirclePlaneNormal, CircleRadius, NewSphereCenter, OldSphereCenter, NormalVector, SearchDirection);
3008 Otheralpha = GetPathLengthonCircumCircle(CircleCenter, CirclePlaneNormal, CircleRadius, OtherNewSphereCenter, OldSphereCenter, NormalVector, SearchDirection);
3009 alpha = min(alpha, Otheralpha);
3010
3011 // if there is a better candidate, drop the current list and add the new candidate
3012 // otherwise ignore the new candidate and keep the list
3013 if (CandidateLine.ShortestAngle > (alpha - HULLEPSILON)) {
3014 if (fabs(alpha - Otheralpha) > MYEPSILON) {
3015 CandidateLine.OptCenter.CopyVector(&NewSphereCenter);
3016 CandidateLine.OtherOptCenter.CopyVector(&OtherNewSphereCenter);
3017 } else {
3018 CandidateLine.OptCenter.CopyVector(&OtherNewSphereCenter);
3019 CandidateLine.OtherOptCenter.CopyVector(&NewSphereCenter);
3020 }
3021 // if there is an equal candidate, add it to the list without clearing the list
3022 if ((CandidateLine.ShortestAngle - HULLEPSILON) < alpha) {
3023 CandidateLine.pointlist.push_back(Candidate);
3024 Log() << Verbose(0) << "ACCEPT: We have found an equally good candidate: " << *(Candidate) << " with "
3025 << alpha << " and circumsphere's center at " << CandidateLine.OptCenter << "." << endl;
3026 } else {
3027 // remove all candidates from the list and then the list itself
3028 CandidateLine.pointlist.clear();
3029 CandidateLine.pointlist.push_back(Candidate);
3030 Log() << Verbose(0) << "ACCEPT: We have found a better candidate: " << *(Candidate) << " with "
3031 << alpha << " and circumsphere's center at " << CandidateLine.OptCenter << "." << endl;
3032 }
3033 CandidateLine.ShortestAngle = alpha;
3034 Log() << Verbose(0) << "INFO: There are " << CandidateLine.pointlist.size() << " candidates in the list now." << endl;
3035 } else {
3036 if ((Candidate != NULL) && (CandidateLine.pointlist.begin() != CandidateLine.pointlist.end())) {
3037 Log() << Verbose(1) << "REJECT: Old candidate " << *(Candidate) << " with " << CandidateLine.ShortestAngle << " is better than new one " << *Candidate << " with " << alpha << " ." << endl;
3038 } else {
3039 Log() << Verbose(1) << "REJECT: Candidate " << *Candidate << " with " << alpha << " was rejected." << endl;
3040 }
3041 }
3042 } else {
3043 Log() << Verbose(1) << "REJECT: NewSphereCenter " << NewSphereCenter << " for " << *Candidate << " is too far away: " << radius << "." << endl;
3044 }
3045 } else {
3046 Log() << Verbose(1) << "REJECT: Three points from " << *CandidateLine.BaseLine << " and Candidate " << *Candidate << " are linear-dependent." << endl;
3047 }
3048 } else {
3049 if (ThirdNode != NULL) {
3050 Log() << Verbose(1) << "REJECT: Base triangle " << *CandidateLine.BaseLine << " and " << *ThirdNode << " contains Candidate " << *Candidate << "." << endl;
3051 } else {
3052 Log() << Verbose(1) << "REJECT: Base triangle " << *CandidateLine.BaseLine << " contains Candidate " << *Candidate << "." << endl;
3053 }
3054 }
3055 }
3056 }
3057 }
3058 } else {
3059 eLog() << Verbose(1) << "The projected center of the old sphere has radius " << radius << " instead of " << CircleRadius << "." << endl;
3060 }
3061 } else {
3062 if (ThirdNode != NULL)
3063 Log() << Verbose(1) << "Circumcircle for base line " << *CandidateLine.BaseLine << " and third node " << *ThirdNode << " is too big!" << endl;
3064 else
3065 Log() << Verbose(1) << "Circumcircle for base line " << *CandidateLine.BaseLine << " is too big!" << endl;
3066 }
3067
3068 Log() << Verbose(1) << "INFO: Sorting candidate list ..." << endl;
3069 if (CandidateLine.pointlist.size() > 1) {
3070 CandidateLine.pointlist.unique();
3071 CandidateLine.pointlist.sort(); //SortCandidates);
3072 }
3073};
3074
3075/** Finds the endpoint two lines are sharing.
3076 * \param *line1 first line
3077 * \param *line2 second line
3078 * \return point which is shared or NULL if none
3079 */
3080class BoundaryPointSet *Tesselation::GetCommonEndpoint(const BoundaryLineSet * line1, const BoundaryLineSet * line2) const
3081{
3082 Info FunctionInfo(__func__);
3083 const BoundaryLineSet * lines[2] = { line1, line2 };
3084 class BoundaryPointSet *node = NULL;
3085 PointMap OrderMap;
3086 PointTestPair OrderTest;
3087 for (int i = 0; i < 2; i++)
3088 // for both lines
3089 for (int j = 0; j < 2; j++)
3090 { // for both endpoints
3091 OrderTest = OrderMap.insert(pair<int, class BoundaryPointSet *> (
3092 lines[i]->endpoints[j]->Nr, lines[i]->endpoints[j]));
3093 if (!OrderTest.second)
3094 { // if insertion fails, we have common endpoint
3095 node = OrderTest.first->second;
3096 Log() << Verbose(1) << "Common endpoint of lines " << *line1
3097 << " and " << *line2 << " is: " << *node << "." << endl;
3098 j = 2;
3099 i = 2;
3100 break;
3101 }
3102 }
3103 return node;
3104};
3105
3106/** Finds the boundary points that are closest to a given Vector \a *x.
3107 * \param *out output stream for debugging
3108 * \param *x Vector to look from
3109 * \return map of BoundaryPointSet of closest points sorted by squared distance or NULL.
3110 */
3111DistanceToPointMap * Tesselation::FindClosestBoundaryPointsToVector(const Vector *x, const LinkedCell* LC) const
3112{
3113 Info FunctionInfo(__func__);
3114 PointMap::const_iterator FindPoint;
3115 int N[NDIM], Nlower[NDIM], Nupper[NDIM];
3116
3117 if (LinesOnBoundary.empty()) {
3118 eLog() << Verbose(1) << "There is no tesselation structure to compare the point with, please create one first." << endl;
3119 return NULL;
3120 }
3121
3122 // gather all points close to the desired one
3123 LC->SetIndexToVector(x); // ignore status as we calculate bounds below sensibly
3124 for(int i=0;i<NDIM;i++) // store indices of this cell
3125 N[i] = LC->n[i];
3126 Log() << Verbose(1) << "INFO: Center cell is " << N[0] << ", " << N[1] << ", " << N[2] << " with No. " << LC->index << "." << endl;
3127
3128 DistanceToPointMap * points = new DistanceToPointMap;
3129 LC->GetNeighbourBounds(Nlower, Nupper);
3130 //Log() << Verbose(1) << endl;
3131 for (LC->n[0] = Nlower[0]; LC->n[0] <= Nupper[0]; LC->n[0]++)
3132 for (LC->n[1] = Nlower[1]; LC->n[1] <= Nupper[1]; LC->n[1]++)
3133 for (LC->n[2] = Nlower[2]; LC->n[2] <= Nupper[2]; LC->n[2]++) {
3134 const LinkedNodes *List = LC->GetCurrentCell();
3135 //Log() << Verbose(1) << "The current cell " << LC->n[0] << "," << LC->n[1] << "," << LC->n[2] << endl;
3136 if (List != NULL) {
3137 for (LinkedNodes::const_iterator Runner = List->begin(); Runner != List->end(); Runner++) {
3138 FindPoint = PointsOnBoundary.find((*Runner)->nr);
3139 if (FindPoint != PointsOnBoundary.end()) {
3140 points->insert(DistanceToPointPair (FindPoint->second->node->node->DistanceSquared(x), FindPoint->second) );
3141 Log() << Verbose(1) << "INFO: Putting " << *FindPoint->second << " into the list." << endl;
3142 }
3143 }
3144 } else {
3145 eLog() << Verbose(1) << "The current cell " << LC->n[0] << "," << LC->n[1] << "," << LC->n[2] << " is invalid!" << endl;
3146 }
3147 }
3148
3149 // check whether we found some points
3150 if (points->empty()) {
3151 eLog() << Verbose(1) << "There is no nearest point: too far away from the surface." << endl;
3152 delete(points);
3153 return NULL;
3154 }
3155 return points;
3156};
3157
3158/** Finds the boundary line that is closest to a given Vector \a *x.
3159 * \param *out output stream for debugging
3160 * \param *x Vector to look from
3161 * \return closest BoundaryLineSet or NULL in degenerate case.
3162 */
3163BoundaryLineSet * Tesselation::FindClosestBoundaryLineToVector(const Vector *x, const LinkedCell* LC) const
3164{
3165 Info FunctionInfo(__func__);
3166
3167 // get closest points
3168 DistanceToPointMap * points = FindClosestBoundaryPointsToVector(x,LC);
3169 if (points == NULL) {
3170 eLog() << Verbose(1) << "There is no nearest point: too far away from the surface." << endl;
3171 return NULL;
3172 }
3173
3174 // for each point, check its lines, remember closest
3175 Log() << Verbose(1) << "Finding closest BoundaryLine to " << *x << " ... " << endl;
3176 BoundaryLineSet *ClosestLine = NULL;
3177 double MinDistance = -1.;
3178 Vector helper;
3179 Vector Center;
3180 Vector BaseLine;
3181 for (DistanceToPointMap::iterator Runner = points->begin(); Runner != points->end(); Runner++) {
3182 for (LineMap::iterator LineRunner = Runner->second->lines.begin(); LineRunner != Runner->second->lines.end(); LineRunner++) {
3183 // calculate closest point on line to desired point
3184 helper.CopyVector((LineRunner->second)->endpoints[0]->node->node);
3185 helper.AddVector((LineRunner->second)->endpoints[1]->node->node);
3186 helper.Scale(0.5);
3187 Center.CopyVector(x);
3188 Center.SubtractVector(&helper);
3189 BaseLine.CopyVector((LineRunner->second)->endpoints[0]->node->node);
3190 BaseLine.SubtractVector((LineRunner->second)->endpoints[1]->node->node);
3191 Center.ProjectOntoPlane(&BaseLine);
3192 const double distance = Center.NormSquared();
3193 if ((ClosestLine == NULL) || (distance < MinDistance)) {
3194 // additionally calculate intersection on line (whether it's on the line section or not)
3195 helper.CopyVector(x);
3196 helper.SubtractVector((LineRunner->second)->endpoints[0]->node->node);
3197 helper.SubtractVector(&Center);
3198 const double lengthA = helper.ScalarProduct(&BaseLine);
3199 helper.CopyVector(x);
3200 helper.SubtractVector((LineRunner->second)->endpoints[1]->node->node);
3201 helper.SubtractVector(&Center);
3202 const double lengthB = helper.ScalarProduct(&BaseLine);
3203 if (lengthB*lengthA < 0) { // if have different sign
3204 ClosestLine = LineRunner->second;
3205 MinDistance = distance;
3206 Log() << Verbose(1) << "ACCEPT: New closest line is " << *ClosestLine << " with projected distance " << MinDistance << "." << endl;
3207 } else {
3208 Log() << Verbose(1) << "REJECT: Intersection is outside of the line section: " << lengthA << " and " << lengthB << "." << endl;
3209 }
3210 } else {
3211 Log() << Verbose(1) << "REJECT: Point is too further away than present line: " << distance << " >> " << MinDistance << "." << endl;
3212 }
3213 }
3214 }
3215 delete(points);
3216 // check whether closest line is "too close" :), then it's inside
3217 if (ClosestLine == NULL) {
3218 Log() << Verbose(0) << "Is the only point, no one else is closeby." << endl;
3219 return NULL;
3220 }
3221 return ClosestLine;
3222};
3223
3224
3225/** Finds the triangle that is closest to a given Vector \a *x.
3226 * \param *out output stream for debugging
3227 * \param *x Vector to look from
3228 * \return BoundaryTriangleSet of nearest triangle or NULL.
3229 */
3230TriangleList * Tesselation::FindClosestTrianglesToVector(const Vector *x, const LinkedCell* LC) const
3231{
3232 Info FunctionInfo(__func__);
3233
3234 // get closest points
3235 DistanceToPointMap * points = FindClosestBoundaryPointsToVector(x,LC);
3236 if (points == NULL) {
3237 eLog() << Verbose(1) << "There is no nearest point: too far away from the surface." << endl;
3238 return NULL;
3239 }
3240
3241 // for each point, check its lines, remember closest
3242 Log() << Verbose(1) << "Finding closest BoundaryTriangle to " << *x << " ... " << endl;
3243 LineSet ClosestLines;
3244 double MinDistance = 1e+16;
3245 Vector BaseLineIntersection;
3246 Vector Center;
3247 Vector BaseLine;
3248 Vector BaseLineCenter;
3249 for (DistanceToPointMap::iterator Runner = points->begin(); Runner != points->end(); Runner++) {
3250 for (LineMap::iterator LineRunner = Runner->second->lines.begin(); LineRunner != Runner->second->lines.end(); LineRunner++) {
3251
3252 BaseLine.CopyVector((LineRunner->second)->endpoints[0]->node->node);
3253 BaseLine.SubtractVector((LineRunner->second)->endpoints[1]->node->node);
3254 const double lengthBase = BaseLine.NormSquared();
3255
3256 BaseLineIntersection.CopyVector(x);
3257 BaseLineIntersection.SubtractVector((LineRunner->second)->endpoints[0]->node->node);
3258 const double lengthEndA = BaseLineIntersection.NormSquared();
3259
3260 BaseLineIntersection.CopyVector(x);
3261 BaseLineIntersection.SubtractVector((LineRunner->second)->endpoints[1]->node->node);
3262 const double lengthEndB = BaseLineIntersection.NormSquared();
3263
3264 if ((lengthEndA > lengthBase) || (lengthEndB > lengthBase) || ((lengthEndA < MYEPSILON) || (lengthEndB < MYEPSILON))) { // intersection would be outside, take closer endpoint
3265 const double lengthEnd = Min(lengthEndA, lengthEndB);
3266 if (lengthEnd - MinDistance < -MYEPSILON) { // new best line
3267 ClosestLines.clear();
3268 ClosestLines.insert(LineRunner->second);
3269 MinDistance = lengthEnd;
3270 Log() << Verbose(1) << "ACCEPT: Line " << *LineRunner->second << " to endpoint " << *LineRunner->second->endpoints[0]->node << " is closer with " << lengthEnd << "." << endl;
3271 } else if (fabs(lengthEnd - MinDistance) < MYEPSILON) { // additional best candidate
3272 ClosestLines.insert(LineRunner->second);
3273 Log() << Verbose(1) << "ACCEPT: Line " << *LineRunner->second << " to endpoint " << *LineRunner->second->endpoints[1]->node << " is equally good with " << lengthEnd << "." << endl;
3274 } else { // line is worse
3275 Log() << Verbose(1) << "REJECT: Line " << *LineRunner->second << " to either endpoints is further away than present closest line candidate: " << lengthEndA << ", " << lengthEndB << ", and distance is longer than baseline:" << lengthBase << "." << endl;
3276 }
3277 } else { // intersection is closer, calculate
3278 // calculate closest point on line to desired point
3279 BaseLineIntersection.CopyVector(x);
3280 BaseLineIntersection.SubtractVector((LineRunner->second)->endpoints[1]->node->node);
3281 Center.CopyVector(&BaseLineIntersection);
3282 Center.ProjectOntoPlane(&BaseLine);
3283 BaseLineIntersection.SubtractVector(&Center);
3284 const double distance = BaseLineIntersection.NormSquared();
3285 if (Center.NormSquared() > BaseLine.NormSquared()) {
3286 eLog() << Verbose(0) << "Algorithmic error: In second case we have intersection outside of baseline!" << endl;
3287 }
3288 if ((ClosestLines.empty()) || (distance < MinDistance)) {
3289 ClosestLines.insert(LineRunner->second);
3290 MinDistance = distance;
3291 Log() << Verbose(1) << "ACCEPT: Intersection in between endpoints, new closest line " << *LineRunner->second << " is " << *ClosestLines.begin() << " with projected distance " << MinDistance << "." << endl;
3292 } else {
3293 Log() << Verbose(2) << "REJECT: Point is further away from line " << *LineRunner->second << " than present closest line: " << distance << " >> " << MinDistance << "." << endl;
3294 }
3295 }
3296 }
3297 }
3298 delete(points);
3299
3300 // check whether closest line is "too close" :), then it's inside
3301 if (ClosestLines.empty()) {
3302 Log() << Verbose(0) << "Is the only point, no one else is closeby." << endl;
3303 return NULL;
3304 }
3305 TriangleList * candidates = new TriangleList;
3306 for (LineSet::iterator LineRunner = ClosestLines.begin(); LineRunner != ClosestLines.end(); LineRunner++)
3307 for (TriangleMap::iterator Runner = (*LineRunner)->triangles.begin(); Runner != (*LineRunner)->triangles.end(); Runner++) {
3308 candidates->push_back(Runner->second);
3309 }
3310 return candidates;
3311};
3312
3313/** Finds closest triangle to a point.
3314 * This basically just takes care of the degenerate case, which is not handled in FindClosestTrianglesToPoint().
3315 * \param *out output stream for debugging
3316 * \param *x Vector to look from
3317 * \return list of BoundaryTriangleSet of nearest triangles or NULL.
3318 */
3319class BoundaryTriangleSet * Tesselation::FindClosestTriangleToVector(const Vector *x, const LinkedCell* LC) const
3320{
3321 Info FunctionInfo(__func__);
3322 class BoundaryTriangleSet *result = NULL;
3323 TriangleList *triangles = FindClosestTrianglesToVector(x, LC);
3324 TriangleList candidates;
3325 Vector Center;
3326 Vector helper;
3327
3328 if ((triangles == NULL) || (triangles->empty()))
3329 return NULL;
3330
3331 // go through all and pick the one with the best alignment to x
3332 double MinAlignment = 2.*M_PI;
3333 for (TriangleList::iterator Runner = triangles->begin(); Runner != triangles->end(); Runner++) {
3334 (*Runner)->GetCenter(&Center);
3335 helper.CopyVector(x);
3336 helper.SubtractVector(&Center);
3337 const double Alignment = helper.Angle(&(*Runner)->NormalVector);
3338 if (Alignment < MinAlignment) {
3339 result = *Runner;
3340 MinAlignment = Alignment;
3341 Log() << Verbose(1) << "ACCEPT: Triangle " << *result << " is better aligned with " << MinAlignment << "." << endl;
3342 } else {
3343 Log() << Verbose(1) << "REJECT: Triangle " << *result << " is worse aligned with " << MinAlignment << "." << endl;
3344 }
3345 }
3346 delete(triangles);
3347
3348 return result;
3349};
3350
3351/** Checks whether the provided Vector is within the Tesselation structure.
3352 * Basically calls Tesselation::GetDistanceToSurface() and checks the sign of the return value.
3353 * @param point of which to check the position
3354 * @param *LC LinkedCell structure
3355 *
3356 * @return true if the point is inside the Tesselation structure, false otherwise
3357 */
3358bool Tesselation::IsInnerPoint(const Vector &Point, const LinkedCell* const LC) const
3359{
3360 return (GetDistanceSquaredToSurface(Point, LC) < MYEPSILON);
3361}
3362
3363/** Returns the distance to the surface given by the tesselation.
3364 * Calls FindClosestTriangleToVector() and checks whether the resulting triangle's BoundaryTriangleSet#NormalVector points
3365 * towards or away from the given \a &Point. Additionally, we check whether it's normal to the normal vector, i.e. on the
3366 * closest triangle's plane. Then, we have to check whether \a Point is inside the triangle or not to determine whether it's
3367 * an inside or outside point. This is done by calling BoundaryTriangleSet::GetIntersectionInsideTriangle().
3368 * In the end we additionally find the point on the triangle who was smallest distance to \a Point:
3369 * -# Separate distance from point to center in vector in NormalDirection and on the triangle plane.
3370 * -# Check whether vector on triangle plane points inside the triangle or crosses triangle bounds.
3371 * -# If inside, take it to calculate closest distance
3372 * -# If not, take intersection with BoundaryLine as distance
3373 *
3374 * @note distance is squared despite it still contains a sign to determine in-/outside!
3375 *
3376 * @param point of which to check the position
3377 * @param *LC LinkedCell structure
3378 *
3379 * @return >0 if outside, ==0 if on surface, <0 if inside
3380 */
3381double Tesselation::GetDistanceSquaredToTriangle(const Vector &Point, const BoundaryTriangleSet* const triangle) const
3382{
3383 Info FunctionInfo(__func__);
3384 Vector Center;
3385 Vector helper;
3386 Vector DistanceToCenter;
3387 Vector Intersection;
3388 double distance = 0.;
3389
3390 if (triangle == NULL) {// is boundary point or only point in point cloud?
3391 Log() << Verbose(1) << "No triangle given!" << endl;
3392 return -1.;
3393 } else {
3394 Log() << Verbose(1) << "INFO: Closest triangle found is " << *triangle << " with normal vector " << triangle->NormalVector << "." << endl;
3395 }
3396
3397 triangle->GetCenter(&Center);
3398 Log() << Verbose(2) << "INFO: Central point of the triangle is " << Center << "." << endl;
3399 DistanceToCenter.CopyVector(&Center);
3400 DistanceToCenter.SubtractVector(&Point);
3401 Log() << Verbose(2) << "INFO: Vector from point to test to center is " << DistanceToCenter << "." << endl;
3402
3403 // check whether we are on boundary
3404 if (fabs(DistanceToCenter.ScalarProduct(&triangle->NormalVector)) < MYEPSILON) {
3405 // calculate whether inside of triangle
3406 DistanceToCenter.CopyVector(&Point);
3407 Center.CopyVector(&Point);
3408 Center.SubtractVector(&triangle->NormalVector); // points towards MolCenter
3409 DistanceToCenter.AddVector(&triangle->NormalVector); // points outside
3410 Log() << Verbose(1) << "INFO: Calling Intersection with " << Center << " and " << DistanceToCenter << "." << endl;
3411 if (triangle->GetIntersectionInsideTriangle(&Center, &DistanceToCenter, &Intersection)) {
3412 Log() << Verbose(1) << Point << " is inner point: sufficiently close to boundary, " << Intersection << "." << endl;
3413 return 0.;
3414 } else {
3415 Log() << Verbose(1) << Point << " is NOT an inner point: on triangle plane but outside of triangle bounds." << endl;
3416 return false;
3417 }
3418 } else {
3419 // calculate smallest distance
3420 distance = triangle->GetClosestPointInsideTriangle(&Point, &Intersection);
3421 Log() << Verbose(1) << "Closest point on triangle is " << Intersection << "." << endl;
3422
3423 // then check direction to boundary
3424 if (DistanceToCenter.ScalarProduct(&triangle->NormalVector) > MYEPSILON) {
3425 Log() << Verbose(1) << Point << " is an inner point, " << distance << " below surface." << endl;
3426 return -distance;
3427 } else {
3428 Log() << Verbose(1) << Point << " is NOT an inner point, " << distance << " above surface." << endl;
3429 return +distance;
3430 }
3431 }
3432};
3433
3434/** Calculates distance to a tesselated surface.
3435 * Combines \sa FindClosestTrianglesToVector() and \sa GetDistanceSquaredToTriangle().
3436 * \param &Point point to calculate distance from
3437 * \param *LC needed for finding closest points fast
3438 * \return distance squared to closest point on surface
3439 */
3440double Tesselation::GetDistanceSquaredToSurface(const Vector &Point, const LinkedCell* const LC) const
3441{
3442 BoundaryTriangleSet *triangle = FindClosestTriangleToVector(&Point, LC);
3443 const double distance = GetDistanceSquaredToTriangle(Point, triangle);
3444 return Min(distance, LC->RADIUS);
3445};
3446
3447/** Gets all points connected to the provided point by triangulation lines.
3448 *
3449 * @param *Point of which get all connected points
3450 *
3451 * @return set of the all points linked to the provided one
3452 */
3453TesselPointSet * Tesselation::GetAllConnectedPoints(const TesselPoint* const Point) const
3454{
3455 Info FunctionInfo(__func__);
3456 TesselPointSet *connectedPoints = new TesselPointSet;
3457 class BoundaryPointSet *ReferencePoint = NULL;
3458 TesselPoint* current;
3459 bool takePoint = false;
3460
3461 // find the respective boundary point
3462 PointMap::const_iterator PointRunner = PointsOnBoundary.find(Point->nr);
3463 if (PointRunner != PointsOnBoundary.end()) {
3464 ReferencePoint = PointRunner->second;
3465 } else {
3466 eLog() << Verbose(2) << "GetAllConnectedPoints() could not find the BoundaryPoint belonging to " << *Point << "." << endl;
3467 ReferencePoint = NULL;
3468 }
3469
3470 // little trick so that we look just through lines connect to the BoundaryPoint
3471 // OR fall-back to look through all lines if there is no such BoundaryPoint
3472 const LineMap *Lines;;
3473 if (ReferencePoint != NULL)
3474 Lines = &(ReferencePoint->lines);
3475 else
3476 Lines = &LinesOnBoundary;
3477 LineMap::const_iterator findLines = Lines->begin();
3478 while (findLines != Lines->end()) {
3479 takePoint = false;
3480
3481 if (findLines->second->endpoints[0]->Nr == Point->nr) {
3482 takePoint = true;
3483 current = findLines->second->endpoints[1]->node;
3484 } else if (findLines->second->endpoints[1]->Nr == Point->nr) {
3485 takePoint = true;
3486 current = findLines->second->endpoints[0]->node;
3487 }
3488
3489 if (takePoint) {
3490 Log() << Verbose(1) << "INFO: Endpoint " << *current << " of line " << *(findLines->second) << " is enlisted." << endl;
3491 connectedPoints->insert(current);
3492 }
3493
3494 findLines++;
3495 }
3496
3497 if (connectedPoints->empty()) { // if have not found any points
3498 eLog() << Verbose(1) << "We have not found any connected points to " << *Point<< "." << endl;
3499 return NULL;
3500 }
3501
3502 return connectedPoints;
3503};
3504
3505
3506/** Gets all points connected to the provided point by triangulation lines, ordered such that we have the circle round the point.
3507 * Maps them down onto the plane designated by the axis \a *Point and \a *Reference. The center of all points
3508 * connected in the tesselation to \a *Point is mapped to spherical coordinates with the zero angle being given
3509 * by the mapped down \a *Reference. Hence, the biggest and the smallest angles are those of the two shanks of the
3510 * triangle we are looking for.
3511 *
3512 * @param *out output stream for debugging
3513 * @param *SetOfNeighbours all points for which the angle should be calculated
3514 * @param *Point of which get all connected points
3515 * @param *Reference Reference vector for zero angle or NULL for no preference
3516 * @return list of the all points linked to the provided one
3517 */
3518TesselPointList * Tesselation::GetCircleOfConnectedTriangles(TesselPointSet *SetOfNeighbours, const TesselPoint* const Point, const Vector * const Reference) const
3519{
3520 Info FunctionInfo(__func__);
3521 map<double, TesselPoint*> anglesOfPoints;
3522 TesselPointList *connectedCircle = new TesselPointList;
3523 Vector PlaneNormal;
3524 Vector AngleZero;
3525 Vector OrthogonalVector;
3526 Vector helper;
3527 const TesselPoint * const TrianglePoints[3] = {Point, NULL, NULL};
3528 TriangleList *triangles = NULL;
3529
3530 if (SetOfNeighbours == NULL) {
3531 eLog() << Verbose(2) << "Could not find any connected points!" << endl;
3532 delete(connectedCircle);
3533 return NULL;
3534 }
3535
3536 // calculate central point
3537 triangles = FindTriangles(TrianglePoints);
3538 if ((triangles != NULL) && (!triangles->empty())) {
3539 for (TriangleList::iterator Runner = triangles->begin(); Runner != triangles->end(); Runner++)
3540 PlaneNormal.AddVector(&(*Runner)->NormalVector);
3541 } else {
3542 eLog() << Verbose(0) << "Could not find any triangles for point " << *Point << "." << endl;
3543 performCriticalExit();
3544 }
3545 PlaneNormal.Scale(1.0/triangles->size());
3546 Log() << Verbose(1) << "INFO: Calculated PlaneNormal of all circle points is " << PlaneNormal << "." << endl;
3547 PlaneNormal.Normalize();
3548
3549 // construct one orthogonal vector
3550 if (Reference != NULL) {
3551 AngleZero.CopyVector(Reference);
3552 AngleZero.SubtractVector(Point->node);
3553 AngleZero.ProjectOntoPlane(&PlaneNormal);
3554 }
3555 if ((Reference == NULL) || (AngleZero.NormSquared() < MYEPSILON )) {
3556 Log() << Verbose(1) << "Using alternatively " << *(*SetOfNeighbours->begin())->node << " as angle 0 referencer." << endl;
3557 AngleZero.CopyVector((*SetOfNeighbours->begin())->node);
3558 AngleZero.SubtractVector(Point->node);
3559 AngleZero.ProjectOntoPlane(&PlaneNormal);
3560 if (AngleZero.NormSquared() < MYEPSILON) {
3561 eLog() << Verbose(0) << "CRITIAL: AngleZero is 0 even with alternative reference. The algorithm has to be changed here!" << endl;
3562 performCriticalExit();
3563 }
3564 }
3565 Log() << Verbose(1) << "INFO: Reference vector on this plane representing angle 0 is " << AngleZero << "." << endl;
3566 if (AngleZero.NormSquared() > MYEPSILON)
3567 OrthogonalVector.MakeNormalVector(&PlaneNormal, &AngleZero);
3568 else
3569 OrthogonalVector.MakeNormalVector(&PlaneNormal);
3570 Log() << Verbose(1) << "INFO: OrthogonalVector on plane is " << OrthogonalVector << "." << endl;
3571
3572 // go through all connected points and calculate angle
3573 for (TesselPointSet::iterator listRunner = SetOfNeighbours->begin(); listRunner != SetOfNeighbours->end(); listRunner++) {
3574 helper.CopyVector((*listRunner)->node);
3575 helper.SubtractVector(Point->node);
3576 helper.ProjectOntoPlane(&PlaneNormal);
3577 double angle = GetAngle(helper, AngleZero, OrthogonalVector);
3578 Log() << Verbose(0) << "INFO: Calculated angle is " << angle << " for point " << **listRunner << "." << endl;
3579 anglesOfPoints.insert(pair<double, TesselPoint*>(angle, (*listRunner)));
3580 }
3581
3582 for(map<double, TesselPoint*>::iterator AngleRunner = anglesOfPoints.begin(); AngleRunner != anglesOfPoints.end(); AngleRunner++) {
3583 connectedCircle->push_back(AngleRunner->second);
3584 }
3585
3586 return connectedCircle;
3587}
3588
3589/** Gets all points connected to the provided point by triangulation lines, ordered such that we have the circle round the point.
3590 * Maps them down onto the plane designated by the axis \a *Point and \a *Reference. The center of all points
3591 * connected in the tesselation to \a *Point is mapped to spherical coordinates with the zero angle being given
3592 * by the mapped down \a *Reference. Hence, the biggest and the smallest angles are those of the two shanks of the
3593 * triangle we are looking for.
3594 *
3595 * @param *SetOfNeighbours all points for which the angle should be calculated
3596 * @param *Point of which get all connected points
3597 * @param *Reference Reference vector for zero angle or NULL for no preference
3598 * @return list of the all points linked to the provided one
3599 */
3600TesselPointList * Tesselation::GetCircleOfSetOfPoints(TesselPointSet *SetOfNeighbours, const TesselPoint* const Point, const Vector * const Reference) const
3601{
3602 Info FunctionInfo(__func__);
3603 map<double, TesselPoint*> anglesOfPoints;
3604 TesselPointList *connectedCircle = new TesselPointList;
3605 Vector center;
3606 Vector PlaneNormal;
3607 Vector AngleZero;
3608 Vector OrthogonalVector;
3609 Vector helper;
3610
3611 if (SetOfNeighbours == NULL) {
3612 eLog() << Verbose(2) << "Could not find any connected points!" << endl;
3613 delete(connectedCircle);
3614 return NULL;
3615 }
3616
3617 // check whether there's something to do
3618 if (SetOfNeighbours->size() < 3) {
3619 for (TesselPointSet::iterator TesselRunner = SetOfNeighbours->begin(); TesselRunner != SetOfNeighbours->end(); TesselRunner++)
3620 connectedCircle->push_back(*TesselRunner);
3621 return connectedCircle;
3622 }
3623
3624 Log() << Verbose(1) << "INFO: Point is " << *Point << " and Reference is " << *Reference << "." << endl;
3625 // calculate central point
3626
3627 TesselPointSet::const_iterator TesselA = SetOfNeighbours->begin();
3628 TesselPointSet::const_iterator TesselB = SetOfNeighbours->begin();
3629 TesselPointSet::const_iterator TesselC = SetOfNeighbours->begin();
3630 TesselB++;
3631 TesselC++;
3632 TesselC++;
3633 int counter = 0;
3634 while (TesselC != SetOfNeighbours->end()) {
3635 helper.MakeNormalVector((*TesselA)->node, (*TesselB)->node, (*TesselC)->node);
3636 Log() << Verbose(0) << "Making normal vector out of " << *(*TesselA) << ", " << *(*TesselB) << " and " << *(*TesselC) << ":" << helper << endl;
3637 counter++;
3638 TesselA++;
3639 TesselB++;
3640 TesselC++;
3641 PlaneNormal.AddVector(&helper);
3642 }
3643 //Log() << Verbose(0) << "Summed vectors " << center << "; number of points " << connectedPoints.size()
3644 // << "; scale factor " << counter;
3645 PlaneNormal.Scale(1.0/(double)counter);
3646// Log() << Verbose(1) << "INFO: Calculated center of all circle points is " << center << "." << endl;
3647//
3648// // projection plane of the circle is at the closes Point and normal is pointing away from center of all circle points
3649// PlaneNormal.CopyVector(Point->node);
3650// PlaneNormal.SubtractVector(&center);
3651// PlaneNormal.Normalize();
3652 Log() << Verbose(1) << "INFO: Calculated plane normal of circle is " << PlaneNormal << "." << endl;
3653
3654 // construct one orthogonal vector
3655 if (Reference != NULL) {
3656 AngleZero.CopyVector(Reference);
3657 AngleZero.SubtractVector(Point->node);
3658 AngleZero.ProjectOntoPlane(&PlaneNormal);
3659 }
3660 if ((Reference == NULL) || (AngleZero.NormSquared() < MYEPSILON )) {
3661 Log() << Verbose(1) << "Using alternatively " << *(*SetOfNeighbours->begin())->node << " as angle 0 referencer." << endl;
3662 AngleZero.CopyVector((*SetOfNeighbours->begin())->node);
3663 AngleZero.SubtractVector(Point->node);
3664 AngleZero.ProjectOntoPlane(&PlaneNormal);
3665 if (AngleZero.NormSquared() < MYEPSILON) {
3666 eLog() << Verbose(0) << "CRITIAL: AngleZero is 0 even with alternative reference. The algorithm has to be changed here!" << endl;
3667 performCriticalExit();
3668 }
3669 }
3670 Log() << Verbose(1) << "INFO: Reference vector on this plane representing angle 0 is " << AngleZero << "." << endl;
3671 if (AngleZero.NormSquared() > MYEPSILON)
3672 OrthogonalVector.MakeNormalVector(&PlaneNormal, &AngleZero);
3673 else
3674 OrthogonalVector.MakeNormalVector(&PlaneNormal);
3675 Log() << Verbose(1) << "INFO: OrthogonalVector on plane is " << OrthogonalVector << "." << endl;
3676
3677 // go through all connected points and calculate angle
3678 pair <map<double, TesselPoint*>::iterator, bool > InserterTest;
3679 for (TesselPointSet::iterator listRunner = SetOfNeighbours->begin(); listRunner != SetOfNeighbours->end(); listRunner++) {
3680 helper.CopyVector((*listRunner)->node);
3681 helper.SubtractVector(Point->node);
3682 helper.ProjectOntoPlane(&PlaneNormal);
3683 double angle = GetAngle(helper, AngleZero, OrthogonalVector);
3684 if (angle > M_PI) // the correction is of no use here (and not desired)
3685 angle = 2.*M_PI - angle;
3686 Log() << Verbose(0) << "INFO: Calculated angle between " << helper << " and " << AngleZero << " is " << angle << " for point " << **listRunner << "." << endl;
3687 InserterTest = anglesOfPoints.insert(pair<double, TesselPoint*>(angle, (*listRunner)));
3688 if (!InserterTest.second) {
3689 eLog() << Verbose(0) << "GetCircleOfSetOfPoints() got two atoms with same angle: " << *((InserterTest.first)->second) << " and " << (*listRunner) << endl;
3690 performCriticalExit();
3691 }
3692 }
3693
3694 for(map<double, TesselPoint*>::iterator AngleRunner = anglesOfPoints.begin(); AngleRunner != anglesOfPoints.end(); AngleRunner++) {
3695 connectedCircle->push_back(AngleRunner->second);
3696 }
3697
3698 return connectedCircle;
3699}
3700
3701/** Gets all points connected to the provided point by triangulation lines, ordered such that we walk along a closed path.
3702 *
3703 * @param *out output stream for debugging
3704 * @param *Point of which get all connected points
3705 * @return list of the all points linked to the provided one
3706 */
3707ListOfTesselPointList * Tesselation::GetPathsOfConnectedPoints(const TesselPoint* const Point) const
3708{
3709 Info FunctionInfo(__func__);
3710 map<double, TesselPoint*> anglesOfPoints;
3711 list< TesselPointList *> *ListOfPaths = new list< TesselPointList *>;
3712 TesselPointList *connectedPath = NULL;
3713 Vector center;
3714 Vector PlaneNormal;
3715 Vector AngleZero;
3716 Vector OrthogonalVector;
3717 Vector helper;
3718 class BoundaryPointSet *ReferencePoint = NULL;
3719 class BoundaryPointSet *CurrentPoint = NULL;
3720 class BoundaryTriangleSet *triangle = NULL;
3721 class BoundaryLineSet *CurrentLine = NULL;
3722 class BoundaryLineSet *StartLine = NULL;
3723
3724 // find the respective boundary point
3725 PointMap::const_iterator PointRunner = PointsOnBoundary.find(Point->nr);
3726 if (PointRunner != PointsOnBoundary.end()) {
3727 ReferencePoint = PointRunner->second;
3728 } else {
3729 eLog() << Verbose(1) << "GetPathOfConnectedPoints() could not find the BoundaryPoint belonging to " << *Point << "." << endl;
3730 return NULL;
3731 }
3732
3733 map <class BoundaryLineSet *, bool> TouchedLine;
3734 map <class BoundaryTriangleSet *, bool> TouchedTriangle;
3735 map <class BoundaryLineSet *, bool>::iterator LineRunner;
3736 map <class BoundaryTriangleSet *, bool>::iterator TriangleRunner;
3737 for (LineMap::iterator Runner = ReferencePoint->lines.begin(); Runner != ReferencePoint->lines.end(); Runner++) {
3738 TouchedLine.insert( pair <class BoundaryLineSet *, bool>(Runner->second, false) );
3739 for (TriangleMap::iterator Sprinter = Runner->second->triangles.begin(); Sprinter != Runner->second->triangles.end(); Sprinter++)
3740 TouchedTriangle.insert( pair <class BoundaryTriangleSet *, bool>(Sprinter->second, false) );
3741 }
3742 if (!ReferencePoint->lines.empty()) {
3743 for (LineMap::iterator runner = ReferencePoint->lines.begin(); runner != ReferencePoint->lines.end(); runner++) {
3744 LineRunner = TouchedLine.find(runner->second);
3745 if (LineRunner == TouchedLine.end()) {
3746 eLog() << Verbose(1) << "I could not find " << *runner->second << " in the touched list." << endl;
3747 } else if (!LineRunner->second) {
3748 LineRunner->second = true;
3749 connectedPath = new TesselPointList;
3750 triangle = NULL;
3751 CurrentLine = runner->second;
3752 StartLine = CurrentLine;
3753 CurrentPoint = CurrentLine->GetOtherEndpoint(ReferencePoint);
3754 Log() << Verbose(1)<< "INFO: Beginning path retrieval at " << *CurrentPoint << " of line " << *CurrentLine << "." << endl;
3755 do {
3756 // push current one
3757 Log() << Verbose(1) << "INFO: Putting " << *CurrentPoint << " at end of path." << endl;
3758 connectedPath->push_back(CurrentPoint->node);
3759
3760 // find next triangle
3761 for (TriangleMap::iterator Runner = CurrentLine->triangles.begin(); Runner != CurrentLine->triangles.end(); Runner++) {
3762 Log() << Verbose(1) << "INFO: Inspecting triangle " << *Runner->second << "." << endl;
3763 if ((Runner->second != triangle)) { // look for first triangle not equal to old one
3764 triangle = Runner->second;
3765 TriangleRunner = TouchedTriangle.find(triangle);
3766 if (TriangleRunner != TouchedTriangle.end()) {
3767 if (!TriangleRunner->second) {
3768 TriangleRunner->second = true;
3769 Log() << Verbose(1) << "INFO: Connecting triangle is " << *triangle << "." << endl;
3770 break;
3771 } else {
3772 Log() << Verbose(1) << "INFO: Skipping " << *triangle << ", as we have already visited it." << endl;
3773 triangle = NULL;
3774 }
3775 } else {
3776 eLog() << Verbose(1) << "I could not find " << *triangle << " in the touched list." << endl;
3777 triangle = NULL;
3778 }
3779 }
3780 }
3781 if (triangle == NULL)
3782 break;
3783 // find next line
3784 for (int i=0;i<3;i++) {
3785 if ((triangle->lines[i] != CurrentLine) && (triangle->lines[i]->ContainsBoundaryPoint(ReferencePoint))) { // not the current line and still containing Point
3786 CurrentLine = triangle->lines[i];
3787 Log() << Verbose(1) << "INFO: Connecting line is " << *CurrentLine << "." << endl;
3788 break;
3789 }
3790 }
3791 LineRunner = TouchedLine.find(CurrentLine);
3792 if (LineRunner == TouchedLine.end())
3793 eLog() << Verbose(1) << "I could not find " << *CurrentLine << " in the touched list." << endl;
3794 else
3795 LineRunner->second = true;
3796 // find next point
3797 CurrentPoint = CurrentLine->GetOtherEndpoint(ReferencePoint);
3798
3799 } while (CurrentLine != StartLine);
3800 // last point is missing, as it's on start line
3801 Log() << Verbose(1) << "INFO: Putting " << *CurrentPoint << " at end of path." << endl;
3802 if (StartLine->GetOtherEndpoint(ReferencePoint)->node != connectedPath->back())
3803 connectedPath->push_back(StartLine->GetOtherEndpoint(ReferencePoint)->node);
3804
3805 ListOfPaths->push_back(connectedPath);
3806 } else {
3807 Log() << Verbose(1) << "INFO: Skipping " << *runner->second << ", as we have already visited it." << endl;
3808 }
3809 }
3810 } else {
3811 eLog() << Verbose(1) << "There are no lines attached to " << *ReferencePoint << "." << endl;
3812 }
3813
3814 return ListOfPaths;
3815}
3816
3817/** Gets all closed paths on the circle of points connected to the provided point by triangulation lines, if this very point is removed.
3818 * From GetPathsOfConnectedPoints() extracts all single loops of intracrossing paths in the list of closed paths.
3819 * @param *out output stream for debugging
3820 * @param *Point of which get all connected points
3821 * @return list of the closed paths
3822 */
3823ListOfTesselPointList * Tesselation::GetClosedPathsOfConnectedPoints(const TesselPoint* const Point) const
3824{
3825 Info FunctionInfo(__func__);
3826 list<TesselPointList *> *ListofPaths = GetPathsOfConnectedPoints(Point);
3827 list<TesselPointList *> *ListofClosedPaths = new list<TesselPointList *>;
3828 TesselPointList *connectedPath = NULL;
3829 TesselPointList *newPath = NULL;
3830 int count = 0;
3831
3832
3833 TesselPointList::iterator CircleRunner;
3834 TesselPointList::iterator CircleStart;
3835
3836 for(list<TesselPointList *>::iterator ListRunner = ListofPaths->begin(); ListRunner != ListofPaths->end(); ListRunner++) {
3837 connectedPath = *ListRunner;
3838
3839 Log() << Verbose(1) << "INFO: Current path is " << connectedPath << "." << endl;
3840
3841 // go through list, look for reappearance of starting Point and count
3842 CircleStart = connectedPath->begin();
3843
3844 // go through list, look for reappearance of starting Point and create list
3845 TesselPointList::iterator Marker = CircleStart;
3846 for (CircleRunner = CircleStart; CircleRunner != connectedPath->end(); CircleRunner++) {
3847 if ((*CircleRunner == *CircleStart) && (CircleRunner != CircleStart)) { // is not the very first point
3848 // we have a closed circle from Marker to new Marker
3849 Log() << Verbose(1) << count+1 << ". closed path consists of: ";
3850 newPath = new TesselPointList;
3851 TesselPointList::iterator CircleSprinter = Marker;
3852 for (; CircleSprinter != CircleRunner; CircleSprinter++) {
3853 newPath->push_back(*CircleSprinter);
3854 Log() << Verbose(0) << (**CircleSprinter) << " <-> ";
3855 }
3856 Log() << Verbose(0) << ".." << endl;
3857 count++;
3858 Marker = CircleRunner;
3859
3860 // add to list
3861 ListofClosedPaths->push_back(newPath);
3862 }
3863 }
3864 }
3865 Log() << Verbose(1) << "INFO: " << count << " closed additional path(s) have been created." << endl;
3866
3867 // delete list of paths
3868 while (!ListofPaths->empty()) {
3869 connectedPath = *(ListofPaths->begin());
3870 ListofPaths->remove(connectedPath);
3871 delete(connectedPath);
3872 }
3873 delete(ListofPaths);
3874
3875 // exit
3876 return ListofClosedPaths;
3877};
3878
3879
3880/** Gets all belonging triangles for a given BoundaryPointSet.
3881 * \param *out output stream for debugging
3882 * \param *Point BoundaryPoint
3883 * \return pointer to allocated list of triangles
3884 */
3885TriangleSet *Tesselation::GetAllTriangles(const BoundaryPointSet * const Point) const
3886{
3887 Info FunctionInfo(__func__);
3888 TriangleSet *connectedTriangles = new TriangleSet;
3889
3890 if (Point == NULL) {
3891 eLog() << Verbose(1) << "Point given is NULL." << endl;
3892 } else {
3893 // go through its lines and insert all triangles
3894 for (LineMap::const_iterator LineRunner = Point->lines.begin(); LineRunner != Point->lines.end(); LineRunner++)
3895 for (TriangleMap::iterator TriangleRunner = (LineRunner->second)->triangles.begin(); TriangleRunner != (LineRunner->second)->triangles.end(); TriangleRunner++) {
3896 connectedTriangles->insert(TriangleRunner->second);
3897 }
3898 }
3899
3900 return connectedTriangles;
3901};
3902
3903
3904/** Removes a boundary point from the envelope while keeping it closed.
3905 * We remove the old triangles connected to the point and re-create new triangles to close the surface following this ansatz:
3906 * -# a closed path(s) of boundary points surrounding the point to be removed is constructed
3907 * -# on each closed path, we pick three adjacent points, create a triangle with them and subtract the middle point from the path
3908 * -# we advance two points (i.e. the next triangle will start at the ending point of the last triangle) and continue as before
3909 * -# the surface is closed, when the path is empty
3910 * Thereby, we (hopefully) make sure that the removed points remains beneath the surface (this is checked via IsInnerPoint eventually).
3911 * \param *out output stream for debugging
3912 * \param *point point to be removed
3913 * \return volume added to the volume inside the tesselated surface by the removal
3914 */
3915double Tesselation::RemovePointFromTesselatedSurface(class BoundaryPointSet *point) {
3916 class BoundaryLineSet *line = NULL;
3917 class BoundaryTriangleSet *triangle = NULL;
3918 Vector OldPoint, NormalVector;
3919 double volume = 0;
3920 int count = 0;
3921
3922 if (point == NULL) {
3923 eLog() << Verbose(1) << "Cannot remove the point " << point << ", it's NULL!" << endl;
3924 return 0.;
3925 } else
3926 Log() << Verbose(0) << "Removing point " << *point << " from tesselated boundary ..." << endl;
3927
3928 // copy old location for the volume
3929 OldPoint.CopyVector(point->node->node);
3930
3931 // get list of connected points
3932 if (point->lines.empty()) {
3933 eLog() << Verbose(1) << "Cannot remove the point " << *point << ", it's connected to no lines!" << endl;
3934 return 0.;
3935 }
3936
3937 list<TesselPointList *> *ListOfClosedPaths = GetClosedPathsOfConnectedPoints(point->node);
3938 TesselPointList *connectedPath = NULL;
3939
3940 // gather all triangles
3941 for (LineMap::iterator LineRunner = point->lines.begin(); LineRunner != point->lines.end(); LineRunner++)
3942 count+=LineRunner->second->triangles.size();
3943 TriangleMap Candidates;
3944 for (LineMap::iterator LineRunner = point->lines.begin(); LineRunner != point->lines.end(); LineRunner++) {
3945 line = LineRunner->second;
3946 for (TriangleMap::iterator TriangleRunner = line->triangles.begin(); TriangleRunner != line->triangles.end(); TriangleRunner++) {
3947 triangle = TriangleRunner->second;
3948 Candidates.insert( TrianglePair (triangle->Nr, triangle) );
3949 }
3950 }
3951
3952 // remove all triangles
3953 count=0;
3954 NormalVector.Zero();
3955 for (TriangleMap::iterator Runner = Candidates.begin(); Runner != Candidates.end(); Runner++) {
3956 Log() << Verbose(1) << "INFO: Removing triangle " << *(Runner->second) << "." << endl;
3957 NormalVector.SubtractVector(&Runner->second->NormalVector); // has to point inward
3958 RemoveTesselationTriangle(Runner->second);
3959 count++;
3960 }
3961 Log() << Verbose(1) << count << " triangles were removed." << endl;
3962
3963 list<TesselPointList *>::iterator ListAdvance = ListOfClosedPaths->begin();
3964 list<TesselPointList *>::iterator ListRunner = ListAdvance;
3965 TriangleMap::iterator NumberRunner = Candidates.begin();
3966 TesselPointList::iterator StartNode, MiddleNode, EndNode;
3967 double angle;
3968 double smallestangle;
3969 Vector Point, Reference, OrthogonalVector;
3970 if (count > 2) { // less than three triangles, then nothing will be created
3971 class TesselPoint *TriangleCandidates[3];
3972 count = 0;
3973 for ( ; ListRunner != ListOfClosedPaths->end(); ListRunner = ListAdvance) { // go through all closed paths
3974 if (ListAdvance != ListOfClosedPaths->end())
3975 ListAdvance++;
3976
3977 connectedPath = *ListRunner;
3978
3979 // re-create all triangles by going through connected points list
3980 LineList NewLines;
3981 for (;!connectedPath->empty();) {
3982 // search middle node with widest angle to next neighbours
3983 EndNode = connectedPath->end();
3984 smallestangle = 0.;
3985 for (MiddleNode = connectedPath->begin(); MiddleNode != connectedPath->end(); MiddleNode++) {
3986 Log() << Verbose(1) << "INFO: MiddleNode is " << **MiddleNode << "." << endl;
3987 // construct vectors to next and previous neighbour
3988 StartNode = MiddleNode;
3989 if (StartNode == connectedPath->begin())
3990 StartNode = connectedPath->end();
3991 StartNode--;
3992 //Log() << Verbose(3) << "INFO: StartNode is " << **StartNode << "." << endl;
3993 Point.CopyVector((*StartNode)->node);
3994 Point.SubtractVector((*MiddleNode)->node);
3995 StartNode = MiddleNode;
3996 StartNode++;
3997 if (StartNode == connectedPath->end())
3998 StartNode = connectedPath->begin();
3999 //Log() << Verbose(3) << "INFO: EndNode is " << **StartNode << "." << endl;
4000 Reference.CopyVector((*StartNode)->node);
4001 Reference.SubtractVector((*MiddleNode)->node);
4002 OrthogonalVector.CopyVector((*MiddleNode)->node);
4003 OrthogonalVector.SubtractVector(&OldPoint);
4004 OrthogonalVector.MakeNormalVector(&Reference);
4005 angle = GetAngle(Point, Reference, OrthogonalVector);
4006 //if (angle < M_PI) // no wrong-sided triangles, please?
4007 if(fabs(angle - M_PI) < fabs(smallestangle - M_PI)) { // get straightest angle (i.e. construct those triangles with smallest area first)
4008 smallestangle = angle;
4009 EndNode = MiddleNode;
4010 }
4011 }
4012 MiddleNode = EndNode;
4013 if (MiddleNode == connectedPath->end()) {
4014 eLog() << Verbose(0) << "CRITICAL: Could not find a smallest angle!" << endl;
4015 performCriticalExit();
4016 }
4017 StartNode = MiddleNode;
4018 if (StartNode == connectedPath->begin())
4019 StartNode = connectedPath->end();
4020 StartNode--;
4021 EndNode++;
4022 if (EndNode == connectedPath->end())
4023 EndNode = connectedPath->begin();
4024 Log() << Verbose(2) << "INFO: StartNode is " << **StartNode << "." << endl;
4025 Log() << Verbose(2) << "INFO: MiddleNode is " << **MiddleNode << "." << endl;
4026 Log() << Verbose(2) << "INFO: EndNode is " << **EndNode << "." << endl;
4027 Log() << Verbose(1) << "INFO: Attempting to create triangle " << (*StartNode)->Name << ", " << (*MiddleNode)->Name << " and " << (*EndNode)->Name << "." << endl;
4028 TriangleCandidates[0] = *StartNode;
4029 TriangleCandidates[1] = *MiddleNode;
4030 TriangleCandidates[2] = *EndNode;
4031 triangle = GetPresentTriangle(TriangleCandidates);
4032 if (triangle != NULL) {
4033 eLog() << Verbose(0) << "New triangle already present, skipping!" << endl;
4034 StartNode++;
4035 MiddleNode++;
4036 EndNode++;
4037 if (StartNode == connectedPath->end())
4038 StartNode = connectedPath->begin();
4039 if (MiddleNode == connectedPath->end())
4040 MiddleNode = connectedPath->begin();
4041 if (EndNode == connectedPath->end())
4042 EndNode = connectedPath->begin();
4043 continue;
4044 }
4045 Log() << Verbose(3) << "Adding new triangle points."<< endl;
4046 AddTesselationPoint(*StartNode, 0);
4047 AddTesselationPoint(*MiddleNode, 1);
4048 AddTesselationPoint(*EndNode, 2);
4049 Log() << Verbose(3) << "Adding new triangle lines."<< endl;
4050 AddTesselationLine(TPS[0], TPS[1], 0);
4051 AddTesselationLine(TPS[0], TPS[2], 1);
4052 NewLines.push_back(BLS[1]);
4053 AddTesselationLine(TPS[1], TPS[2], 2);
4054 BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount);
4055 BTS->GetNormalVector(NormalVector);
4056 AddTesselationTriangle();
4057 // calculate volume summand as a general tetraeder
4058 volume += CalculateVolumeofGeneralTetraeder(*TPS[0]->node->node, *TPS[1]->node->node, *TPS[2]->node->node, OldPoint);
4059 // advance number
4060 count++;
4061
4062 // prepare nodes for next triangle
4063 StartNode = EndNode;
4064 Log() << Verbose(2) << "Removing " << **MiddleNode << " from closed path, remaining points: " << connectedPath->size() << "." << endl;
4065 connectedPath->remove(*MiddleNode); // remove the middle node (it is surrounded by triangles)
4066 if (connectedPath->size() == 2) { // we are done
4067 connectedPath->remove(*StartNode); // remove the start node
4068 connectedPath->remove(*EndNode); // remove the end node
4069 break;
4070 } else if (connectedPath->size() < 2) { // something's gone wrong!
4071 eLog() << Verbose(0) << "CRITICAL: There are only two endpoints left!" << endl;
4072 performCriticalExit();
4073 } else {
4074 MiddleNode = StartNode;
4075 MiddleNode++;
4076 if (MiddleNode == connectedPath->end())
4077 MiddleNode = connectedPath->begin();
4078 EndNode = MiddleNode;
4079 EndNode++;
4080 if (EndNode == connectedPath->end())
4081 EndNode = connectedPath->begin();
4082 }
4083 }
4084 // maximize the inner lines (we preferentially created lines with a huge angle, which is for the tesselation not wanted though useful for the closing)
4085 if (NewLines.size() > 1) {
4086 LineList::iterator Candidate;
4087 class BoundaryLineSet *OtherBase = NULL;
4088 double tmp, maxgain;
4089 do {
4090 maxgain = 0;
4091 for(LineList::iterator Runner = NewLines.begin(); Runner != NewLines.end(); Runner++) {
4092 tmp = PickFarthestofTwoBaselines(*Runner);
4093 if (maxgain < tmp) {
4094 maxgain = tmp;
4095 Candidate = Runner;
4096 }
4097 }
4098 if (maxgain != 0) {
4099 volume += maxgain;
4100 Log() << Verbose(1) << "Flipping baseline with highest volume" << **Candidate << "." << endl;
4101 OtherBase = FlipBaseline(*Candidate);
4102 NewLines.erase(Candidate);
4103 NewLines.push_back(OtherBase);
4104 }
4105 } while (maxgain != 0.);
4106 }
4107
4108 ListOfClosedPaths->remove(connectedPath);
4109 delete(connectedPath);
4110 }
4111 Log() << Verbose(0) << count << " triangles were created." << endl;
4112 } else {
4113 while (!ListOfClosedPaths->empty()) {
4114 ListRunner = ListOfClosedPaths->begin();
4115 connectedPath = *ListRunner;
4116 ListOfClosedPaths->remove(connectedPath);
4117 delete(connectedPath);
4118 }
4119 Log() << Verbose(0) << "No need to create any triangles." << endl;
4120 }
4121 delete(ListOfClosedPaths);
4122
4123 Log() << Verbose(0) << "Removed volume is " << volume << "." << endl;
4124
4125 return volume;
4126};
4127
4128
4129
4130/**
4131 * Finds triangles belonging to the three provided points.
4132 *
4133 * @param *Points[3] list, is expected to contain three points (NULL means wildcard)
4134 *
4135 * @return triangles which belong to the provided points, will be empty if there are none,
4136 * will usually be one, in case of degeneration, there will be two
4137 */
4138TriangleList *Tesselation::FindTriangles(const TesselPoint* const Points[3]) const
4139{
4140 Info FunctionInfo(__func__);
4141 TriangleList *result = new TriangleList;
4142 LineMap::const_iterator FindLine;
4143 TriangleMap::const_iterator FindTriangle;
4144 class BoundaryPointSet *TrianglePoints[3];
4145 size_t NoOfWildcards = 0;
4146
4147 for (int i = 0; i < 3; i++) {
4148 if (Points[i] == NULL) {
4149 NoOfWildcards++;
4150 TrianglePoints[i] = NULL;
4151 } else {
4152 PointMap::const_iterator FindPoint = PointsOnBoundary.find(Points[i]->nr);
4153 if (FindPoint != PointsOnBoundary.end()) {
4154 TrianglePoints[i] = FindPoint->second;
4155 } else {
4156 TrianglePoints[i] = NULL;
4157 }
4158 }
4159 }
4160
4161 switch (NoOfWildcards) {
4162 case 0: // checks lines between the points in the Points for their adjacent triangles
4163 for (int i = 0; i < 3; i++) {
4164 if (TrianglePoints[i] != NULL) {
4165 for (int j = i+1; j < 3; j++) {
4166 if (TrianglePoints[j] != NULL) {
4167 for (FindLine = TrianglePoints[i]->lines.find(TrianglePoints[j]->node->nr); // is a multimap!
4168 (FindLine != TrianglePoints[i]->lines.end()) && (FindLine->first == TrianglePoints[j]->node->nr);
4169 FindLine++) {
4170 for (FindTriangle = FindLine->second->triangles.begin();
4171 FindTriangle != FindLine->second->triangles.end();
4172 FindTriangle++) {
4173 if (FindTriangle->second->IsPresentTupel(TrianglePoints)) {
4174 result->push_back(FindTriangle->second);
4175 }
4176 }
4177 }
4178 // Is it sufficient to consider one of the triangle lines for this.
4179 return result;
4180 }
4181 }
4182 }
4183 }
4184 break;
4185 case 1: // copy all triangles of the respective line
4186 {
4187 int i=0;
4188 for (; i < 3; i++)
4189 if (TrianglePoints[i] == NULL)
4190 break;
4191 for (FindLine = TrianglePoints[(i+1)%3]->lines.find(TrianglePoints[(i+2)%3]->node->nr); // is a multimap!
4192 (FindLine != TrianglePoints[(i+1)%3]->lines.end()) && (FindLine->first == TrianglePoints[(i+2)%3]->node->nr);
4193 FindLine++) {
4194 for (FindTriangle = FindLine->second->triangles.begin();
4195 FindTriangle != FindLine->second->triangles.end();
4196 FindTriangle++) {
4197 if (FindTriangle->second->IsPresentTupel(TrianglePoints)) {
4198 result->push_back(FindTriangle->second);
4199 }
4200 }
4201 }
4202 break;
4203 }
4204 case 2: // copy all triangles of the respective point
4205 {
4206 int i=0;
4207 for (; i < 3; i++)
4208 if (TrianglePoints[i] != NULL)
4209 break;
4210 for (LineMap::const_iterator line = TrianglePoints[i]->lines.begin(); line != TrianglePoints[i]->lines.end(); line++)
4211 for (TriangleMap::const_iterator triangle = line->second->triangles.begin(); triangle != line->second->triangles.end(); triangle++)
4212 result->push_back(triangle->second);
4213 result->sort();
4214 result->unique();
4215 break;
4216 }
4217 case 3: // copy all triangles
4218 {
4219 for (TriangleMap::const_iterator triangle = TrianglesOnBoundary.begin(); triangle != TrianglesOnBoundary.end(); triangle++)
4220 result->push_back(triangle->second);
4221 break;
4222 }
4223 default:
4224 eLog() << Verbose(0) << "Number of wildcards is greater than 3, cannot happen!" << endl;
4225 performCriticalExit();
4226 break;
4227 }
4228
4229 return result;
4230}
4231
4232struct BoundaryLineSetCompare {
4233 bool operator() (const BoundaryLineSet * const a, const BoundaryLineSet * const b) {
4234 int lowerNra = -1;
4235 int lowerNrb = -1;
4236
4237 if (a->endpoints[0] < a->endpoints[1])
4238 lowerNra = 0;
4239 else
4240 lowerNra = 1;
4241
4242 if (b->endpoints[0] < b->endpoints[1])
4243 lowerNrb = 0;
4244 else
4245 lowerNrb = 1;
4246
4247 if (a->endpoints[lowerNra] < b->endpoints[lowerNrb])
4248 return true;
4249 else if (a->endpoints[lowerNra] > b->endpoints[lowerNrb])
4250 return false;
4251 else { // both lower-numbered endpoints are the same ...
4252 if (a->endpoints[(lowerNra+1)%2] < b->endpoints[(lowerNrb+1)%2])
4253 return true;
4254 else if (a->endpoints[(lowerNra+1)%2] > b->endpoints[(lowerNrb+1)%2])
4255 return false;
4256 }
4257 return false;
4258 };
4259};
4260
4261#define UniqueLines set < class BoundaryLineSet *, BoundaryLineSetCompare>
4262
4263/**
4264 * Finds all degenerated lines within the tesselation structure.
4265 *
4266 * @return map of keys of degenerated line pairs, each line occurs twice
4267 * in the list, once as key and once as value
4268 */
4269IndexToIndex * Tesselation::FindAllDegeneratedLines()
4270{
4271 Info FunctionInfo(__func__);
4272 UniqueLines AllLines;
4273 IndexToIndex * DegeneratedLines = new IndexToIndex;
4274
4275 // sanity check
4276 if (LinesOnBoundary.empty()) {
4277 eLog() << Verbose(2) << "FindAllDegeneratedTriangles() was called without any tesselation structure.";
4278 return DegeneratedLines;
4279 }
4280
4281 LineMap::iterator LineRunner1;
4282 pair< UniqueLines::iterator, bool> tester;
4283 for (LineRunner1 = LinesOnBoundary.begin(); LineRunner1 != LinesOnBoundary.end(); ++LineRunner1) {
4284 tester = AllLines.insert( LineRunner1->second );
4285 if (!tester.second) { // found degenerated line
4286 DegeneratedLines->insert ( pair<int, int> (LineRunner1->second->Nr, (*tester.first)->Nr) );
4287 DegeneratedLines->insert ( pair<int, int> ((*tester.first)->Nr, LineRunner1->second->Nr) );
4288 }
4289 }
4290
4291 AllLines.clear();
4292
4293 Log() << Verbose(0) << "FindAllDegeneratedLines() found " << DegeneratedLines->size() << " lines." << endl;
4294 IndexToIndex::iterator it;
4295 for (it = DegeneratedLines->begin(); it != DegeneratedLines->end(); it++) {
4296 const LineMap::const_iterator Line1 = LinesOnBoundary.find((*it).first);
4297 const LineMap::const_iterator Line2 = LinesOnBoundary.find((*it).second);
4298 if (Line1 != LinesOnBoundary.end() && Line2 != LinesOnBoundary.end())
4299 Log() << Verbose(0) << *Line1->second << " => " << *Line2->second << endl;
4300 else
4301 eLog() << Verbose(1) << "Either " << (*it).first << " or " << (*it).second << " are not in LinesOnBoundary!" << endl;
4302 }
4303
4304 return DegeneratedLines;
4305}
4306
4307/**
4308 * Finds all degenerated triangles within the tesselation structure.
4309 *
4310 * @return map of keys of degenerated triangle pairs, each triangle occurs twice
4311 * in the list, once as key and once as value
4312 */
4313IndexToIndex * Tesselation::FindAllDegeneratedTriangles()
4314{
4315 Info FunctionInfo(__func__);
4316 IndexToIndex * DegeneratedLines = FindAllDegeneratedLines();
4317 IndexToIndex * DegeneratedTriangles = new IndexToIndex;
4318
4319 TriangleMap::iterator TriangleRunner1, TriangleRunner2;
4320 LineMap::iterator Liner;
4321 class BoundaryLineSet *line1 = NULL, *line2 = NULL;
4322
4323 for (IndexToIndex::iterator LineRunner = DegeneratedLines->begin(); LineRunner != DegeneratedLines->end(); ++LineRunner) {
4324 // run over both lines' triangles
4325 Liner = LinesOnBoundary.find(LineRunner->first);
4326 if (Liner != LinesOnBoundary.end())
4327 line1 = Liner->second;
4328 Liner = LinesOnBoundary.find(LineRunner->second);
4329 if (Liner != LinesOnBoundary.end())
4330 line2 = Liner->second;
4331 for (TriangleRunner1 = line1->triangles.begin(); TriangleRunner1 != line1->triangles.end(); ++TriangleRunner1) {
4332 for (TriangleRunner2 = line2->triangles.begin(); TriangleRunner2 != line2->triangles.end(); ++TriangleRunner2) {
4333 if ((TriangleRunner1->second != TriangleRunner2->second)
4334 && (TriangleRunner1->second->IsPresentTupel(TriangleRunner2->second))) {
4335 DegeneratedTriangles->insert( pair<int, int> (TriangleRunner1->second->Nr, TriangleRunner2->second->Nr) );
4336 DegeneratedTriangles->insert( pair<int, int> (TriangleRunner2->second->Nr, TriangleRunner1->second->Nr) );
4337 }
4338 }
4339 }
4340 }
4341 delete(DegeneratedLines);
4342
4343 Log() << Verbose(0) << "FindAllDegeneratedTriangles() found " << DegeneratedTriangles->size() << " triangles:" << endl;
4344 IndexToIndex::iterator it;
4345 for (it = DegeneratedTriangles->begin(); it != DegeneratedTriangles->end(); it++)
4346 Log() << Verbose(0) << (*it).first << " => " << (*it).second << endl;
4347
4348 return DegeneratedTriangles;
4349}
4350
4351/**
4352 * Purges degenerated triangles from the tesselation structure if they are not
4353 * necessary to keep a single point within the structure.
4354 */
4355void Tesselation::RemoveDegeneratedTriangles()
4356{
4357 Info FunctionInfo(__func__);
4358 IndexToIndex * DegeneratedTriangles = FindAllDegeneratedTriangles();
4359 TriangleMap::iterator finder;
4360 BoundaryTriangleSet *triangle = NULL, *partnerTriangle = NULL;
4361 int count = 0;
4362
4363 for (IndexToIndex::iterator TriangleKeyRunner = DegeneratedTriangles->begin();
4364 TriangleKeyRunner != DegeneratedTriangles->end(); ++TriangleKeyRunner
4365 ) {
4366 finder = TrianglesOnBoundary.find(TriangleKeyRunner->first);
4367 if (finder != TrianglesOnBoundary.end())
4368 triangle = finder->second;
4369 else
4370 break;
4371 finder = TrianglesOnBoundary.find(TriangleKeyRunner->second);
4372 if (finder != TrianglesOnBoundary.end())
4373 partnerTriangle = finder->second;
4374 else
4375 break;
4376
4377 bool trianglesShareLine = false;
4378 for (int i = 0; i < 3; ++i)
4379 for (int j = 0; j < 3; ++j)
4380 trianglesShareLine = trianglesShareLine || triangle->lines[i] == partnerTriangle->lines[j];
4381
4382 if (trianglesShareLine
4383 && (triangle->endpoints[1]->LinesCount > 2)
4384 && (triangle->endpoints[2]->LinesCount > 2)
4385 && (triangle->endpoints[0]->LinesCount > 2)
4386 ) {
4387 // check whether we have to fix lines
4388 BoundaryTriangleSet *Othertriangle = NULL;
4389 BoundaryTriangleSet *OtherpartnerTriangle = NULL;
4390 TriangleMap::iterator TriangleRunner;
4391 for (int i = 0; i < 3; ++i)
4392 for (int j = 0; j < 3; ++j)
4393 if (triangle->lines[i] != partnerTriangle->lines[j]) {
4394 // get the other two triangles
4395 for (TriangleRunner = triangle->lines[i]->triangles.begin(); TriangleRunner != triangle->lines[i]->triangles.end(); ++TriangleRunner)
4396 if (TriangleRunner->second != triangle) {
4397 Othertriangle = TriangleRunner->second;
4398 }
4399 for (TriangleRunner = partnerTriangle->lines[i]->triangles.begin(); TriangleRunner != partnerTriangle->lines[i]->triangles.end(); ++TriangleRunner)
4400 if (TriangleRunner->second != partnerTriangle) {
4401 OtherpartnerTriangle = TriangleRunner->second;
4402 }
4403 /// interchanges their lines so that triangle->lines[i] == partnerTriangle->lines[j]
4404 // the line of triangle receives the degenerated ones
4405 triangle->lines[i]->triangles.erase(Othertriangle->Nr);
4406 triangle->lines[i]->triangles.insert( TrianglePair( partnerTriangle->Nr, partnerTriangle) );
4407 for (int k=0;k<3;k++)
4408 if (triangle->lines[i] == Othertriangle->lines[k]) {
4409 Othertriangle->lines[k] = partnerTriangle->lines[j];
4410 break;
4411 }
4412 // the line of partnerTriangle receives the non-degenerated ones
4413 partnerTriangle->lines[j]->triangles.erase( partnerTriangle->Nr);
4414 partnerTriangle->lines[j]->triangles.insert( TrianglePair( Othertriangle->Nr, Othertriangle) );
4415 partnerTriangle->lines[j] = triangle->lines[i];
4416 }
4417
4418 // erase the pair
4419 count += (int) DegeneratedTriangles->erase(triangle->Nr);
4420 Log() << Verbose(0) << "RemoveDegeneratedTriangles() removes triangle " << *triangle << "." << endl;
4421 RemoveTesselationTriangle(triangle);
4422 count += (int) DegeneratedTriangles->erase(partnerTriangle->Nr);
4423 Log() << Verbose(0) << "RemoveDegeneratedTriangles() removes triangle " << *partnerTriangle << "." << endl;
4424 RemoveTesselationTriangle(partnerTriangle);
4425 } else {
4426 Log() << Verbose(0) << "RemoveDegeneratedTriangles() does not remove triangle " << *triangle
4427 << " and its partner " << *partnerTriangle << " because it is essential for at"
4428 << " least one of the endpoints to be kept in the tesselation structure." << endl;
4429 }
4430 }
4431 delete(DegeneratedTriangles);
4432 if (count > 0)
4433 LastTriangle = NULL;
4434
4435 Log() << Verbose(0) << "RemoveDegeneratedTriangles() removed " << count << " triangles:" << endl;
4436}
4437
4438/** Adds an outside Tesselpoint to the envelope via (two) degenerated triangles.
4439 * We look for the closest point on the boundary, we look through its connected boundary lines and
4440 * seek the one with the minimum angle between its center point and the new point and this base line.
4441 * We open up the line by adding a degenerated triangle, whose other side closes the base line again.
4442 * \param *out output stream for debugging
4443 * \param *point point to add
4444 * \param *LC Linked Cell structure to find nearest point
4445 */
4446void Tesselation::AddBoundaryPointByDegeneratedTriangle(class TesselPoint *point, LinkedCell *LC)
4447{
4448 Info FunctionInfo(__func__);
4449 // find nearest boundary point
4450 class TesselPoint *BackupPoint = NULL;
4451 class TesselPoint *NearestPoint = FindClosestTesselPoint(point->node, BackupPoint, LC);
4452 class BoundaryPointSet *NearestBoundaryPoint = NULL;
4453 PointMap::iterator PointRunner;
4454
4455 if (NearestPoint == point)
4456 NearestPoint = BackupPoint;
4457 PointRunner = PointsOnBoundary.find(NearestPoint->nr);
4458 if (PointRunner != PointsOnBoundary.end()) {
4459 NearestBoundaryPoint = PointRunner->second;
4460 } else {
4461 eLog() << Verbose(1) << "I cannot find the boundary point." << endl;
4462 return;
4463 }
4464 Log() << Verbose(0) << "Nearest point on boundary is " << NearestPoint->Name << "." << endl;
4465
4466 // go through its lines and find the best one to split
4467 Vector CenterToPoint;
4468 Vector BaseLine;
4469 double angle, BestAngle = 0.;
4470 class BoundaryLineSet *BestLine = NULL;
4471 for (LineMap::iterator Runner = NearestBoundaryPoint->lines.begin(); Runner != NearestBoundaryPoint->lines.end(); Runner++) {
4472 BaseLine.CopyVector(Runner->second->endpoints[0]->node->node);
4473 BaseLine.SubtractVector(Runner->second->endpoints[1]->node->node);
4474 CenterToPoint.CopyVector(Runner->second->endpoints[0]->node->node);
4475 CenterToPoint.AddVector(Runner->second->endpoints[1]->node->node);
4476 CenterToPoint.Scale(0.5);
4477 CenterToPoint.SubtractVector(point->node);
4478 angle = CenterToPoint.Angle(&BaseLine);
4479 if (fabs(angle - M_PI/2.) < fabs(BestAngle - M_PI/2.)) {
4480 BestAngle = angle;
4481 BestLine = Runner->second;
4482 }
4483 }
4484
4485 // remove one triangle from the chosen line
4486 class BoundaryTriangleSet *TempTriangle = (BestLine->triangles.begin())->second;
4487 BestLine->triangles.erase(TempTriangle->Nr);
4488 int nr = -1;
4489 for (int i=0;i<3; i++) {
4490 if (TempTriangle->lines[i] == BestLine) {
4491 nr = i;
4492 break;
4493 }
4494 }
4495
4496 // create new triangle to connect point (connects automatically with the missing spot of the chosen line)
4497 Log() << Verbose(2) << "Adding new triangle points."<< endl;
4498 AddTesselationPoint((BestLine->endpoints[0]->node), 0);
4499 AddTesselationPoint((BestLine->endpoints[1]->node), 1);
4500 AddTesselationPoint(point, 2);
4501 Log() << Verbose(2) << "Adding new triangle lines."<< endl;
4502 AddTesselationLine(TPS[0], TPS[1], 0);
4503 AddTesselationLine(TPS[0], TPS[2], 1);
4504 AddTesselationLine(TPS[1], TPS[2], 2);
4505 BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount);
4506 BTS->GetNormalVector(TempTriangle->NormalVector);
4507 BTS->NormalVector.Scale(-1.);
4508 Log() << Verbose(1) << "INFO: NormalVector of new triangle is " << BTS->NormalVector << "." << endl;
4509 AddTesselationTriangle();
4510
4511 // create other side of this triangle and close both new sides of the first created triangle
4512 Log() << Verbose(2) << "Adding new triangle points."<< endl;
4513 AddTesselationPoint((BestLine->endpoints[0]->node), 0);
4514 AddTesselationPoint((BestLine->endpoints[1]->node), 1);
4515 AddTesselationPoint(point, 2);
4516 Log() << Verbose(2) << "Adding new triangle lines."<< endl;
4517 AddTesselationLine(TPS[0], TPS[1], 0);
4518 AddTesselationLine(TPS[0], TPS[2], 1);
4519 AddTesselationLine(TPS[1], TPS[2], 2);
4520 BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount);
4521 BTS->GetNormalVector(TempTriangle->NormalVector);
4522 Log() << Verbose(1) << "INFO: NormalVector of other new triangle is " << BTS->NormalVector << "." << endl;
4523 AddTesselationTriangle();
4524
4525 // add removed triangle to the last open line of the second triangle
4526 for (int i=0;i<3;i++) { // look for the same line as BestLine (only it's its degenerated companion)
4527 if ((BTS->lines[i]->ContainsBoundaryPoint(BestLine->endpoints[0])) && (BTS->lines[i]->ContainsBoundaryPoint(BestLine->endpoints[1]))) {
4528 if (BestLine == BTS->lines[i]){
4529 eLog() << Verbose(0) << "BestLine is same as found line, something's wrong here!" << endl;
4530 performCriticalExit();
4531 }
4532 BTS->lines[i]->triangles.insert( pair<int, class BoundaryTriangleSet *> (TempTriangle->Nr, TempTriangle) );
4533 TempTriangle->lines[nr] = BTS->lines[i];
4534 break;
4535 }
4536 }
4537};
4538
4539/** Writes the envelope to file.
4540 * \param *out otuput stream for debugging
4541 * \param *filename basename of output file
4542 * \param *cloud PointCloud structure with all nodes
4543 */
4544void Tesselation::Output(const char *filename, const PointCloud * const cloud)
4545{
4546 Info FunctionInfo(__func__);
4547 ofstream *tempstream = NULL;
4548 string NameofTempFile;
4549 char NumberName[255];
4550
4551 if (LastTriangle != NULL) {
4552 sprintf(NumberName, "-%04d-%s_%s_%s", (int)TrianglesOnBoundary.size(), LastTriangle->endpoints[0]->node->Name, LastTriangle->endpoints[1]->node->Name, LastTriangle->endpoints[2]->node->Name);
4553 if (DoTecplotOutput) {
4554 string NameofTempFile(filename);
4555 NameofTempFile.append(NumberName);
4556 for(size_t npos = NameofTempFile.find_first_of(' '); npos != string::npos; npos = NameofTempFile.find(' ', npos))
4557 NameofTempFile.erase(npos, 1);
4558 NameofTempFile.append(TecplotSuffix);
4559 Log() << Verbose(0) << "Writing temporary non convex hull to file " << NameofTempFile << ".\n";
4560 tempstream = new ofstream(NameofTempFile.c_str(), ios::trunc);
4561 WriteTecplotFile(tempstream, this, cloud, TriangleFilesWritten);
4562 tempstream->close();
4563 tempstream->flush();
4564 delete(tempstream);
4565 }
4566
4567 if (DoRaster3DOutput) {
4568 string NameofTempFile(filename);
4569 NameofTempFile.append(NumberName);
4570 for(size_t npos = NameofTempFile.find_first_of(' '); npos != string::npos; npos = NameofTempFile.find(' ', npos))
4571 NameofTempFile.erase(npos, 1);
4572 NameofTempFile.append(Raster3DSuffix);
4573 Log() << Verbose(0) << "Writing temporary non convex hull to file " << NameofTempFile << ".\n";
4574 tempstream = new ofstream(NameofTempFile.c_str(), ios::trunc);
4575 WriteRaster3dFile(tempstream, this, cloud);
4576 IncludeSphereinRaster3D(tempstream, this, cloud);
4577 tempstream->close();
4578 tempstream->flush();
4579 delete(tempstream);
4580 }
4581 }
4582 if (DoTecplotOutput || DoRaster3DOutput)
4583 TriangleFilesWritten++;
4584};
4585
4586struct BoundaryPolygonSetCompare {
4587 bool operator()(const BoundaryPolygonSet * s1, const BoundaryPolygonSet * s2) const {
4588 if (s1->endpoints.size() < s2->endpoints.size())
4589 return true;
4590 else if (s1->endpoints.size() > s2->endpoints.size())
4591 return false;
4592 else { // equality of number of endpoints
4593 PointSet::const_iterator Walker1 = s1->endpoints.begin();
4594 PointSet::const_iterator Walker2 = s2->endpoints.begin();
4595 while ((Walker1 != s1->endpoints.end()) || (Walker2 != s2->endpoints.end())) {
4596 if ((*Walker1)->Nr < (*Walker2)->Nr)
4597 return true;
4598 else if ((*Walker1)->Nr > (*Walker2)->Nr)
4599 return false;
4600 Walker1++;
4601 Walker2++;
4602 }
4603 return false;
4604 }
4605 }
4606};
4607
4608#define UniquePolygonSet set < BoundaryPolygonSet *, BoundaryPolygonSetCompare>
4609
4610/** Finds all degenerated polygons and calls ReTesselateDegeneratedPolygon()/
4611 * \return number of polygons found
4612 */
4613int Tesselation::CorrectAllDegeneratedPolygons()
4614{
4615 Info FunctionInfo(__func__);
4616
4617 /// 2. Go through all BoundaryPointSet's, check their triangles' NormalVector
4618 IndexToIndex *DegeneratedTriangles = FindAllDegeneratedTriangles();
4619 set < BoundaryPointSet *> EndpointCandidateList;
4620 pair < set < BoundaryPointSet *>::iterator, bool > InsertionTester;
4621 pair < map < int, Vector *>::iterator, bool > TriangleInsertionTester;
4622 for (PointMap::const_iterator Runner = PointsOnBoundary.begin(); Runner != PointsOnBoundary.end(); Runner++) {
4623 Log() << Verbose(0) << "Current point is " << *Runner->second << "." << endl;
4624 map < int, Vector *> TriangleVectors;
4625 // gather all NormalVectors
4626 Log() << Verbose(1) << "Gathering triangles ..." << endl;
4627 for (LineMap::const_iterator LineRunner = (Runner->second)->lines.begin(); LineRunner != (Runner->second)->lines.end(); LineRunner++)
4628 for (TriangleMap::const_iterator TriangleRunner = (LineRunner->second)->triangles.begin(); TriangleRunner != (LineRunner->second)->triangles.end(); TriangleRunner++) {
4629 if (DegeneratedTriangles->find(TriangleRunner->second->Nr) == DegeneratedTriangles->end()) {
4630 TriangleInsertionTester = TriangleVectors.insert( pair< int, Vector *> ((TriangleRunner->second)->Nr, &((TriangleRunner->second)->NormalVector)) );
4631 if (TriangleInsertionTester.second)
4632 Log() << Verbose(1) << " Adding triangle " << *(TriangleRunner->second) << " to triangles to check-list." << endl;
4633 } else {
4634 Log() << Verbose(1) << " NOT adding triangle " << *(TriangleRunner->second) << " as it's a simply degenerated one." << endl;
4635 }
4636 }
4637 // check whether there are two that are parallel
4638 Log() << Verbose(1) << "Finding two parallel triangles ..." << endl;
4639 for (map < int, Vector *>::iterator VectorWalker = TriangleVectors.begin(); VectorWalker != TriangleVectors.end(); VectorWalker++)
4640 for (map < int, Vector *>::iterator VectorRunner = VectorWalker; VectorRunner != TriangleVectors.end(); VectorRunner++)
4641 if (VectorWalker != VectorRunner) { // skip equals
4642 const double SCP = VectorWalker->second->ScalarProduct(VectorRunner->second); // ScalarProduct should result in -1. for degenerated triangles
4643 Log() << Verbose(1) << "Checking " << *VectorWalker->second<< " against " << *VectorRunner->second << ": " << SCP << endl;
4644 if (fabs(SCP + 1.) < ParallelEpsilon) {
4645 InsertionTester = EndpointCandidateList.insert((Runner->second));
4646 if (InsertionTester.second)
4647 Log() << Verbose(0) << " Adding " << *Runner->second << " to endpoint candidate list." << endl;
4648 // and break out of both loops
4649 VectorWalker = TriangleVectors.end();
4650 VectorRunner = TriangleVectors.end();
4651 break;
4652 }
4653 }
4654 }
4655 delete DegeneratedTriangles;
4656
4657 /// 3. Find connected endpoint candidates and put them into a polygon
4658 UniquePolygonSet ListofDegeneratedPolygons;
4659 BoundaryPointSet *Walker = NULL;
4660 BoundaryPointSet *OtherWalker = NULL;
4661 BoundaryPolygonSet *Current = NULL;
4662 stack <BoundaryPointSet*> ToCheckConnecteds;
4663 while (!EndpointCandidateList.empty()) {
4664 Walker = *(EndpointCandidateList.begin());
4665 if (Current == NULL) { // create a new polygon with current candidate
4666 Log() << Verbose(0) << "Starting new polygon set at point " << *Walker << endl;
4667 Current = new BoundaryPolygonSet;
4668 Current->endpoints.insert(Walker);
4669 EndpointCandidateList.erase(Walker);
4670 ToCheckConnecteds.push(Walker);
4671 }
4672
4673 // go through to-check stack
4674 while (!ToCheckConnecteds.empty()) {
4675 Walker = ToCheckConnecteds.top(); // fetch ...
4676 ToCheckConnecteds.pop(); // ... and remove
4677 for (LineMap::const_iterator LineWalker = Walker->lines.begin(); LineWalker != Walker->lines.end(); LineWalker++) {
4678 OtherWalker = (LineWalker->second)->GetOtherEndpoint(Walker);
4679 Log() << Verbose(1) << "Checking " << *OtherWalker << endl;
4680 set < BoundaryPointSet *>::iterator Finder = EndpointCandidateList.find(OtherWalker);
4681 if (Finder != EndpointCandidateList.end()) { // found a connected partner
4682 Log() << Verbose(1) << " Adding to polygon." << endl;
4683 Current->endpoints.insert(OtherWalker);
4684 EndpointCandidateList.erase(Finder); // remove from candidates
4685 ToCheckConnecteds.push(OtherWalker); // but check its partners too
4686 } else {
4687 Log() << Verbose(1) << " is not connected to " << *Walker << endl;
4688 }
4689 }
4690 }
4691
4692 Log() << Verbose(0) << "Final polygon is " << *Current << endl;
4693 ListofDegeneratedPolygons.insert(Current);
4694 Current = NULL;
4695 }
4696
4697 const int counter = ListofDegeneratedPolygons.size();
4698
4699 Log() << Verbose(0) << "The following " << counter << " degenerated polygons have been found: " << endl;
4700 for (UniquePolygonSet::iterator PolygonRunner = ListofDegeneratedPolygons.begin(); PolygonRunner != ListofDegeneratedPolygons.end(); PolygonRunner++)
4701 Log() << Verbose(0) << " " << **PolygonRunner << endl;
4702
4703 /// 4. Go through all these degenerated polygons
4704 for (UniquePolygonSet::iterator PolygonRunner = ListofDegeneratedPolygons.begin(); PolygonRunner != ListofDegeneratedPolygons.end(); PolygonRunner++) {
4705 stack <int> TriangleNrs;
4706 Vector NormalVector;
4707 /// 4a. Gather all triangles of this polygon
4708 TriangleSet *T = (*PolygonRunner)->GetAllContainedTrianglesFromEndpoints();
4709
4710 // check whether number is bigger than 2, otherwise it's just a simply degenerated one and nothing to do.
4711 if (T->size() == 2) {
4712 Log() << Verbose(1) << " Skipping degenerated polygon, is just a (already simply degenerated) triangle." << endl;
4713 delete(T);
4714 continue;
4715 }
4716
4717 // check whether number is even
4718 // If this case occurs, we have to think about it!
4719 // The Problem is probably due to two degenerated polygons being connected by a bridging, non-degenerated polygon, as somehow one node has
4720 // connections to either polygon ...
4721 if (T->size() % 2 != 0) {
4722 eLog() << Verbose(0) << " degenerated polygon contains an odd number of triangles, probably contains bridging non-degenerated ones, too!" << endl;
4723 performCriticalExit();
4724 }
4725
4726 TriangleSet::iterator TriangleWalker = T->begin(); // is the inner iterator
4727 /// 4a. Get NormalVector for one side (this is "front")
4728 NormalVector.CopyVector(&(*TriangleWalker)->NormalVector);
4729 Log() << Verbose(1) << "\"front\" defining triangle is " << **TriangleWalker << " and Normal vector of \"front\" side is " << NormalVector << endl;
4730 TriangleWalker++;
4731 TriangleSet::iterator TriangleSprinter = TriangleWalker; // is the inner advanced iterator
4732 /// 4b. Remove all triangles whose NormalVector is in opposite direction (i.e. "back")
4733 BoundaryTriangleSet *triangle = NULL;
4734 while (TriangleSprinter != T->end()) {
4735 TriangleWalker = TriangleSprinter;
4736 triangle = *TriangleWalker;
4737 TriangleSprinter++;
4738 Log() << Verbose(1) << "Current triangle to test for removal: " << *triangle << endl;
4739 if (triangle->NormalVector.ScalarProduct(&NormalVector) < 0) { // if from other side, then delete and remove from list
4740 Log() << Verbose(1) << " Removing ... " << endl;
4741 TriangleNrs.push(triangle->Nr);
4742 T->erase(TriangleWalker);
4743 RemoveTesselationTriangle(triangle);
4744 } else
4745 Log() << Verbose(1) << " Keeping ... " << endl;
4746 }
4747 /// 4c. Copy all "front" triangles but with inverse NormalVector
4748 TriangleWalker = T->begin();
4749 while (TriangleWalker != T->end()) { // go through all front triangles
4750 Log() << Verbose(1) << " Re-creating triangle " << **TriangleWalker << " with NormalVector " << (*TriangleWalker)->NormalVector << endl;
4751 for (int i = 0; i < 3; i++)
4752 AddTesselationPoint((*TriangleWalker)->endpoints[i]->node, i);
4753 AddTesselationLine(TPS[0], TPS[1], 0);
4754 AddTesselationLine(TPS[0], TPS[2], 1);
4755 AddTesselationLine(TPS[1], TPS[2], 2);
4756 if (TriangleNrs.empty())
4757 eLog() << Verbose(0) << "No more free triangle numbers!" << endl;
4758 BTS = new BoundaryTriangleSet(BLS, TriangleNrs.top()); // copy triangle ...
4759 AddTesselationTriangle(); // ... and add
4760 TriangleNrs.pop();
4761 BTS->NormalVector.CopyVector(&(*TriangleWalker)->NormalVector);
4762 BTS->NormalVector.Scale(-1.);
4763 TriangleWalker++;
4764 }
4765 if (!TriangleNrs.empty()) {
4766 eLog() << Verbose(0) << "There have been less triangles created than removed!" << endl;
4767 }
4768 delete(T); // remove the triangleset
4769 }
4770
4771 IndexToIndex * SimplyDegeneratedTriangles = FindAllDegeneratedTriangles();
4772 Log() << Verbose(0) << "Final list of simply degenerated triangles found, containing " << SimplyDegeneratedTriangles->size() << " triangles:" << endl;
4773 IndexToIndex::iterator it;
4774 for (it = SimplyDegeneratedTriangles->begin(); it != SimplyDegeneratedTriangles->end(); it++)
4775 Log() << Verbose(0) << (*it).first << " => " << (*it).second << endl;
4776 delete(SimplyDegeneratedTriangles);
4777
4778 /// 5. exit
4779 UniquePolygonSet::iterator PolygonRunner;
4780 while (!ListofDegeneratedPolygons.empty()) {
4781 PolygonRunner = ListofDegeneratedPolygons.begin();
4782 delete(*PolygonRunner);
4783 ListofDegeneratedPolygons.erase(PolygonRunner);
4784 }
4785
4786 return counter;
4787};
Note: See TracBrowser for help on using the repository browser.