source: src/tesselation.cpp@ 8cd903

Action_Thermostats Add_AtomRandomPerturbation Add_FitFragmentPartialChargesAction Add_RotateAroundBondAction Add_SelectAtomByNameAction Added_ParseSaveFragmentResults AddingActions_SaveParseParticleParameters Adding_Graph_to_ChangeBondActions Adding_MD_integration_tests Adding_ParticleName_to_Atom Adding_StructOpt_integration_tests AtomFragments Automaking_mpqc_open AutomationFragmentation_failures Candidate_v1.5.4 Candidate_v1.6.0 Candidate_v1.6.1 Candidate_v1.7.0 ChangeBugEmailaddress ChangingTestPorts ChemicalSpaceEvaluator CombiningParticlePotentialParsing Combining_Subpackages Debian_Package_split Debian_package_split_molecuildergui_only Disabling_MemDebug Docu_Python_wait EmpiricalPotential_contain_HomologyGraph EmpiricalPotential_contain_HomologyGraph_documentation Enable_parallel_make_install Enhance_userguide Enhanced_StructuralOptimization Enhanced_StructuralOptimization_continued Example_ManyWaysToTranslateAtom Exclude_Hydrogens_annealWithBondGraph FitPartialCharges_GlobalError Fix_BoundInBox_CenterInBox_MoleculeActions Fix_ChargeSampling_PBC Fix_ChronosMutex Fix_FitPartialCharges Fix_FitPotential_needs_atomicnumbers Fix_ForceAnnealing Fix_IndependentFragmentGrids Fix_ParseParticles Fix_ParseParticles_split_forward_backward_Actions Fix_PopActions Fix_QtFragmentList_sorted_selection Fix_Restrictedkeyset_FragmentMolecule Fix_StatusMsg Fix_StepWorldTime_single_argument Fix_Verbose_Codepatterns Fix_fitting_potentials Fixes ForceAnnealing_goodresults ForceAnnealing_oldresults ForceAnnealing_tocheck ForceAnnealing_with_BondGraph ForceAnnealing_with_BondGraph_continued ForceAnnealing_with_BondGraph_continued_betteresults ForceAnnealing_with_BondGraph_contraction-expansion FragmentAction_writes_AtomFragments FragmentMolecule_checks_bonddegrees GeometryObjects Gui_Fixes Gui_displays_atomic_force_velocity ImplicitCharges IndependentFragmentGrids IndependentFragmentGrids_IndividualZeroInstances IndependentFragmentGrids_IntegrationTest IndependentFragmentGrids_Sole_NN_Calculation JobMarket_RobustOnKillsSegFaults JobMarket_StableWorkerPool JobMarket_unresolvable_hostname_fix MoreRobust_FragmentAutomation ODR_violation_mpqc_open PartialCharges_OrthogonalSummation PdbParser_setsAtomName PythonUI_with_named_parameters QtGui_reactivate_TimeChanged_changes Recreated_GuiChecks Rewrite_FitPartialCharges RotateToPrincipalAxisSystem_UndoRedo SaturateAtoms_findBestMatching SaturateAtoms_singleDegree StoppableMakroAction Subpackage_CodePatterns Subpackage_JobMarket Subpackage_LinearAlgebra Subpackage_levmar Subpackage_mpqc_open Subpackage_vmg Switchable_LogView ThirdParty_MPQC_rebuilt_buildsystem TrajectoryDependenant_MaxOrder TremoloParser_IncreasedPrecision TremoloParser_MultipleTimesteps TremoloParser_setsAtomName Ubuntu_1604_changes stable
Last change on this file since 8cd903 was 065e82, checked in by Frederik Heber <heber@…>, 16 years ago

FIX: Tesselation::RemovePointFromTesselatedSurface() is working correctly now, heptan is de-tesselated without any memory leaks.

  • Property mode set to 100644
File size: 143.4 KB
RevLine 
[357fba]1/*
2 * tesselation.cpp
3 *
4 * Created on: Aug 3, 2009
5 * Author: heber
6 */
7
8#include "tesselation.hpp"
9
10// ======================================== Points on Boundary =================================
11
[16d866]12/** Constructor of BoundaryPointSet.
13 */
[357fba]14BoundaryPointSet::BoundaryPointSet()
15{
16 LinesCount = 0;
17 Nr = -1;
[1d9b7aa]18 value = 0.;
[16d866]19};
[357fba]20
[16d866]21/** Constructor of BoundaryPointSet with Tesselpoint.
22 * \param *Walker TesselPoint this boundary point represents
23 */
[357fba]24BoundaryPointSet::BoundaryPointSet(TesselPoint *Walker)
25{
26 node = Walker;
27 LinesCount = 0;
28 Nr = Walker->nr;
[1d9b7aa]29 value = 0.;
[16d866]30};
[357fba]31
[16d866]32/** Destructor of BoundaryPointSet.
33 * Sets node to NULL to avoid removing the original, represented TesselPoint.
34 * \note When removing point from a class Tesselation, use RemoveTesselationPoint()
35 */
[357fba]36BoundaryPointSet::~BoundaryPointSet()
37{
38 cout << Verbose(5) << "Erasing point nr. " << Nr << "." << endl;
39 if (!lines.empty())
40 cerr << "WARNING: Memory Leak! I " << *this << " am still connected to some lines." << endl;
41 node = NULL;
[16d866]42};
[357fba]43
[16d866]44/** Add a line to the LineMap of this point.
45 * \param *line line to add
46 */
[357fba]47void BoundaryPointSet::AddLine(class BoundaryLineSet *line)
48{
49 cout << Verbose(6) << "Adding " << *this << " to line " << *line << "."
50 << endl;
51 if (line->endpoints[0] == this)
52 {
53 lines.insert(LinePair(line->endpoints[1]->Nr, line));
54 }
55 else
56 {
57 lines.insert(LinePair(line->endpoints[0]->Nr, line));
58 }
59 LinesCount++;
[16d866]60};
[357fba]61
[16d866]62/** output operator for BoundaryPointSet.
63 * \param &ost output stream
64 * \param &a boundary point
65 */
66ostream & operator <<(ostream &ost, BoundaryPointSet &a)
[357fba]67{
68 ost << "[" << a.Nr << "|" << a.node->Name << "]";
69 return ost;
70}
71;
72
73// ======================================== Lines on Boundary =================================
74
[16d866]75/** Constructor of BoundaryLineSet.
76 */
[357fba]77BoundaryLineSet::BoundaryLineSet()
78{
79 for (int i = 0; i < 2; i++)
80 endpoints[i] = NULL;
81 Nr = -1;
[16d866]82};
[357fba]83
[16d866]84/** Constructor of BoundaryLineSet with two endpoints.
85 * Adds line automatically to each endpoints' LineMap
86 * \param *Point[2] array of two boundary points
87 * \param number number of the list
88 */
[357fba]89BoundaryLineSet::BoundaryLineSet(class BoundaryPointSet *Point[2], int number)
90{
91 // set number
92 Nr = number;
93 // set endpoints in ascending order
94 SetEndpointsOrdered(endpoints, Point[0], Point[1]);
95 // add this line to the hash maps of both endpoints
96 Point[0]->AddLine(this); //Taken out, to check whether we can avoid unwanted double adding.
97 Point[1]->AddLine(this); //
98 // clear triangles list
99 cout << Verbose(5) << "New Line with endpoints " << *this << "." << endl;
[16d866]100};
[357fba]101
[16d866]102/** Destructor for BoundaryLineSet.
103 * Removes itself from each endpoints' LineMap, calling RemoveTrianglePoint() when point not connected anymore.
104 * \note When removing lines from a class Tesselation, use RemoveTesselationLine()
105 */
[357fba]106BoundaryLineSet::~BoundaryLineSet()
107{
108 int Numbers[2];
[16d866]109
110 // get other endpoint number of finding copies of same line
111 if (endpoints[1] != NULL)
112 Numbers[0] = endpoints[1]->Nr;
113 else
114 Numbers[0] = -1;
115 if (endpoints[0] != NULL)
116 Numbers[1] = endpoints[0]->Nr;
117 else
118 Numbers[1] = -1;
119
[357fba]120 for (int i = 0; i < 2; i++) {
[16d866]121 if (endpoints[i] != NULL) {
122 if (Numbers[i] != -1) { // as there may be multiple lines with same endpoints, we have to go through each and find in the endpoint's line list this line set
123 pair<LineMap::iterator, LineMap::iterator> erasor = endpoints[i]->lines.equal_range(Numbers[i]);
124 for (LineMap::iterator Runner = erasor.first; Runner != erasor.second; Runner++)
125 if ((*Runner).second == this) {
126 cout << Verbose(5) << "Removing Line Nr. " << Nr << " in boundary point " << *endpoints[i] << "." << endl;
127 endpoints[i]->lines.erase(Runner);
128 break;
129 }
130 } else { // there's just a single line left
131 if (endpoints[i]->lines.erase(Nr))
132 cout << Verbose(5) << "Removing Line Nr. " << Nr << " in boundary point " << *endpoints[i] << "." << endl;
[357fba]133 }
[16d866]134 if (endpoints[i]->lines.empty()) {
135 cout << Verbose(5) << *endpoints[i] << " has no more lines it's attached to, erasing." << endl;
136 if (endpoints[i] != NULL) {
137 delete(endpoints[i]);
138 endpoints[i] = NULL;
139 }
140 }
141 }
[357fba]142 }
143 if (!triangles.empty())
144 cerr << "WARNING: Memory Leak! I " << *this << " am still connected to some triangles." << endl;
[16d866]145};
[357fba]146
[16d866]147/** Add triangle to TriangleMap of this boundary line.
148 * \param *triangle to add
149 */
150void BoundaryLineSet::AddTriangle(class BoundaryTriangleSet *triangle)
[357fba]151{
[1d9b7aa]152 cout << Verbose(6) << "Add " << triangle->Nr << " to line " << *this << "." << endl;
[357fba]153 triangles.insert(TrianglePair(triangle->Nr, triangle));
[16d866]154};
[357fba]155
156/** Checks whether we have a common endpoint with given \a *line.
157 * \param *line other line to test
158 * \return true - common endpoint present, false - not connected
159 */
160bool BoundaryLineSet::IsConnectedTo(class BoundaryLineSet *line)
161{
162 if ((endpoints[0] == line->endpoints[0]) || (endpoints[1] == line->endpoints[0]) || (endpoints[0] == line->endpoints[1]) || (endpoints[1] == line->endpoints[1]))
163 return true;
164 else
165 return false;
166};
167
168/** Checks whether the adjacent triangles of a baseline are convex or not.
169 * We sum the two angles of each normal vector with a ficticious normnal vector from this baselinbe pointing outwards.
170 * If greater/equal M_PI than we are convex.
171 * \param *out output stream for debugging
172 * \return true - triangles are convex, false - concave or less than two triangles connected
173 */
174bool BoundaryLineSet::CheckConvexityCriterion(ofstream *out)
175{
[5c7bf8]176 Vector BaseLineCenter, BaseLineNormal, BaseLine, helper[2], NormalCheck;
[357fba]177 // get the two triangles
[5c7bf8]178 if (triangles.size() != 2) {
179 *out << Verbose(1) << "ERROR: Baseline " << *this << " is connect to less than two triangles, Tesselation incomplete!" << endl;
[1d9b7aa]180 return true;
[357fba]181 }
[5c7bf8]182 // check normal vectors
[357fba]183 // have a normal vector on the base line pointing outwards
[1d9b7aa]184 //*out << Verbose(3) << "INFO: " << *this << " has vectors at " << *(endpoints[0]->node->node) << " and at " << *(endpoints[1]->node->node) << "." << endl;
[62bb91]185 BaseLineCenter.CopyVector(endpoints[0]->node->node);
186 BaseLineCenter.AddVector(endpoints[1]->node->node);
187 BaseLineCenter.Scale(1./2.);
188 BaseLine.CopyVector(endpoints[0]->node->node);
189 BaseLine.SubtractVector(endpoints[1]->node->node);
[1d9b7aa]190 //*out << Verbose(3) << "INFO: Baseline is " << BaseLine << " and its center is at " << BaseLineCenter << "." << endl;
[357fba]191
[62bb91]192 BaseLineNormal.Zero();
[5c7bf8]193 NormalCheck.Zero();
194 double sign = -1.;
[62bb91]195 int i=0;
196 class BoundaryPointSet *node = NULL;
197 for(TriangleMap::iterator runner = triangles.begin(); runner != triangles.end(); runner++) {
[1d9b7aa]198 //*out << Verbose(3) << "INFO: NormalVector of " << *(runner->second) << " is " << runner->second->NormalVector << "." << endl;
[5c7bf8]199 NormalCheck.AddVector(&runner->second->NormalVector);
200 NormalCheck.Scale(sign);
201 sign = -sign;
[62bb91]202 BaseLineNormal.SubtractVector(&runner->second->NormalVector); // we subtract as BaseLineNormal has to point inward in direction of [pi,2pi]
203 node = runner->second->GetThirdEndpoint(this);
204 if (node != NULL) {
[1d9b7aa]205 //*out << Verbose(3) << "INFO: Third node for triangle " << *(runner->second) << " is " << *node << " at " << *(node->node->node) << "." << endl;
[62bb91]206 helper[i].CopyVector(node->node->node);
207 helper[i].SubtractVector(&BaseLineCenter);
208 helper[i].MakeNormalVector(&BaseLine); // we want to compare the triangle's heights' angles!
[1d9b7aa]209 //*out << Verbose(4) << "INFO: Height vector with respect to baseline is " << helper[i] << "." << endl;
[62bb91]210 i++;
211 } else {
[1d9b7aa]212 //*out << Verbose(2) << "WARNING: I cannot find third node in triangle, something's wrong." << endl;
[62bb91]213 return true;
214 }
215 }
[1d9b7aa]216 //*out << Verbose(3) << "INFO: BaselineNormal is " << BaseLineNormal << "." << endl;
[5c7bf8]217 if (NormalCheck.NormSquared() < MYEPSILON) {
[1d9b7aa]218 *out << Verbose(2) << "ACCEPT: Normalvectors of both triangles are the same: convex." << endl;
[5c7bf8]219 return true;
[62bb91]220 }
[f1cccd]221 double angle = GetAngle(helper[0], helper[1], BaseLineNormal);
[1d9b7aa]222 if ((angle - M_PI) > -MYEPSILON) {
223 *out << Verbose(2) << "ACCEPT: Angle is greater than pi: convex." << endl;
[357fba]224 return true;
[1d9b7aa]225 } else {
226 *out << Verbose(2) << "REJECT: Angle is less than pi: concave." << endl;
[357fba]227 return false;
[1d9b7aa]228 }
[357fba]229}
230
231/** Checks whether point is any of the two endpoints this line contains.
232 * \param *point point to test
233 * \return true - point is of the line, false - is not
234 */
235bool BoundaryLineSet::ContainsBoundaryPoint(class BoundaryPointSet *point)
236{
237 for(int i=0;i<2;i++)
238 if (point == endpoints[i])
239 return true;
240 return false;
241};
242
[62bb91]243/** Returns other endpoint of the line.
244 * \param *point other endpoint
245 * \return NULL - if endpoint not contained in BoundaryLineSet, or pointer to BoundaryPointSet otherwise
246 */
[08ef35]247class BoundaryPointSet *BoundaryLineSet::GetOtherEndpoint(class BoundaryPointSet *point)
[62bb91]248{
249 if (endpoints[0] == point)
250 return endpoints[1];
251 else if (endpoints[1] == point)
252 return endpoints[0];
253 else
254 return NULL;
255};
256
[16d866]257/** output operator for BoundaryLineSet.
258 * \param &ost output stream
259 * \param &a boundary line
260 */
261ostream & operator <<(ostream &ost, BoundaryLineSet &a)
[357fba]262{
263 ost << "[" << a.Nr << "|" << a.endpoints[0]->node->Name << "," << a.endpoints[1]->node->Name << "]";
264 return ost;
[16d866]265};
[357fba]266
267// ======================================== Triangles on Boundary =================================
268
[16d866]269/** Constructor for BoundaryTriangleSet.
270 */
[357fba]271BoundaryTriangleSet::BoundaryTriangleSet()
272{
273 for (int i = 0; i < 3; i++)
274 {
275 endpoints[i] = NULL;
276 lines[i] = NULL;
277 }
278 Nr = -1;
[16d866]279};
[357fba]280
[16d866]281/** Constructor for BoundaryTriangleSet with three lines.
282 * \param *line[3] lines that make up the triangle
283 * \param number number of triangle
284 */
[357fba]285BoundaryTriangleSet::BoundaryTriangleSet(class BoundaryLineSet *line[3], int number)
286{
287 // set number
288 Nr = number;
289 // set lines
290 cout << Verbose(5) << "New triangle " << Nr << ":" << endl;
291 for (int i = 0; i < 3; i++)
292 {
293 lines[i] = line[i];
294 lines[i]->AddTriangle(this);
295 }
296 // get ascending order of endpoints
297 map<int, class BoundaryPointSet *> OrderMap;
298 for (int i = 0; i < 3; i++)
299 // for all three lines
300 for (int j = 0; j < 2; j++)
301 { // for both endpoints
302 OrderMap.insert(pair<int, class BoundaryPointSet *> (
303 line[i]->endpoints[j]->Nr, line[i]->endpoints[j]));
304 // and we don't care whether insertion fails
305 }
306 // set endpoints
307 int Counter = 0;
308 cout << Verbose(6) << " with end points ";
309 for (map<int, class BoundaryPointSet *>::iterator runner = OrderMap.begin(); runner
310 != OrderMap.end(); runner++)
311 {
312 endpoints[Counter] = runner->second;
313 cout << " " << *endpoints[Counter];
314 Counter++;
315 }
316 if (Counter < 3)
317 {
318 cerr << "ERROR! We have a triangle with only two distinct endpoints!"
319 << endl;
320 //exit(1);
321 }
322 cout << "." << endl;
[16d866]323};
[357fba]324
[16d866]325/** Destructor of BoundaryTriangleSet.
326 * Removes itself from each of its lines' LineMap and removes them if necessary.
327 * \note When removing triangles from a class Tesselation, use RemoveTesselationTriangle()
328 */
[357fba]329BoundaryTriangleSet::~BoundaryTriangleSet()
330{
331 for (int i = 0; i < 3; i++) {
[16d866]332 if (lines[i] != NULL) {
333 if (lines[i]->triangles.erase(Nr))
334 cout << Verbose(5) << "Triangle Nr." << Nr << " erased in line " << *lines[i] << "." << endl;
335 if (lines[i]->triangles.empty()) {
336 cout << Verbose(5) << *lines[i] << " is no more attached to any triangle, erasing." << endl;
337 delete (lines[i]);
338 lines[i] = NULL;
339 }
340 }
[357fba]341 }
[16d866]342 cout << Verbose(5) << "Erasing triangle Nr." << Nr << " itself." << endl;
343};
[357fba]344
345/** Calculates the normal vector for this triangle.
346 * Is made unique by comparison with \a OtherVector to point in the other direction.
347 * \param &OtherVector direction vector to make normal vector unique.
348 */
349void BoundaryTriangleSet::GetNormalVector(Vector &OtherVector)
350{
351 // get normal vector
352 NormalVector.MakeNormalVector(endpoints[0]->node->node, endpoints[1]->node->node, endpoints[2]->node->node);
353
354 // make it always point inward (any offset vector onto plane projected onto normal vector suffices)
[658efb]355 if (NormalVector.ScalarProduct(&OtherVector) > 0.)
[357fba]356 NormalVector.Scale(-1.);
357};
358
359/** Finds the point on the triangle \a *BTS the line defined by \a *MolCenter and \a *x crosses through.
360 * We call Vector::GetIntersectionWithPlane() to receive the intersection point with the plane
361 * This we test if it's really on the plane and whether it's inside the triangle on the plane or not.
362 * The latter is done as follows: if it's really outside, then for any endpoint of the triangle and it's opposite
363 * base line, the intersection between the line from endpoint to intersection and the base line will have a Vector::NormSquared()
364 * smaller than the first line.
365 * \param *out output stream for debugging
366 * \param *MolCenter offset vector of line
367 * \param *x second endpoint of line, minus \a *MolCenter is directional vector of line
368 * \param *Intersection intersection on plane on return
369 * \return true - \a *Intersection contains intersection on plane defined by triangle, false - zero vector if outside of triangle.
370 */
371bool BoundaryTriangleSet::GetIntersectionInsideTriangle(ofstream *out, Vector *MolCenter, Vector *x, Vector *Intersection)
372{
373 Vector CrossPoint;
374 Vector helper;
375
[5c7bf8]376 if (!Intersection->GetIntersectionWithPlane(out, &NormalVector, endpoints[0]->node->node, MolCenter, x)) {
377 *out << Verbose(1) << "Alas! Intersection with plane failed - at least numerically - the intersection is not on the plane!" << endl;
[357fba]378 return false;
379 }
380
381 // Calculate cross point between one baseline and the line from the third endpoint to intersection
[5c7bf8]382 int i=0;
[357fba]383 do {
[5c7bf8]384 if (CrossPoint.GetIntersectionOfTwoLinesOnPlane(out, endpoints[i%3]->node->node, endpoints[(i+1)%3]->node->node, endpoints[(i+2)%3]->node->node, Intersection, &NormalVector)) {
385 helper.CopyVector(endpoints[(i+1)%3]->node->node);
386 helper.SubtractVector(endpoints[i%3]->node->node);
387 } else
388 i++;
389 if (i>2)
[357fba]390 break;
391 } while (CrossPoint.NormSquared() < MYEPSILON);
[5c7bf8]392 if (i==3) {
[357fba]393 *out << Verbose(1) << "ERROR: Could not find any cross points, something's utterly wrong here!" << endl;
394 exit(255);
395 }
396 CrossPoint.SubtractVector(endpoints[i%3]->node->node);
397
398 // check whether intersection is inside or not by comparing length of intersection and length of cross point
399 if ((CrossPoint.NormSquared() - helper.NormSquared()) > -MYEPSILON) { // inside
400 return true;
401 } else { // outside!
402 Intersection->Zero();
403 return false;
404 }
405};
406
407/** Checks whether lines is any of the three boundary lines this triangle contains.
408 * \param *line line to test
409 * \return true - line is of the triangle, false - is not
410 */
411bool BoundaryTriangleSet::ContainsBoundaryLine(class BoundaryLineSet *line)
412{
413 for(int i=0;i<3;i++)
414 if (line == lines[i])
415 return true;
416 return false;
417};
418
419/** Checks whether point is any of the three endpoints this triangle contains.
420 * \param *point point to test
421 * \return true - point is of the triangle, false - is not
422 */
423bool BoundaryTriangleSet::ContainsBoundaryPoint(class BoundaryPointSet *point)
424{
425 for(int i=0;i<3;i++)
426 if (point == endpoints[i])
427 return true;
428 return false;
429};
430
431/** Checks whether three given \a *Points coincide with triangle's endpoints.
432 * \param *Points[3] pointer to BoundaryPointSet
433 * \return true - is the very triangle, false - is not
434 */
435bool BoundaryTriangleSet::IsPresentTupel(class BoundaryPointSet *Points[3])
436{
437 return (((endpoints[0] == Points[0])
438 || (endpoints[0] == Points[1])
439 || (endpoints[0] == Points[2])
440 ) && (
441 (endpoints[1] == Points[0])
442 || (endpoints[1] == Points[1])
443 || (endpoints[1] == Points[2])
444 ) && (
445 (endpoints[2] == Points[0])
446 || (endpoints[2] == Points[1])
447 || (endpoints[2] == Points[2])
[62bb91]448
[357fba]449 ));
450};
451
[62bb91]452/** Returns the endpoint which is not contained in the given \a *line.
453 * \param *line baseline defining two endpoints
454 * \return pointer third endpoint or NULL if line does not belong to triangle.
455 */
456class BoundaryPointSet *BoundaryTriangleSet::GetThirdEndpoint(class BoundaryLineSet *line)
457{
458 // sanity check
459 if (!ContainsBoundaryLine(line))
460 return NULL;
461 for(int i=0;i<3;i++)
462 if (!line->ContainsBoundaryPoint(endpoints[i]))
463 return endpoints[i];
464 // actually, that' impossible :)
465 return NULL;
466};
467
468/** Calculates the center point of the triangle.
469 * Is third of the sum of all endpoints.
470 * \param *center central point on return.
471 */
472void BoundaryTriangleSet::GetCenter(Vector *center)
473{
474 center->Zero();
475 for(int i=0;i<3;i++)
476 center->AddVector(endpoints[i]->node->node);
477 center->Scale(1./3.);
478}
479
[16d866]480/** output operator for BoundaryTriangleSet.
481 * \param &ost output stream
482 * \param &a boundary triangle
483 */
484ostream &operator <<(ostream &ost, BoundaryTriangleSet &a)
[357fba]485{
486 ost << "[" << a.Nr << "|" << a.endpoints[0]->node->Name << ","
487 << a.endpoints[1]->node->Name << "," << a.endpoints[2]->node->Name << "]";
488 return ost;
[16d866]489};
[357fba]490
491// =========================================================== class TESSELPOINT ===========================================
492
493/** Constructor of class TesselPoint.
494 */
495TesselPoint::TesselPoint()
496{
497 node = NULL;
498 nr = -1;
499 Name = NULL;
500};
501
502/** Destructor for class TesselPoint.
503 */
504TesselPoint::~TesselPoint()
505{
506 Free((void **)&Name, "TesselPoint::~TesselPoint: *Name");
507};
508
509/** Prints LCNode to screen.
510 */
511ostream & operator << (ostream &ost, const TesselPoint &a)
512{
513 ost << "[" << (a.Name) << "|" << &a << "]";
514 return ost;
515};
516
[5c7bf8]517/** Prints LCNode to screen.
518 */
519ostream & TesselPoint::operator << (ostream &ost)
520{
521 ost << "[" << (Name) << "|" << this << "]";
522 return ost;
523};
524
[357fba]525
526// =========================================================== class POINTCLOUD ============================================
527
528/** Constructor of class PointCloud.
529 */
530PointCloud::PointCloud()
531{
532
533};
534
535/** Destructor for class PointCloud.
536 */
537PointCloud::~PointCloud()
538{
539
540};
541
542// ============================ CandidateForTesselation =============================
543
544/** Constructor of class CandidateForTesselation.
545 */
546CandidateForTesselation::CandidateForTesselation(TesselPoint *candidate, BoundaryLineSet* line, Vector OptCandidateCenter, Vector OtherOptCandidateCenter) {
547 point = candidate;
548 BaseLine = line;
549 OptCenter.CopyVector(&OptCandidateCenter);
550 OtherOptCenter.CopyVector(&OtherOptCandidateCenter);
551};
552
553/** Destructor for class CandidateForTesselation.
554 */
555CandidateForTesselation::~CandidateForTesselation() {
556 point = NULL;
557 BaseLine = NULL;
558};
559
560// =========================================================== class TESSELATION ===========================================
561
562/** Constructor of class Tesselation.
563 */
564Tesselation::Tesselation()
565{
566 PointsOnBoundaryCount = 0;
567 LinesOnBoundaryCount = 0;
568 TrianglesOnBoundaryCount = 0;
[5c7bf8]569 InternalPointer = PointsOnBoundary.begin();
[357fba]570}
571;
572
573/** Destructor of class Tesselation.
574 * We have to free all points, lines and triangles.
575 */
576Tesselation::~Tesselation()
577{
578 cout << Verbose(1) << "Free'ing TesselStruct ... " << endl;
579 for (TriangleMap::iterator runner = TrianglesOnBoundary.begin(); runner != TrianglesOnBoundary.end(); runner++) {
580 if (runner->second != NULL) {
581 delete (runner->second);
582 runner->second = NULL;
583 } else
584 cerr << "ERROR: The triangle " << runner->first << " has already been free'd." << endl;
585 }
586}
587;
588
[5c7bf8]589/** PointCloud implementation of GetCenter
590 * Uses PointsOnBoundary and STL stuff.
591 */
592Vector * Tesselation::GetCenter(ofstream *out)
593{
594 Vector *Center = new Vector(0.,0.,0.);
595 int num=0;
596 for (GoToFirst(); (!IsEnd()); GoToNext()) {
597 Center->AddVector(GetPoint()->node);
598 num++;
599 }
600 Center->Scale(1./num);
601 return Center;
602};
603
604/** PointCloud implementation of GoPoint
605 * Uses PointsOnBoundary and STL stuff.
606 */
607TesselPoint * Tesselation::GetPoint()
608{
609 return (InternalPointer->second->node);
610};
611
612/** PointCloud implementation of GetTerminalPoint.
613 * Uses PointsOnBoundary and STL stuff.
614 */
615TesselPoint * Tesselation::GetTerminalPoint()
616{
617 PointMap::iterator Runner = PointsOnBoundary.end();
618 Runner--;
619 return (Runner->second->node);
620};
621
622/** PointCloud implementation of GoToNext.
623 * Uses PointsOnBoundary and STL stuff.
624 */
625void Tesselation::GoToNext()
626{
627 if (InternalPointer != PointsOnBoundary.end())
628 InternalPointer++;
629};
630
631/** PointCloud implementation of GoToPrevious.
632 * Uses PointsOnBoundary and STL stuff.
633 */
634void Tesselation::GoToPrevious()
635{
636 if (InternalPointer != PointsOnBoundary.begin())
637 InternalPointer--;
638};
639
640/** PointCloud implementation of GoToFirst.
641 * Uses PointsOnBoundary and STL stuff.
642 */
643void Tesselation::GoToFirst()
644{
645 InternalPointer = PointsOnBoundary.begin();
646};
647
648/** PointCloud implementation of GoToLast.
649 * Uses PointsOnBoundary and STL stuff.
650 */
651void Tesselation::GoToLast()
652{
653 InternalPointer = PointsOnBoundary.end();
654 InternalPointer--;
655};
656
657/** PointCloud implementation of IsEmpty.
658 * Uses PointsOnBoundary and STL stuff.
659 */
660bool Tesselation::IsEmpty()
661{
662 return (PointsOnBoundary.empty());
663};
664
665/** PointCloud implementation of IsLast.
666 * Uses PointsOnBoundary and STL stuff.
667 */
668bool Tesselation::IsEnd()
669{
670 return (InternalPointer == PointsOnBoundary.end());
671};
672
673
[357fba]674/** Gueses first starting triangle of the convex envelope.
675 * We guess the starting triangle by taking the smallest distance between two points and looking for a fitting third.
676 * \param *out output stream for debugging
677 * \param PointsOnBoundary set of boundary points defining the convex envelope of the cluster
678 */
679void
680Tesselation::GuessStartingTriangle(ofstream *out)
681{
682 // 4b. create a starting triangle
683 // 4b1. create all distances
684 DistanceMultiMap DistanceMMap;
685 double distance, tmp;
686 Vector PlaneVector, TrialVector;
687 PointMap::iterator A, B, C; // three nodes of the first triangle
688 A = PointsOnBoundary.begin(); // the first may be chosen arbitrarily
689
690 // with A chosen, take each pair B,C and sort
691 if (A != PointsOnBoundary.end())
692 {
693 B = A;
694 B++;
695 for (; B != PointsOnBoundary.end(); B++)
696 {
697 C = B;
698 C++;
699 for (; C != PointsOnBoundary.end(); C++)
700 {
701 tmp = A->second->node->node->DistanceSquared(B->second->node->node);
702 distance = tmp * tmp;
703 tmp = A->second->node->node->DistanceSquared(C->second->node->node);
704 distance += tmp * tmp;
705 tmp = B->second->node->node->DistanceSquared(C->second->node->node);
706 distance += tmp * tmp;
707 DistanceMMap.insert(DistanceMultiMapPair(distance, pair<PointMap::iterator, PointMap::iterator> (B, C)));
708 }
709 }
710 }
711 // // listing distances
712 // *out << Verbose(1) << "Listing DistanceMMap:";
713 // for(DistanceMultiMap::iterator runner = DistanceMMap.begin(); runner != DistanceMMap.end(); runner++) {
714 // *out << " " << runner->first << "(" << *runner->second.first->second << ", " << *runner->second.second->second << ")";
715 // }
716 // *out << endl;
717 // 4b2. pick three baselines forming a triangle
718 // 1. we take from the smallest sum of squared distance as the base line BC (with peak A) onward as the triangle candidate
719 DistanceMultiMap::iterator baseline = DistanceMMap.begin();
720 for (; baseline != DistanceMMap.end(); baseline++)
721 {
722 // we take from the smallest sum of squared distance as the base line BC (with peak A) onward as the triangle candidate
723 // 2. next, we have to check whether all points reside on only one side of the triangle
724 // 3. construct plane vector
725 PlaneVector.MakeNormalVector(A->second->node->node,
726 baseline->second.first->second->node->node,
727 baseline->second.second->second->node->node);
728 *out << Verbose(2) << "Plane vector of candidate triangle is ";
729 PlaneVector.Output(out);
730 *out << endl;
731 // 4. loop over all points
732 double sign = 0.;
733 PointMap::iterator checker = PointsOnBoundary.begin();
734 for (; checker != PointsOnBoundary.end(); checker++)
735 {
736 // (neglecting A,B,C)
737 if ((checker == A) || (checker == baseline->second.first) || (checker
738 == baseline->second.second))
739 continue;
740 // 4a. project onto plane vector
741 TrialVector.CopyVector(checker->second->node->node);
742 TrialVector.SubtractVector(A->second->node->node);
[658efb]743 distance = TrialVector.ScalarProduct(&PlaneVector);
[357fba]744 if (fabs(distance) < 1e-4) // we need to have a small epsilon around 0 which is still ok
745 continue;
746 *out << Verbose(3) << "Projection of " << checker->second->node->Name
747 << " yields distance of " << distance << "." << endl;
748 tmp = distance / fabs(distance);
749 // 4b. Any have different sign to than before? (i.e. would lie outside convex hull with this starting triangle)
750 if ((sign != 0) && (tmp != sign))
751 {
752 // 4c. If so, break 4. loop and continue with next candidate in 1. loop
753 *out << Verbose(2) << "Current candidates: "
754 << A->second->node->Name << ","
755 << baseline->second.first->second->node->Name << ","
756 << baseline->second.second->second->node->Name << " leaves "
757 << checker->second->node->Name << " outside the convex hull."
758 << endl;
759 break;
760 }
761 else
762 { // note the sign for later
763 *out << Verbose(2) << "Current candidates: "
764 << A->second->node->Name << ","
765 << baseline->second.first->second->node->Name << ","
766 << baseline->second.second->second->node->Name << " leave "
767 << checker->second->node->Name << " inside the convex hull."
768 << endl;
769 sign = tmp;
770 }
771 // 4d. Check whether the point is inside the triangle (check distance to each node
772 tmp = checker->second->node->node->DistanceSquared(A->second->node->node);
773 int innerpoint = 0;
774 if ((tmp < A->second->node->node->DistanceSquared(
775 baseline->second.first->second->node->node)) && (tmp
776 < A->second->node->node->DistanceSquared(
777 baseline->second.second->second->node->node)))
778 innerpoint++;
779 tmp = checker->second->node->node->DistanceSquared(
780 baseline->second.first->second->node->node);
781 if ((tmp < baseline->second.first->second->node->node->DistanceSquared(
782 A->second->node->node)) && (tmp
783 < baseline->second.first->second->node->node->DistanceSquared(
784 baseline->second.second->second->node->node)))
785 innerpoint++;
786 tmp = checker->second->node->node->DistanceSquared(
787 baseline->second.second->second->node->node);
788 if ((tmp < baseline->second.second->second->node->node->DistanceSquared(
789 baseline->second.first->second->node->node)) && (tmp
790 < baseline->second.second->second->node->node->DistanceSquared(
791 A->second->node->node)))
792 innerpoint++;
793 // 4e. If so, break 4. loop and continue with next candidate in 1. loop
794 if (innerpoint == 3)
795 break;
796 }
797 // 5. come this far, all on same side? Then break 1. loop and construct triangle
798 if (checker == PointsOnBoundary.end())
799 {
800 *out << "Looks like we have a candidate!" << endl;
801 break;
802 }
803 }
804 if (baseline != DistanceMMap.end())
805 {
806 BPS[0] = baseline->second.first->second;
807 BPS[1] = baseline->second.second->second;
808 BLS[0] = new class BoundaryLineSet(BPS, LinesOnBoundaryCount);
809 BPS[0] = A->second;
810 BPS[1] = baseline->second.second->second;
811 BLS[1] = new class BoundaryLineSet(BPS, LinesOnBoundaryCount);
812 BPS[0] = baseline->second.first->second;
813 BPS[1] = A->second;
814 BLS[2] = new class BoundaryLineSet(BPS, LinesOnBoundaryCount);
815
816 // 4b3. insert created triangle
817 BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount);
818 TrianglesOnBoundary.insert(TrianglePair(TrianglesOnBoundaryCount, BTS));
819 TrianglesOnBoundaryCount++;
820 for (int i = 0; i < NDIM; i++)
821 {
822 LinesOnBoundary.insert(LinePair(LinesOnBoundaryCount, BTS->lines[i]));
823 LinesOnBoundaryCount++;
824 }
825
826 *out << Verbose(1) << "Starting triangle is " << *BTS << "." << endl;
827 }
828 else
829 {
830 *out << Verbose(1) << "No starting triangle found." << endl;
831 exit(255);
832 }
833}
834;
835
836/** Tesselates the convex envelope of a cluster from a single starting triangle.
837 * The starting triangle is made out of three baselines. Each line in the final tesselated cluster may belong to at most
838 * 2 triangles. Hence, we go through all current lines:
839 * -# if the lines contains to only one triangle
840 * -# We search all points in the boundary
841 * -# if the triangle is in forward direction of the baseline (at most 90 degrees angle between vector orthogonal to
842 * baseline in triangle plane pointing out of the triangle and normal vector of new triangle)
843 * -# if the triangle with the baseline and the current point has the smallest of angles (comparison between normal vectors)
844 * -# then we have a new triangle, whose baselines we again add (or increase their TriangleCount)
845 * \param *out output stream for debugging
846 * \param *configuration for IsAngstroem
847 * \param *cloud cluster of points
848 */
849void Tesselation::TesselateOnBoundary(ofstream *out, PointCloud *cloud)
850{
851 bool flag;
852 PointMap::iterator winner;
853 class BoundaryPointSet *peak = NULL;
854 double SmallestAngle, TempAngle;
855 Vector NormalVector, VirtualNormalVector, CenterVector, TempVector, helper, PropagationVector, *Center = NULL;
856 LineMap::iterator LineChecker[2];
857
858 Center = cloud->GetCenter(out);
859 // create a first tesselation with the given BoundaryPoints
860 do {
861 flag = false;
862 for (LineMap::iterator baseline = LinesOnBoundary.begin(); baseline != LinesOnBoundary.end(); baseline++)
[5c7bf8]863 if (baseline->second->triangles.size() == 1) {
[357fba]864 // 5a. go through each boundary point if not _both_ edges between either endpoint of the current line and this point exist (and belong to 2 triangles)
865 SmallestAngle = M_PI;
866
867 // get peak point with respect to this base line's only triangle
868 BTS = baseline->second->triangles.begin()->second; // there is only one triangle so far
869 *out << Verbose(2) << "Current baseline is between " << *(baseline->second) << "." << endl;
870 for (int i = 0; i < 3; i++)
871 if ((BTS->endpoints[i] != baseline->second->endpoints[0]) && (BTS->endpoints[i] != baseline->second->endpoints[1]))
872 peak = BTS->endpoints[i];
873 *out << Verbose(3) << " and has peak " << *peak << "." << endl;
874
875 // prepare some auxiliary vectors
876 Vector BaseLineCenter, BaseLine;
877 BaseLineCenter.CopyVector(baseline->second->endpoints[0]->node->node);
878 BaseLineCenter.AddVector(baseline->second->endpoints[1]->node->node);
879 BaseLineCenter.Scale(1. / 2.); // points now to center of base line
880 BaseLine.CopyVector(baseline->second->endpoints[0]->node->node);
881 BaseLine.SubtractVector(baseline->second->endpoints[1]->node->node);
882
883 // offset to center of triangle
884 CenterVector.Zero();
885 for (int i = 0; i < 3; i++)
886 CenterVector.AddVector(BTS->endpoints[i]->node->node);
887 CenterVector.Scale(1. / 3.);
888 *out << Verbose(4) << "CenterVector of base triangle is " << CenterVector << endl;
889
890 // normal vector of triangle
891 NormalVector.CopyVector(Center);
892 NormalVector.SubtractVector(&CenterVector);
893 BTS->GetNormalVector(NormalVector);
894 NormalVector.CopyVector(&BTS->NormalVector);
895 *out << Verbose(4) << "NormalVector of base triangle is " << NormalVector << endl;
896
897 // vector in propagation direction (out of triangle)
898 // project center vector onto triangle plane (points from intersection plane-NormalVector to plane-CenterVector intersection)
899 PropagationVector.MakeNormalVector(&BaseLine, &NormalVector);
900 TempVector.CopyVector(&CenterVector);
901 TempVector.SubtractVector(baseline->second->endpoints[0]->node->node); // TempVector is vector on triangle plane pointing from one baseline egde towards center!
902 //*out << Verbose(2) << "Projection of propagation onto temp: " << PropagationVector.Projection(&TempVector) << "." << endl;
[658efb]903 if (PropagationVector.ScalarProduct(&TempVector) > 0) // make sure normal propagation vector points outward from baseline
[357fba]904 PropagationVector.Scale(-1.);
905 *out << Verbose(4) << "PropagationVector of base triangle is " << PropagationVector << endl;
906 winner = PointsOnBoundary.end();
907
908 // loop over all points and calculate angle between normal vector of new and present triangle
909 for (PointMap::iterator target = PointsOnBoundary.begin(); target != PointsOnBoundary.end(); target++) {
910 if ((target->second != baseline->second->endpoints[0]) && (target->second != baseline->second->endpoints[1])) { // don't take the same endpoints
911 *out << Verbose(3) << "Target point is " << *(target->second) << ":" << endl;
912
913 // first check direction, so that triangles don't intersect
914 VirtualNormalVector.CopyVector(target->second->node->node);
915 VirtualNormalVector.SubtractVector(&BaseLineCenter); // points from center of base line to target
916 VirtualNormalVector.ProjectOntoPlane(&NormalVector);
917 TempAngle = VirtualNormalVector.Angle(&PropagationVector);
918 *out << Verbose(4) << "VirtualNormalVector is " << VirtualNormalVector << " and PropagationVector is " << PropagationVector << "." << endl;
919 if (TempAngle > (M_PI/2.)) { // no bends bigger than Pi/2 (90 degrees)
920 *out << Verbose(4) << "Angle on triangle plane between propagation direction and base line to " << *(target->second) << " is " << TempAngle << ", bad direction!" << endl;
921 continue;
922 } else
923 *out << Verbose(4) << "Angle on triangle plane between propagation direction and base line to " << *(target->second) << " is " << TempAngle << ", good direction!" << endl;
924
925 // check first and second endpoint (if any connecting line goes to target has at least not more than 1 triangle)
926 LineChecker[0] = baseline->second->endpoints[0]->lines.find(target->first);
927 LineChecker[1] = baseline->second->endpoints[1]->lines.find(target->first);
[5c7bf8]928 if (((LineChecker[0] != baseline->second->endpoints[0]->lines.end()) && (LineChecker[0]->second->triangles.size() == 2))) {
929 *out << Verbose(4) << *(baseline->second->endpoints[0]) << " has line " << *(LineChecker[0]->second) << " to " << *(target->second) << " as endpoint with " << LineChecker[0]->second->triangles.size() << " triangles." << endl;
[357fba]930 continue;
931 }
[5c7bf8]932 if (((LineChecker[1] != baseline->second->endpoints[1]->lines.end()) && (LineChecker[1]->second->triangles.size() == 2))) {
933 *out << Verbose(4) << *(baseline->second->endpoints[1]) << " has line " << *(LineChecker[1]->second) << " to " << *(target->second) << " as endpoint with " << LineChecker[1]->second->triangles.size() << " triangles." << endl;
[357fba]934 continue;
935 }
936
937 // check whether the envisaged triangle does not already exist (if both lines exist and have same endpoint)
938 if ((((LineChecker[0] != baseline->second->endpoints[0]->lines.end()) && (LineChecker[1] != baseline->second->endpoints[1]->lines.end()) && (GetCommonEndpoint(LineChecker[0]->second, LineChecker[1]->second) == peak)))) {
939 *out << Verbose(4) << "Current target is peak!" << endl;
940 continue;
941 }
942
943 // check for linear dependence
944 TempVector.CopyVector(baseline->second->endpoints[0]->node->node);
945 TempVector.SubtractVector(target->second->node->node);
946 helper.CopyVector(baseline->second->endpoints[1]->node->node);
947 helper.SubtractVector(target->second->node->node);
948 helper.ProjectOntoPlane(&TempVector);
949 if (fabs(helper.NormSquared()) < MYEPSILON) {
950 *out << Verbose(4) << "Chosen set of vectors is linear dependent." << endl;
951 continue;
952 }
953
954 // in case NOT both were found, create virtually this triangle, get its normal vector, calculate angle
955 flag = true;
956 VirtualNormalVector.MakeNormalVector(baseline->second->endpoints[0]->node->node, baseline->second->endpoints[1]->node->node, target->second->node->node);
957 TempVector.CopyVector(baseline->second->endpoints[0]->node->node);
958 TempVector.AddVector(baseline->second->endpoints[1]->node->node);
959 TempVector.AddVector(target->second->node->node);
960 TempVector.Scale(1./3.);
961 TempVector.SubtractVector(Center);
962 // make it always point outward
[658efb]963 if (VirtualNormalVector.ScalarProduct(&TempVector) < 0)
[357fba]964 VirtualNormalVector.Scale(-1.);
965 // calculate angle
966 TempAngle = NormalVector.Angle(&VirtualNormalVector);
967 *out << Verbose(4) << "NormalVector is " << VirtualNormalVector << " and the angle is " << TempAngle << "." << endl;
968 if ((SmallestAngle - TempAngle) > MYEPSILON) { // set to new possible winner
969 SmallestAngle = TempAngle;
970 winner = target;
971 *out << Verbose(4) << "New winner " << *winner->second->node << " due to smaller angle between normal vectors." << endl;
972 } else if (fabs(SmallestAngle - TempAngle) < MYEPSILON) { // check the angle to propagation, both possible targets are in one plane! (their normals have same angle)
973 // hence, check the angles to some normal direction from our base line but in this common plane of both targets...
974 helper.CopyVector(target->second->node->node);
975 helper.SubtractVector(&BaseLineCenter);
976 helper.ProjectOntoPlane(&BaseLine);
977 // ...the one with the smaller angle is the better candidate
978 TempVector.CopyVector(target->second->node->node);
979 TempVector.SubtractVector(&BaseLineCenter);
980 TempVector.ProjectOntoPlane(&VirtualNormalVector);
981 TempAngle = TempVector.Angle(&helper);
982 TempVector.CopyVector(winner->second->node->node);
983 TempVector.SubtractVector(&BaseLineCenter);
984 TempVector.ProjectOntoPlane(&VirtualNormalVector);
985 if (TempAngle < TempVector.Angle(&helper)) {
986 TempAngle = NormalVector.Angle(&VirtualNormalVector);
987 SmallestAngle = TempAngle;
988 winner = target;
989 *out << Verbose(4) << "New winner " << *winner->second->node << " due to smaller angle " << TempAngle << " to propagation direction." << endl;
990 } else
991 *out << Verbose(4) << "Keeping old winner " << *winner->second->node << " due to smaller angle to propagation direction." << endl;
992 } else
993 *out << Verbose(4) << "Keeping old winner " << *winner->second->node << " due to smaller angle between normal vectors." << endl;
994 }
995 } // end of loop over all boundary points
996
997 // 5b. The point of the above whose triangle has the greatest angle with the triangle the current line belongs to (it only belongs to one, remember!): New triangle
998 if (winner != PointsOnBoundary.end()) {
999 *out << Verbose(2) << "Winning target point is " << *(winner->second) << " with angle " << SmallestAngle << "." << endl;
1000 // create the lins of not yet present
1001 BLS[0] = baseline->second;
1002 // 5c. add lines to the line set if those were new (not yet part of a triangle), delete lines that belong to two triangles)
1003 LineChecker[0] = baseline->second->endpoints[0]->lines.find(winner->first);
1004 LineChecker[1] = baseline->second->endpoints[1]->lines.find(winner->first);
1005 if (LineChecker[0] == baseline->second->endpoints[0]->lines.end()) { // create
1006 BPS[0] = baseline->second->endpoints[0];
1007 BPS[1] = winner->second;
1008 BLS[1] = new class BoundaryLineSet(BPS, LinesOnBoundaryCount);
1009 LinesOnBoundary.insert(LinePair(LinesOnBoundaryCount, BLS[1]));
1010 LinesOnBoundaryCount++;
1011 } else
1012 BLS[1] = LineChecker[0]->second;
1013 if (LineChecker[1] == baseline->second->endpoints[1]->lines.end()) { // create
1014 BPS[0] = baseline->second->endpoints[1];
1015 BPS[1] = winner->second;
1016 BLS[2] = new class BoundaryLineSet(BPS, LinesOnBoundaryCount);
1017 LinesOnBoundary.insert(LinePair(LinesOnBoundaryCount, BLS[2]));
1018 LinesOnBoundaryCount++;
1019 } else
1020 BLS[2] = LineChecker[1]->second;
1021 BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount);
[62bb91]1022 BTS->GetCenter(&helper);
1023 helper.SubtractVector(Center);
1024 helper.Scale(-1);
1025 BTS->GetNormalVector(helper);
[357fba]1026 TrianglesOnBoundary.insert(TrianglePair(TrianglesOnBoundaryCount, BTS));
1027 TrianglesOnBoundaryCount++;
1028 } else {
1029 *out << Verbose(1) << "I could not determine a winner for this baseline " << *(baseline->second) << "." << endl;
1030 }
1031
1032 // 5d. If the set of lines is not yet empty, go to 5. and continue
1033 } else
[5c7bf8]1034 *out << Verbose(2) << "Baseline candidate " << *(baseline->second) << " has a triangle count of " << baseline->second->triangles.size() << "." << endl;
[357fba]1035 } while (flag);
1036
1037 // exit
1038 delete(Center);
1039};
1040
[62bb91]1041/** Inserts all points outside of the tesselated surface into it by adding new triangles.
[357fba]1042 * \param *out output stream for debugging
1043 * \param *cloud cluster of points
[62bb91]1044 * \param *LC LinkedCell structure to find nearest point quickly
[357fba]1045 * \return true - all straddling points insert, false - something went wrong
1046 */
[62bb91]1047bool Tesselation::InsertStraddlingPoints(ofstream *out, PointCloud *cloud, LinkedCell *LC)
[357fba]1048{
[5c7bf8]1049 Vector Intersection, Normal;
[357fba]1050 TesselPoint *Walker = NULL;
1051 Vector *Center = cloud->GetCenter(out);
[62bb91]1052 list<BoundaryTriangleSet*> *triangles = NULL;
1053
1054 *out << Verbose(1) << "Begin of InsertStraddlingPoints" << endl;
[357fba]1055
1056 cloud->GoToFirst();
[1999d8]1057 while (!cloud->IsEnd()) { // we only have to go once through all points, as boundary can become only bigger
[5c7bf8]1058 LinkedCell BoundaryPoints(this, 5.);
[357fba]1059 Walker = cloud->GetPoint();
[62bb91]1060 *out << Verbose(2) << "Current point is " << *Walker << "." << endl;
[357fba]1061 // get the next triangle
[5c7bf8]1062 triangles = FindClosestTrianglesToPoint(out, Walker->node, &BoundaryPoints);
[62bb91]1063 if (triangles == NULL) {
1064 *out << Verbose(1) << "No triangles found, probably a tesselation point itself." << endl;
1065 cloud->GoToNext();
1066 continue;
1067 } else {
1068 BTS = triangles->front();
[357fba]1069 }
[5c7bf8]1070 *out << Verbose(2) << "Closest triangle is " << *BTS << "." << endl;
[357fba]1071 // get the intersection point
1072 if (BTS->GetIntersectionInsideTriangle(out, Center, Walker->node, &Intersection)) {
[62bb91]1073 *out << Verbose(2) << "We have an intersection at " << Intersection << "." << endl;
[357fba]1074 // we have the intersection, check whether in- or outside of boundary
1075 if ((Center->DistanceSquared(Walker->node) - Center->DistanceSquared(&Intersection)) < -MYEPSILON) {
1076 // inside, next!
[5c7bf8]1077 *out << Verbose(2) << *Walker << " is inside wrt triangle " << *BTS << "." << endl;
[357fba]1078 } else {
1079 // outside!
[5c7bf8]1080 *out << Verbose(2) << *Walker << " is outside wrt triangle " << *BTS << "." << endl;
[357fba]1081 class BoundaryLineSet *OldLines[3], *NewLines[3];
1082 class BoundaryPointSet *OldPoints[3], *NewPoint;
1083 // store the three old lines and old points
1084 for (int i=0;i<3;i++) {
1085 OldLines[i] = BTS->lines[i];
1086 OldPoints[i] = BTS->endpoints[i];
1087 }
[5c7bf8]1088 Normal.CopyVector(&BTS->NormalVector);
[357fba]1089 // add Walker to boundary points
[5c7bf8]1090 *out << Verbose(2) << "Adding " << *Walker << " to BoundaryPoints." << endl;
[16d866]1091 if (AddBoundaryPoint(Walker,0))
[357fba]1092 NewPoint = BPS[0];
1093 else
1094 continue;
1095 // remove triangle
[5c7bf8]1096 *out << Verbose(2) << "Erasing triangle " << *BTS << "." << endl;
[357fba]1097 TrianglesOnBoundary.erase(BTS->Nr);
[5c7bf8]1098 delete(BTS);
[357fba]1099 // create three new boundary lines
1100 for (int i=0;i<3;i++) {
1101 BPS[0] = NewPoint;
1102 BPS[1] = OldPoints[i];
1103 NewLines[i] = new class BoundaryLineSet(BPS, LinesOnBoundaryCount);
[5c7bf8]1104 *out << Verbose(3) << "Creating new line " << *NewLines[i] << "." << endl;
[357fba]1105 LinesOnBoundary.insert(LinePair(LinesOnBoundaryCount, NewLines[i])); // no need for check for unique insertion as BPS[0] is definitely a new one
1106 LinesOnBoundaryCount++;
1107 }
1108 // create three new triangle with new point
1109 for (int i=0;i<3;i++) { // find all baselines
1110 BLS[0] = OldLines[i];
1111 int n = 1;
1112 for (int j=0;j<3;j++) {
1113 if (NewLines[j]->IsConnectedTo(BLS[0])) {
1114 if (n>2) {
1115 *out << Verbose(1) << "ERROR: " << BLS[0] << " connects to all of the new lines?!" << endl;
1116 return false;
1117 } else
1118 BLS[n++] = NewLines[j];
1119 }
1120 }
1121 // create the triangle
1122 BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount);
[5c7bf8]1123 Normal.Scale(-1.);
1124 BTS->GetNormalVector(Normal);
1125 Normal.Scale(-1.);
1126 *out << Verbose(2) << "Created new triangle " << *BTS << "." << endl;
[357fba]1127 TrianglesOnBoundary.insert(TrianglePair(TrianglesOnBoundaryCount, BTS));
1128 TrianglesOnBoundaryCount++;
1129 }
1130 }
1131 } else { // something is wrong with FindClosestTriangleToPoint!
1132 *out << Verbose(1) << "ERROR: The closest triangle did not produce an intersection!" << endl;
1133 return false;
1134 }
1135 cloud->GoToNext();
1136 }
1137
1138 // exit
1139 delete(Center);
[62bb91]1140 *out << Verbose(1) << "End of InsertStraddlingPoints" << endl;
[357fba]1141 return true;
1142};
1143
[16d866]1144/** Adds a point to the tesselation::PointsOnBoundary list.
[62bb91]1145 * \param *Walker point to add
[08ef35]1146 * \param n TesselStruct::BPS index to put pointer into
1147 * \return true - new point was added, false - point already present
[357fba]1148 */
[08ef35]1149bool
[16d866]1150Tesselation::AddBoundaryPoint(TesselPoint *Walker, int n)
[357fba]1151{
1152 PointTestPair InsertUnique;
[08ef35]1153 BPS[n] = new class BoundaryPointSet(Walker);
1154 InsertUnique = PointsOnBoundary.insert(PointPair(Walker->nr, BPS[n]));
1155 if (InsertUnique.second) { // if new point was not present before, increase counter
[357fba]1156 PointsOnBoundaryCount++;
[08ef35]1157 return true;
1158 } else {
1159 delete(BPS[n]);
1160 BPS[n] = InsertUnique.first->second;
1161 return false;
[357fba]1162 }
1163}
1164;
1165
1166/** Adds point to Tesselation::PointsOnBoundary if not yet present.
1167 * Tesselation::TPS is set to either this new BoundaryPointSet or to the existing one of not unique.
1168 * @param Candidate point to add
1169 * @param n index for this point in Tesselation::TPS array
1170 */
1171void
[16d866]1172Tesselation::AddTesselationPoint(TesselPoint* Candidate, int n)
[357fba]1173{
1174 PointTestPair InsertUnique;
1175 TPS[n] = new class BoundaryPointSet(Candidate);
1176 InsertUnique = PointsOnBoundary.insert(PointPair(Candidate->nr, TPS[n]));
1177 if (InsertUnique.second) { // if new point was not present before, increase counter
1178 PointsOnBoundaryCount++;
1179 } else {
1180 delete TPS[n];
[065e82]1181 cout << Verbose(4) << "Node " << *((InsertUnique.first)->second->node) << " is already present in PointsOnBoundary." << endl;
[357fba]1182 TPS[n] = (InsertUnique.first)->second;
1183 }
1184}
1185;
1186
1187/** Function tries to add line from current Points in BPS to BoundaryLineSet.
1188 * If successful it raises the line count and inserts the new line into the BLS,
1189 * if unsuccessful, it writes the line which had been present into the BLS, deleting the new constructed one.
1190 * @param *a first endpoint
1191 * @param *b second endpoint
1192 * @param n index of Tesselation::BLS giving the line with both endpoints
1193 */
[16d866]1194void Tesselation::AddTesselationLine(class BoundaryPointSet *a, class BoundaryPointSet *b, int n) {
[357fba]1195 bool insertNewLine = true;
1196
1197 if (a->lines.find(b->node->nr) != a->lines.end()) {
[065e82]1198 LineMap::iterator FindLine = a->lines.find(b->node->nr);
[357fba]1199 pair<LineMap::iterator,LineMap::iterator> FindPair;
1200 FindPair = a->lines.equal_range(b->node->nr);
[065e82]1201 cout << Verbose(5) << "INFO: There is at least one line between " << *a << " and " << *b << ": " << *(FindLine->second) << "." << endl;
[357fba]1202
[065e82]1203 for (FindLine = FindPair.first; FindLine != FindPair.second; FindLine++) {
[357fba]1204 // If there is a line with less than two attached triangles, we don't need a new line.
[5c7bf8]1205 if (FindLine->second->triangles.size() < 2) {
[357fba]1206 insertNewLine = false;
[065e82]1207 cout << Verbose(4) << "Using existing line " << *FindLine->second << endl;
[357fba]1208
1209 BPS[0] = FindLine->second->endpoints[0];
1210 BPS[1] = FindLine->second->endpoints[1];
1211 BLS[n] = FindLine->second;
1212
1213 break;
1214 }
1215 }
1216 }
1217
1218 if (insertNewLine) {
[16d866]1219 AlwaysAddTesselationTriangleLine(a, b, n);
[357fba]1220 }
1221}
1222;
1223
1224/**
1225 * Adds lines from each of the current points in the BPS to BoundaryLineSet.
1226 * Raises the line count and inserts the new line into the BLS.
1227 *
1228 * @param *a first endpoint
1229 * @param *b second endpoint
1230 * @param n index of Tesselation::BLS giving the line with both endpoints
1231 */
[16d866]1232void Tesselation::AlwaysAddTesselationTriangleLine(class BoundaryPointSet *a, class BoundaryPointSet *b, int n)
[357fba]1233{
[065e82]1234 cout << Verbose(4) << "Adding line between " << *(a->node) << " and " << *(b->node) << "." << endl;
[357fba]1235 BPS[0] = a;
1236 BPS[1] = b;
1237 BLS[n] = new class BoundaryLineSet(BPS, LinesOnBoundaryCount); // this also adds the line to the local maps
1238 // add line to global map
1239 LinesOnBoundary.insert(LinePair(LinesOnBoundaryCount, BLS[n]));
1240 // increase counter
1241 LinesOnBoundaryCount++;
1242};
1243
1244/** Function tries to add Triangle just created to Triangle and remarks if already existent (Failure of algorithm).
1245 * Furthermore it adds the triangle to all of its lines, in order to recognize those which are saturated later.
1246 */
[16d866]1247void Tesselation::AddTesselationTriangle()
[357fba]1248{
1249 cout << Verbose(1) << "Adding triangle to global TrianglesOnBoundary map." << endl;
1250
1251 // add triangle to global map
1252 TrianglesOnBoundary.insert(TrianglePair(TrianglesOnBoundaryCount, BTS));
1253 TrianglesOnBoundaryCount++;
1254
1255 // NOTE: add triangle to local maps is done in constructor of BoundaryTriangleSet
[16d866]1256};
1257
1258/** Removes a triangle from the tesselation.
1259 * Removes itself from the TriangleMap's of its lines, calls for them RemoveTriangleLine() if they are no more connected.
1260 * Removes itself from memory.
1261 * \param *triangle to remove
1262 */
1263void Tesselation::RemoveTesselationTriangle(class BoundaryTriangleSet *triangle)
1264{
1265 if (triangle == NULL)
1266 return;
1267 for (int i = 0; i < 3; i++) {
1268 if (triangle->lines[i] != NULL) {
1269 cout << Verbose(5) << "Removing triangle Nr." << triangle->Nr << " in line " << *triangle->lines[i] << "." << endl;
1270 triangle->lines[i]->triangles.erase(triangle->Nr);
1271 if (triangle->lines[i]->triangles.empty()) {
1272 cout << Verbose(5) << *triangle->lines[i] << " is no more attached to any triangle, erasing." << endl;
1273 RemoveTesselationLine(triangle->lines[i]);
[065e82]1274 } else {
1275 cout << Verbose(5) << *triangle->lines[i] << " is still attached to another triangle: ";
1276 for(TriangleMap::iterator TriangleRunner = triangle->lines[i]->triangles.begin(); TriangleRunner != triangle->lines[i]->triangles.end(); TriangleRunner++)
1277 cout << "[" << (TriangleRunner->second)->Nr << "|" << *((TriangleRunner->second)->endpoints[0]) << ", " << *((TriangleRunner->second)->endpoints[1]) << ", " << *((TriangleRunner->second)->endpoints[2]) << "] \t";
1278 cout << endl;
1279// for (int j=0;j<2;j++) {
1280// cout << Verbose(5) << "Lines of endpoint " << *(triangle->lines[i]->endpoints[j]) << ": ";
1281// for(LineMap::iterator LineRunner = triangle->lines[i]->endpoints[j]->lines.begin(); LineRunner != triangle->lines[i]->endpoints[j]->lines.end(); LineRunner++)
1282// cout << "[" << *(LineRunner->second) << "] \t";
1283// cout << endl;
1284// }
1285 }
1286 triangle->lines[i] = NULL; // free'd or not: disconnect
[16d866]1287 } else
1288 cerr << "ERROR: This line " << i << " has already been free'd." << endl;
1289 }
1290
1291 if (TrianglesOnBoundary.erase(triangle->Nr))
1292 cout << Verbose(5) << "Removing triangle Nr. " << triangle->Nr << "." << endl;
1293 delete(triangle);
1294};
1295
1296/** Removes a line from the tesselation.
1297 * Removes itself from each endpoints' LineMap, then removes itself from global LinesOnBoundary list and free's the line.
1298 * \param *line line to remove
1299 */
1300void Tesselation::RemoveTesselationLine(class BoundaryLineSet *line)
1301{
1302 int Numbers[2];
1303
1304 if (line == NULL)
1305 return;
[065e82]1306 // get other endpoint number for finding copies of same line
[16d866]1307 if (line->endpoints[1] != NULL)
1308 Numbers[0] = line->endpoints[1]->Nr;
1309 else
1310 Numbers[0] = -1;
1311 if (line->endpoints[0] != NULL)
1312 Numbers[1] = line->endpoints[0]->Nr;
1313 else
1314 Numbers[1] = -1;
1315
1316 for (int i = 0; i < 2; i++) {
1317 if (line->endpoints[i] != NULL) {
1318 if (Numbers[i] != -1) { // as there may be multiple lines with same endpoints, we have to go through each and find in the endpoint's line list this line set
1319 pair<LineMap::iterator, LineMap::iterator> erasor = line->endpoints[i]->lines.equal_range(Numbers[i]);
1320 for (LineMap::iterator Runner = erasor.first; Runner != erasor.second; Runner++)
1321 if ((*Runner).second == line) {
1322 cout << Verbose(5) << "Removing Line Nr. " << line->Nr << " in boundary point " << *line->endpoints[i] << "." << endl;
1323 line->endpoints[i]->lines.erase(Runner);
1324 break;
1325 }
1326 } else { // there's just a single line left
1327 if (line->endpoints[i]->lines.erase(line->Nr))
1328 cout << Verbose(5) << "Removing Line Nr. " << line->Nr << " in boundary point " << *line->endpoints[i] << "." << endl;
1329 }
1330 if (line->endpoints[i]->lines.empty()) {
1331 cout << Verbose(5) << *line->endpoints[i] << " has no more lines it's attached to, erasing." << endl;
1332 RemoveTesselationPoint(line->endpoints[i]);
[065e82]1333 } else {
1334 cout << Verbose(5) << *line->endpoints[i] << " has still lines it's attached to: ";
1335 for(LineMap::iterator LineRunner = line->endpoints[i]->lines.begin(); LineRunner != line->endpoints[i]->lines.end(); LineRunner++)
1336 cout << "[" << *(LineRunner->second) << "] \t";
1337 cout << endl;
1338 }
1339 line->endpoints[i] = NULL; // free'd or not: disconnect
[16d866]1340 } else
1341 cerr << "ERROR: Endpoint " << i << " has already been free'd." << endl;
1342 }
1343 if (!line->triangles.empty())
1344 cerr << "WARNING: Memory Leak! I " << *line << " am still connected to some triangles." << endl;
1345
1346 if (LinesOnBoundary.erase(line->Nr))
1347 cout << Verbose(5) << "Removing line Nr. " << line->Nr << "." << endl;
1348 delete(line);
1349};
1350
1351/** Removes a point from the tesselation.
1352 * Checks whether there are still lines connected, removes from global PointsOnBoundary list, then free's the point.
1353 * \note If a point should be removed, while keep the tesselated surface intact (i.e. closed), use RemovePointFromTesselatedSurface()
1354 * \param *point point to remove
1355 */
1356void Tesselation::RemoveTesselationPoint(class BoundaryPointSet *point)
1357{
1358 if (point == NULL)
1359 return;
1360 if (PointsOnBoundary.erase(point->Nr))
1361 cout << Verbose(5) << "Removing point Nr. " << point->Nr << "." << endl;
1362 delete(point);
1363};
[357fba]1364
[62bb91]1365/** Checks whether the triangle consisting of the three points is already present.
[357fba]1366 * Searches for the points in Tesselation::PointsOnBoundary and checks their
1367 * lines. If any of the three edges already has two triangles attached, false is
1368 * returned.
1369 * \param *out output stream for debugging
1370 * \param *Candidates endpoints of the triangle candidate
1371 * \return integer 0 if no triangle exists, 1 if one triangle exists, 2 if two
1372 * triangles exist which is the maximum for three points
1373 */
1374int Tesselation::CheckPresenceOfTriangle(ofstream *out, TesselPoint *Candidates[3]) {
1375 int adjacentTriangleCount = 0;
1376 class BoundaryPointSet *Points[3];
1377
1378 *out << Verbose(2) << "Begin of CheckPresenceOfTriangle" << endl;
1379 // builds a triangle point set (Points) of the end points
1380 for (int i = 0; i < 3; i++) {
1381 PointMap::iterator FindPoint = PointsOnBoundary.find(Candidates[i]->nr);
1382 if (FindPoint != PointsOnBoundary.end()) {
1383 Points[i] = FindPoint->second;
1384 } else {
1385 Points[i] = NULL;
1386 }
1387 }
1388
1389 // checks lines between the points in the Points for their adjacent triangles
1390 for (int i = 0; i < 3; i++) {
1391 if (Points[i] != NULL) {
1392 for (int j = i; j < 3; j++) {
1393 if (Points[j] != NULL) {
1394 LineMap::iterator FindLine = Points[i]->lines.find(Points[j]->node->nr);
1395 for (; (FindLine != Points[i]->lines.end()) && (FindLine->first == Points[j]->node->nr); FindLine++) {
1396 TriangleMap *triangles = &FindLine->second->triangles;
1397 *out << Verbose(3) << "Current line is " << FindLine->first << ": " << *(FindLine->second) << " with triangles " << triangles << "." << endl;
1398 for (TriangleMap::iterator FindTriangle = triangles->begin(); FindTriangle != triangles->end(); FindTriangle++) {
1399 if (FindTriangle->second->IsPresentTupel(Points)) {
1400 adjacentTriangleCount++;
1401 }
1402 }
1403 *out << Verbose(3) << "end." << endl;
1404 }
1405 // Only one of the triangle lines must be considered for the triangle count.
[065e82]1406 //*out << Verbose(2) << "Found " << adjacentTriangleCount << " adjacent triangles for the point set." << endl;
1407 //return adjacentTriangleCount;
[357fba]1408 }
1409 }
1410 }
1411 }
1412
1413 *out << Verbose(2) << "Found " << adjacentTriangleCount << " adjacent triangles for the point set." << endl;
1414 *out << Verbose(2) << "End of CheckPresenceOfTriangle" << endl;
1415 return adjacentTriangleCount;
1416};
1417
[065e82]1418/** Checks whether the triangle consisting of the three points is already present.
1419 * Searches for the points in Tesselation::PointsOnBoundary and checks their
1420 * lines. If any of the three edges already has two triangles attached, false is
1421 * returned.
1422 * \param *out output stream for debugging
1423 * \param *Candidates endpoints of the triangle candidate
1424 * \return NULL - none found or pointer to triangle
1425 */
1426class BoundaryTriangleSet * Tesselation::GetPresentTriangle(ofstream *out, TesselPoint *Candidates[3])
1427{
1428 class BoundaryTriangleSet *triangle = NULL;
1429 class BoundaryPointSet *Points[3];
1430
1431 // builds a triangle point set (Points) of the end points
1432 for (int i = 0; i < 3; i++) {
1433 PointMap::iterator FindPoint = PointsOnBoundary.find(Candidates[i]->nr);
1434 if (FindPoint != PointsOnBoundary.end()) {
1435 Points[i] = FindPoint->second;
1436 } else {
1437 Points[i] = NULL;
1438 }
1439 }
1440
1441 // checks lines between the points in the Points for their adjacent triangles
1442 for (int i = 0; i < 3; i++) {
1443 if (Points[i] != NULL) {
1444 for (int j = i; j < 3; j++) {
1445 if (Points[j] != NULL) {
1446 LineMap::iterator FindLine = Points[i]->lines.find(Points[j]->node->nr);
1447 for (; (FindLine != Points[i]->lines.end()) && (FindLine->first == Points[j]->node->nr); FindLine++) {
1448 TriangleMap *triangles = &FindLine->second->triangles;
1449 for (TriangleMap::iterator FindTriangle = triangles->begin(); FindTriangle != triangles->end(); FindTriangle++) {
1450 if (FindTriangle->second->IsPresentTupel(Points)) {
1451 if ((triangle == NULL) || (triangle->Nr > FindTriangle->second->Nr))
1452 triangle = FindTriangle->second;
1453 }
1454 }
1455 }
1456 // Only one of the triangle lines must be considered for the triangle count.
1457 //*out << Verbose(2) << "Found " << adjacentTriangleCount << " adjacent triangles for the point set." << endl;
1458 //return adjacentTriangleCount;
1459 }
1460 }
1461 }
1462 }
1463
1464 return triangle;
1465};
1466
[357fba]1467
[f1cccd]1468/** Finds the starting triangle for FindNonConvexBorder().
1469 * Looks at the outermost point per axis, then FindSecondPointForTesselation()
1470 * for the second and FindNextSuitablePointViaAngleOfSphere() for the third
[357fba]1471 * point are called.
1472 * \param *out output stream for debugging
1473 * \param RADIUS radius of virtual rolling sphere
1474 * \param *LC LinkedCell structure with neighbouring TesselPoint's
1475 */
[f1cccd]1476void Tesselation::FindStartingTriangle(ofstream *out, const double RADIUS, LinkedCell *LC)
[357fba]1477{
[f1cccd]1478 cout << Verbose(1) << "Begin of FindStartingTriangle\n";
[357fba]1479 int i = 0;
1480 LinkedNodes *List = NULL;
1481 TesselPoint* FirstPoint = NULL;
1482 TesselPoint* SecondPoint = NULL;
[62bb91]1483 TesselPoint* MaxPoint[NDIM];
[f1cccd]1484 double maxCoordinate[NDIM];
[357fba]1485 Vector Oben;
1486 Vector helper;
1487 Vector Chord;
1488 Vector SearchDirection;
1489
1490 Oben.Zero();
1491
1492 for (i = 0; i < 3; i++) {
[62bb91]1493 MaxPoint[i] = NULL;
[f1cccd]1494 maxCoordinate[i] = -1;
[357fba]1495 }
1496
[62bb91]1497 // 1. searching topmost point with respect to each axis
[357fba]1498 for (int i=0;i<NDIM;i++) { // each axis
1499 LC->n[i] = LC->N[i]-1; // current axis is topmost cell
1500 for (LC->n[(i+1)%NDIM]=0;LC->n[(i+1)%NDIM]<LC->N[(i+1)%NDIM];LC->n[(i+1)%NDIM]++)
1501 for (LC->n[(i+2)%NDIM]=0;LC->n[(i+2)%NDIM]<LC->N[(i+2)%NDIM];LC->n[(i+2)%NDIM]++) {
1502 List = LC->GetCurrentCell();
1503 //cout << Verbose(2) << "Current cell is " << LC->n[0] << ", " << LC->n[1] << ", " << LC->n[2] << " with No. " << LC->index << "." << endl;
1504 if (List != NULL) {
1505 for (LinkedNodes::iterator Runner = List->begin();Runner != List->end();Runner++) {
[f1cccd]1506 if ((*Runner)->node->x[i] > maxCoordinate[i]) {
[357fba]1507 cout << Verbose(2) << "New maximal for axis " << i << " node is " << *(*Runner) << " at " << *(*Runner)->node << "." << endl;
[f1cccd]1508 maxCoordinate[i] = (*Runner)->node->x[i];
[62bb91]1509 MaxPoint[i] = (*Runner);
[357fba]1510 }
1511 }
1512 } else {
1513 cerr << "ERROR: The current cell " << LC->n[0] << "," << LC->n[1] << "," << LC->n[2] << " is invalid!" << endl;
1514 }
1515 }
1516 }
1517
1518 cout << Verbose(2) << "Found maximum coordinates: ";
1519 for (int i=0;i<NDIM;i++)
[62bb91]1520 cout << i << ": " << *MaxPoint[i] << "\t";
[357fba]1521 cout << endl;
1522
1523 BTS = NULL;
[f1cccd]1524 CandidateList *OptCandidates = new CandidateList();
[357fba]1525 for (int k=0;k<NDIM;k++) {
1526 Oben.x[k] = 1.;
[62bb91]1527 FirstPoint = MaxPoint[k];
[357fba]1528 cout << Verbose(1) << "Coordinates of start node at " << *FirstPoint->node << "." << endl;
1529
1530 double ShortestAngle;
[f1cccd]1531 TesselPoint* OptCandidate = NULL;
[357fba]1532 ShortestAngle = 999999.; // This will contain the angle, which will be always positive (when looking for second point), when looking for third point this will be the quadrant.
1533
[f1cccd]1534 FindSecondPointForTesselation(FirstPoint, NULL, Oben, OptCandidate, &ShortestAngle, RADIUS, LC); // we give same point as next candidate as its bonds are looked into in find_second_...
1535 SecondPoint = OptCandidate;
[357fba]1536 if (SecondPoint == NULL) // have we found a second point?
1537 continue;
1538 else
1539 cout << Verbose(1) << "Found second point is at " << *SecondPoint->node << ".\n";
1540
1541 helper.CopyVector(FirstPoint->node);
1542 helper.SubtractVector(SecondPoint->node);
1543 helper.Normalize();
1544 Oben.ProjectOntoPlane(&helper);
1545 Oben.Normalize();
1546 helper.VectorProduct(&Oben);
1547 ShortestAngle = 2.*M_PI; // This will indicate the quadrant.
1548
1549 Chord.CopyVector(FirstPoint->node); // bring into calling function
1550 Chord.SubtractVector(SecondPoint->node);
1551 double radius = Chord.ScalarProduct(&Chord);
1552 double CircleRadius = sqrt(RADIUS*RADIUS - radius/4.);
1553 helper.CopyVector(&Oben);
1554 helper.Scale(CircleRadius);
1555 // Now, oben and helper are two orthonormalized vectors in the plane defined by Chord (not normalized)
1556
1557 // look in one direction of baseline for initial candidate
1558 SearchDirection.MakeNormalVector(&Chord, &Oben); // whether we look "left" first or "right" first is not important ...
1559
[5c7bf8]1560 // adding point 1 and point 2 and add the line between them
[16d866]1561 AddTesselationPoint(FirstPoint, 0);
1562 AddTesselationPoint(SecondPoint, 1);
1563 AddTesselationLine(TPS[0], TPS[1], 0);
[357fba]1564
1565 //cout << Verbose(2) << "INFO: OldSphereCenter is at " << helper << ".\n";
[f1cccd]1566 FindThirdPointForTesselation(
1567 Oben, SearchDirection, helper, BLS[0], NULL, *&OptCandidates, &ShortestAngle, RADIUS, LC
[357fba]1568 );
1569 cout << Verbose(1) << "List of third Points is ";
[f1cccd]1570 for (CandidateList::iterator it = OptCandidates->begin(); it != OptCandidates->end(); ++it) {
[357fba]1571 cout << " " << *(*it)->point;
1572 }
1573 cout << endl;
1574
[f1cccd]1575 for (CandidateList::iterator it = OptCandidates->begin(); it != OptCandidates->end(); ++it) {
[357fba]1576 // add third triangle point
[16d866]1577 AddTesselationPoint((*it)->point, 2);
[357fba]1578 // add the second and third line
[16d866]1579 AddTesselationLine(TPS[1], TPS[2], 1);
1580 AddTesselationLine(TPS[0], TPS[2], 2);
[357fba]1581 // ... and triangles to the Maps of the Tesselation class
1582 BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount);
[16d866]1583 AddTesselationTriangle();
[357fba]1584 // ... and calculate its normal vector (with correct orientation)
1585 (*it)->OptCenter.Scale(-1.);
1586 cout << Verbose(2) << "Anti-Oben is currently " << (*it)->OptCenter << "." << endl;
1587 BTS->GetNormalVector((*it)->OptCenter); // vector to compare with should point inwards
1588 cout << Verbose(0) << "==> Found starting triangle consists of " << *FirstPoint << ", " << *SecondPoint << " and "
1589 << *(*it)->point << " with normal vector " << BTS->NormalVector << ".\n";
1590
1591 // if we do not reach the end with the next step of iteration, we need to setup a new first line
[f1cccd]1592 if (it != OptCandidates->end()--) {
[357fba]1593 FirstPoint = (*it)->BaseLine->endpoints[0]->node;
1594 SecondPoint = (*it)->point;
1595 // adding point 1 and point 2 and the line between them
[16d866]1596 AddTesselationPoint(FirstPoint, 0);
1597 AddTesselationPoint(SecondPoint, 1);
1598 AddTesselationLine(TPS[0], TPS[1], 0);
[357fba]1599 }
[658efb]1600 cout << Verbose(2) << "Projection is " << BTS->NormalVector.ScalarProduct(&Oben) << "." << endl;
[357fba]1601 }
1602 if (BTS != NULL) // we have created one starting triangle
1603 break;
1604 else {
1605 // remove all candidates from the list and then the list itself
1606 class CandidateForTesselation *remover = NULL;
[f1cccd]1607 for (CandidateList::iterator it = OptCandidates->begin(); it != OptCandidates->end(); ++it) {
[357fba]1608 remover = *it;
1609 delete(remover);
1610 }
[f1cccd]1611 OptCandidates->clear();
[357fba]1612 }
1613 }
1614
1615 // remove all candidates from the list and then the list itself
1616 class CandidateForTesselation *remover = NULL;
[f1cccd]1617 for (CandidateList::iterator it = OptCandidates->begin(); it != OptCandidates->end(); ++it) {
[357fba]1618 remover = *it;
1619 delete(remover);
1620 }
[f1cccd]1621 delete(OptCandidates);
1622 cout << Verbose(1) << "End of FindStartingTriangle\n";
[357fba]1623};
1624
1625
1626/** This function finds a triangle to a line, adjacent to an existing one.
1627 * @param out output stream for debugging
1628 * @param Line current baseline to search from
1629 * @param T current triangle which \a Line is edge of
1630 * @param RADIUS radius of the rolling ball
1631 * @param N number of found triangles
[62bb91]1632 * @param *LC LinkedCell structure with neighbouring points
[357fba]1633 */
[f1cccd]1634bool Tesselation::FindNextSuitableTriangle(ofstream *out, BoundaryLineSet &Line, BoundaryTriangleSet &T, const double& RADIUS, int N, LinkedCell *LC)
[357fba]1635{
[f1cccd]1636 cout << Verbose(0) << "Begin of FindNextSuitableTriangle\n";
[357fba]1637 bool result = true;
[f1cccd]1638 CandidateList *OptCandidates = new CandidateList();
[357fba]1639
1640 Vector CircleCenter;
1641 Vector CirclePlaneNormal;
1642 Vector OldSphereCenter;
1643 Vector SearchDirection;
1644 Vector helper;
1645 TesselPoint *ThirdNode = NULL;
1646 LineMap::iterator testline;
1647 double ShortestAngle = 2.*M_PI; // This will indicate the quadrant.
1648 double radius, CircleRadius;
1649
1650 cout << Verbose(1) << "Current baseline is " << Line << " of triangle " << T << "." << endl;
1651 for (int i=0;i<3;i++)
1652 if ((T.endpoints[i]->node != Line.endpoints[0]->node) && (T.endpoints[i]->node != Line.endpoints[1]->node))
1653 ThirdNode = T.endpoints[i]->node;
1654
1655 // construct center of circle
1656 CircleCenter.CopyVector(Line.endpoints[0]->node->node);
1657 CircleCenter.AddVector(Line.endpoints[1]->node->node);
1658 CircleCenter.Scale(0.5);
1659
1660 // construct normal vector of circle
1661 CirclePlaneNormal.CopyVector(Line.endpoints[0]->node->node);
1662 CirclePlaneNormal.SubtractVector(Line.endpoints[1]->node->node);
1663
1664 // calculate squared radius of circle
1665 radius = CirclePlaneNormal.ScalarProduct(&CirclePlaneNormal);
1666 if (radius/4. < RADIUS*RADIUS) {
1667 CircleRadius = RADIUS*RADIUS - radius/4.;
1668 CirclePlaneNormal.Normalize();
1669 cout << Verbose(2) << "INFO: CircleCenter is at " << CircleCenter << ", CirclePlaneNormal is " << CirclePlaneNormal << " with circle radius " << sqrt(CircleRadius) << "." << endl;
1670
1671 // construct old center
1672 GetCenterofCircumcircle(&OldSphereCenter, T.endpoints[0]->node->node, T.endpoints[1]->node->node, T.endpoints[2]->node->node);
1673 helper.CopyVector(&T.NormalVector); // normal vector ensures that this is correct center of the two possible ones
1674 radius = Line.endpoints[0]->node->node->DistanceSquared(&OldSphereCenter);
1675 helper.Scale(sqrt(RADIUS*RADIUS - radius));
1676 OldSphereCenter.AddVector(&helper);
1677 OldSphereCenter.SubtractVector(&CircleCenter);
1678 //cout << Verbose(2) << "INFO: OldSphereCenter is at " << OldSphereCenter << "." << endl;
1679
1680 // construct SearchDirection
1681 SearchDirection.MakeNormalVector(&T.NormalVector, &CirclePlaneNormal);
1682 helper.CopyVector(Line.endpoints[0]->node->node);
1683 helper.SubtractVector(ThirdNode->node);
1684 if (helper.ScalarProduct(&SearchDirection) < -HULLEPSILON)// ohoh, SearchDirection points inwards!
1685 SearchDirection.Scale(-1.);
1686 SearchDirection.ProjectOntoPlane(&OldSphereCenter);
1687 SearchDirection.Normalize();
1688 cout << Verbose(2) << "INFO: SearchDirection is " << SearchDirection << "." << endl;
1689 if (fabs(OldSphereCenter.ScalarProduct(&SearchDirection)) > HULLEPSILON) {
1690 // rotated the wrong way!
1691 cerr << "ERROR: SearchDirection and RelativeOldSphereCenter are still not orthogonal!" << endl;
1692 }
1693
1694 // add third point
[f1cccd]1695 FindThirdPointForTesselation(
1696 T.NormalVector, SearchDirection, OldSphereCenter, &Line, ThirdNode, OptCandidates,
[357fba]1697 &ShortestAngle, RADIUS, LC
1698 );
1699
1700 } else {
1701 cout << Verbose(1) << "Circumcircle for base line " << Line << " and base triangle " << T << " is too big!" << endl;
1702 }
1703
[f1cccd]1704 if (OptCandidates->begin() == OptCandidates->end()) {
[357fba]1705 cerr << "WARNING: Could not find a suitable candidate." << endl;
1706 return false;
1707 }
1708 cout << Verbose(1) << "Third Points are ";
[f1cccd]1709 for (CandidateList::iterator it = OptCandidates->begin(); it != OptCandidates->end(); ++it) {
[357fba]1710 cout << " " << *(*it)->point;
1711 }
1712 cout << endl;
1713
1714 BoundaryLineSet *BaseRay = &Line;
[f1cccd]1715 for (CandidateList::iterator it = OptCandidates->begin(); it != OptCandidates->end(); ++it) {
[357fba]1716 cout << Verbose(1) << " Third point candidate is " << *(*it)->point
1717 << " with circumsphere's center at " << (*it)->OptCenter << "." << endl;
1718 cout << Verbose(1) << " Baseline is " << *BaseRay << endl;
1719
1720 // check whether all edges of the new triangle still have space for one more triangle (i.e. TriangleCount <2)
[62bb91]1721 TesselPoint *PointCandidates[3];
1722 PointCandidates[0] = (*it)->point;
1723 PointCandidates[1] = BaseRay->endpoints[0]->node;
1724 PointCandidates[2] = BaseRay->endpoints[1]->node;
1725 int existentTrianglesCount = CheckPresenceOfTriangle(out, PointCandidates);
[357fba]1726
1727 BTS = NULL;
1728 // If there is no triangle, add it regularly.
1729 if (existentTrianglesCount == 0) {
[16d866]1730 AddTesselationPoint((*it)->point, 0);
1731 AddTesselationPoint(BaseRay->endpoints[0]->node, 1);
1732 AddTesselationPoint(BaseRay->endpoints[1]->node, 2);
[357fba]1733
[f1cccd]1734 if (CheckLineCriteriaForDegeneratedTriangle(TPS)) {
[16d866]1735 AddTesselationLine(TPS[0], TPS[1], 0);
1736 AddTesselationLine(TPS[0], TPS[2], 1);
1737 AddTesselationLine(TPS[1], TPS[2], 2);
[357fba]1738
[1953f9]1739 BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount);
[16d866]1740 AddTesselationTriangle();
[1953f9]1741 (*it)->OptCenter.Scale(-1.);
1742 BTS->GetNormalVector((*it)->OptCenter);
1743 (*it)->OptCenter.Scale(-1.);
[357fba]1744
[1953f9]1745 cout << "--> New triangle with " << *BTS << " and normal vector " << BTS->NormalVector
1746 << " for this triangle ... " << endl;
[357fba]1747 //cout << Verbose(1) << "We have "<< TrianglesOnBoundaryCount << " for line " << *BaseRay << "." << endl;
[1953f9]1748 } else {
1749 cout << Verbose(1) << "WARNING: This triangle consisting of ";
1750 cout << *(*it)->point << ", ";
1751 cout << *BaseRay->endpoints[0]->node << " and ";
1752 cout << *BaseRay->endpoints[1]->node << " ";
1753 cout << "exists and is not added, as it does not seem helpful!" << endl;
1754 result = false;
1755 }
[357fba]1756 } else if (existentTrianglesCount == 1) { // If there is a planar region within the structure, we need this triangle a second time.
[16d866]1757 AddTesselationPoint((*it)->point, 0);
1758 AddTesselationPoint(BaseRay->endpoints[0]->node, 1);
1759 AddTesselationPoint(BaseRay->endpoints[1]->node, 2);
[357fba]1760
1761 // We demand that at most one new degenerate line is created and that this line also already exists (which has to be the case due to existentTrianglesCount == 1)
1762 // i.e. at least one of the three lines must be present with TriangleCount <= 1
[f1cccd]1763 if (CheckLineCriteriaForDegeneratedTriangle(TPS)) {
[16d866]1764 AddTesselationLine(TPS[0], TPS[1], 0);
1765 AddTesselationLine(TPS[0], TPS[2], 1);
1766 AddTesselationLine(TPS[1], TPS[2], 2);
[357fba]1767
1768 BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount);
[16d866]1769 AddTesselationTriangle(); // add to global map
[357fba]1770
1771 (*it)->OtherOptCenter.Scale(-1.);
1772 BTS->GetNormalVector((*it)->OtherOptCenter);
1773 (*it)->OtherOptCenter.Scale(-1.);
1774
1775 cout << "--> WARNING: Special new triangle with " << *BTS << " and normal vector " << BTS->NormalVector
1776 << " for this triangle ... " << endl;
[5c7bf8]1777 cout << Verbose(1) << "We have "<< BaseRay->triangles.size() << " for line " << BaseRay << "." << endl;
[357fba]1778 } else {
1779 cout << Verbose(1) << "WARNING: This triangle consisting of ";
1780 cout << *(*it)->point << ", ";
1781 cout << *BaseRay->endpoints[0]->node << " and ";
1782 cout << *BaseRay->endpoints[1]->node << " ";
1783 cout << "exists and is not added, as it does not seem helpful!" << endl;
1784 result = false;
1785 }
1786 } else {
1787 cout << Verbose(1) << "This triangle consisting of ";
1788 cout << *(*it)->point << ", ";
1789 cout << *BaseRay->endpoints[0]->node << " and ";
1790 cout << *BaseRay->endpoints[1]->node << " ";
1791 cout << "is invalid!" << endl;
1792 result = false;
1793 }
1794
1795 // set baseline to new ray from ref point (here endpoints[0]->node) to current candidate (here (*it)->point))
1796 BaseRay = BLS[0];
1797 }
1798
1799 // remove all candidates from the list and then the list itself
1800 class CandidateForTesselation *remover = NULL;
[f1cccd]1801 for (CandidateList::iterator it = OptCandidates->begin(); it != OptCandidates->end(); ++it) {
[357fba]1802 remover = *it;
1803 delete(remover);
1804 }
[f1cccd]1805 delete(OptCandidates);
1806 cout << Verbose(0) << "End of FindNextSuitableTriangle\n";
[357fba]1807 return result;
1808};
1809
[16d866]1810/** Checks whether the quadragon of the two triangles connect to \a *Base is convex.
1811 * We look whether the closest point on \a *Base with respect to the other baseline is outside
1812 * of the segment formed by both endpoints (concave) or not (convex).
1813 * \param *out output stream for debugging
1814 * \param *Base line to be flipped
1815 * \return NULL - concave, otherwise endpoint that makes it concave
1816 */
1817class BoundaryPointSet *Tesselation::IsConvexRectangle(ofstream *out, class BoundaryLineSet *Base)
1818{
1819 class BoundaryPointSet *Spot = NULL;
1820 class BoundaryLineSet *OtherBase;
[0077b5]1821 Vector *ClosestPoint;
[16d866]1822
1823 int m=0;
1824 for(TriangleMap::iterator runner = Base->triangles.begin(); runner != Base->triangles.end(); runner++)
1825 for (int j=0;j<3;j++) // all of their endpoints and baselines
1826 if (!Base->ContainsBoundaryPoint(runner->second->endpoints[j])) // and neither of its endpoints
1827 BPS[m++] = runner->second->endpoints[j];
1828 OtherBase = new class BoundaryLineSet(BPS,-1);
1829
1830 *out << Verbose(3) << "INFO: Current base line is " << *Base << "." << endl;
1831 *out << Verbose(3) << "INFO: Other base line is " << *OtherBase << "." << endl;
1832
1833 // get the closest point on each line to the other line
[0077b5]1834 ClosestPoint = GetClosestPointBetweenLine(out, Base, OtherBase);
[16d866]1835
1836 // delete the temporary other base line
1837 delete(OtherBase);
1838
1839 // get the distance vector from Base line to OtherBase line
[0077b5]1840 Vector DistanceToIntersection[2], BaseLine;
1841 double distance[2];
[16d866]1842 BaseLine.CopyVector(Base->endpoints[1]->node->node);
1843 BaseLine.SubtractVector(Base->endpoints[0]->node->node);
[0077b5]1844 for (int i=0;i<2;i++) {
1845 DistanceToIntersection[i].CopyVector(ClosestPoint);
1846 DistanceToIntersection[i].SubtractVector(Base->endpoints[i]->node->node);
1847 distance[i] = BaseLine.ScalarProduct(&DistanceToIntersection[i]);
[16d866]1848 }
[1d9b7aa]1849 delete(ClosestPoint);
1850 if ((distance[0] * distance[1]) > 0) { // have same sign?
1851 *out << Verbose(3) << "REJECT: Both SKPs have same sign: " << distance[0] << " and " << distance[1] << ". " << *Base << "' rectangle is concave." << endl;
[0077b5]1852 if (distance[0] < distance[1]) {
1853 Spot = Base->endpoints[0];
1854 } else {
1855 Spot = Base->endpoints[1];
1856 }
[16d866]1857 return Spot;
[0077b5]1858 } else { // different sign, i.e. we are in between
1859 *out << Verbose(3) << "ACCEPT: Rectangle of triangles of base line " << *Base << " is convex." << endl;
[16d866]1860 return NULL;
1861 }
1862
1863};
1864
[0077b5]1865void Tesselation::PrintAllBoundaryPoints(ofstream *out)
1866{
1867 // print all lines
1868 *out << Verbose(1) << "Printing all boundary points for debugging:" << endl;
1869 for (PointMap::iterator PointRunner = PointsOnBoundary.begin();PointRunner != PointsOnBoundary.end(); PointRunner++)
1870 *out << Verbose(2) << *(PointRunner->second) << endl;
1871};
1872
1873void Tesselation::PrintAllBoundaryLines(ofstream *out)
1874{
1875 // print all lines
1876 *out << Verbose(1) << "Printing all boundary lines for debugging:" << endl;
1877 for (LineMap::iterator LineRunner = LinesOnBoundary.begin(); LineRunner != LinesOnBoundary.end(); LineRunner++)
1878 *out << Verbose(2) << *(LineRunner->second) << endl;
1879};
1880
1881void Tesselation::PrintAllBoundaryTriangles(ofstream *out)
1882{
1883 // print all triangles
1884 *out << Verbose(1) << "Printing all boundary triangles for debugging:" << endl;
1885 for (TriangleMap::iterator TriangleRunner = TrianglesOnBoundary.begin(); TriangleRunner != TrianglesOnBoundary.end(); TriangleRunner++)
1886 *out << Verbose(2) << *(TriangleRunner->second) << endl;
1887};
[357fba]1888
[16d866]1889/** For a given boundary line \a *Base and its two triangles, picks the central baseline that is "higher".
[357fba]1890 * \param *out output stream for debugging
[16d866]1891 * \param *Base line to be flipped
1892 * \return true - line was changed, false - same line as before
[357fba]1893 */
[16d866]1894bool Tesselation::PickFarthestofTwoBaselines(ofstream *out, class BoundaryLineSet *Base)
[357fba]1895{
[16d866]1896 class BoundaryLineSet *OtherBase;
1897 Vector *ClosestPoint[2];
1898
1899 int m=0;
1900 for(TriangleMap::iterator runner = Base->triangles.begin(); runner != Base->triangles.end(); runner++)
1901 for (int j=0;j<3;j++) // all of their endpoints and baselines
1902 if (!Base->ContainsBoundaryPoint(runner->second->endpoints[j])) // and neither of its endpoints
1903 BPS[m++] = runner->second->endpoints[j];
1904 OtherBase = new class BoundaryLineSet(BPS,-1);
[62bb91]1905
[16d866]1906 *out << Verbose(3) << "INFO: Current base line is " << *Base << "." << endl;
1907 *out << Verbose(3) << "INFO: Other base line is " << *OtherBase << "." << endl;
[62bb91]1908
[16d866]1909 // get the closest point on each line to the other line
1910 ClosestPoint[0] = GetClosestPointBetweenLine(out, Base, OtherBase);
1911 ClosestPoint[1] = GetClosestPointBetweenLine(out, OtherBase, Base);
1912
1913 // get the distance vector from Base line to OtherBase line
1914 Vector Distance;
1915 Distance.CopyVector(ClosestPoint[1]);
1916 Distance.SubtractVector(ClosestPoint[0]);
1917
[0077b5]1918 // delete the temporary other base line and the closest points
1919 delete(ClosestPoint[0]);
1920 delete(ClosestPoint[1]);
[16d866]1921 delete(OtherBase);
1922
1923 if (Distance.NormSquared() < MYEPSILON) { // check for intersection
1924 *out << Verbose(3) << "REJECT: Both lines have an intersection: Nothing to do." << endl;
1925 return false;
1926 } else { // check for sign against BaseLineNormal
1927 Vector BaseLineNormal;
[5c7bf8]1928 BaseLineNormal.Zero();
1929 if (Base->triangles.size() < 2) {
1930 *out << Verbose(2) << "ERROR: Less than two triangles are attached to this baseline!" << endl;
1931 return false;
1932 }
1933 for (TriangleMap::iterator runner = Base->triangles.begin(); runner != Base->triangles.end(); runner++) {
1934 *out << Verbose(4) << "INFO: Adding NormalVector " << runner->second->NormalVector << " of triangle " << *(runner->second) << "." << endl;
1935 BaseLineNormal.AddVector(&(runner->second->NormalVector));
1936 }
[0077b5]1937 BaseLineNormal.Scale(1./2.);
[357fba]1938
[16d866]1939 if (Distance.ScalarProduct(&BaseLineNormal) > MYEPSILON) { // Distance points outwards, hence OtherBase higher than Base -> flip
1940 *out << Verbose(2) << "ACCEPT: Other base line would be higher: Flipping baseline." << endl;
1941 FlipBaseline(out, Base);
1942 return true;
1943 } else { // Base higher than OtherBase -> do nothing
1944 *out << Verbose(2) << "REJECT: Base line is higher: Nothing to do." << endl;
1945 return false;
1946 }
1947 }
1948};
[357fba]1949
[16d866]1950/** Returns the closest point on \a *Base with respect to \a *OtherBase.
1951 * \param *out output stream for debugging
1952 * \param *Base reference line
1953 * \param *OtherBase other base line
1954 * \return Vector on reference line that has closest distance
1955 */
1956Vector * GetClosestPointBetweenLine(ofstream *out, class BoundaryLineSet *Base, class BoundaryLineSet *OtherBase)
1957{
1958 // construct the plane of the two baselines (i.e. take both their directional vectors)
1959 Vector Normal;
[0077b5]1960 Vector Baseline, OtherBaseline;
1961 Baseline.CopyVector(Base->endpoints[1]->node->node);
1962 Baseline.SubtractVector(Base->endpoints[0]->node->node);
[16d866]1963 OtherBaseline.CopyVector(OtherBase->endpoints[1]->node->node);
1964 OtherBaseline.SubtractVector(OtherBase->endpoints[0]->node->node);
[0077b5]1965 Normal.CopyVector(&Baseline);
[16d866]1966 Normal.VectorProduct(&OtherBaseline);
1967 Normal.Normalize();
[0077b5]1968 *out << Verbose(4) << "First direction is " << Baseline << ", second direction is " << OtherBaseline << ", normal of intersection plane is " << Normal << "." << endl;
[16d866]1969
[0077b5]1970 // project one offset point of OtherBase onto this plane (and add plane offset vector)
[16d866]1971 Vector NewOffset;
1972 NewOffset.CopyVector(OtherBase->endpoints[0]->node->node);
[1d9b7aa]1973 NewOffset.SubtractVector(Base->endpoints[0]->node->node);
[16d866]1974 NewOffset.ProjectOntoPlane(&Normal);
[0077b5]1975 NewOffset.AddVector(Base->endpoints[0]->node->node);
[1d9b7aa]1976 Vector NewDirection;
1977 NewDirection.CopyVector(&NewOffset);
1978 NewDirection.AddVector(&OtherBaseline);
[16d866]1979
1980 // calculate the intersection between this projected baseline and Base
1981 Vector *Intersection = new Vector;
[1d9b7aa]1982 Intersection->GetIntersectionOfTwoLinesOnPlane(out, Base->endpoints[0]->node->node, Base->endpoints[1]->node->node, &NewOffset, &NewDirection, &Normal);
[0077b5]1983 Normal.CopyVector(Intersection);
1984 Normal.SubtractVector(Base->endpoints[0]->node->node);
1985 *out << Verbose(3) << "Found closest point on " << *Base << " at " << *Intersection << ", factor in line is " << fabs(Normal.ScalarProduct(&Baseline)/Baseline.NormSquared()) << "." << endl;
[16d866]1986
1987 return Intersection;
1988};
1989
1990/** For a given baseline and its two connected triangles, flips the baseline.
1991 * I.e. we create the new baseline between the other two endpoints of these four
1992 * endpoints and reconstruct the two triangles accordingly.
1993 * \param *out output stream for debugging
1994 * \param *Base line to be flipped
1995 * \return true - flipping successful, false - something went awry
1996 */
1997bool Tesselation::FlipBaseline(ofstream *out, class BoundaryLineSet *Base)
1998{
1999 class BoundaryLineSet *OldLines[4], *NewLine;
2000 class BoundaryPointSet *OldPoints[2];
2001 Vector BaseLineNormal;
2002 int OldTriangleNrs[2], OldBaseLineNr;
2003 int i,m;
2004
2005 *out << Verbose(1) << "Begin of FlipBaseline" << endl;
2006
2007 // calculate NormalVector for later use
2008 BaseLineNormal.Zero();
2009 if (Base->triangles.size() < 2) {
2010 *out << Verbose(2) << "ERROR: Less than two triangles are attached to this baseline!" << endl;
2011 return false;
2012 }
2013 for (TriangleMap::iterator runner = Base->triangles.begin(); runner != Base->triangles.end(); runner++) {
2014 *out << Verbose(4) << "INFO: Adding NormalVector " << runner->second->NormalVector << " of triangle " << *(runner->second) << "." << endl;
2015 BaseLineNormal.AddVector(&(runner->second->NormalVector));
2016 }
2017 BaseLineNormal.Scale(-1./2.); // has to point inside for BoundaryTriangleSet::GetNormalVector()
2018
2019 // get the two triangles
2020 // gather four endpoints and four lines
2021 for (int j=0;j<4;j++)
2022 OldLines[j] = NULL;
2023 for (int j=0;j<2;j++)
2024 OldPoints[j] = NULL;
2025 i=0;
2026 m=0;
2027 *out << Verbose(3) << "The four old lines are: ";
2028 for(TriangleMap::iterator runner = Base->triangles.begin(); runner != Base->triangles.end(); runner++)
2029 for (int j=0;j<3;j++) // all of their endpoints and baselines
2030 if (runner->second->lines[j] != Base) { // pick not the central baseline
2031 OldLines[i++] = runner->second->lines[j];
2032 *out << *runner->second->lines[j] << "\t";
[357fba]2033 }
[16d866]2034 *out << endl;
2035 *out << Verbose(3) << "The two old points are: ";
2036 for(TriangleMap::iterator runner = Base->triangles.begin(); runner != Base->triangles.end(); runner++)
2037 for (int j=0;j<3;j++) // all of their endpoints and baselines
2038 if (!Base->ContainsBoundaryPoint(runner->second->endpoints[j])) { // and neither of its endpoints
2039 OldPoints[m++] = runner->second->endpoints[j];
2040 *out << *runner->second->endpoints[j] << "\t";
2041 }
2042 *out << endl;
2043
2044 // check whether everything is in place to create new lines and triangles
2045 if (i<4) {
2046 *out << Verbose(1) << "ERROR: We have not gathered enough baselines!" << endl;
2047 return false;
2048 }
2049 for (int j=0;j<4;j++)
2050 if (OldLines[j] == NULL) {
2051 *out << Verbose(1) << "ERROR: We have not gathered enough baselines!" << endl;
2052 return false;
2053 }
2054 for (int j=0;j<2;j++)
2055 if (OldPoints[j] == NULL) {
2056 *out << Verbose(1) << "ERROR: We have not gathered enough endpoints!" << endl;
2057 return false;
[357fba]2058 }
[16d866]2059
2060 // remove triangles and baseline removes itself
2061 *out << Verbose(3) << "INFO: Deleting baseline " << *Base << " from global list." << endl;
2062 OldBaseLineNr = Base->Nr;
2063 m=0;
2064 for(TriangleMap::iterator runner = Base->triangles.begin(); runner != Base->triangles.end(); runner++) {
2065 *out << Verbose(3) << "INFO: Deleting triangle " << *(runner->second) << "." << endl;
2066 OldTriangleNrs[m++] = runner->second->Nr;
2067 RemoveTesselationTriangle(runner->second);
2068 }
2069
2070 // construct new baseline (with same number as old one)
2071 BPS[0] = OldPoints[0];
2072 BPS[1] = OldPoints[1];
2073 NewLine = new class BoundaryLineSet(BPS, OldBaseLineNr);
2074 LinesOnBoundary.insert(LinePair(OldBaseLineNr, NewLine)); // no need for check for unique insertion as NewLine is definitely a new one
2075 *out << Verbose(3) << "INFO: Created new baseline " << *NewLine << "." << endl;
2076
2077 // construct new triangles with flipped baseline
2078 i=-1;
2079 if (OldLines[0]->IsConnectedTo(OldLines[2]))
2080 i=2;
2081 if (OldLines[0]->IsConnectedTo(OldLines[3]))
2082 i=3;
2083 if (i!=-1) {
2084 BLS[0] = OldLines[0];
2085 BLS[1] = OldLines[i];
2086 BLS[2] = NewLine;
2087 BTS = new class BoundaryTriangleSet(BLS, OldTriangleNrs[0]);
2088 BTS->GetNormalVector(BaseLineNormal);
2089 TrianglesOnBoundary.insert(TrianglePair(OldTriangleNrs[0], BTS));
2090 *out << Verbose(3) << "INFO: Created new triangle " << *BTS << "." << endl;
2091
2092 BLS[0] = (i==2 ? OldLines[3] : OldLines[2]);
2093 BLS[1] = OldLines[1];
2094 BLS[2] = NewLine;
2095 BTS = new class BoundaryTriangleSet(BLS, OldTriangleNrs[1]);
2096 BTS->GetNormalVector(BaseLineNormal);
2097 TrianglesOnBoundary.insert(TrianglePair(OldTriangleNrs[1], BTS));
2098 *out << Verbose(3) << "INFO: Created new triangle " << *BTS << "." << endl;
2099 } else {
2100 *out << Verbose(1) << "The four old lines do not connect, something's utterly wrong here!" << endl;
2101 return false;
[357fba]2102 }
[16d866]2103
2104 *out << Verbose(1) << "End of FlipBaseline" << endl;
[357fba]2105 return true;
2106};
2107
[16d866]2108
[357fba]2109/** Finds the second point of starting triangle.
2110 * \param *a first node
2111 * \param *Candidate pointer to candidate node on return
2112 * \param Oben vector indicating the outside
[f1cccd]2113 * \param OptCandidate reference to recommended candidate on return
[357fba]2114 * \param Storage[3] array storing angles and other candidate information
2115 * \param RADIUS radius of virtual sphere
[62bb91]2116 * \param *LC LinkedCell structure with neighbouring points
[357fba]2117 */
[f1cccd]2118void Tesselation::FindSecondPointForTesselation(TesselPoint* a, TesselPoint* Candidate, Vector Oben, TesselPoint*& OptCandidate, double Storage[3], double RADIUS, LinkedCell *LC)
[357fba]2119{
[f1cccd]2120 cout << Verbose(2) << "Begin of FindSecondPointForTesselation" << endl;
[357fba]2121 Vector AngleCheck;
2122 double norm = -1., angle;
2123 LinkedNodes *List = NULL;
2124 int N[NDIM], Nlower[NDIM], Nupper[NDIM];
2125
[62bb91]2126 if (LC->SetIndexToNode(a)) { // get cell for the starting point
[357fba]2127 for(int i=0;i<NDIM;i++) // store indices of this cell
2128 N[i] = LC->n[i];
2129 } else {
[62bb91]2130 cerr << "ERROR: Point " << *a << " is not found in cell " << LC->index << "." << endl;
[357fba]2131 return;
2132 }
[62bb91]2133 // then go through the current and all neighbouring cells and check the contained points for possible candidates
[357fba]2134 cout << Verbose(3) << "LC Intervals from [";
2135 for (int i=0;i<NDIM;i++) {
2136 cout << " " << N[i] << "<->" << LC->N[i];
2137 }
2138 cout << "] :";
2139 for (int i=0;i<NDIM;i++) {
2140 Nlower[i] = ((N[i]-1) >= 0) ? N[i]-1 : 0;
2141 Nupper[i] = ((N[i]+1) < LC->N[i]) ? N[i]+1 : LC->N[i]-1;
2142 cout << " [" << Nlower[i] << "," << Nupper[i] << "] ";
2143 }
2144 cout << endl;
2145
2146
2147 for (LC->n[0] = Nlower[0]; LC->n[0] <= Nupper[0]; LC->n[0]++)
2148 for (LC->n[1] = Nlower[1]; LC->n[1] <= Nupper[1]; LC->n[1]++)
2149 for (LC->n[2] = Nlower[2]; LC->n[2] <= Nupper[2]; LC->n[2]++) {
2150 List = LC->GetCurrentCell();
2151 //cout << Verbose(2) << "Current cell is " << LC->n[0] << ", " << LC->n[1] << ", " << LC->n[2] << " with No. " << LC->index << "." << endl;
2152 if (List != NULL) {
2153 for (LinkedNodes::iterator Runner = List->begin(); Runner != List->end(); Runner++) {
2154 Candidate = (*Runner);
2155 // check if we only have one unique point yet ...
2156 if (a != Candidate) {
2157 // Calculate center of the circle with radius RADIUS through points a and Candidate
[f1cccd]2158 Vector OrthogonalizedOben, aCandidate, Center;
[357fba]2159 double distance, scaleFactor;
2160
2161 OrthogonalizedOben.CopyVector(&Oben);
[f1cccd]2162 aCandidate.CopyVector(a->node);
2163 aCandidate.SubtractVector(Candidate->node);
2164 OrthogonalizedOben.ProjectOntoPlane(&aCandidate);
[357fba]2165 OrthogonalizedOben.Normalize();
[f1cccd]2166 distance = 0.5 * aCandidate.Norm();
[357fba]2167 scaleFactor = sqrt(((RADIUS * RADIUS) - (distance * distance)));
2168 OrthogonalizedOben.Scale(scaleFactor);
2169
2170 Center.CopyVector(Candidate->node);
2171 Center.AddVector(a->node);
2172 Center.Scale(0.5);
2173 Center.AddVector(&OrthogonalizedOben);
2174
2175 AngleCheck.CopyVector(&Center);
2176 AngleCheck.SubtractVector(a->node);
[f1cccd]2177 norm = aCandidate.Norm();
[357fba]2178 // second point shall have smallest angle with respect to Oben vector
2179 if (norm < RADIUS*2.) {
2180 angle = AngleCheck.Angle(&Oben);
2181 if (angle < Storage[0]) {
2182 //cout << Verbose(3) << "Old values of Storage: %lf %lf \n", Storage[0], Storage[1]);
2183 cout << Verbose(3) << "Current candidate is " << *Candidate << ": Is a better candidate with distance " << norm << " and angle " << angle << " to oben " << Oben << ".\n";
[f1cccd]2184 OptCandidate = Candidate;
[357fba]2185 Storage[0] = angle;
2186 //cout << Verbose(3) << "Changing something in Storage: %lf %lf. \n", Storage[0], Storage[2]);
2187 } else {
[f1cccd]2188 //cout << Verbose(3) << "Current candidate is " << *Candidate << ": Looses with angle " << angle << " to a better candidate " << *OptCandidate << endl;
[357fba]2189 }
2190 } else {
2191 //cout << Verbose(3) << "Current candidate is " << *Candidate << ": Refused due to Radius " << norm << endl;
2192 }
2193 } else {
2194 //cout << Verbose(3) << "Current candidate is " << *Candidate << ": Candidate is equal to first endpoint." << *a << "." << endl;
2195 }
2196 }
2197 } else {
2198 cout << Verbose(3) << "Linked cell list is empty." << endl;
2199 }
2200 }
[f1cccd]2201 cout << Verbose(2) << "End of FindSecondPointForTesselation" << endl;
[357fba]2202};
2203
2204
2205/** This recursive function finds a third point, to form a triangle with two given ones.
2206 * Note that this function is for the starting triangle.
2207 * The idea is as follows: A sphere with fixed radius is (almost) uniquely defined in space by three points
2208 * that sit on its boundary. Hence, when two points are given and we look for the (next) third point, then
2209 * the center of the sphere is still fixed up to a single parameter. The band of possible values
2210 * describes a circle in 3D-space. The old center of the sphere for the current base triangle gives
2211 * us the "null" on this circle, the new center of the candidate point will be some way along this
2212 * circle. The shorter the way the better is the candidate. Note that the direction is clearly given
2213 * by the normal vector of the base triangle that always points outwards by construction.
2214 * Hence, we construct a Center of this circle which sits right in the middle of the current base line.
2215 * We construct the normal vector that defines the plane this circle lies in, it is just in the
2216 * direction of the baseline. And finally, we need the radius of the circle, which is given by the rest
2217 * with respect to the length of the baseline and the sphere's fixed \a RADIUS.
2218 * Note that there is one difficulty: The circumcircle is uniquely defined, but for the circumsphere's center
2219 * there are two possibilities which becomes clear from the construction as seen below. Hence, we must check
2220 * both.
2221 * Note also that the acos() function is not unique on [0, 2.*M_PI). Hence, we need an additional check
2222 * to decide for one of the two possible angles. Therefore we need a SearchDirection and to make this check
2223 * sensible we need OldSphereCenter to be orthogonal to it. Either we construct SearchDirection orthogonal
2224 * right away, or -- what we do here -- we rotate the relative sphere centers such that this orthogonality
2225 * holds. Then, the normalized projection onto the SearchDirection is either +1 or -1 and thus states whether
2226 * the angle is uniquely in either (0,M_PI] or [M_PI, 2.*M_PI).
[f1cccd]2227 * @param NormalVector normal direction of the base triangle (here the unit axis vector, \sa FindStartingTriangle())
[357fba]2228 * @param SearchDirection general direction where to search for the next point, relative to center of BaseLine
2229 * @param OldSphereCenter center of sphere for base triangle, relative to center of BaseLine, giving null angle for the parameter circle
2230 * @param BaseLine BoundaryLineSet with the current base line
[62bb91]2231 * @param ThirdNode third point to avoid in search
[357fba]2232 * @param candidates list of equally good candidates to return
[f1cccd]2233 * @param ShortestAngle the current path length on this circle band for the current OptCandidate
[357fba]2234 * @param RADIUS radius of sphere
[62bb91]2235 * @param *LC LinkedCell structure with neighbouring points
[357fba]2236 */
[f1cccd]2237void Tesselation::FindThirdPointForTesselation(Vector NormalVector, Vector SearchDirection, Vector OldSphereCenter, class BoundaryLineSet *BaseLine, class TesselPoint *ThirdNode, CandidateList* &candidates, double *ShortestAngle, const double RADIUS, LinkedCell *LC)
[357fba]2238{
2239 Vector CircleCenter; // center of the circle, i.e. of the band of sphere's centers
2240 Vector CirclePlaneNormal; // normal vector defining the plane this circle lives in
2241 Vector SphereCenter;
2242 Vector NewSphereCenter; // center of the sphere defined by the two points of BaseLine and the one of Candidate, first possibility
2243 Vector OtherNewSphereCenter; // center of the sphere defined by the two points of BaseLine and the one of Candidate, second possibility
2244 Vector NewNormalVector; // normal vector of the Candidate's triangle
2245 Vector helper, OptCandidateCenter, OtherOptCandidateCenter;
2246 LinkedNodes *List = NULL;
2247 double CircleRadius; // radius of this circle
2248 double radius;
2249 double alpha, Otheralpha; // angles (i.e. parameter for the circle).
2250 int N[NDIM], Nlower[NDIM], Nupper[NDIM];
2251 TesselPoint *Candidate = NULL;
2252 CandidateForTesselation *optCandidate = NULL;
2253
[f1cccd]2254 cout << Verbose(1) << "Begin of FindThirdPointForTesselation" << endl;
[357fba]2255
2256 //cout << Verbose(2) << "INFO: NormalVector of BaseTriangle is " << NormalVector << "." << endl;
2257
2258 // construct center of circle
2259 CircleCenter.CopyVector(BaseLine->endpoints[0]->node->node);
2260 CircleCenter.AddVector(BaseLine->endpoints[1]->node->node);
2261 CircleCenter.Scale(0.5);
2262
2263 // construct normal vector of circle
2264 CirclePlaneNormal.CopyVector(BaseLine->endpoints[0]->node->node);
2265 CirclePlaneNormal.SubtractVector(BaseLine->endpoints[1]->node->node);
2266
[ab1932]2267 // calculate squared radius TesselPoint *ThirdNode,f circle
[357fba]2268 radius = CirclePlaneNormal.ScalarProduct(&CirclePlaneNormal);
2269 if (radius/4. < RADIUS*RADIUS) {
2270 CircleRadius = RADIUS*RADIUS - radius/4.;
2271 CirclePlaneNormal.Normalize();
2272 //cout << Verbose(2) << "INFO: CircleCenter is at " << CircleCenter << ", CirclePlaneNormal is " << CirclePlaneNormal << " with circle radius " << sqrt(CircleRadius) << "." << endl;
2273
2274 // test whether old center is on the band's plane
2275 if (fabs(OldSphereCenter.ScalarProduct(&CirclePlaneNormal)) > HULLEPSILON) {
2276 cerr << "ERROR: Something's very wrong here: OldSphereCenter is not on the band's plane as desired by " << fabs(OldSphereCenter.ScalarProduct(&CirclePlaneNormal)) << "!" << endl;
2277 OldSphereCenter.ProjectOntoPlane(&CirclePlaneNormal);
2278 }
2279 radius = OldSphereCenter.ScalarProduct(&OldSphereCenter);
2280 if (fabs(radius - CircleRadius) < HULLEPSILON) {
2281
2282 // check SearchDirection
2283 //cout << Verbose(2) << "INFO: SearchDirection is " << SearchDirection << "." << endl;
2284 if (fabs(OldSphereCenter.ScalarProduct(&SearchDirection)) > HULLEPSILON) { // rotated the wrong way!
2285 cerr << "ERROR: SearchDirection and RelativeOldSphereCenter are not orthogonal!" << endl;
2286 }
2287
[62bb91]2288 // get cell for the starting point
[357fba]2289 if (LC->SetIndexToVector(&CircleCenter)) {
2290 for(int i=0;i<NDIM;i++) // store indices of this cell
2291 N[i] = LC->n[i];
2292 //cout << Verbose(2) << "INFO: Center cell is " << N[0] << ", " << N[1] << ", " << N[2] << " with No. " << LC->index << "." << endl;
2293 } else {
2294 cerr << "ERROR: Vector " << CircleCenter << " is outside of LinkedCell's bounding box." << endl;
2295 return;
2296 }
[62bb91]2297 // then go through the current and all neighbouring cells and check the contained points for possible candidates
[357fba]2298 //cout << Verbose(2) << "LC Intervals:";
2299 for (int i=0;i<NDIM;i++) {
2300 Nlower[i] = ((N[i]-1) >= 0) ? N[i]-1 : 0;
2301 Nupper[i] = ((N[i]+1) < LC->N[i]) ? N[i]+1 : LC->N[i]-1;
2302 //cout << " [" << Nlower[i] << "," << Nupper[i] << "] ";
2303 }
2304 //cout << endl;
2305 for (LC->n[0] = Nlower[0]; LC->n[0] <= Nupper[0]; LC->n[0]++)
2306 for (LC->n[1] = Nlower[1]; LC->n[1] <= Nupper[1]; LC->n[1]++)
2307 for (LC->n[2] = Nlower[2]; LC->n[2] <= Nupper[2]; LC->n[2]++) {
2308 List = LC->GetCurrentCell();
2309 //cout << Verbose(2) << "Current cell is " << LC->n[0] << ", " << LC->n[1] << ", " << LC->n[2] << " with No. " << LC->index << "." << endl;
2310 if (List != NULL) {
2311 for (LinkedNodes::iterator Runner = List->begin(); Runner != List->end(); Runner++) {
2312 Candidate = (*Runner);
2313
2314 // check for three unique points
[1953f9]2315 //cout << Verbose(2) << "INFO: Current Candidate is " << *Candidate << " at " << Candidate->node << "." << endl;
[357fba]2316 if ((Candidate != BaseLine->endpoints[0]->node) && (Candidate != BaseLine->endpoints[1]->node) ){
2317
2318 // construct both new centers
2319 GetCenterofCircumcircle(&NewSphereCenter, BaseLine->endpoints[0]->node->node, BaseLine->endpoints[1]->node->node, Candidate->node);
2320 OtherNewSphereCenter.CopyVector(&NewSphereCenter);
2321
2322 if ((NewNormalVector.MakeNormalVector(BaseLine->endpoints[0]->node->node, BaseLine->endpoints[1]->node->node, Candidate->node))
2323 && (fabs(NewNormalVector.ScalarProduct(&NewNormalVector)) > HULLEPSILON)
2324 ) {
2325 helper.CopyVector(&NewNormalVector);
2326 //cout << Verbose(2) << "INFO: NewNormalVector is " << NewNormalVector << "." << endl;
2327 radius = BaseLine->endpoints[0]->node->node->DistanceSquared(&NewSphereCenter);
2328 if (radius < RADIUS*RADIUS) {
2329 helper.Scale(sqrt(RADIUS*RADIUS - radius));
2330 //cout << Verbose(2) << "INFO: Distance of NewCircleCenter to NewSphereCenter is " << helper.Norm() << " with sphere radius " << RADIUS << "." << endl;
2331 NewSphereCenter.AddVector(&helper);
2332 NewSphereCenter.SubtractVector(&CircleCenter);
2333 //cout << Verbose(2) << "INFO: NewSphereCenter is at " << NewSphereCenter << "." << endl;
2334
2335 // OtherNewSphereCenter is created by the same vector just in the other direction
2336 helper.Scale(-1.);
2337 OtherNewSphereCenter.AddVector(&helper);
2338 OtherNewSphereCenter.SubtractVector(&CircleCenter);
2339 //cout << Verbose(2) << "INFO: OtherNewSphereCenter is at " << OtherNewSphereCenter << "." << endl;
2340
2341 alpha = GetPathLengthonCircumCircle(CircleCenter, CirclePlaneNormal, CircleRadius, NewSphereCenter, OldSphereCenter, NormalVector, SearchDirection);
2342 Otheralpha = GetPathLengthonCircumCircle(CircleCenter, CirclePlaneNormal, CircleRadius, OtherNewSphereCenter, OldSphereCenter, NormalVector, SearchDirection);
2343 alpha = min(alpha, Otheralpha);
2344 // if there is a better candidate, drop the current list and add the new candidate
2345 // otherwise ignore the new candidate and keep the list
2346 if (*ShortestAngle > (alpha - HULLEPSILON)) {
2347 optCandidate = new CandidateForTesselation(Candidate, BaseLine, OptCandidateCenter, OtherOptCandidateCenter);
2348 if (fabs(alpha - Otheralpha) > MYEPSILON) {
2349 optCandidate->OptCenter.CopyVector(&NewSphereCenter);
2350 optCandidate->OtherOptCenter.CopyVector(&OtherNewSphereCenter);
2351 } else {
2352 optCandidate->OptCenter.CopyVector(&OtherNewSphereCenter);
2353 optCandidate->OtherOptCenter.CopyVector(&NewSphereCenter);
2354 }
2355 // if there is an equal candidate, add it to the list without clearing the list
2356 if ((*ShortestAngle - HULLEPSILON) < alpha) {
2357 candidates->push_back(optCandidate);
2358 cout << Verbose(2) << "ACCEPT: We have found an equally good candidate: " << *(optCandidate->point) << " with "
2359 << alpha << " and circumsphere's center at " << optCandidate->OptCenter << "." << endl;
2360 } else {
2361 // remove all candidates from the list and then the list itself
2362 class CandidateForTesselation *remover = NULL;
2363 for (CandidateList::iterator it = candidates->begin(); it != candidates->end(); ++it) {
2364 remover = *it;
2365 delete(remover);
2366 }
2367 candidates->clear();
2368 candidates->push_back(optCandidate);
2369 cout << Verbose(2) << "ACCEPT: We have found a better candidate: " << *(optCandidate->point) << " with "
2370 << alpha << " and circumsphere's center at " << optCandidate->OptCenter << "." << endl;
2371 }
2372 *ShortestAngle = alpha;
2373 //cout << Verbose(2) << "INFO: There are " << candidates->size() << " candidates in the list now." << endl;
2374 } else {
2375 if ((optCandidate != NULL) && (optCandidate->point != NULL)) {
[1953f9]2376 //cout << Verbose(2) << "REJECT: Old candidate " << *(optCandidate->point) << " with " << *ShortestAngle << " is better than new one " << *Candidate << " with " << alpha << " ." << endl;
[357fba]2377 } else {
2378 //cout << Verbose(2) << "REJECT: Candidate " << *Candidate << " with " << alpha << " was rejected." << endl;
2379 }
2380 }
2381
2382 } else {
[1953f9]2383 //cout << Verbose(2) << "REJECT: NewSphereCenter " << NewSphereCenter << " for " << *Candidate << " is too far away: " << radius << "." << endl;
[357fba]2384 }
2385 } else {
2386 //cout << Verbose(2) << "REJECT: Three points from " << *BaseLine << " and Candidate " << *Candidate << " are linear-dependent." << endl;
2387 }
2388 } else {
2389 if (ThirdNode != NULL) {
2390 //cout << Verbose(2) << "REJECT: Base triangle " << *BaseLine << " and " << *ThirdNode << " contains Candidate " << *Candidate << "." << endl;
2391 } else {
2392 //cout << Verbose(2) << "REJECT: Base triangle " << *BaseLine << " contains Candidate " << *Candidate << "." << endl;
2393 }
2394 }
2395 }
2396 }
2397 }
2398 } else {
2399 cerr << Verbose(2) << "ERROR: The projected center of the old sphere has radius " << radius << " instead of " << CircleRadius << "." << endl;
2400 }
2401 } else {
2402 if (ThirdNode != NULL)
2403 cout << Verbose(2) << "Circumcircle for base line " << *BaseLine << " and third node " << *ThirdNode << " is too big!" << endl;
2404 else
2405 cout << Verbose(2) << "Circumcircle for base line " << *BaseLine << " is too big!" << endl;
2406 }
2407
2408 //cout << Verbose(2) << "INFO: Sorting candidate list ..." << endl;
2409 if (candidates->size() > 1) {
2410 candidates->unique();
[f1cccd]2411 candidates->sort(SortCandidates);
[357fba]2412 }
2413
[f1cccd]2414 cout << Verbose(1) << "End of FindThirdPointForTesselation" << endl;
[357fba]2415};
2416
2417/** Finds the endpoint two lines are sharing.
2418 * \param *line1 first line
2419 * \param *line2 second line
2420 * \return point which is shared or NULL if none
2421 */
2422class BoundaryPointSet *Tesselation::GetCommonEndpoint(class BoundaryLineSet * line1, class BoundaryLineSet * line2)
2423{
2424 class BoundaryLineSet * lines[2] =
2425 { line1, line2 };
2426 class BoundaryPointSet *node = NULL;
2427 map<int, class BoundaryPointSet *> OrderMap;
2428 pair<map<int, class BoundaryPointSet *>::iterator, bool> OrderTest;
2429 for (int i = 0; i < 2; i++)
2430 // for both lines
2431 for (int j = 0; j < 2; j++)
2432 { // for both endpoints
2433 OrderTest = OrderMap.insert(pair<int, class BoundaryPointSet *> (
2434 lines[i]->endpoints[j]->Nr, lines[i]->endpoints[j]));
2435 if (!OrderTest.second)
2436 { // if insertion fails, we have common endpoint
2437 node = OrderTest.first->second;
2438 cout << Verbose(5) << "Common endpoint of lines " << *line1
2439 << " and " << *line2 << " is: " << *node << "." << endl;
2440 j = 2;
2441 i = 2;
2442 break;
2443 }
2444 }
2445 return node;
2446};
2447
[62bb91]2448/** Finds the triangle that is closest to a given Vector \a *x.
2449 * \param *out output stream for debugging
2450 * \param *x Vector to look from
2451 * \return list of BoundaryTriangleSet of nearest triangles or NULL in degenerate case.
2452 */
2453list<BoundaryTriangleSet*> * Tesselation::FindClosestTrianglesToPoint(ofstream *out, Vector *x, LinkedCell* LC)
2454{
[5c7bf8]2455 TesselPoint *trianglePoints[3];
2456 TesselPoint *SecondPoint = NULL;
[62bb91]2457
2458 if (LinesOnBoundary.empty()) {
[5c7bf8]2459 *out << Verbose(0) << "Error: There is no tesselation structure to compare the point with, please create one first.";
[62bb91]2460 return NULL;
2461 }
2462
[f1cccd]2463 trianglePoints[0] = FindClosestPoint(x, SecondPoint, LC);
[5c7bf8]2464
[62bb91]2465 // check whether closest point is "too close" :), then it's inside
[5c7bf8]2466 if (trianglePoints[0] == NULL) {
2467 *out << Verbose(1) << "Is the only point, no one else is closeby." << endl;
2468 return NULL;
2469 }
[62bb91]2470 if (trianglePoints[0]->node->DistanceSquared(x) < MYEPSILON) {
2471 *out << Verbose(1) << "Point is right on a tesselation point, no nearest triangle." << endl;
2472 return NULL;
2473 }
[065e82]2474 list<TesselPoint*> *connectedClosestPoints = GetCircleOfConnectedPoints(out, trianglePoints[0], x);
[62bb91]2475 trianglePoints[1] = connectedClosestPoints->front();
2476 trianglePoints[2] = connectedClosestPoints->back();
2477 for (int i=0;i<3;i++) {
2478 if (trianglePoints[i] == NULL) {
2479 *out << Verbose(1) << "IsInnerPoint encounters serious error, point " << i << " not found." << endl;
2480 }
[5c7bf8]2481 //*out << Verbose(1) << "List of possible points:" << endl;
2482 //*out << Verbose(2) << *trianglePoints[i] << endl;
[62bb91]2483 }
2484
2485 list<BoundaryTriangleSet*> *triangles = FindTriangles(trianglePoints);
2486
[5c7bf8]2487 delete(connectedClosestPoints);
2488
[62bb91]2489 if (triangles->empty()) {
2490 *out << Verbose(0) << "Error: There is no nearest triangle. Please check the tesselation structure.";
2491 return NULL;
2492 } else
2493 return triangles;
2494};
2495
2496/** Finds closest triangle to a point.
2497 * This basically just takes care of the degenerate case, which is not handled in FindClosestTrianglesToPoint().
2498 * \param *out output stream for debugging
2499 * \param *x Vector to look from
2500 * \return list of BoundaryTriangleSet of nearest triangles or NULL.
2501 */
2502class BoundaryTriangleSet * Tesselation::FindClosestTriangleToPoint(ofstream *out, Vector *x, LinkedCell* LC)
2503{
2504 class BoundaryTriangleSet *result = NULL;
2505 list<BoundaryTriangleSet*> *triangles = FindClosestTrianglesToPoint(out, x, LC);
2506
2507 if (triangles == NULL)
2508 return NULL;
2509
2510 if (x->ScalarProduct(&triangles->front()->NormalVector) < 0)
2511 result = triangles->back();
2512 else
2513 result = triangles->front();
2514
2515 delete(triangles);
2516 return result;
2517};
2518
2519/** Checks whether the provided Vector is within the tesselation structure.
2520 *
2521 * @param point of which to check the position
2522 * @param *LC LinkedCell structure
2523 *
2524 * @return true if the point is inside the tesselation structure, false otherwise
2525 */
2526bool Tesselation::IsInnerPoint(ofstream *out, Vector Point, LinkedCell* LC)
2527{
2528 class BoundaryTriangleSet *result = FindClosestTriangleToPoint(out, &Point, LC);
2529 if (result == NULL)
2530 return true;
2531 if (Point.ScalarProduct(&result->NormalVector) < 0)
2532 return true;
2533 else
2534 return false;
2535}
2536
2537/** Checks whether the provided TesselPoint is within the tesselation structure.
2538 *
2539 * @param *Point of which to check the position
2540 * @param *LC Linked Cell structure
2541 *
2542 * @return true if the point is inside the tesselation structure, false otherwise
2543 */
2544bool Tesselation::IsInnerPoint(ofstream *out, TesselPoint *Point, LinkedCell* LC)
2545{
2546 class BoundaryTriangleSet *result = FindClosestTriangleToPoint(out, Point->node, LC);
2547 if (result == NULL)
2548 return true;
2549 if (Point->node->ScalarProduct(&result->NormalVector) < 0)
2550 return true;
2551 else
2552 return false;
2553}
2554
2555/** Gets all points connected to the provided point by triangulation lines.
2556 *
2557 * @param *Point of which get all connected points
2558 *
[065e82]2559 * @return set of the all points linked to the provided one
[62bb91]2560 */
[065e82]2561set<TesselPoint*> * Tesselation::GetAllConnectedPoints(ofstream *out, TesselPoint* Point)
[62bb91]2562{
[065e82]2563 set<TesselPoint*> *connectedPoints = new set<TesselPoint*>;
[5c7bf8]2564 class BoundaryPointSet *ReferencePoint = NULL;
[62bb91]2565 TesselPoint* current;
2566 bool takePoint = false;
2567
[5c7bf8]2568 // find the respective boundary point
2569 PointMap::iterator PointRunner = PointsOnBoundary.find(Point->nr);
2570 if (PointRunner != PointsOnBoundary.end()) {
2571 ReferencePoint = PointRunner->second;
2572 } else {
[065e82]2573 *out << Verbose(2) << "GetAllConnectedPoints() could not find the BoundaryPoint belonging to " << *Point << "." << endl;
[5c7bf8]2574 ReferencePoint = NULL;
2575 }
[62bb91]2576
[065e82]2577 // little trick so that we look just through lines connect to the BoundaryPoint
[5c7bf8]2578 // OR fall-back to look through all lines if there is no such BoundaryPoint
2579 LineMap *Lines = &LinesOnBoundary;
2580 if (ReferencePoint != NULL)
2581 Lines = &(ReferencePoint->lines);
2582 LineMap::iterator findLines = Lines->begin();
2583 while (findLines != Lines->end()) {
[065e82]2584 takePoint = false;
2585
2586 if (findLines->second->endpoints[0]->Nr == Point->nr) {
2587 takePoint = true;
2588 current = findLines->second->endpoints[1]->node;
2589 } else if (findLines->second->endpoints[1]->Nr == Point->nr) {
2590 takePoint = true;
2591 current = findLines->second->endpoints[0]->node;
2592 }
2593
2594 if (takePoint) {
2595 *out << Verbose(5) << "INFO: Endpoint " << *current << " of line " << *(findLines->second) << " is enlisted." << endl;
2596 connectedPoints->insert(current);
2597 }
[62bb91]2598
[065e82]2599 findLines++;
[62bb91]2600 }
2601
[16d866]2602 if (connectedPoints->size() == 0) { // if have not found any points
2603 *out << Verbose(1) << "ERROR: We have not found any connected points to " << *Point<< "." << endl;
2604 return NULL;
2605 }
[065e82]2606
[16d866]2607 return connectedPoints;
[065e82]2608};
[16d866]2609
[065e82]2610
2611/** Gets all points connected to the provided point by triangulation lines, ordered such that we have the circle round the point.
[16d866]2612 * Maps them down onto the plane designated by the axis \a *Point and \a *Reference. The center of all points
2613 * connected in the tesselation to \a *Point is mapped to spherical coordinates with the zero angle being given
2614 * by the mapped down \a *Reference. Hence, the biggest and the smallest angles are those of the two shanks of the
2615 * triangle we are looking for.
2616 *
2617 * @param *out output stream for debugging
2618 * @param *Point of which get all connected points
[065e82]2619 * @param *Reference Reference vector for zero angle or NULL for no preference
2620 * @return list of the all points linked to the provided one
[16d866]2621 */
[065e82]2622list<TesselPoint*> * Tesselation::GetCircleOfConnectedPoints(ofstream *out, TesselPoint* Point, Vector *Reference)
[16d866]2623{
2624 map<double, TesselPoint*> anglesOfPoints;
[065e82]2625 set<TesselPoint*> *connectedPoints = GetAllConnectedPoints(out, Point);
2626 list<TesselPoint*> *connectedCircle = new list<TesselPoint*>;
2627 Vector center;
2628 Vector PlaneNormal;
2629 Vector AngleZero;
2630 Vector OrthogonalVector;
2631 Vector helper;
[62bb91]2632
[16d866]2633 // calculate central point
[065e82]2634 for (set<TesselPoint*>::iterator TesselRunner = connectedPoints->begin(); TesselRunner != connectedPoints->end(); TesselRunner++)
[16d866]2635 center.AddVector((*TesselRunner)->node);
2636 //*out << "Summed vectors " << center << "; number of points " << connectedPoints.size()
2637 // << "; scale factor " << 1.0/connectedPoints.size();
2638 center.Scale(1.0/connectedPoints->size());
[5c7bf8]2639 *out << Verbose(4) << "INFO: Calculated center of all circle points is " << center << "." << endl;
2640
2641 // projection plane of the circle is at the closes Point and normal is pointing away from center of all circle points
2642 PlaneNormal.CopyVector(Point->node);
2643 PlaneNormal.SubtractVector(&center);
2644 PlaneNormal.Normalize();
2645 *out << Verbose(4) << "INFO: Calculated plane normal of circle is " << PlaneNormal << "." << endl;
[62bb91]2646
2647 // construct one orthogonal vector
[065e82]2648 if (Reference != NULL)
2649 AngleZero.CopyVector(Reference);
2650 else
2651 AngleZero.CopyVector((*connectedPoints->begin())->node);
[5c7bf8]2652 AngleZero.SubtractVector(Point->node);
2653 AngleZero.ProjectOntoPlane(&PlaneNormal);
2654 *out << Verbose(4) << "INFO: Reference vector on this plane representing angle 0 is " << AngleZero << "." << endl;
2655 OrthogonalVector.MakeNormalVector(&PlaneNormal, &AngleZero);
2656 *out << Verbose(4) << "INFO: OrthogonalVector on plane is " << OrthogonalVector << "." << endl;
[16d866]2657
[5c7bf8]2658 // go through all connected points and calculate angle
[065e82]2659 for (set<TesselPoint*>::iterator listRunner = connectedPoints->begin(); listRunner != connectedPoints->end(); listRunner++) {
[5c7bf8]2660 helper.CopyVector((*listRunner)->node);
2661 helper.SubtractVector(Point->node);
2662 helper.ProjectOntoPlane(&PlaneNormal);
[f1cccd]2663 double angle = GetAngle(helper, AngleZero, OrthogonalVector);
[065e82]2664 *out << Verbose(3) << "INFO: Calculated angle is " << angle << " for point " << **listRunner << "." << endl;
[62bb91]2665 anglesOfPoints.insert(pair<double, TesselPoint*>(angle, (*listRunner)));
2666 }
2667
[065e82]2668 for(map<double, TesselPoint*>::iterator AngleRunner = anglesOfPoints.begin(); AngleRunner != anglesOfPoints.end(); AngleRunner++) {
2669 connectedCircle->push_back(AngleRunner->second);
2670 }
[62bb91]2671
[065e82]2672 delete(connectedPoints);
2673 return connectedCircle;
2674}
[62bb91]2675
[065e82]2676/** Gets all points connected to the provided point by triangulation lines, ordered such that we walk along a closed path.
2677 *
2678 * @param *out output stream for debugging
2679 * @param *Point of which get all connected points
2680 * @return list of the all points linked to the provided one
2681 */
2682list<list<TesselPoint*> *> * Tesselation::GetPathsOfConnectedPoints(ofstream *out, TesselPoint* Point)
2683{
2684 map<double, TesselPoint*> anglesOfPoints;
2685 list<list<TesselPoint*> *> *ListOfPaths = new list<list<TesselPoint*> *>;
2686 list<TesselPoint*> *connectedPath = NULL;
2687 Vector center;
2688 Vector PlaneNormal;
2689 Vector AngleZero;
2690 Vector OrthogonalVector;
2691 Vector helper;
2692 class BoundaryPointSet *ReferencePoint = NULL;
2693 class BoundaryPointSet *CurrentPoint = NULL;
2694 class BoundaryTriangleSet *triangle = NULL;
2695 class BoundaryLineSet *CurrentLine = NULL;
2696 class BoundaryLineSet *StartLine = NULL;
2697
2698 // find the respective boundary point
2699 PointMap::iterator PointRunner = PointsOnBoundary.find(Point->nr);
2700 if (PointRunner != PointsOnBoundary.end()) {
2701 ReferencePoint = PointRunner->second;
2702 } else {
2703 *out << Verbose(2) << "ERROR: GetPathOfConnectedPoints() could not find the BoundaryPoint belonging to " << *Point << "." << endl;
2704 return NULL;
2705 }
2706
2707 map <class BoundaryLineSet *, bool> Touched;
2708 map <class BoundaryLineSet *, bool>::iterator line;
2709 for (LineMap::iterator runner = ReferencePoint->lines.begin(); runner != ReferencePoint->lines.end(); runner++)
2710 Touched.insert( pair <class BoundaryLineSet *, bool>(runner->second, false) );
2711 if (!ReferencePoint->lines.empty()) {
2712 for (LineMap::iterator runner = ReferencePoint->lines.begin(); runner != ReferencePoint->lines.end(); runner++) {
2713 line = Touched.find(runner->second);
2714 if (line == Touched.end()) {
2715 *out << Verbose(2) << "ERROR: I could not find " << *runner->second << " in the touched list." << endl;
2716 } else if (!line->second) {
2717 line->second = true;
2718 connectedPath = new list<TesselPoint*>;
2719 triangle = NULL;
2720 CurrentLine = runner->second;
2721 StartLine = CurrentLine;
2722 CurrentPoint = CurrentLine->GetOtherEndpoint(ReferencePoint);
2723 *out << Verbose(3)<< "INFO: Beginning path retrieval at " << *CurrentPoint << " of line " << *CurrentLine << "." << endl;
2724 do {
2725 // push current one
2726 *out << Verbose(3) << "INFO: Putting " << *CurrentPoint << " at end of path." << endl;
2727 connectedPath->push_back(CurrentPoint->node);
2728
2729 // find next triangle
2730 for (TriangleMap::iterator TriangleRunner = CurrentLine->triangles.begin(); TriangleRunner != CurrentLine->triangles.end(); TriangleRunner++) {
2731 if (TriangleRunner->second != triangle) { // look for first triangle not equal to old one
2732 triangle = TriangleRunner->second;
2733 break;
2734 }
2735 }
2736 // find next line
2737 for (int i=0;i<3;i++) {
2738 if ((triangle->lines[i] != CurrentLine) && (triangle->lines[i]->ContainsBoundaryPoint(ReferencePoint))) { // not the current line and still containing Point
2739 CurrentLine = triangle->lines[i];
2740
2741 break;
2742 }
2743 }
2744 line = Touched.find(CurrentLine);
2745 if (line == Touched.end())
2746 *out << Verbose(2) << "ERROR: I could not find " << *CurrentLine << " in the touched list." << endl;
2747 else
2748 line->second = true;
2749 // find next point
2750 CurrentPoint = CurrentLine->GetOtherEndpoint(ReferencePoint);
2751
2752 } while (CurrentLine != StartLine);
2753 // last point is missing, as it's on start line
2754 *out << Verbose(3) << "INFO: Putting " << *CurrentPoint << " at end of path." << endl;
2755 connectedPath->push_back(StartLine->GetOtherEndpoint(ReferencePoint)->node);
2756
2757 ListOfPaths->push_back(connectedPath);
2758 } else {
2759 *out << Verbose(3) << "INFO: Skipping " << *runner->second << ", as we have already visited it." << endl;
2760 }
2761 }
2762 } else {
2763 *out << Verbose(1) << "ERROR: There are no lines attached to " << *ReferencePoint << "." << endl;
2764 }
2765
2766 return ListOfPaths;
[62bb91]2767}
2768
[065e82]2769/** Gets all closed paths on the circle of points connected to the provided point by triangulation lines, if this very point is removed.
2770 * From GetPathsOfConnectedPoints() extracts all single loops of intracrossing paths in the list of closed paths.
2771 * @param *out output stream for debugging
2772 * @param *Point of which get all connected points
2773 * @return list of the closed paths
2774 */
2775list<list<TesselPoint*> *> * Tesselation::GetClosedPathsOfConnectedPoints(ofstream *out, TesselPoint* Point)
2776{
2777 list<list<TesselPoint*> *> *ListofPaths = GetPathsOfConnectedPoints(out, Point);
2778 list<list<TesselPoint*> *> *ListofClosedPaths = new list<list<TesselPoint*> *>;
2779 list<TesselPoint*> *connectedPath = NULL;
2780 list<TesselPoint*> *newPath = NULL;
2781 int count = 0;
2782
2783
2784 list<TesselPoint*>::iterator CircleRunner;
2785 list<TesselPoint*>::iterator CircleStart;
2786
2787 for(list<list<TesselPoint*> *>::iterator ListRunner = ListofPaths->begin(); ListRunner != ListofPaths->end(); ListRunner++) {
2788 connectedPath = *ListRunner;
2789
2790 *out << Verbose(2) << "INFO: Current path is " << connectedPath << "." << endl;
2791
2792 // go through list, look for reappearance of starting Point and count
2793 CircleStart = connectedPath->begin();
2794
2795 // go through list, look for reappearance of starting Point and create list
2796 list<TesselPoint*>::iterator Marker = CircleStart;
2797 for (CircleRunner = CircleStart; CircleRunner != connectedPath->end(); CircleRunner++) {
2798 if ((*CircleRunner == *CircleStart) && (CircleRunner != CircleStart)) { // is not the very first point
2799 // we have a closed circle from Marker to new Marker
2800 *out << Verbose(3) << count+1 << ". closed path consists of: ";
2801 newPath = new list<TesselPoint*>;
2802 list<TesselPoint*>::iterator CircleSprinter = Marker;
2803 for (; CircleSprinter != CircleRunner; CircleSprinter++) {
2804 newPath->push_back(*CircleSprinter);
2805 *out << (**CircleSprinter) << " <-> ";
2806 }
2807 *out << ".." << endl;
2808 count++;
2809 Marker = CircleRunner;
2810
2811 // add to list
2812 ListofClosedPaths->push_back(newPath);
2813 }
2814 }
2815 }
2816 *out << Verbose(3) << "INFO: " << count << " closed additional path(s) have been created." << endl;
2817
2818 // delete list of paths
2819 while (!ListofPaths->empty()) {
2820 connectedPath = *(ListofPaths->begin());
2821 ListofPaths->remove(connectedPath);
2822 delete(connectedPath);
2823 }
2824 delete(ListofPaths);
2825
2826 // exit
2827 return ListofClosedPaths;
2828};
2829
2830
2831/** Gets all belonging triangles for a given BoundaryPointSet.
2832 * \param *out output stream for debugging
2833 * \param *Point BoundaryPoint
2834 * \return pointer to allocated list of triangles
2835 */
2836set<BoundaryTriangleSet*> *Tesselation::GetAllTriangles(ofstream *out, class BoundaryPointSet *Point)
2837{
2838 set<BoundaryTriangleSet*> *connectedTriangles = new set<BoundaryTriangleSet*>;
2839
2840 if (Point == NULL) {
2841 *out << Verbose(1) << "ERROR: Point given is NULL." << endl;
2842 } else {
2843 // go through its lines and insert all triangles
2844 for (LineMap::iterator LineRunner = Point->lines.begin(); LineRunner != Point->lines.end(); LineRunner++)
2845 for (TriangleMap::iterator TriangleRunner = (LineRunner->second)->triangles.begin(); TriangleRunner != (LineRunner->second)->triangles.end(); TriangleRunner++) {
2846 connectedTriangles->insert(TriangleRunner->second);
2847 }
2848 }
2849
2850 return connectedTriangles;
2851};
2852
2853
[16d866]2854/** Removes a boundary point from the envelope while keeping it closed.
2855 * We create new triangles and remove the old ones connected to the point.
2856 * \param *out output stream for debugging
2857 * \param *point point to be removed
2858 * \return volume added to the volume inside the tesselated surface by the removal
2859 */
2860double Tesselation::RemovePointFromTesselatedSurface(ofstream *out, class BoundaryPointSet *point) {
2861 class BoundaryLineSet *line = NULL;
2862 class BoundaryTriangleSet *triangle = NULL;
2863 Vector OldPoint, TetraederVector[3];
2864 double volume = 0;
2865 int count = 0;
2866
[1d9b7aa]2867 if (point == NULL) {
2868 *out << Verbose(1) << "ERROR: Cannot remove the point " << point << ", it's NULL!" << endl;
2869 return 0.;
2870 } else
2871 *out << Verbose(2) << "Removing point " << *point << " from tesselated boundary ..." << endl;
2872
[16d866]2873 // copy old location for the volume
2874 OldPoint.CopyVector(point->node->node);
2875
2876 // get list of connected points
2877 if (point->lines.empty()) {
2878 *out << Verbose(1) << "ERROR: Cannot remove the point " << *point << ", it's connected to no lines!" << endl;
2879 return 0.;
2880 }
2881
[065e82]2882 list<list<TesselPoint*> *> *ListOfClosedPaths = GetClosedPathsOfConnectedPoints(out, point->node);
2883 list<TesselPoint*> *connectedPath = NULL;
2884
2885 // gather all triangles
[16d866]2886 for (LineMap::iterator LineRunner = point->lines.begin(); LineRunner != point->lines.end(); LineRunner++)
2887 count+=LineRunner->second->triangles.size();
[065e82]2888 map<class BoundaryTriangleSet *, int> Candidates;
[16d866]2889 for (LineMap::iterator LineRunner = point->lines.begin(); (point != NULL) && (LineRunner != point->lines.end()); LineRunner++) {
2890 line = LineRunner->second;
2891 for (TriangleMap::iterator TriangleRunner = line->triangles.begin(); TriangleRunner != line->triangles.end(); TriangleRunner++) {
2892 triangle = TriangleRunner->second;
[065e82]2893 Candidates.insert( pair<class BoundaryTriangleSet *, int> (triangle, triangle->Nr) );
[16d866]2894 }
2895 }
2896
[065e82]2897 // remove all triangles
2898 count=0;
2899 for (map<class BoundaryTriangleSet *, int>::iterator Runner = Candidates.begin(); Runner != Candidates.end(); Runner++) {
2900 *out << Verbose(3) << "INFO: Removing triangle " << *(Runner->first) << "." << endl;
2901 RemoveTesselationTriangle(Runner->first);
2902 count++;
2903 }
2904 *out << Verbose(1) << count << " triangles were removed." << endl;
2905
2906 list<list<TesselPoint*> *>::iterator ListAdvance = ListOfClosedPaths->begin();
2907 list<list<TesselPoint*> *>::iterator ListRunner = ListAdvance;
2908 map<class BoundaryTriangleSet *, int>::iterator NumberRunner = Candidates.begin();
2909 if (count > 2) { // less than three triangles, then nothing will be created
2910 class TesselPoint *TriangleCandidates[3];
2911 count = 0;
2912 for ( ; ListRunner != ListOfClosedPaths->end(); ListRunner = ListAdvance) { // go through all closed paths
2913 if (ListAdvance != ListOfClosedPaths->end())
2914 ListAdvance++;
2915
2916 connectedPath = *ListRunner;
2917 // initialize the path to start
2918 list<TesselPoint*>::iterator CircleRunner = connectedPath->begin();
2919 list<TesselPoint*>::iterator OtherCircleRunner = connectedPath->begin();
2920 class TesselPoint *CentralNode = *CircleRunner;
2921
2922 // re-create all triangles by going through connected points list
2923 // advance two with CircleRunner and one with OtherCircleRunner
2924 CircleRunner++;
2925 CircleRunner++;
2926 OtherCircleRunner++;
2927 cout << Verbose(3) << "INFO: CentralNode is " << *CentralNode << "." << endl;
2928 for (; (OtherCircleRunner != connectedPath->end()) && (CircleRunner != connectedPath->end()); (CircleRunner++), (OtherCircleRunner++)) {
2929 cout << Verbose(4) << "INFO: CircleRunner's node is " << **CircleRunner << "." << endl;
2930 cout << Verbose(4) << "INFO: OtherCircleRunner's node is " << **OtherCircleRunner << "." << endl;
2931 *out << Verbose(3) << "INFO: Creating triangle " << CentralNode->Name << ", " << (*OtherCircleRunner)->Name << " and " << (*CircleRunner)->Name << "." << endl;
2932 *out << Verbose(5) << "Adding new triangle points."<< endl;
2933 TriangleCandidates[0] = CentralNode;
2934 TriangleCandidates[1] = *OtherCircleRunner;
2935 TriangleCandidates[2] = *CircleRunner;
2936 triangle = GetPresentTriangle(out, TriangleCandidates);
2937 AddTesselationPoint(CentralNode, 0);
2938 AddTesselationPoint(*OtherCircleRunner, 1);
2939 AddTesselationPoint(*CircleRunner, 2);
2940 *out << Verbose(5) << "Adding new triangle lines."<< endl;
2941 AddTesselationLine(TPS[0], TPS[1], 0);
2942 AddTesselationLine(TPS[0], TPS[2], 1);
2943 AddTesselationLine(TPS[1], TPS[2], 2);
2944 BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount);
2945 AddTesselationTriangle();
2946 // calculate volume summand as a general tetraeder
2947 for (int j=0;j<3;j++) {
2948 TetraederVector[j].CopyVector(TPS[j]->node->node);
2949 TetraederVector[j].SubtractVector(&OldPoint);
2950 }
2951 OldPoint.CopyVector(&TetraederVector[0]);
2952 OldPoint.VectorProduct(&TetraederVector[1]);
2953 volume += 1./6. * fabs(OldPoint.ScalarProduct(&TetraederVector[2]));
2954 // advance number
2955 NumberRunner++;
2956 count++;
2957 if (NumberRunner == Candidates.end())
2958 *out << Verbose(2) << "WARN: Maximum of numbers reached!" << endl;
2959 }
2960 ListOfClosedPaths->remove(connectedPath);
2961 delete(connectedPath);
[16d866]2962 }
[065e82]2963 *out << Verbose(1) << count << " triangles were created." << endl;
2964 } else {
2965 while (!ListOfClosedPaths->empty()) {
2966 ListRunner = ListOfClosedPaths->begin();
2967 connectedPath = *ListRunner;
2968 ListOfClosedPaths->remove(connectedPath);
2969 delete(connectedPath);
2970 }
2971 *out << Verbose(1) << "No need to create any triangles." << endl;
[16d866]2972 }
2973
[065e82]2974 delete(ListOfClosedPaths);
[16d866]2975
2976 return volume;
2977};
2978
[065e82]2979
2980
[357fba]2981/** Checks for a new special triangle whether one of its edges is already present with one one triangle connected.
2982 * This enforces that special triangles (i.e. degenerated ones) should at last close the open-edge frontier and not
2983 * make it bigger (i.e. closing one (the baseline) and opening two new ones).
2984 * \param TPS[3] nodes of the triangle
2985 * \return true - there is such a line (i.e. creation of degenerated triangle is valid), false - no such line (don't create)
2986 */
[f1cccd]2987bool CheckLineCriteriaForDegeneratedTriangle(class BoundaryPointSet *nodes[3])
[357fba]2988{
2989 bool result = false;
2990 int counter = 0;
2991
2992 // check all three points
2993 for (int i=0;i<3;i++)
2994 for (int j=i+1; j<3; j++) {
2995 if (nodes[i]->lines.find(nodes[j]->node->nr) != nodes[i]->lines.end()) { // there already is a line
2996 LineMap::iterator FindLine;
2997 pair<LineMap::iterator,LineMap::iterator> FindPair;
2998 FindPair = nodes[i]->lines.equal_range(nodes[j]->node->nr);
2999 for (FindLine = FindPair.first; FindLine != FindPair.second; ++FindLine) {
3000 // If there is a line with less than two attached triangles, we don't need a new line.
[5c7bf8]3001 if (FindLine->second->triangles.size() < 2) {
[357fba]3002 counter++;
3003 break; // increase counter only once per edge
3004 }
3005 }
3006 } else { // no line
[5c7bf8]3007 cout << Verbose(1) << "The line between " << nodes[i] << " and " << nodes[j] << " is not yet present, hence no need for a degenerate triangle." << endl;
[357fba]3008 result = true;
3009 }
3010 }
3011 if (counter > 1) {
3012 cout << Verbose(2) << "INFO: Degenerate triangle is ok, at least two, here " << counter << ", existing lines are used." << endl;
3013 result = true;
3014 }
3015 return result;
3016};
3017
3018
3019/** Sort function for the candidate list.
3020 */
[f1cccd]3021bool SortCandidates(CandidateForTesselation* candidate1, CandidateForTesselation* candidate2)
[ab1932]3022{
[357fba]3023 Vector BaseLineVector, OrthogonalVector, helper;
3024 if (candidate1->BaseLine != candidate2->BaseLine) { // sanity check
3025 cout << Verbose(0) << "ERROR: sortCandidates was called for two different baselines: " << candidate1->BaseLine << " and " << candidate2->BaseLine << "." << endl;
3026 //return false;
3027 exit(1);
3028 }
3029 // create baseline vector
3030 BaseLineVector.CopyVector(candidate1->BaseLine->endpoints[1]->node->node);
3031 BaseLineVector.SubtractVector(candidate1->BaseLine->endpoints[0]->node->node);
3032 BaseLineVector.Normalize();
3033
3034 // create normal in-plane vector to cope with acos() non-uniqueness on [0,2pi] (note that is pointing in the "right" direction already, hence ">0" test!)
3035 helper.CopyVector(candidate1->BaseLine->endpoints[0]->node->node);
3036 helper.SubtractVector(candidate1->point->node);
3037 OrthogonalVector.CopyVector(&helper);
3038 helper.VectorProduct(&BaseLineVector);
3039 OrthogonalVector.SubtractVector(&helper);
3040 OrthogonalVector.Normalize();
3041
3042 // calculate both angles and correct with in-plane vector
3043 helper.CopyVector(candidate1->point->node);
3044 helper.SubtractVector(candidate1->BaseLine->endpoints[0]->node->node);
3045 double phi = BaseLineVector.Angle(&helper);
3046 if (OrthogonalVector.ScalarProduct(&helper) > 0) {
3047 phi = 2.*M_PI - phi;
3048 }
3049 helper.CopyVector(candidate2->point->node);
3050 helper.SubtractVector(candidate1->BaseLine->endpoints[0]->node->node);
3051 double psi = BaseLineVector.Angle(&helper);
3052 if (OrthogonalVector.ScalarProduct(&helper) > 0) {
3053 psi = 2.*M_PI - psi;
3054 }
3055
3056 cout << Verbose(2) << *candidate1->point << " has angle " << phi << endl;
3057 cout << Verbose(2) << *candidate2->point << " has angle " << psi << endl;
3058
3059 // return comparison
3060 return phi < psi;
3061};
[ab1932]3062
[5c7bf8]3063/**
3064 * Finds the point which is second closest to the provided one.
3065 *
3066 * @param Point to which to find the second closest other point
3067 * @param linked cell structure
3068 *
3069 * @return point which is second closest to the provided one
3070 */
[f1cccd]3071TesselPoint* FindSecondClosestPoint(const Vector* Point, LinkedCell* LC)
[5c7bf8]3072{
3073 LinkedNodes *List = NULL;
3074 TesselPoint* closestPoint = NULL;
3075 TesselPoint* secondClosestPoint = NULL;
3076 double distance = 1e16;
3077 double secondDistance = 1e16;
3078 Vector helper;
3079 int N[NDIM], Nlower[NDIM], Nupper[NDIM];
3080
3081 LC->SetIndexToVector(Point); // ignore status as we calculate bounds below sensibly
3082 for(int i=0;i<NDIM;i++) // store indices of this cell
3083 N[i] = LC->n[i];
3084 cout << Verbose(2) << "INFO: Center cell is " << N[0] << ", " << N[1] << ", " << N[2] << " with No. " << LC->index << "." << endl;
3085
3086 LC->GetNeighbourBounds(Nlower, Nupper);
3087 //cout << endl;
3088 for (LC->n[0] = Nlower[0]; LC->n[0] <= Nupper[0]; LC->n[0]++)
3089 for (LC->n[1] = Nlower[1]; LC->n[1] <= Nupper[1]; LC->n[1]++)
3090 for (LC->n[2] = Nlower[2]; LC->n[2] <= Nupper[2]; LC->n[2]++) {
3091 List = LC->GetCurrentCell();
3092 cout << Verbose(3) << "The current cell " << LC->n[0] << "," << LC->n[1] << "," << LC->n[2] << endl;
3093 if (List != NULL) {
3094 for (LinkedNodes::iterator Runner = List->begin(); Runner != List->end(); Runner++) {
3095 helper.CopyVector(Point);
3096 helper.SubtractVector((*Runner)->node);
3097 double currentNorm = helper. Norm();
3098 if (currentNorm < distance) {
3099 // remember second point
3100 secondDistance = distance;
3101 secondClosestPoint = closestPoint;
3102 // mark down new closest point
3103 distance = currentNorm;
3104 closestPoint = (*Runner);
3105 cout << Verbose(2) << "INFO: New Nearest Neighbour is " << *closestPoint << "." << endl;
3106 }
3107 }
3108 } else {
3109 cerr << "ERROR: The current cell " << LC->n[0] << "," << LC->n[1] << ","
3110 << LC->n[2] << " is invalid!" << endl;
3111 }
3112 }
3113
3114 return secondClosestPoint;
3115};
3116
[ab1932]3117/**
[62bb91]3118 * Finds the point which is closest to the provided one.
[ab1932]3119 *
[62bb91]3120 * @param Point to which to find the closest other point
[5c7bf8]3121 * @param SecondPoint the second closest other point on return, NULL if none found
[ab1932]3122 * @param linked cell structure
3123 *
[5c7bf8]3124 * @return point which is closest to the provided one, NULL if none found
[ab1932]3125 */
[f1cccd]3126TesselPoint* FindClosestPoint(const Vector* Point, TesselPoint *&SecondPoint, LinkedCell* LC)
[ab1932]3127{
3128 LinkedNodes *List = NULL;
[62bb91]3129 TesselPoint* closestPoint = NULL;
[5c7bf8]3130 SecondPoint = NULL;
[ab1932]3131 double distance = 1e16;
[5c7bf8]3132 double secondDistance = 1e16;
[ab1932]3133 Vector helper;
3134 int N[NDIM], Nlower[NDIM], Nupper[NDIM];
3135
[62bb91]3136 LC->SetIndexToVector(Point); // ignore status as we calculate bounds below sensibly
[ab1932]3137 for(int i=0;i<NDIM;i++) // store indices of this cell
3138 N[i] = LC->n[i];
[5c7bf8]3139 cout << Verbose(2) << "INFO: Center cell is " << N[0] << ", " << N[1] << ", " << N[2] << " with No. " << LC->index << "." << endl;
[ab1932]3140
3141 LC->GetNeighbourBounds(Nlower, Nupper);
3142 //cout << endl;
3143 for (LC->n[0] = Nlower[0]; LC->n[0] <= Nupper[0]; LC->n[0]++)
3144 for (LC->n[1] = Nlower[1]; LC->n[1] <= Nupper[1]; LC->n[1]++)
3145 for (LC->n[2] = Nlower[2]; LC->n[2] <= Nupper[2]; LC->n[2]++) {
3146 List = LC->GetCurrentCell();
[5c7bf8]3147 cout << Verbose(3) << "The current cell " << LC->n[0] << "," << LC->n[1] << "," << LC->n[2] << endl;
[ab1932]3148 if (List != NULL) {
3149 for (LinkedNodes::iterator Runner = List->begin(); Runner != List->end(); Runner++) {
[62bb91]3150 helper.CopyVector(Point);
[ab1932]3151 helper.SubtractVector((*Runner)->node);
3152 double currentNorm = helper. Norm();
3153 if (currentNorm < distance) {
[5c7bf8]3154 secondDistance = distance;
3155 SecondPoint = closestPoint;
[ab1932]3156 distance = currentNorm;
[62bb91]3157 closestPoint = (*Runner);
[5c7bf8]3158 cout << Verbose(2) << "INFO: New Nearest Neighbour is " << *closestPoint << "." << endl;
3159 } else if (currentNorm < secondDistance) {
3160 secondDistance = currentNorm;
3161 SecondPoint = (*Runner);
3162 cout << Verbose(2) << "INFO: New Second Nearest Neighbour is " << *SecondPoint << "." << endl;
[ab1932]3163 }
3164 }
3165 } else {
3166 cerr << "ERROR: The current cell " << LC->n[0] << "," << LC->n[1] << ","
3167 << LC->n[2] << " is invalid!" << endl;
3168 }
3169 }
3170
[62bb91]3171 return closestPoint;
[5c7bf8]3172};
[ab1932]3173
3174/**
[62bb91]3175 * Finds triangles belonging to the three provided points.
[ab1932]3176 *
[62bb91]3177 * @param *Points[3] list, is expected to contain three points
[ab1932]3178 *
[62bb91]3179 * @return triangles which belong to the provided points, will be empty if there are none,
[ab1932]3180 * will usually be one, in case of degeneration, there will be two
3181 */
3182list<BoundaryTriangleSet*> *Tesselation::FindTriangles(TesselPoint* Points[3])
3183{
3184 list<BoundaryTriangleSet*> *result = new list<BoundaryTriangleSet*>;
3185 LineMap::iterator FindLine;
3186 PointMap::iterator FindPoint;
3187 TriangleMap::iterator FindTriangle;
3188 class BoundaryPointSet *TrianglePoints[3];
3189
3190 for (int i = 0; i < 3; i++) {
3191 FindPoint = PointsOnBoundary.find(Points[i]->nr);
3192 if (FindPoint != PointsOnBoundary.end()) {
3193 TrianglePoints[i] = FindPoint->second;
3194 } else {
3195 TrianglePoints[i] = NULL;
3196 }
3197 }
3198
3199 // checks lines between the points in the Points for their adjacent triangles
3200 for (int i = 0; i < 3; i++) {
3201 if (TrianglePoints[i] != NULL) {
3202 for (int j = i; j < 3; j++) {
3203 if (TrianglePoints[j] != NULL) {
3204 FindLine = TrianglePoints[i]->lines.find(TrianglePoints[j]->node->nr);
3205 if (FindLine != TrianglePoints[i]->lines.end()) {
3206 for (; FindLine->first == TrianglePoints[j]->node->nr; FindLine++) {
3207 FindTriangle = FindLine->second->triangles.begin();
3208 for (; FindTriangle != FindLine->second->triangles.end(); FindTriangle++) {
3209 if ((
3210 (FindTriangle->second->endpoints[0] == TrianglePoints[0])
3211 || (FindTriangle->second->endpoints[0] == TrianglePoints[1])
3212 || (FindTriangle->second->endpoints[0] == TrianglePoints[2])
3213 ) && (
3214 (FindTriangle->second->endpoints[1] == TrianglePoints[0])
3215 || (FindTriangle->second->endpoints[1] == TrianglePoints[1])
3216 || (FindTriangle->second->endpoints[1] == TrianglePoints[2])
3217 ) && (
3218 (FindTriangle->second->endpoints[2] == TrianglePoints[0])
3219 || (FindTriangle->second->endpoints[2] == TrianglePoints[1])
3220 || (FindTriangle->second->endpoints[2] == TrianglePoints[2])
3221 )
3222 ) {
3223 result->push_back(FindTriangle->second);
3224 }
3225 }
3226 }
3227 // Is it sufficient to consider one of the triangle lines for this.
3228 return result;
3229
3230 }
3231 }
3232 }
3233 }
3234 }
3235
3236 return result;
3237}
3238
[7c14ec]3239/**
3240 * Finds all degenerated triangles within the tesselation structure.
3241 *
3242 * @return map of keys of degenerated triangle pairs, each triangle occurs twice
3243 * in the list, once as key and once as value
3244 */
3245map<int, int> Tesselation::FindAllDegeneratedTriangles()
3246{
3247 map<int, int> DegeneratedTriangles;
3248
3249 // sanity check
3250 if (LinesOnBoundary.empty()) {
3251 cout << Verbose(1) << "Warning: FindAllDegeneratedTriangles() was called without any tesselation structure.";
3252 return DegeneratedTriangles;
3253 }
3254
3255 LineMap::iterator LineRunner1, LineRunner2;
3256
3257 for (LineRunner1 = LinesOnBoundary.begin(); LineRunner1 != LinesOnBoundary.end(); ++LineRunner1) {
3258 for (LineRunner2 = LinesOnBoundary.begin(); LineRunner2 != LinesOnBoundary.end(); ++LineRunner2) {
3259 if ((LineRunner1->second != LineRunner2->second)
3260 && (LineRunner1->second->endpoints[0] == LineRunner2->second->endpoints[0])
3261 && (LineRunner1->second->endpoints[1] == LineRunner2->second->endpoints[1])
3262 ) {
3263 TriangleMap::iterator TriangleRunner1 = LineRunner1->second->triangles.begin(),
3264 TriangleRunner2 = LineRunner2->second->triangles.begin();
3265
3266 for (; TriangleRunner1 != LineRunner1->second->triangles.end(); ++TriangleRunner1) {
3267 for (; TriangleRunner2 != LineRunner2->second->triangles.end(); ++TriangleRunner2) {
3268 if ((TriangleRunner1->second != TriangleRunner2->second)
3269 && (TriangleRunner1->second->endpoints[0] == TriangleRunner2->second->endpoints[0])
3270 && (TriangleRunner1->second->endpoints[1] == TriangleRunner2->second->endpoints[1])
3271 && (TriangleRunner1->second->endpoints[2] == TriangleRunner2->second->endpoints[2])
3272 ) {
3273 DegeneratedTriangles[TriangleRunner1->second->Nr] = TriangleRunner2->second->Nr;
3274 DegeneratedTriangles[TriangleRunner2->second->Nr] = TriangleRunner1->second->Nr;
3275 }
3276 }
3277 }
3278 }
3279 }
3280 }
3281
3282 cout << Verbose(1) << "FindAllDegeneratedTriangles() found " << DegeneratedTriangles.size() << " triangles." << endl;
3283 map<int,int>::iterator it;
3284 for (it = DegeneratedTriangles.begin(); it != DegeneratedTriangles.end(); it++)
3285 cout << Verbose(2) << (*it).first << " => " << (*it).second << endl;
3286
3287 return DegeneratedTriangles;
3288}
3289
3290/**
3291 * Purges degenerated triangles from the tesselation structure if they are not
3292 * necessary to keep a single point within the structure.
3293 */
3294void Tesselation::RemoveDegeneratedTriangles()
3295{
3296 map<int, int> DegeneratedTriangles = FindAllDegeneratedTriangles();
3297
3298 for (map<int, int>::iterator TriangleKeyRunner = DegeneratedTriangles.begin();
3299 TriangleKeyRunner != DegeneratedTriangles.end(); ++TriangleKeyRunner
3300 ) {
3301 BoundaryTriangleSet *triangle = TrianglesOnBoundary.find(TriangleKeyRunner->first)->second,
3302 *partnerTriangle = TrianglesOnBoundary.find(TriangleKeyRunner->second)->second;
3303
3304 bool trianglesShareLine = false;
3305 for (int i = 0; i < 3; ++i)
3306 for (int j = 0; j < 3; ++j)
3307 trianglesShareLine = trianglesShareLine || triangle->lines[i] == partnerTriangle->lines[j];
3308
3309 if (trianglesShareLine
3310 && (triangle->endpoints[1]->LinesCount > 2)
3311 && (triangle->endpoints[2]->LinesCount > 2)
3312 && (triangle->endpoints[0]->LinesCount > 2)
3313 ) {
3314 cout << Verbose(1) << "RemoveDegeneratedTriangles() removes triangle " << *triangle << "." << endl;
3315 RemoveTesselationTriangle(triangle);
3316 cout << Verbose(1) << "RemoveDegeneratedTriangles() removes triangle " << *partnerTriangle << "." << endl;
3317 RemoveTesselationTriangle(partnerTriangle);
3318 DegeneratedTriangles.erase(DegeneratedTriangles.find(partnerTriangle->Nr));
3319 } else {
3320 cout << Verbose(1) << "RemoveDegeneratedTriangles() does not remove triangle " << *triangle
3321 << " and its partner " << *partnerTriangle << " because it is essential for at"
3322 << " least one of the endpoints to be kept in the tesselation structure." << endl;
3323 }
3324 }
3325}
3326
[62bb91]3327/** Gets the angle between a point and a reference relative to the provided center.
[5c7bf8]3328 * We have two shanks point and reference between which the angle is calculated
[62bb91]3329 * and by scalar product with OrthogonalVector we decide the interval.
[ab1932]3330 * @param point to calculate the angle for
3331 * @param reference to which to calculate the angle
[62bb91]3332 * @param OrthogonalVector points in direction of [pi,2pi] interval
[ab1932]3333 *
3334 * @return angle between point and reference
3335 */
[f1cccd]3336double GetAngle(const Vector &point, const Vector &reference, const Vector OrthogonalVector)
[ab1932]3337{
[0077b5]3338 if (reference.IsZero())
[ab1932]3339 return M_PI;
3340
3341 // calculate both angles and correct with in-plane vector
[0077b5]3342 if (point.IsZero())
[ab1932]3343 return M_PI;
[5c7bf8]3344 double phi = point.Angle(&reference);
3345 if (OrthogonalVector.ScalarProduct(&point) > 0) {
[ab1932]3346 phi = 2.*M_PI - phi;
3347 }
3348
[065e82]3349 cout << Verbose(4) << "INFO: " << point << " has angle " << phi << " with respect to reference " << reference << "." << endl;
[ab1932]3350
3351 return phi;
3352}
3353
Note: See TracBrowser for help on using the repository browser.