source: src/molecules.cpp@ 1e8243

Action_Thermostats Add_AtomRandomPerturbation Add_FitFragmentPartialChargesAction Add_RotateAroundBondAction Add_SelectAtomByNameAction Added_ParseSaveFragmentResults AddingActions_SaveParseParticleParameters Adding_Graph_to_ChangeBondActions Adding_MD_integration_tests Adding_ParticleName_to_Atom Adding_StructOpt_integration_tests AtomFragments Automaking_mpqc_open AutomationFragmentation_failures Candidate_v1.5.4 Candidate_v1.6.0 Candidate_v1.6.1 ChangeBugEmailaddress ChangingTestPorts ChemicalSpaceEvaluator CombiningParticlePotentialParsing Combining_Subpackages Debian_Package_split Debian_package_split_molecuildergui_only Disabling_MemDebug Docu_Python_wait EmpiricalPotential_contain_HomologyGraph EmpiricalPotential_contain_HomologyGraph_documentation Enable_parallel_make_install Enhance_userguide Enhanced_StructuralOptimization Enhanced_StructuralOptimization_continued Example_ManyWaysToTranslateAtom Exclude_Hydrogens_annealWithBondGraph FitPartialCharges_GlobalError Fix_BoundInBox_CenterInBox_MoleculeActions Fix_ChargeSampling_PBC Fix_ChronosMutex Fix_FitPartialCharges Fix_FitPotential_needs_atomicnumbers Fix_ForceAnnealing Fix_IndependentFragmentGrids Fix_ParseParticles Fix_ParseParticles_split_forward_backward_Actions Fix_PopActions Fix_QtFragmentList_sorted_selection Fix_Restrictedkeyset_FragmentMolecule Fix_StatusMsg Fix_StepWorldTime_single_argument Fix_Verbose_Codepatterns Fix_fitting_potentials Fixes ForceAnnealing_goodresults ForceAnnealing_oldresults ForceAnnealing_tocheck ForceAnnealing_with_BondGraph ForceAnnealing_with_BondGraph_continued ForceAnnealing_with_BondGraph_continued_betteresults ForceAnnealing_with_BondGraph_contraction-expansion FragmentAction_writes_AtomFragments FragmentMolecule_checks_bonddegrees GeometryObjects Gui_Fixes Gui_displays_atomic_force_velocity ImplicitCharges IndependentFragmentGrids IndependentFragmentGrids_IndividualZeroInstances IndependentFragmentGrids_IntegrationTest IndependentFragmentGrids_Sole_NN_Calculation JobMarket_RobustOnKillsSegFaults JobMarket_StableWorkerPool JobMarket_unresolvable_hostname_fix MoreRobust_FragmentAutomation ODR_violation_mpqc_open PartialCharges_OrthogonalSummation PdbParser_setsAtomName PythonUI_with_named_parameters QtGui_reactivate_TimeChanged_changes Recreated_GuiChecks Rewrite_FitPartialCharges RotateToPrincipalAxisSystem_UndoRedo SaturateAtoms_findBestMatching SaturateAtoms_singleDegree StoppableMakroAction Subpackage_CodePatterns Subpackage_JobMarket Subpackage_LinearAlgebra Subpackage_levmar Subpackage_mpqc_open Subpackage_vmg Switchable_LogView ThirdParty_MPQC_rebuilt_buildsystem TrajectoryDependenant_MaxOrder TremoloParser_IncreasedPrecision TremoloParser_MultipleTimesteps TremoloParser_setsAtomName Ubuntu_1604_changes stable
Last change on this file since 1e8243 was 1e8243, checked in by Frederik Heber <heber@…>, 16 years ago

BUGFIX: molecule::CreateAdjacencyList() used CandidateBondNo in output even if no candidate had been found

+ If no Candidate has been found, output message would declare to be unable to correct bond degree for a unspecified bond (CandidateBondNo set to no sensible value)

  • Property mode set to 100644
File size: 210.6 KB
Line 
1/** \file molecules.cpp
2 *
3 * Functions for the class molecule.
4 *
5 */
6
7#include "molecules.hpp"
8
9/************************************* Other Functions *************************************/
10
11/** Determines sum of squared distances of \a X to all \a **vectors.
12 * \param *x reference vector
13 * \param *params
14 * \return sum of square distances
15 */
16double LSQ (const gsl_vector * x, void * params)
17{
18 double sum = 0.;
19 struct LSQ_params *par = (struct LSQ_params *)params;
20 Vector **vectors = par->vectors;
21 int num = par->num;
22
23 for (int i=num;i--;) {
24 for(int j=NDIM;j--;)
25 sum += (gsl_vector_get(x,j) - (vectors[i])->x[j])*(gsl_vector_get(x,j) - (vectors[i])->x[j]);
26 }
27
28 return sum;
29};
30
31/************************************* Functions for class molecule *********************************/
32
33/** Constructor of class molecule.
34 * Initialises molecule list with correctly referenced start and end, and sets molecule::last_atom to zero.
35 */
36molecule::molecule(periodentafel *teil)
37{
38 // init atom chain list
39 start = new atom;
40 end = new atom;
41 start->father = NULL;
42 end->father = NULL;
43 link(start,end);
44 // init bond chain list
45 first = new bond(start, end, 1, -1);
46 last = new bond(start, end, 1, -1);
47 link(first,last);
48 // other stuff
49 MDSteps = 0;
50 last_atom = 0;
51 elemente = teil;
52 AtomCount = 0;
53 BondCount = 0;
54 NoNonBonds = 0;
55 NoNonHydrogen = 0;
56 NoCyclicBonds = 0;
57 ListOfBondsPerAtom = NULL;
58 NumberOfBondsPerAtom = NULL;
59 ElementCount = 0;
60 for(int i=MAX_ELEMENTS;i--;)
61 ElementsInMolecule[i] = 0;
62 cell_size[0] = cell_size[2] = cell_size[5]= 20.;
63 cell_size[1] = cell_size[3] = cell_size[4]= 0.;
64};
65
66/** Destructor of class molecule.
67 * Initialises molecule list with correctly referenced start and end, and sets molecule::last_atom to zero.
68 */
69molecule::~molecule()
70{
71 if (ListOfBondsPerAtom != NULL)
72 for(int i=AtomCount;i--;)
73 Free((void **)&ListOfBondsPerAtom[i], "molecule::~molecule: ListOfBondsPerAtom[i]");
74 Free((void **)&ListOfBondsPerAtom, "molecule::~molecule: ListOfBondsPerAtom");
75 Free((void **)&NumberOfBondsPerAtom, "molecule::~molecule: NumberOfBondsPerAtom");
76 CleanupMolecule();
77 delete(first);
78 delete(last);
79 delete(end);
80 delete(start);
81};
82
83/** Adds given atom \a *pointer from molecule list.
84 * Increases molecule::last_atom and gives last number to added atom and names it according to its element::abbrev and molecule::AtomCount
85 * \param *pointer allocated and set atom
86 * \return true - succeeded, false - atom not found in list
87 */
88bool molecule::AddAtom(atom *pointer)
89{
90 if (pointer != NULL) {
91 pointer->sort = &pointer->nr;
92 pointer->nr = last_atom++; // increase number within molecule
93 AtomCount++;
94 if (pointer->type != NULL) {
95 if (ElementsInMolecule[pointer->type->Z] == 0)
96 ElementCount++;
97 ElementsInMolecule[pointer->type->Z]++; // increase number of elements
98 if (pointer->type->Z != 1)
99 NoNonHydrogen++;
100 if (pointer->Name == NULL) {
101 Free((void **)&pointer->Name, "molecule::AddAtom: *pointer->Name");
102 pointer->Name = (char *) Malloc(sizeof(char)*6, "molecule::AddAtom: *pointer->Name");
103 sprintf(pointer->Name, "%2s%02d", pointer->type->symbol, pointer->nr+1);
104 }
105 }
106 return add(pointer, end);
107 } else
108 return false;
109};
110
111/** Adds a copy of the given atom \a *pointer from molecule list.
112 * Increases molecule::last_atom and gives last number to added atom.
113 * \param *pointer allocated and set atom
114 * \return true - succeeded, false - atom not found in list
115 */
116atom * molecule::AddCopyAtom(atom *pointer)
117{
118 if (pointer != NULL) {
119 atom *walker = new atom();
120 walker->type = pointer->type; // copy element of atom
121 walker->x.CopyVector(&pointer->x); // copy coordination
122 walker->v.CopyVector(&pointer->v); // copy velocity
123 walker->FixedIon = pointer->FixedIon;
124 walker->sort = &walker->nr;
125 walker->nr = last_atom++; // increase number within molecule
126 walker->father = pointer; //->GetTrueFather();
127 walker->Name = (char *) Malloc(sizeof(char)*strlen(pointer->Name)+1, "molecule::AddCopyAtom: *Name");
128 strcpy (walker->Name, pointer->Name);
129 add(walker, end);
130 if ((pointer->type != NULL) && (pointer->type->Z != 1))
131 NoNonHydrogen++;
132 AtomCount++;
133 return walker;
134 } else
135 return NULL;
136};
137
138/** Adds a Hydrogen atom in replacement for the given atom \a *partner in bond with a *origin.
139 * Here, we have to distinguish between single, double or triple bonds as stated by \a BondDegree, that each demand
140 * a different scheme when adding \a *replacement atom for the given one.
141 * -# Single Bond: Simply add new atom with bond distance rescaled to typical hydrogen one
142 * -# Double Bond: Here, we need the **BondList of the \a *origin atom, by scanning for the other bonds instead of
143 * *Bond, we use the through these connected atoms to determine the plane they lie in, vector::MakeNormalvector().
144 * The orthonormal vector to this plane along with the vector in *Bond direction determines the plane the two
145 * replacing hydrogens shall lie in. Now, all remains to do is take the usual hydrogen double bond angle for the
146 * element of *origin and form the sin/cos admixture of both plane vectors for the new coordinates of the two
147 * hydrogens forming this angle with *origin.
148 * -# Triple Bond: The idea is to set up a tetraoid (C1-H1-H2-H3) (however the lengths \f$b\f$ of the sides of the base
149 * triangle formed by the to be added hydrogens are not equal to the typical bond distance \f$l\f$ but have to be
150 * determined from the typical angle \f$\alpha\f$ for a hydrogen triple connected to the element of *origin):
151 * We have the height \f$d\f$ as the vector in *Bond direction (from triangle C1-H1-H2).
152 * \f[ h = l \cdot \cos{\left (\frac{\alpha}{2} \right )} \qquad b = 2l \cdot \sin{\left (\frac{\alpha}{2} \right)} \quad \rightarrow \quad d = l \cdot \sqrt{\cos^2{\left (\frac{\alpha}{2} \right)}-\frac{1}{3}\cdot\sin^2{\left (\frac{\alpha}{2}\right )}}
153 * \f]
154 * vector::GetNormalvector() creates one orthonormal vector from this *Bond vector and vector::MakeNormalvector creates
155 * the third one from the former two vectors. The latter ones form the plane of the base triangle mentioned above.
156 * The lengths for these are \f$f\f$ and \f$g\f$ (from triangle H1-H2-(center of H1-H2-H3)) with knowledge that
157 * the median lines in an isosceles triangle meet in the center point with a ratio 2:1.
158 * \f[ f = \frac{b}{\sqrt{3}} \qquad g = \frac{b}{2}
159 * \f]
160 * as the coordination of all three atoms in the coordinate system of these three vectors:
161 * \f$\pmatrix{d & f & 0}\f$, \f$\pmatrix{d & -0.5 \cdot f & g}\f$ and \f$\pmatrix{d & -0.5 \cdot f & -g}\f$.
162 *
163 * \param *out output stream for debugging
164 * \param *Bond pointer to bond between \a *origin and \a *replacement
165 * \param *TopOrigin son of \a *origin of upper level molecule (the atom added to this molecule as a copy of \a *origin)
166 * \param *origin pointer to atom which acts as the origin for scaling the added hydrogen to correct bond length
167 * \param *replacement pointer to the atom which shall be copied as a hydrogen atom in this molecule
168 * \param **BondList list of bonds \a *replacement has (necessary to determine plane for double and triple bonds)
169 * \param NumBond number of bonds in \a **BondList
170 * \param isAngstroem whether the coordination of the given atoms is in AtomicLength (false) or Angstrom(true)
171 * \return number of atoms added, if < bond::BondDegree then something went wrong
172 * \todo double and triple bonds splitting (always use the tetraeder angle!)
173 */
174bool molecule::AddHydrogenReplacementAtom(ofstream *out, bond *TopBond, atom *BottomOrigin, atom *TopOrigin, atom *TopReplacement, bond **BondList, int NumBond, bool IsAngstroem)
175{
176 double bondlength; // bond length of the bond to be replaced/cut
177 double bondangle; // bond angle of the bond to be replaced/cut
178 double BondRescale; // rescale value for the hydrogen bond length
179 bool AllWentWell = true; // flag gathering the boolean return value of molecule::AddAtom and other functions, as return value on exit
180 bond *FirstBond = NULL, *SecondBond = NULL; // Other bonds in double bond case to determine "other" plane
181 atom *FirstOtherAtom = NULL, *SecondOtherAtom = NULL, *ThirdOtherAtom = NULL; // pointer to hydrogen atoms to be added
182 double b,l,d,f,g, alpha, factors[NDIM]; // hold temporary values in triple bond case for coordination determination
183 Vector Orthovector1, Orthovector2; // temporary vectors in coordination construction
184 Vector InBondvector; // vector in direction of *Bond
185 bond *Binder = NULL;
186 double *matrix;
187
188// *out << Verbose(3) << "Begin of AddHydrogenReplacementAtom." << endl;
189 // create vector in direction of bond
190 InBondvector.CopyVector(&TopReplacement->x);
191 InBondvector.SubtractVector(&TopOrigin->x);
192 bondlength = InBondvector.Norm();
193
194 // is greater than typical bond distance? Then we have to correct periodically
195 // the problem is not the H being out of the box, but InBondvector have the wrong direction
196 // due to TopReplacement or Origin being on the wrong side!
197 if (bondlength > BondDistance) {
198// *out << Verbose(4) << "InBondvector is: ";
199// InBondvector.Output(out);
200// *out << endl;
201 Orthovector1.Zero();
202 for (int i=NDIM;i--;) {
203 l = TopReplacement->x.x[i] - TopOrigin->x.x[i];
204 if (fabs(l) > BondDistance) { // is component greater than bond distance
205 Orthovector1.x[i] = (l < 0) ? -1. : +1.;
206 } // (signs are correct, was tested!)
207 }
208 matrix = ReturnFullMatrixforSymmetric(cell_size);
209 Orthovector1.MatrixMultiplication(matrix);
210 InBondvector.SubtractVector(&Orthovector1); // subtract just the additional translation
211 Free((void **)&matrix, "molecule::AddHydrogenReplacementAtom: *matrix");
212 bondlength = InBondvector.Norm();
213// *out << Verbose(4) << "Corrected InBondvector is now: ";
214// InBondvector.Output(out);
215// *out << endl;
216 } // periodic correction finished
217
218 InBondvector.Normalize();
219 // get typical bond length and store as scale factor for later
220 BondRescale = TopOrigin->type->HBondDistance[TopBond->BondDegree-1];
221 if (BondRescale == -1) {
222 cerr << Verbose(3) << "WARNING: There is no typical bond distance for bond (" << TopOrigin->Name << "<->" << TopReplacement->Name << ") of degree " << TopBond->BondDegree << "!" << endl;
223 BondRescale = bondlength;
224 } else {
225 if (!IsAngstroem)
226 BondRescale /= (1.*AtomicLengthToAngstroem);
227 }
228
229 // discern single, double and triple bonds
230 switch(TopBond->BondDegree) {
231 case 1:
232 FirstOtherAtom = new atom(); // new atom
233 FirstOtherAtom->type = elemente->FindElement(1); // element is Hydrogen
234 FirstOtherAtom->v.CopyVector(&TopReplacement->v); // copy velocity
235 FirstOtherAtom->FixedIon = TopReplacement->FixedIon;
236 if (TopReplacement->type->Z == 1) { // neither rescale nor replace if it's already hydrogen
237 FirstOtherAtom->father = TopReplacement;
238 BondRescale = bondlength;
239 } else {
240 FirstOtherAtom->father = NULL; // if we replace hydrogen, we mark it as our father, otherwise we are just an added hydrogen with no father
241 }
242 InBondvector.Scale(&BondRescale); // rescale the distance vector to Hydrogen bond length
243 FirstOtherAtom->x.CopyVector(&TopOrigin->x); // set coordination to origin ...
244 FirstOtherAtom->x.AddVector(&InBondvector); // ... and add distance vector to replacement atom
245 AllWentWell = AllWentWell && AddAtom(FirstOtherAtom);
246// *out << Verbose(4) << "Added " << *FirstOtherAtom << " at: ";
247// FirstOtherAtom->x.Output(out);
248// *out << endl;
249 Binder = AddBond(BottomOrigin, FirstOtherAtom, 1);
250 Binder->Cyclic = false;
251 Binder->Type = TreeEdge;
252 break;
253 case 2:
254 // determine two other bonds (warning if there are more than two other) plus valence sanity check
255 for (int i=0;i<NumBond;i++) {
256 if (BondList[i] != TopBond) {
257 if (FirstBond == NULL) {
258 FirstBond = BondList[i];
259 FirstOtherAtom = BondList[i]->GetOtherAtom(TopOrigin);
260 } else if (SecondBond == NULL) {
261 SecondBond = BondList[i];
262 SecondOtherAtom = BondList[i]->GetOtherAtom(TopOrigin);
263 } else {
264 *out << Verbose(3) << "WARNING: Detected more than four bonds for atom " << TopOrigin->Name;
265 }
266 }
267 }
268 if (SecondOtherAtom == NULL) { // then we have an atom with valence four, but only 3 bonds: one to replace and one which is TopBond (third is FirstBond)
269 SecondBond = TopBond;
270 SecondOtherAtom = TopReplacement;
271 }
272 if (FirstOtherAtom != NULL) { // then we just have this double bond and the plane does not matter at all
273// *out << Verbose(3) << "Regarding the double bond (" << TopOrigin->Name << "<->" << TopReplacement->Name << ") to be constructed: Taking " << FirstOtherAtom->Name << " and " << SecondOtherAtom->Name << " along with " << TopOrigin->Name << " to determine orthogonal plane." << endl;
274
275 // determine the plane of these two with the *origin
276 AllWentWell = AllWentWell && Orthovector1.MakeNormalVector(&TopOrigin->x, &FirstOtherAtom->x, &SecondOtherAtom->x);
277 } else {
278 Orthovector1.GetOneNormalVector(&InBondvector);
279 }
280 //*out << Verbose(3)<< "Orthovector1: ";
281 //Orthovector1.Output(out);
282 //*out << endl;
283 // orthogonal vector and bond vector between origin and replacement form the new plane
284 Orthovector1.MakeNormalVector(&InBondvector);
285 Orthovector1.Normalize();
286 //*out << Verbose(3) << "ReScaleCheck: " << Orthovector1.Norm() << " and " << InBondvector.Norm() << "." << endl;
287
288 // create the two Hydrogens ...
289 FirstOtherAtom = new atom();
290 SecondOtherAtom = new atom();
291 FirstOtherAtom->type = elemente->FindElement(1);
292 SecondOtherAtom->type = elemente->FindElement(1);
293 FirstOtherAtom->v.CopyVector(&TopReplacement->v); // copy velocity
294 FirstOtherAtom->FixedIon = TopReplacement->FixedIon;
295 SecondOtherAtom->v.CopyVector(&TopReplacement->v); // copy velocity
296 SecondOtherAtom->FixedIon = TopReplacement->FixedIon;
297 FirstOtherAtom->father = NULL; // we are just an added hydrogen with no father
298 SecondOtherAtom->father = NULL; // we are just an added hydrogen with no father
299 bondangle = TopOrigin->type->HBondAngle[1];
300 if (bondangle == -1) {
301 *out << Verbose(3) << "WARNING: There is no typical bond angle for bond (" << TopOrigin->Name << "<->" << TopReplacement->Name << ") of degree " << TopBond->BondDegree << "!" << endl;
302 bondangle = 0;
303 }
304 bondangle *= M_PI/180./2.;
305// *out << Verbose(3) << "ReScaleCheck: InBondvector ";
306// InBondvector.Output(out);
307// *out << endl;
308// *out << Verbose(3) << "ReScaleCheck: Orthovector ";
309// Orthovector1.Output(out);
310// *out << endl;
311// *out << Verbose(3) << "Half the bond angle is " << bondangle << ", sin and cos of it: " << sin(bondangle) << ", " << cos(bondangle) << endl;
312 FirstOtherAtom->x.Zero();
313 SecondOtherAtom->x.Zero();
314 for(int i=NDIM;i--;) { // rotate by half the bond angle in both directions (InBondvector is bondangle = 0 direction)
315 FirstOtherAtom->x.x[i] = InBondvector.x[i] * cos(bondangle) + Orthovector1.x[i] * (sin(bondangle));
316 SecondOtherAtom->x.x[i] = InBondvector.x[i] * cos(bondangle) + Orthovector1.x[i] * (-sin(bondangle));
317 }
318 FirstOtherAtom->x.Scale(&BondRescale); // rescale by correct BondDistance
319 SecondOtherAtom->x.Scale(&BondRescale);
320 //*out << Verbose(3) << "ReScaleCheck: " << FirstOtherAtom->x.Norm() << " and " << SecondOtherAtom->x.Norm() << "." << endl;
321 for(int i=NDIM;i--;) { // and make relative to origin atom
322 FirstOtherAtom->x.x[i] += TopOrigin->x.x[i];
323 SecondOtherAtom->x.x[i] += TopOrigin->x.x[i];
324 }
325 // ... and add to molecule
326 AllWentWell = AllWentWell && AddAtom(FirstOtherAtom);
327 AllWentWell = AllWentWell && AddAtom(SecondOtherAtom);
328// *out << Verbose(4) << "Added " << *FirstOtherAtom << " at: ";
329// FirstOtherAtom->x.Output(out);
330// *out << endl;
331// *out << Verbose(4) << "Added " << *SecondOtherAtom << " at: ";
332// SecondOtherAtom->x.Output(out);
333// *out << endl;
334 Binder = AddBond(BottomOrigin, FirstOtherAtom, 1);
335 Binder->Cyclic = false;
336 Binder->Type = TreeEdge;
337 Binder = AddBond(BottomOrigin, SecondOtherAtom, 1);
338 Binder->Cyclic = false;
339 Binder->Type = TreeEdge;
340 break;
341 case 3:
342 // take the "usual" tetraoidal angle and add the three Hydrogen in direction of the bond (height of the tetraoid)
343 FirstOtherAtom = new atom();
344 SecondOtherAtom = new atom();
345 ThirdOtherAtom = new atom();
346 FirstOtherAtom->type = elemente->FindElement(1);
347 SecondOtherAtom->type = elemente->FindElement(1);
348 ThirdOtherAtom->type = elemente->FindElement(1);
349 FirstOtherAtom->v.CopyVector(&TopReplacement->v); // copy velocity
350 FirstOtherAtom->FixedIon = TopReplacement->FixedIon;
351 SecondOtherAtom->v.CopyVector(&TopReplacement->v); // copy velocity
352 SecondOtherAtom->FixedIon = TopReplacement->FixedIon;
353 ThirdOtherAtom->v.CopyVector(&TopReplacement->v); // copy velocity
354 ThirdOtherAtom->FixedIon = TopReplacement->FixedIon;
355 FirstOtherAtom->father = NULL; // we are just an added hydrogen with no father
356 SecondOtherAtom->father = NULL; // we are just an added hydrogen with no father
357 ThirdOtherAtom->father = NULL; // we are just an added hydrogen with no father
358
359 // we need to vectors orthonormal the InBondvector
360 AllWentWell = AllWentWell && Orthovector1.GetOneNormalVector(&InBondvector);
361// *out << Verbose(3) << "Orthovector1: ";
362// Orthovector1.Output(out);
363// *out << endl;
364 AllWentWell = AllWentWell && Orthovector2.MakeNormalVector(&InBondvector, &Orthovector1);
365// *out << Verbose(3) << "Orthovector2: ";
366// Orthovector2.Output(out);
367// *out << endl;
368
369 // create correct coordination for the three atoms
370 alpha = (TopOrigin->type->HBondAngle[2])/180.*M_PI/2.; // retrieve triple bond angle from database
371 l = BondRescale; // desired bond length
372 b = 2.*l*sin(alpha); // base length of isosceles triangle
373 d = l*sqrt(cos(alpha)*cos(alpha) - sin(alpha)*sin(alpha)/3.); // length for InBondvector
374 f = b/sqrt(3.); // length for Orthvector1
375 g = b/2.; // length for Orthvector2
376// *out << Verbose(3) << "Bond length and half-angle: " << l << ", " << alpha << "\t (b,d,f,g) = " << b << ", " << d << ", " << f << ", " << g << ", " << endl;
377// *out << Verbose(3) << "The three Bond lengths: " << sqrt(d*d+f*f) << ", " << sqrt(d*d+(-0.5*f)*(-0.5*f)+g*g) << ", " << sqrt(d*d+(-0.5*f)*(-0.5*f)+g*g) << endl;
378 factors[0] = d;
379 factors[1] = f;
380 factors[2] = 0.;
381 FirstOtherAtom->x.LinearCombinationOfVectors(&InBondvector, &Orthovector1, &Orthovector2, factors);
382 factors[1] = -0.5*f;
383 factors[2] = g;
384 SecondOtherAtom->x.LinearCombinationOfVectors(&InBondvector, &Orthovector1, &Orthovector2, factors);
385 factors[2] = -g;
386 ThirdOtherAtom->x.LinearCombinationOfVectors(&InBondvector, &Orthovector1, &Orthovector2, factors);
387
388 // rescale each to correct BondDistance
389// FirstOtherAtom->x.Scale(&BondRescale);
390// SecondOtherAtom->x.Scale(&BondRescale);
391// ThirdOtherAtom->x.Scale(&BondRescale);
392
393 // and relative to *origin atom
394 FirstOtherAtom->x.AddVector(&TopOrigin->x);
395 SecondOtherAtom->x.AddVector(&TopOrigin->x);
396 ThirdOtherAtom->x.AddVector(&TopOrigin->x);
397
398 // ... and add to molecule
399 AllWentWell = AllWentWell && AddAtom(FirstOtherAtom);
400 AllWentWell = AllWentWell && AddAtom(SecondOtherAtom);
401 AllWentWell = AllWentWell && AddAtom(ThirdOtherAtom);
402// *out << Verbose(4) << "Added " << *FirstOtherAtom << " at: ";
403// FirstOtherAtom->x.Output(out);
404// *out << endl;
405// *out << Verbose(4) << "Added " << *SecondOtherAtom << " at: ";
406// SecondOtherAtom->x.Output(out);
407// *out << endl;
408// *out << Verbose(4) << "Added " << *ThirdOtherAtom << " at: ";
409// ThirdOtherAtom->x.Output(out);
410// *out << endl;
411 Binder = AddBond(BottomOrigin, FirstOtherAtom, 1);
412 Binder->Cyclic = false;
413 Binder->Type = TreeEdge;
414 Binder = AddBond(BottomOrigin, SecondOtherAtom, 1);
415 Binder->Cyclic = false;
416 Binder->Type = TreeEdge;
417 Binder = AddBond(BottomOrigin, ThirdOtherAtom, 1);
418 Binder->Cyclic = false;
419 Binder->Type = TreeEdge;
420 break;
421 default:
422 cerr << "ERROR: BondDegree does not state single, double or triple bond!" << endl;
423 AllWentWell = false;
424 break;
425 }
426
427// *out << Verbose(3) << "End of AddHydrogenReplacementAtom." << endl;
428 return AllWentWell;
429};
430
431/** Adds given atom \a *pointer from molecule list.
432 * Increases molecule::last_atom and gives last number to added atom.
433 * \param filename name and path of xyz file
434 * \return true - succeeded, false - file not found
435 */
436bool molecule::AddXYZFile(string filename)
437{
438 istringstream *input = NULL;
439 int NumberOfAtoms = 0; // atom number in xyz read
440 int i, j; // loop variables
441 atom *Walker = NULL; // pointer to added atom
442 char shorthand[3]; // shorthand for atom name
443 ifstream xyzfile; // xyz file
444 string line; // currently parsed line
445 double x[3]; // atom coordinates
446
447 xyzfile.open(filename.c_str());
448 if (!xyzfile)
449 return false;
450
451 getline(xyzfile,line,'\n'); // Read numer of atoms in file
452 input = new istringstream(line);
453 *input >> NumberOfAtoms;
454 cout << Verbose(0) << "Parsing " << NumberOfAtoms << " atoms in file." << endl;
455 getline(xyzfile,line,'\n'); // Read comment
456 cout << Verbose(1) << "Comment: " << line << endl;
457
458 if (MDSteps == 0) // no atoms yet present
459 MDSteps++;
460 for(i=0;i<NumberOfAtoms;i++){
461 Walker = new atom;
462 getline(xyzfile,line,'\n');
463 istringstream *item = new istringstream(line);
464 //istringstream input(line);
465 //cout << Verbose(1) << "Reading: " << line << endl;
466 *item >> shorthand;
467 *item >> x[0];
468 *item >> x[1];
469 *item >> x[2];
470 Walker->type = elemente->FindElement(shorthand);
471 if (Walker->type == NULL) {
472 cerr << "Could not parse the element at line: '" << line << "', setting to H.";
473 Walker->type = elemente->FindElement(1);
474 }
475 if (Trajectories[Walker].R.size() <= (unsigned int)MDSteps) {
476 Trajectories[Walker].R.resize(MDSteps+10);
477 Trajectories[Walker].U.resize(MDSteps+10);
478 Trajectories[Walker].F.resize(MDSteps+10);
479 }
480 for(j=NDIM;j--;) {
481 Walker->x.x[j] = x[j];
482 Trajectories[Walker].R.at(MDSteps-1).x[j] = x[j];
483 Trajectories[Walker].U.at(MDSteps-1).x[j] = 0;
484 Trajectories[Walker].F.at(MDSteps-1).x[j] = 0;
485 }
486 AddAtom(Walker); // add to molecule
487 delete(item);
488 }
489 xyzfile.close();
490 delete(input);
491 return true;
492};
493
494/** Creates a copy of this molecule.
495 * \return copy of molecule
496 */
497molecule *molecule::CopyMolecule()
498{
499 molecule *copy = new molecule(elemente);
500 atom *CurrentAtom = NULL;
501 atom *LeftAtom = NULL, *RightAtom = NULL;
502 atom *Walker = NULL;
503
504 // copy all atoms
505 Walker = start;
506 while(Walker->next != end) {
507 Walker = Walker->next;
508 CurrentAtom = copy->AddCopyAtom(Walker);
509 }
510
511 // copy all bonds
512 bond *Binder = first;
513 bond *NewBond = NULL;
514 while(Binder->next != last) {
515 Binder = Binder->next;
516 // get the pendant atoms of current bond in the copy molecule
517 LeftAtom = copy->start;
518 while (LeftAtom->next != copy->end) {
519 LeftAtom = LeftAtom->next;
520 if (LeftAtom->father == Binder->leftatom)
521 break;
522 }
523 RightAtom = copy->start;
524 while (RightAtom->next != copy->end) {
525 RightAtom = RightAtom->next;
526 if (RightAtom->father == Binder->rightatom)
527 break;
528 }
529 NewBond = copy->AddBond(LeftAtom, RightAtom, Binder->BondDegree);
530 NewBond->Cyclic = Binder->Cyclic;
531 if (Binder->Cyclic)
532 copy->NoCyclicBonds++;
533 NewBond->Type = Binder->Type;
534 }
535 // correct fathers
536 Walker = copy->start;
537 while(Walker->next != copy->end) {
538 Walker = Walker->next;
539 if (Walker->father->father == Walker->father) // same atom in copy's father points to itself
540 Walker->father = Walker; // set father to itself (copy of a whole molecule)
541 else
542 Walker->father = Walker->father->father; // set father to original's father
543 }
544 // copy values
545 copy->CountAtoms((ofstream *)&cout);
546 copy->CountElements();
547 if (first->next != last) { // if adjaceny list is present
548 copy->BondDistance = BondDistance;
549 copy->CreateListOfBondsPerAtom((ofstream *)&cout);
550 }
551
552 return copy;
553};
554
555/** Adds a bond to a the molecule specified by two atoms, \a *first and \a *second.
556 * Also updates molecule::BondCount and molecule::NoNonBonds.
557 * \param *first first atom in bond
558 * \param *second atom in bond
559 * \return pointer to bond or NULL on failure
560 */
561bond * molecule::AddBond(atom *atom1, atom *atom2, int degree=1)
562{
563 bond *Binder = NULL;
564 if ((atom1 != NULL) && (FindAtom(atom1->nr) != NULL) && (atom2 != NULL) && (FindAtom(atom2->nr) != NULL)) {
565 Binder = new bond(atom1, atom2, degree, BondCount++);
566 if ((atom1->type != NULL) && (atom1->type->Z != 1) && (atom2->type != NULL) && (atom2->type->Z != 1))
567 NoNonBonds++;
568 add(Binder, last);
569 } else {
570 cerr << Verbose(1) << "ERROR: Could not add bond between " << atom1->Name << " and " << atom2->Name << " as one or both are not present in the molecule." << endl;
571 }
572 return Binder;
573};
574
575/** Remove bond from bond chain list.
576 * \todo Function not implemented yet
577 * \param *pointer bond pointer
578 * \return true - bound found and removed, false - bond not found/removed
579 */
580bool molecule::RemoveBond(bond *pointer)
581{
582 //cerr << Verbose(1) << "molecule::RemoveBond: Function not implemented yet." << endl;
583 removewithoutcheck(pointer);
584 return true;
585};
586
587/** Remove every bond from bond chain list that atom \a *BondPartner is a constituent of.
588 * \todo Function not implemented yet
589 * \param *BondPartner atom to be removed
590 * \return true - bounds found and removed, false - bonds not found/removed
591 */
592bool molecule::RemoveBonds(atom *BondPartner)
593{
594 cerr << Verbose(1) << "molecule::RemoveBond: Function not implemented yet." << endl;
595 return false;
596};
597
598/** Sets the molecule::cell_size to the components of \a *dim (rectangular box)
599 * \param *dim vector class
600 */
601void molecule::SetBoxDimension(Vector *dim)
602{
603 cell_size[0] = dim->x[0];
604 cell_size[1] = 0.;
605 cell_size[2] = dim->x[1];
606 cell_size[3] = 0.;
607 cell_size[4] = 0.;
608 cell_size[5] = dim->x[2];
609};
610
611/** Centers the molecule in the box whose lengths are defined by vector \a *BoxLengths.
612 * \param *out output stream for debugging
613 * \param *BoxLengths box lengths
614 */
615bool molecule::CenterInBox(ofstream *out, Vector *BoxLengths)
616{
617 bool status = true;
618 atom *ptr = NULL;
619 Vector *min = new Vector;
620 Vector *max = new Vector;
621
622 // gather min and max for each axis
623 ptr = start->next; // start at first in list
624 if (ptr != end) { //list not empty?
625 for (int i=NDIM;i--;) {
626 max->x[i] = ptr->x.x[i];
627 min->x[i] = ptr->x.x[i];
628 }
629 while (ptr->next != end) { // continue with second if present
630 ptr = ptr->next;
631 //ptr->Output(1,1,out);
632 for (int i=NDIM;i--;) {
633 max->x[i] = (max->x[i] < ptr->x.x[i]) ? ptr->x.x[i] : max->x[i];
634 min->x[i] = (min->x[i] > ptr->x.x[i]) ? ptr->x.x[i] : min->x[i];
635 }
636 }
637 }
638 // sanity check
639 for(int i=NDIM;i--;) {
640 if (max->x[i] - min->x[i] > BoxLengths->x[i])
641 status = false;
642 }
643 // warn if check failed
644 if (!status)
645 *out << "WARNING: molecule is bigger than defined box!" << endl;
646 else { // else center in box
647 max->AddVector(min);
648 max->Scale(-1.);
649 max->AddVector(BoxLengths);
650 max->Scale(0.5);
651 Translate(max);
652 }
653
654 // free and exit
655 delete(min);
656 delete(max);
657 return status;
658};
659
660/** Centers the edge of the atoms at (0,0,0).
661 * \param *out output stream for debugging
662 * \param *max coordinates of other edge, specifying box dimensions.
663 */
664void molecule::CenterEdge(ofstream *out, Vector *max)
665{
666 Vector *min = new Vector;
667
668// *out << Verbose(3) << "Begin of CenterEdge." << endl;
669 atom *ptr = start->next; // start at first in list
670 if (ptr != end) { //list not empty?
671 for (int i=NDIM;i--;) {
672 max->x[i] = ptr->x.x[i];
673 min->x[i] = ptr->x.x[i];
674 }
675 while (ptr->next != end) { // continue with second if present
676 ptr = ptr->next;
677 //ptr->Output(1,1,out);
678 for (int i=NDIM;i--;) {
679 max->x[i] = (max->x[i] < ptr->x.x[i]) ? ptr->x.x[i] : max->x[i];
680 min->x[i] = (min->x[i] > ptr->x.x[i]) ? ptr->x.x[i] : min->x[i];
681 }
682 }
683// *out << Verbose(4) << "Maximum is ";
684// max->Output(out);
685// *out << ", Minimum is ";
686// min->Output(out);
687// *out << endl;
688 min->Scale(-1.);
689 max->AddVector(min);
690 Translate(min);
691 }
692 delete(min);
693// *out << Verbose(3) << "End of CenterEdge." << endl;
694};
695
696/** Centers the center of the atoms at (0,0,0).
697 * \param *out output stream for debugging
698 * \param *center return vector for translation vector
699 */
700void molecule::CenterOrigin(ofstream *out, Vector *center)
701{
702 int Num = 0;
703 atom *ptr = start->next; // start at first in list
704
705 for(int i=NDIM;i--;) // zero center vector
706 center->x[i] = 0.;
707
708 if (ptr != end) { //list not empty?
709 while (ptr->next != end) { // continue with second if present
710 ptr = ptr->next;
711 Num++;
712 center->AddVector(&ptr->x);
713 }
714 center->Scale(-1./Num); // divide through total number (and sign for direction)
715 Translate(center);
716 }
717};
718
719/** Returns vector pointing to center of gravity.
720 * \param *out output stream for debugging
721 * \return pointer to center of gravity vector
722 */
723Vector * molecule::DetermineCenterOfAll(ofstream *out)
724{
725 atom *ptr = start->next; // start at first in list
726 Vector *a = new Vector();
727 Vector tmp;
728 double Num = 0;
729
730 a->Zero();
731
732 if (ptr != end) { //list not empty?
733 while (ptr->next != end) { // continue with second if present
734 ptr = ptr->next;
735 Num += 1.;
736 tmp.CopyVector(&ptr->x);
737 a->AddVector(&tmp);
738 }
739 a->Scale(-1./Num); // divide through total mass (and sign for direction)
740 }
741 //cout << Verbose(1) << "Resulting center of gravity: ";
742 //a->Output(out);
743 //cout << endl;
744 return a;
745};
746
747/** Returns vector pointing to center of gravity.
748 * \param *out output stream for debugging
749 * \return pointer to center of gravity vector
750 */
751Vector * molecule::DetermineCenterOfGravity(ofstream *out)
752{
753 atom *ptr = start->next; // start at first in list
754 Vector *a = new Vector();
755 Vector tmp;
756 double Num = 0;
757
758 a->Zero();
759
760 if (ptr != end) { //list not empty?
761 while (ptr->next != end) { // continue with second if present
762 ptr = ptr->next;
763 Num += ptr->type->mass;
764 tmp.CopyVector(&ptr->x);
765 tmp.Scale(ptr->type->mass); // scale by mass
766 a->AddVector(&tmp);
767 }
768 a->Scale(-1./Num); // divide through total mass (and sign for direction)
769 }
770// *out << Verbose(1) << "Resulting center of gravity: ";
771// a->Output(out);
772// *out << endl;
773 return a;
774};
775
776/** Centers the center of gravity of the atoms at (0,0,0).
777 * \param *out output stream for debugging
778 * \param *center return vector for translation vector
779 */
780void molecule::CenterGravity(ofstream *out, Vector *center)
781{
782 if (center == NULL) {
783 DetermineCenter(*center);
784 Translate(center);
785 delete(center);
786 } else {
787 Translate(center);
788 }
789};
790
791/** Scales all atoms by \a *factor.
792 * \param *factor pointer to scaling factor
793 */
794void molecule::Scale(double **factor)
795{
796 atom *ptr = start;
797
798 while (ptr->next != end) {
799 ptr = ptr->next;
800 for (int j=0;j<MDSteps;j++)
801 Trajectories[ptr].R.at(j).Scale(factor);
802 ptr->x.Scale(factor);
803 }
804};
805
806/** Translate all atoms by given vector.
807 * \param trans[] translation vector.
808 */
809void molecule::Translate(const Vector *trans)
810{
811 atom *ptr = start;
812
813 while (ptr->next != end) {
814 ptr = ptr->next;
815 for (int j=0;j<MDSteps;j++)
816 Trajectories[ptr].R.at(j).Translate(trans);
817 ptr->x.Translate(trans);
818 }
819};
820
821/** Mirrors all atoms against a given plane.
822 * \param n[] normal vector of mirror plane.
823 */
824void molecule::Mirror(const Vector *n)
825{
826 atom *ptr = start;
827
828 while (ptr->next != end) {
829 ptr = ptr->next;
830 for (int j=0;j<MDSteps;j++)
831 Trajectories[ptr].R.at(j).Mirror(n);
832 ptr->x.Mirror(n);
833 }
834};
835
836/** Determines center of molecule (yet not considering atom masses).
837 * \param Center reference to return vector
838 */
839void molecule::DetermineCenter(Vector &Center)
840{
841 atom *Walker = start;
842 bond *Binder = NULL;
843 double *matrix = ReturnFullMatrixforSymmetric(cell_size);
844 double tmp;
845 bool flag;
846 Vector Testvector, Translationvector;
847
848 do {
849 Center.Zero();
850 flag = true;
851 while (Walker->next != end) {
852 Walker = Walker->next;
853#ifdef ADDHYDROGEN
854 if (Walker->type->Z != 1) {
855#endif
856 Testvector.CopyVector(&Walker->x);
857 Testvector.InverseMatrixMultiplication(matrix);
858 Translationvector.Zero();
859 for (int i=0;i<NumberOfBondsPerAtom[Walker->nr]; i++) {
860 Binder = ListOfBondsPerAtom[Walker->nr][i];
861 if (Walker->nr < Binder->GetOtherAtom(Walker)->nr) // otherwise we shift one to, the other fro and gain nothing
862 for (int j=0;j<NDIM;j++) {
863 tmp = Walker->x.x[j] - Binder->GetOtherAtom(Walker)->x.x[j];
864 if ((fabs(tmp)) > BondDistance) {
865 flag = false;
866 cout << Verbose(0) << "Hit: atom " << Walker->Name << " in bond " << *Binder << " has to be shifted due to " << tmp << "." << endl;
867 if (tmp > 0)
868 Translationvector.x[j] -= 1.;
869 else
870 Translationvector.x[j] += 1.;
871 }
872 }
873 }
874 Testvector.AddVector(&Translationvector);
875 Testvector.MatrixMultiplication(matrix);
876 Center.AddVector(&Testvector);
877 cout << Verbose(1) << "vector is: ";
878 Testvector.Output((ofstream *)&cout);
879 cout << endl;
880#ifdef ADDHYDROGEN
881 // now also change all hydrogens
882 for (int i=0;i<NumberOfBondsPerAtom[Walker->nr]; i++) {
883 Binder = ListOfBondsPerAtom[Walker->nr][i];
884 if (Binder->GetOtherAtom(Walker)->type->Z == 1) {
885 Testvector.CopyVector(&Binder->GetOtherAtom(Walker)->x);
886 Testvector.InverseMatrixMultiplication(matrix);
887 Testvector.AddVector(&Translationvector);
888 Testvector.MatrixMultiplication(matrix);
889 Center.AddVector(&Testvector);
890 cout << Verbose(1) << "Hydrogen vector is: ";
891 Testvector.Output((ofstream *)&cout);
892 cout << endl;
893 }
894 }
895 }
896#endif
897 }
898 } while (!flag);
899 Free((void **)&matrix, "molecule::DetermineCenter: *matrix");
900 Center.Scale(1./(double)AtomCount);
901};
902
903/** Transforms/Rotates the given molecule into its principal axis system.
904 * \param *out output stream for debugging
905 * \param DoRotate whether to rotate (true) or only to determine the PAS.
906 */
907void molecule::PrincipalAxisSystem(ofstream *out, bool DoRotate)
908{
909 atom *ptr = start; // start at first in list
910 double InertiaTensor[NDIM*NDIM];
911 Vector *CenterOfGravity = DetermineCenterOfGravity(out);
912
913 CenterGravity(out, CenterOfGravity);
914
915 // reset inertia tensor
916 for(int i=0;i<NDIM*NDIM;i++)
917 InertiaTensor[i] = 0.;
918
919 // sum up inertia tensor
920 while (ptr->next != end) {
921 ptr = ptr->next;
922 Vector x;
923 x.CopyVector(&ptr->x);
924 //x.SubtractVector(CenterOfGravity);
925 InertiaTensor[0] += ptr->type->mass*(x.x[1]*x.x[1] + x.x[2]*x.x[2]);
926 InertiaTensor[1] += ptr->type->mass*(-x.x[0]*x.x[1]);
927 InertiaTensor[2] += ptr->type->mass*(-x.x[0]*x.x[2]);
928 InertiaTensor[3] += ptr->type->mass*(-x.x[1]*x.x[0]);
929 InertiaTensor[4] += ptr->type->mass*(x.x[0]*x.x[0] + x.x[2]*x.x[2]);
930 InertiaTensor[5] += ptr->type->mass*(-x.x[1]*x.x[2]);
931 InertiaTensor[6] += ptr->type->mass*(-x.x[2]*x.x[0]);
932 InertiaTensor[7] += ptr->type->mass*(-x.x[2]*x.x[1]);
933 InertiaTensor[8] += ptr->type->mass*(x.x[0]*x.x[0] + x.x[1]*x.x[1]);
934 }
935 // print InertiaTensor for debugging
936 *out << "The inertia tensor is:" << endl;
937 for(int i=0;i<NDIM;i++) {
938 for(int j=0;j<NDIM;j++)
939 *out << InertiaTensor[i*NDIM+j] << " ";
940 *out << endl;
941 }
942 *out << endl;
943
944 // diagonalize to determine principal axis system
945 gsl_eigen_symmv_workspace *T = gsl_eigen_symmv_alloc(NDIM);
946 gsl_matrix_view m = gsl_matrix_view_array(InertiaTensor, NDIM, NDIM);
947 gsl_vector *eval = gsl_vector_alloc(NDIM);
948 gsl_matrix *evec = gsl_matrix_alloc(NDIM, NDIM);
949 gsl_eigen_symmv(&m.matrix, eval, evec, T);
950 gsl_eigen_symmv_free(T);
951 gsl_eigen_symmv_sort(eval, evec, GSL_EIGEN_SORT_ABS_DESC);
952
953 for(int i=0;i<NDIM;i++) {
954 *out << Verbose(1) << "eigenvalue = " << gsl_vector_get(eval, i);
955 *out << ", eigenvector = (" << evec->data[i * evec->tda + 0] << "," << evec->data[i * evec->tda + 1] << "," << evec->data[i * evec->tda + 2] << ")" << endl;
956 }
957
958 // check whether we rotate or not
959 if (DoRotate) {
960 *out << Verbose(1) << "Transforming molecule into PAS ... ";
961 // the eigenvectors specify the transformation matrix
962 ptr = start;
963 while (ptr->next != end) {
964 ptr = ptr->next;
965 for (int j=0;j<MDSteps;j++)
966 Trajectories[ptr].R.at(j).MatrixMultiplication(evec->data);
967 ptr->x.MatrixMultiplication(evec->data);
968 }
969 *out << "done." << endl;
970
971 // summing anew for debugging (resulting matrix has to be diagonal!)
972 // reset inertia tensor
973 for(int i=0;i<NDIM*NDIM;i++)
974 InertiaTensor[i] = 0.;
975
976 // sum up inertia tensor
977 ptr = start;
978 while (ptr->next != end) {
979 ptr = ptr->next;
980 Vector x;
981 x.CopyVector(&ptr->x);
982 //x.SubtractVector(CenterOfGravity);
983 InertiaTensor[0] += ptr->type->mass*(x.x[1]*x.x[1] + x.x[2]*x.x[2]);
984 InertiaTensor[1] += ptr->type->mass*(-x.x[0]*x.x[1]);
985 InertiaTensor[2] += ptr->type->mass*(-x.x[0]*x.x[2]);
986 InertiaTensor[3] += ptr->type->mass*(-x.x[1]*x.x[0]);
987 InertiaTensor[4] += ptr->type->mass*(x.x[0]*x.x[0] + x.x[2]*x.x[2]);
988 InertiaTensor[5] += ptr->type->mass*(-x.x[1]*x.x[2]);
989 InertiaTensor[6] += ptr->type->mass*(-x.x[2]*x.x[0]);
990 InertiaTensor[7] += ptr->type->mass*(-x.x[2]*x.x[1]);
991 InertiaTensor[8] += ptr->type->mass*(x.x[0]*x.x[0] + x.x[1]*x.x[1]);
992 }
993 // print InertiaTensor for debugging
994 *out << "The inertia tensor is:" << endl;
995 for(int i=0;i<NDIM;i++) {
996 for(int j=0;j<NDIM;j++)
997 *out << InertiaTensor[i*NDIM+j] << " ";
998 *out << endl;
999 }
1000 *out << endl;
1001 }
1002
1003 // free everything
1004 delete(CenterOfGravity);
1005 gsl_vector_free(eval);
1006 gsl_matrix_free(evec);
1007};
1008
1009/** Parses nuclear forces from file and performs Verlet integration.
1010 * Note that we assume the parsed forces to be in atomic units (hence, if coordinates are in angstroem, we
1011 * have to transform them).
1012 * This adds a new MD step to the config file.
1013 * \param *file filename
1014 * \param delta_t time step width in atomic units
1015 * \param IsAngstroem whether coordinates are in angstroem (true) or bohrradius (false)
1016 * \return true - file found and parsed, false - file not found or imparsable
1017 */
1018bool molecule::VerletForceIntegration(char *file, double delta_t, bool IsAngstroem)
1019{
1020 element *runner = elemente->start;
1021 atom *walker = NULL;
1022 int AtomNo;
1023 ifstream input(file);
1024 string token;
1025 stringstream item;
1026 double a, IonMass, Vector[NDIM];
1027 ForceMatrix Force;
1028
1029 CountElements(); // make sure ElementsInMolecule is up to date
1030
1031 // check file
1032 if (input == NULL) {
1033 return false;
1034 } else {
1035 // parse file into ForceMatrix
1036 if (!Force.ParseMatrix(file, 0,0,0)) {
1037 cerr << "Could not parse Force Matrix file " << file << "." << endl;
1038 return false;
1039 }
1040 if (Force.RowCounter[0] != AtomCount) {
1041 cerr << "Mismatch between number of atoms in file " << Force.RowCounter[0] << " and in molecule " << AtomCount << "." << endl;
1042 return false;
1043 }
1044 // correct Forces
1045 for(int d=0;d<NDIM;d++)
1046 Vector[d] = 0.;
1047 for(int i=0;i<AtomCount;i++)
1048 for(int d=0;d<NDIM;d++) {
1049 Vector[d] += Force.Matrix[0][i][d+5];
1050 }
1051 for(int i=0;i<AtomCount;i++)
1052 for(int d=0;d<NDIM;d++) {
1053 Force.Matrix[0][i][d+5] -= Vector[d]/(double)AtomCount;
1054 }
1055 // and perform Verlet integration for each atom with position, velocity and force vector
1056 runner = elemente->start;
1057 while (runner->next != elemente->end) { // go through every element
1058 runner = runner->next;
1059 IonMass = runner->mass;
1060 a = delta_t*0.5/IonMass; // (F+F_old)/2m = a and thus: v = (F+F_old)/2m * t = (F + F_old) * a
1061 if (ElementsInMolecule[runner->Z]) { // if this element got atoms
1062 AtomNo = 0;
1063 walker = start;
1064 while (walker->next != end) { // go through every atom of this element
1065 walker = walker->next;
1066 if (walker->type == runner) { // if this atom fits to element
1067 // check size of vectors
1068 if (Trajectories[walker].R.size() <= (unsigned int)(MDSteps)) {
1069 //cout << "Increasing size for trajectory array of " << *walker << " to " << (size+10) << "." << endl;
1070 Trajectories[walker].R.resize(MDSteps+10);
1071 Trajectories[walker].U.resize(MDSteps+10);
1072 Trajectories[walker].F.resize(MDSteps+10);
1073 }
1074
1075 // Update R (and F)
1076 for (int d=0; d<NDIM; d++) {
1077 Trajectories[walker].F.at(MDSteps).x[d] = -Force.Matrix[0][AtomNo][d+5]*(IsAngstroem ? AtomicLengthToAngstroem : 1.);
1078 Trajectories[walker].R.at(MDSteps).x[d] = Trajectories[walker].R.at(MDSteps-1).x[d];
1079 Trajectories[walker].R.at(MDSteps).x[d] += delta_t*(Trajectories[walker].U.at(MDSteps-1).x[d]);
1080 Trajectories[walker].R.at(MDSteps).x[d] += delta_t*a*(Trajectories[walker].F.at(MDSteps).x[d]); // F = m * a and s = 0.5 * F/m * t^2 = F * a * t
1081 }
1082 // Update U
1083 for (int d=0; d<NDIM; d++) {
1084 Trajectories[walker].U.at(MDSteps).x[d] = Trajectories[walker].U.at(MDSteps-1).x[d];
1085 Trajectories[walker].U.at(MDSteps).x[d] += a * (Trajectories[walker].F.at(MDSteps).x[d]+Trajectories[walker].F.at(MDSteps-1).x[d]);
1086 }
1087// cout << "Integrated position&velocity of step " << (MDSteps) << ": (";
1088// for (int d=0;d<NDIM;d++)
1089// cout << Trajectories[walker].R.at(MDSteps).x[d] << " "; // next step
1090// cout << ")\t(";
1091// for (int d=0;d<NDIM;d++)
1092// cout << Trajectories[walker].U.at(MDSteps).x[d] << " "; // next step
1093// cout << ")" << endl;
1094 // next atom
1095 AtomNo++;
1096 }
1097 }
1098 }
1099 }
1100 }
1101// // correct velocities (rather momenta) so that center of mass remains motionless
1102// for(int d=0;d<NDIM;d++)
1103// Vector[d] = 0.;
1104// IonMass = 0.;
1105// walker = start;
1106// while (walker->next != end) { // go through every atom
1107// walker = walker->next;
1108// IonMass += walker->type->mass; // sum up total mass
1109// for(int d=0;d<NDIM;d++) {
1110// Vector[d] += Trajectories[walker].U.at(MDSteps).x[d]*walker->type->mass;
1111// }
1112// }
1113// walker = start;
1114// while (walker->next != end) { // go through every atom of this element
1115// walker = walker->next;
1116// for(int d=0;d<NDIM;d++) {
1117// Trajectories[walker].U.at(MDSteps).x[d] -= Vector[d]*walker->type->mass/IonMass;
1118// }
1119// }
1120 MDSteps++;
1121
1122
1123 // exit
1124 return true;
1125};
1126
1127/** Align all atoms in such a manner that given vector \a *n is along z axis.
1128 * \param n[] alignment vector.
1129 */
1130void molecule::Align(Vector *n)
1131{
1132 atom *ptr = start;
1133 double alpha, tmp;
1134 Vector z_axis;
1135 z_axis.x[0] = 0.;
1136 z_axis.x[1] = 0.;
1137 z_axis.x[2] = 1.;
1138
1139 // rotate on z-x plane
1140 cout << Verbose(0) << "Begin of Aligning all atoms." << endl;
1141 alpha = atan(-n->x[0]/n->x[2]);
1142 cout << Verbose(1) << "Z-X-angle: " << alpha << " ... ";
1143 while (ptr->next != end) {
1144 ptr = ptr->next;
1145 tmp = ptr->x.x[0];
1146 ptr->x.x[0] = cos(alpha) * tmp + sin(alpha) * ptr->x.x[2];
1147 ptr->x.x[2] = -sin(alpha) * tmp + cos(alpha) * ptr->x.x[2];
1148 for (int j=0;j<MDSteps;j++) {
1149 tmp = Trajectories[ptr].R.at(j).x[0];
1150 Trajectories[ptr].R.at(j).x[0] = cos(alpha) * tmp + sin(alpha) * Trajectories[ptr].R.at(j).x[2];
1151 Trajectories[ptr].R.at(j).x[2] = -sin(alpha) * tmp + cos(alpha) * Trajectories[ptr].R.at(j).x[2];
1152 }
1153 }
1154 // rotate n vector
1155 tmp = n->x[0];
1156 n->x[0] = cos(alpha) * tmp + sin(alpha) * n->x[2];
1157 n->x[2] = -sin(alpha) * tmp + cos(alpha) * n->x[2];
1158 cout << Verbose(1) << "alignment vector after first rotation: ";
1159 n->Output((ofstream *)&cout);
1160 cout << endl;
1161
1162 // rotate on z-y plane
1163 ptr = start;
1164 alpha = atan(-n->x[1]/n->x[2]);
1165 cout << Verbose(1) << "Z-Y-angle: " << alpha << " ... ";
1166 while (ptr->next != end) {
1167 ptr = ptr->next;
1168 tmp = ptr->x.x[1];
1169 ptr->x.x[1] = cos(alpha) * tmp + sin(alpha) * ptr->x.x[2];
1170 ptr->x.x[2] = -sin(alpha) * tmp + cos(alpha) * ptr->x.x[2];
1171 for (int j=0;j<MDSteps;j++) {
1172 tmp = Trajectories[ptr].R.at(j).x[1];
1173 Trajectories[ptr].R.at(j).x[1] = cos(alpha) * tmp + sin(alpha) * Trajectories[ptr].R.at(j).x[2];
1174 Trajectories[ptr].R.at(j).x[2] = -sin(alpha) * tmp + cos(alpha) * Trajectories[ptr].R.at(j).x[2];
1175 }
1176 }
1177 // rotate n vector (for consistency check)
1178 tmp = n->x[1];
1179 n->x[1] = cos(alpha) * tmp + sin(alpha) * n->x[2];
1180 n->x[2] = -sin(alpha) * tmp + cos(alpha) * n->x[2];
1181
1182 cout << Verbose(1) << "alignment vector after second rotation: ";
1183 n->Output((ofstream *)&cout);
1184 cout << Verbose(1) << endl;
1185 cout << Verbose(0) << "End of Aligning all atoms." << endl;
1186};
1187
1188/** Removes atom from molecule list.
1189 * \param *pointer atom to be removed
1190 * \return true - succeeded, false - atom not found in list
1191 */
1192bool molecule::RemoveAtom(atom *pointer)
1193{
1194 if (ElementsInMolecule[pointer->type->Z] != 0) // this would indicate an error
1195 ElementsInMolecule[pointer->type->Z]--; // decrease number of atom of this element
1196 else
1197 cerr << "ERROR: Atom " << pointer->Name << " is of element " << pointer->type->Z << " but the entry in the table of the molecule is 0!" << endl;
1198 if (ElementsInMolecule[pointer->type->Z] == 0) // was last atom of this element?
1199 ElementCount--;
1200 Trajectories.erase(pointer);
1201 return remove(pointer, start, end);
1202};
1203
1204/** Removes every atom from molecule list.
1205 * \return true - succeeded, false - atom not found in list
1206 */
1207bool molecule::CleanupMolecule()
1208{
1209 return (cleanup(start,end) && cleanup(first,last));
1210};
1211
1212/** Finds an atom specified by its continuous number.
1213 * \param Nr number of atom withim molecule
1214 * \return pointer to atom or NULL
1215 */
1216atom * molecule::FindAtom(int Nr) const{
1217 atom * walker = find(&Nr, start,end);
1218 if (walker != NULL) {
1219 //cout << Verbose(0) << "Found Atom Nr. " << walker->nr << endl;
1220 return walker;
1221 } else {
1222 cout << Verbose(0) << "Atom not found in list." << endl;
1223 return NULL;
1224 }
1225};
1226
1227/** Asks for atom number, and checks whether in list.
1228 * \param *text question before entering
1229 */
1230atom * molecule::AskAtom(string text)
1231{
1232 int No;
1233 atom *ion = NULL;
1234 do {
1235 //cout << Verbose(0) << "============Atom list==========================" << endl;
1236 //mol->Output((ofstream *)&cout);
1237 //cout << Verbose(0) << "===============================================" << endl;
1238 cout << Verbose(0) << text;
1239 cin >> No;
1240 ion = this->FindAtom(No);
1241 } while (ion == NULL);
1242 return ion;
1243};
1244
1245/** Checks if given coordinates are within cell volume.
1246 * \param *x array of coordinates
1247 * \return true - is within, false - out of cell
1248 */
1249bool molecule::CheckBounds(const Vector *x) const
1250{
1251 bool result = true;
1252 int j =-1;
1253 for (int i=0;i<NDIM;i++) {
1254 j += i+1;
1255 result = result && ((x->x[i] >= 0) && (x->x[i] < cell_size[j]));
1256 }
1257 //return result;
1258 return true; /// probably not gonna use the check no more
1259};
1260
1261/** Calculates sum over least square distance to line hidden in \a *x.
1262 * \param *x offset and direction vector
1263 * \param *params pointer to lsq_params structure
1264 * \return \f$ sum_i^N | y_i - (a + t_i b)|^2\f$
1265 */
1266double LeastSquareDistance (const gsl_vector * x, void * params)
1267{
1268 double res = 0, t;
1269 Vector a,b,c,d;
1270 struct lsq_params *par = (struct lsq_params *)params;
1271 atom *ptr = par->mol->start;
1272
1273 // initialize vectors
1274 a.x[0] = gsl_vector_get(x,0);
1275 a.x[1] = gsl_vector_get(x,1);
1276 a.x[2] = gsl_vector_get(x,2);
1277 b.x[0] = gsl_vector_get(x,3);
1278 b.x[1] = gsl_vector_get(x,4);
1279 b.x[2] = gsl_vector_get(x,5);
1280 // go through all atoms
1281 while (ptr != par->mol->end) {
1282 ptr = ptr->next;
1283 if (ptr->type == ((struct lsq_params *)params)->type) { // for specific type
1284 c.CopyVector(&ptr->x); // copy vector to temporary one
1285 c.SubtractVector(&a); // subtract offset vector
1286 t = c.ScalarProduct(&b); // get direction parameter
1287 d.CopyVector(&b); // and create vector
1288 d.Scale(&t);
1289 c.SubtractVector(&d); // ... yielding distance vector
1290 res += d.ScalarProduct((const Vector *)&d); // add squared distance
1291 }
1292 }
1293 return res;
1294};
1295
1296/** By minimizing the least square distance gains alignment vector.
1297 * \bug this is not yet working properly it seems
1298 */
1299void molecule::GetAlignvector(struct lsq_params * par) const
1300{
1301 int np = 6;
1302
1303 const gsl_multimin_fminimizer_type *T =
1304 gsl_multimin_fminimizer_nmsimplex;
1305 gsl_multimin_fminimizer *s = NULL;
1306 gsl_vector *ss;
1307 gsl_multimin_function minex_func;
1308
1309 size_t iter = 0, i;
1310 int status;
1311 double size;
1312
1313 /* Initial vertex size vector */
1314 ss = gsl_vector_alloc (np);
1315
1316 /* Set all step sizes to 1 */
1317 gsl_vector_set_all (ss, 1.0);
1318
1319 /* Starting point */
1320 par->x = gsl_vector_alloc (np);
1321 par->mol = this;
1322
1323 gsl_vector_set (par->x, 0, 0.0); // offset
1324 gsl_vector_set (par->x, 1, 0.0);
1325 gsl_vector_set (par->x, 2, 0.0);
1326 gsl_vector_set (par->x, 3, 0.0); // direction
1327 gsl_vector_set (par->x, 4, 0.0);
1328 gsl_vector_set (par->x, 5, 1.0);
1329
1330 /* Initialize method and iterate */
1331 minex_func.f = &LeastSquareDistance;
1332 minex_func.n = np;
1333 minex_func.params = (void *)par;
1334
1335 s = gsl_multimin_fminimizer_alloc (T, np);
1336 gsl_multimin_fminimizer_set (s, &minex_func, par->x, ss);
1337
1338 do
1339 {
1340 iter++;
1341 status = gsl_multimin_fminimizer_iterate(s);
1342
1343 if (status)
1344 break;
1345
1346 size = gsl_multimin_fminimizer_size (s);
1347 status = gsl_multimin_test_size (size, 1e-2);
1348
1349 if (status == GSL_SUCCESS)
1350 {
1351 printf ("converged to minimum at\n");
1352 }
1353
1354 printf ("%5d ", (int)iter);
1355 for (i = 0; i < (size_t)np; i++)
1356 {
1357 printf ("%10.3e ", gsl_vector_get (s->x, i));
1358 }
1359 printf ("f() = %7.3f size = %.3f\n", s->fval, size);
1360 }
1361 while (status == GSL_CONTINUE && iter < 100);
1362
1363 for (i=0;i<(size_t)np;i++)
1364 gsl_vector_set(par->x, i, gsl_vector_get(s->x, i));
1365 //gsl_vector_free(par->x);
1366 gsl_vector_free(ss);
1367 gsl_multimin_fminimizer_free (s);
1368};
1369
1370/** Prints molecule to *out.
1371 * \param *out output stream
1372 */
1373bool molecule::Output(ofstream *out)
1374{
1375 element *runner;
1376 atom *walker = NULL;
1377 int ElementNo, AtomNo;
1378 CountElements();
1379
1380 if (out == NULL) {
1381 return false;
1382 } else {
1383 *out << "#Ion_TypeNr._Nr.R[0] R[1] R[2] MoveType (0 MoveIon, 1 FixedIon)" << endl;
1384 ElementNo = 0;
1385 runner = elemente->start;
1386 while (runner->next != elemente->end) { // go through every element
1387 runner = runner->next;
1388 if (ElementsInMolecule[runner->Z]) { // if this element got atoms
1389 ElementNo++;
1390 AtomNo = 0;
1391 walker = start;
1392 while (walker->next != end) { // go through every atom of this element
1393 walker = walker->next;
1394 if (walker->type == runner) { // if this atom fits to element
1395 AtomNo++;
1396 walker->Output(ElementNo, AtomNo, out); // removed due to trajectories
1397 }
1398 }
1399 }
1400 }
1401 return true;
1402 }
1403};
1404
1405/** Prints molecule with all atomic trajectory positions to *out.
1406 * \param *out output stream
1407 */
1408bool molecule::OutputTrajectories(ofstream *out)
1409{
1410 element *runner = NULL;
1411 atom *walker = NULL;
1412 int ElementNo, AtomNo;
1413 CountElements();
1414
1415 if (out == NULL) {
1416 return false;
1417 } else {
1418 for (int step = 0; step < MDSteps; step++) {
1419 if (step == 0) {
1420 *out << "#Ion_TypeNr._Nr.R[0] R[1] R[2] MoveType (0 MoveIon, 1 FixedIon)" << endl;
1421 } else {
1422 *out << "# ====== MD step " << step << " =========" << endl;
1423 }
1424 ElementNo = 0;
1425 runner = elemente->start;
1426 while (runner->next != elemente->end) { // go through every element
1427 runner = runner->next;
1428 if (ElementsInMolecule[runner->Z]) { // if this element got atoms
1429 ElementNo++;
1430 AtomNo = 0;
1431 walker = start;
1432 while (walker->next != end) { // go through every atom of this element
1433 walker = walker->next;
1434 if (walker->type == runner) { // if this atom fits to element
1435 AtomNo++;
1436 *out << "Ion_Type" << ElementNo << "_" << AtomNo << "\t" << fixed << setprecision(9) << showpoint;
1437 *out << Trajectories[walker].R.at(step).x[0] << "\t" << Trajectories[walker].R.at(step).x[1] << "\t" << Trajectories[walker].R.at(step).x[2];
1438 *out << "\t" << walker->FixedIon;
1439 if (Trajectories[walker].U.at(step).Norm() > MYEPSILON)
1440 *out << "\t" << scientific << setprecision(6) << Trajectories[walker].U.at(step).x[0] << "\t" << Trajectories[walker].U.at(step).x[1] << "\t" << Trajectories[walker].U.at(step).x[2] << "\t";
1441 if (Trajectories[walker].F.at(step).Norm() > MYEPSILON)
1442 *out << "\t" << scientific << setprecision(6) << Trajectories[walker].F.at(step).x[0] << "\t" << Trajectories[walker].F.at(step).x[1] << "\t" << Trajectories[walker].F.at(step).x[2] << "\t";
1443 *out << "\t# Number in molecule " << walker->nr << endl;
1444 }
1445 }
1446 }
1447 }
1448 }
1449 return true;
1450 }
1451};
1452
1453/** Outputs contents of molecule::ListOfBondsPerAtom.
1454 * \param *out output stream
1455 */
1456void molecule::OutputListOfBonds(ofstream *out) const
1457{
1458 *out << Verbose(2) << endl << "From Contents of ListOfBondsPerAtom, all non-hydrogen atoms:" << endl;
1459 atom *Walker = start;
1460 while (Walker->next != end) {
1461 Walker = Walker->next;
1462#ifdef ADDHYDROGEN
1463 if (Walker->type->Z != 1) { // regard only non-hydrogen
1464#endif
1465 *out << Verbose(2) << "Atom " << Walker->Name << " has Bonds: "<<endl;
1466 for(int j=0;j<NumberOfBondsPerAtom[Walker->nr];j++) {
1467 *out << Verbose(3) << *(ListOfBondsPerAtom)[Walker->nr][j] << endl;
1468 }
1469#ifdef ADDHYDROGEN
1470 }
1471#endif
1472 }
1473 *out << endl;
1474};
1475
1476/** Output of element before the actual coordination list.
1477 * \param *out stream pointer
1478 */
1479bool molecule::Checkout(ofstream *out) const
1480{
1481 return elemente->Checkout(out, ElementsInMolecule);
1482};
1483
1484/** Prints molecule with all its trajectories to *out as xyz file.
1485 * \param *out output stream
1486 */
1487bool molecule::OutputTrajectoriesXYZ(ofstream *out)
1488{
1489 atom *walker = NULL;
1490 int No = 0;
1491 time_t now;
1492
1493 now = time((time_t *)NULL); // Get the system time and put it into 'now' as 'calender time'
1494 walker = start;
1495 while (walker->next != end) { // go through every atom and count
1496 walker = walker->next;
1497 No++;
1498 }
1499 if (out != NULL) {
1500 for (int step=0;step<MDSteps;step++) {
1501 *out << No << "\n\tCreated by molecuilder, step " << step << ", on " << ctime(&now);
1502 walker = start;
1503 while (walker->next != end) { // go through every atom of this element
1504 walker = walker->next;
1505 *out << walker->type->symbol << "\t" << Trajectories[walker].R.at(step).x[0] << "\t" << Trajectories[walker].R.at(step).x[1] << "\t" << Trajectories[walker].R.at(step).x[2] << endl;
1506 }
1507 }
1508 return true;
1509 } else
1510 return false;
1511};
1512
1513/** Prints molecule to *out as xyz file.
1514* \param *out output stream
1515 */
1516bool molecule::OutputXYZ(ofstream *out) const
1517{
1518 atom *walker = NULL;
1519 int No = 0;
1520 time_t now;
1521
1522 now = time((time_t *)NULL); // Get the system time and put it into 'now' as 'calender time'
1523 walker = start;
1524 while (walker->next != end) { // go through every atom and count
1525 walker = walker->next;
1526 No++;
1527 }
1528 if (out != NULL) {
1529 *out << No << "\n\tCreated by molecuilder on " << ctime(&now);
1530 walker = start;
1531 while (walker->next != end) { // go through every atom of this element
1532 walker = walker->next;
1533 walker->OutputXYZLine(out);
1534 }
1535 return true;
1536 } else
1537 return false;
1538};
1539
1540/** Brings molecule::AtomCount and atom::*Name up-to-date.
1541 * \param *out output stream for debugging
1542 */
1543void molecule::CountAtoms(ofstream *out)
1544{
1545 int i = 0;
1546 atom *Walker = start;
1547 while (Walker->next != end) {
1548 Walker = Walker->next;
1549 i++;
1550 }
1551 if ((AtomCount == 0) || (i != AtomCount)) {
1552 *out << Verbose(3) << "Mismatch in AtomCount " << AtomCount << " and recounted number " << i << ", renaming all." << endl;
1553 AtomCount = i;
1554
1555 // count NonHydrogen atoms and give each atom a unique name
1556 if (AtomCount != 0) {
1557 i=0;
1558 NoNonHydrogen = 0;
1559 Walker = start;
1560 while (Walker->next != end) {
1561 Walker = Walker->next;
1562 Walker->nr = i; // update number in molecule (for easier referencing in FragmentMolecule lateron)
1563 if (Walker->type->Z != 1) // count non-hydrogen atoms whilst at it
1564 NoNonHydrogen++;
1565 Free((void **)&Walker->Name, "molecule::CountAtoms: *walker->Name");
1566 Walker->Name = (char *) Malloc(sizeof(char)*6, "molecule::CountAtoms: *walker->Name");
1567 sprintf(Walker->Name, "%2s%02d", Walker->type->symbol, Walker->nr+1);
1568 *out << "Naming atom nr. " << Walker->nr << " " << Walker->Name << "." << endl;
1569 i++;
1570 }
1571 } else
1572 *out << Verbose(3) << "AtomCount is still " << AtomCount << ", thus counting nothing." << endl;
1573 }
1574};
1575
1576/** Brings molecule::ElementCount and molecule::ElementsInMolecule up-to-date.
1577 */
1578void molecule::CountElements()
1579{
1580 int i = 0;
1581 for(i=MAX_ELEMENTS;i--;)
1582 ElementsInMolecule[i] = 0;
1583 ElementCount = 0;
1584
1585 atom *walker = start;
1586 while (walker->next != end) {
1587 walker = walker->next;
1588 ElementsInMolecule[walker->type->Z]++;
1589 i++;
1590 }
1591 for(i=MAX_ELEMENTS;i--;)
1592 ElementCount += (ElementsInMolecule[i] != 0 ? 1 : 0);
1593};
1594
1595/** Counts all cyclic bonds and returns their number.
1596 * \note Hydrogen bonds can never by cyclic, thus no check for that
1597 * \param *out output stream for debugging
1598 * \return number opf cyclic bonds
1599 */
1600int molecule::CountCyclicBonds(ofstream *out)
1601{
1602 int No = 0;
1603 int *MinimumRingSize = NULL;
1604 MoleculeLeafClass *Subgraphs = NULL;
1605 class StackClass<bond *> *BackEdgeStack = NULL;
1606 bond *Binder = first;
1607 if ((Binder->next != last) && (Binder->next->Type == Undetermined)) {
1608 *out << Verbose(0) << "No Depth-First-Search analysis performed so far, calling ..." << endl;
1609 Subgraphs = DepthFirstSearchAnalysis(out, BackEdgeStack);
1610 while (Subgraphs->next != NULL) {
1611 Subgraphs = Subgraphs->next;
1612 delete(Subgraphs->previous);
1613 }
1614 delete(Subgraphs);
1615 delete[](MinimumRingSize);
1616 }
1617 while(Binder->next != last) {
1618 Binder = Binder->next;
1619 if (Binder->Cyclic)
1620 No++;
1621 }
1622 delete(BackEdgeStack);
1623 return No;
1624};
1625/** Returns Shading as a char string.
1626 * \param color the Shading
1627 * \return string of the flag
1628 */
1629string molecule::GetColor(enum Shading color)
1630{
1631 switch(color) {
1632 case white:
1633 return "white";
1634 break;
1635 case lightgray:
1636 return "lightgray";
1637 break;
1638 case darkgray:
1639 return "darkgray";
1640 break;
1641 case black:
1642 return "black";
1643 break;
1644 default:
1645 return "uncolored";
1646 break;
1647 };
1648};
1649
1650
1651/** Counts necessary number of valence electrons and returns number and SpinType.
1652 * \param configuration containing everything
1653 */
1654void molecule::CalculateOrbitals(class config &configuration)
1655{
1656 configuration.MaxPsiDouble = configuration.PsiMaxNoDown = configuration.PsiMaxNoUp = configuration.PsiType = 0;
1657 for(int i=MAX_ELEMENTS;i--;) {
1658 if (ElementsInMolecule[i] != 0) {
1659 //cout << "CalculateOrbitals: " << elemente->FindElement(i)->name << " has a valence of " << (int)elemente->FindElement(i)->Valence << " and there are " << ElementsInMolecule[i] << " of it." << endl;
1660 configuration.MaxPsiDouble += ElementsInMolecule[i]*((int)elemente->FindElement(i)->Valence);
1661 }
1662 }
1663 configuration.PsiMaxNoDown = configuration.MaxPsiDouble/2 + (configuration.MaxPsiDouble % 2);
1664 configuration.PsiMaxNoUp = configuration.MaxPsiDouble/2;
1665 configuration.MaxPsiDouble /= 2;
1666 configuration.PsiType = (configuration.PsiMaxNoDown == configuration.PsiMaxNoUp) ? 0 : 1;
1667 if ((configuration.PsiType == 1) && (configuration.ProcPEPsi < 2)) {
1668 configuration.ProcPEGamma /= 2;
1669 configuration.ProcPEPsi *= 2;
1670 } else {
1671 configuration.ProcPEGamma *= configuration.ProcPEPsi;
1672 configuration.ProcPEPsi = 1;
1673 }
1674 configuration.InitMaxMinStopStep = configuration.MaxMinStopStep = configuration.MaxPsiDouble;
1675};
1676
1677/** Creates an adjacency list of the molecule.
1678 * Generally, we use the CSD approach to bond recognition, that is the the distance
1679 * between two atoms A and B must be within [Rcov(A)+Rcov(B)-t,Rcov(A)+Rcov(B)+t] with
1680 * a threshold t = 0.4 Angstroem.
1681 * To make it O(N log N) the function uses the linked-cell technique as follows:
1682 * The procedure is step-wise:
1683 * -# Remove every bond in list
1684 * -# Count the atoms in the molecule with CountAtoms()
1685 * -# partition cell into smaller linked cells of size \a bonddistance
1686 * -# put each atom into its corresponding cell
1687 * -# go through every cell, check the atoms therein against all possible bond partners in the 27 adjacent cells, add bond if true
1688 * -# create the list of bonds via CreateListOfBondsPerAtom()
1689 * -# correct the bond degree iteratively (single->double->triple bond)
1690 * -# finally print the bond list to \a *out if desired
1691 * \param *out out stream for printing the matrix, NULL if no output
1692 * \param bonddistance length of linked cells (i.e. maximum minimal length checked)
1693 * \param IsAngstroem whether coordinate system is gauged to Angstroem or Bohr radii
1694 */
1695void molecule::CreateAdjacencyList(ofstream *out, double bonddistance, bool IsAngstroem)
1696{
1697 atom *Walker = NULL, *OtherWalker = NULL, *Candidate = NULL;
1698 int No, NoBonds, CandidateBondNo;
1699 int NumberCells, divisor[NDIM], n[NDIM], N[NDIM], index, Index, j;
1700 molecule **CellList;
1701 double distance, MinDistance, MaxDistance;
1702 double *matrix = ReturnFullMatrixforSymmetric(cell_size);
1703 Vector x;
1704 int FalseBondDegree = 0;
1705
1706 BondDistance = bonddistance; // * ((IsAngstroem) ? 1. : 1./AtomicLengthToAngstroem);
1707 *out << Verbose(0) << "Begin of CreateAdjacencyList." << endl;
1708 // remove every bond from the list
1709 if ((first->next != last) && (last->previous != first)) { // there are bonds present
1710 cleanup(first,last);
1711 }
1712
1713 // count atoms in molecule = dimension of matrix (also give each unique name and continuous numbering)
1714 CountAtoms(out);
1715 *out << Verbose(1) << "AtomCount " << AtomCount << "." << endl;
1716
1717 if (AtomCount != 0) {
1718 // 1. find divisor for each axis, such that a sphere with radius of at least bonddistance can be placed into each cell
1719 j=-1;
1720 for (int i=0;i<NDIM;i++) {
1721 j += i+1;
1722 divisor[i] = (int)floor(cell_size[j]/bonddistance); // take smaller value such that size of linked cell is at least bonddistance
1723 //*out << Verbose(1) << "divisor[" << i << "] = " << divisor[i] << "." << endl;
1724 }
1725 // 2a. allocate memory for the cell list
1726 NumberCells = divisor[0]*divisor[1]*divisor[2];
1727 *out << Verbose(1) << "Allocating " << NumberCells << " cells." << endl;
1728 CellList = (molecule **) Malloc(sizeof(molecule *)*NumberCells, "molecule::CreateAdjacencyList - ** CellList");
1729 for (int i=NumberCells;i--;)
1730 CellList[i] = NULL;
1731
1732 // 2b. put all atoms into its corresponding list
1733 Walker = start;
1734 while(Walker->next != end) {
1735 Walker = Walker->next;
1736 //*out << Verbose(1) << "Current atom is " << *Walker << " with coordinates ";
1737 //Walker->x.Output(out);
1738 //*out << "." << endl;
1739 // compute the cell by the atom's coordinates
1740 j=-1;
1741 for (int i=0;i<NDIM;i++) {
1742 j += i+1;
1743 x.CopyVector(&(Walker->x));
1744 x.KeepPeriodic(out, matrix);
1745 n[i] = (int)floor(x.x[i]/cell_size[j]*(double)divisor[i]);
1746 }
1747 index = n[2] + (n[1] + n[0] * divisor[1]) * divisor[2];
1748 //*out << Verbose(1) << "Atom " << *Walker << " goes into cell number [" << n[0] << "," << n[1] << "," << n[2] << "] = " << index << "." << endl;
1749 // add copy atom to this cell
1750 if (CellList[index] == NULL) // allocate molecule if not done
1751 CellList[index] = new molecule(elemente);
1752 OtherWalker = CellList[index]->AddCopyAtom(Walker); // add a copy of walker to this atom, father will be walker for later reference
1753 //*out << Verbose(1) << "Copy Atom is " << *OtherWalker << "." << endl;
1754 }
1755 //for (int i=0;i<NumberCells;i++)
1756 //*out << Verbose(1) << "Cell number " << i << ": " << CellList[i] << "." << endl;
1757
1758 // 3a. go through every cell
1759 for (N[0]=divisor[0];N[0]--;)
1760 for (N[1]=divisor[1];N[1]--;)
1761 for (N[2]=divisor[2];N[2]--;) {
1762 Index = N[2] + (N[1] + N[0] * divisor[1]) * divisor[2];
1763 if (CellList[Index] != NULL) { // if there atoms in this cell
1764 //*out << Verbose(1) << "Current cell is " << Index << "." << endl;
1765 // 3b. for every atom therein
1766 Walker = CellList[Index]->start;
1767 while (Walker->next != CellList[Index]->end) { // go through every atom
1768 Walker = Walker->next;
1769 //*out << Verbose(0) << "Current Atom is " << *Walker << "." << endl;
1770 // 3c. check for possible bond between each atom in this and every one in the 27 cells
1771 for (n[0]=-1;n[0]<=1;n[0]++)
1772 for (n[1]=-1;n[1]<=1;n[1]++)
1773 for (n[2]=-1;n[2]<=1;n[2]++) {
1774 // compute the index of this comparison cell and make it periodic
1775 index = ((N[2]+n[2]+divisor[2])%divisor[2]) + (((N[1]+n[1]+divisor[1])%divisor[1]) + ((N[0]+n[0]+divisor[0])%divisor[0]) * divisor[1]) * divisor[2];
1776 //*out << Verbose(1) << "Number of comparison cell is " << index << "." << endl;
1777 if (CellList[index] != NULL) { // if there are any atoms in this cell
1778 OtherWalker = CellList[index]->start;
1779 while(OtherWalker->next != CellList[index]->end) { // go through every atom in this cell
1780 OtherWalker = OtherWalker->next;
1781 //*out << Verbose(0) << "Current comparison atom is " << *OtherWalker << "." << endl;
1782 /// \todo periodic check is missing here!
1783 //*out << Verbose(1) << "Checking distance " << OtherWalker->x.PeriodicDistance(&(Walker->x), cell_size) << " against typical bond length of " << bonddistance*bonddistance << "." << endl;
1784 MinDistance = OtherWalker->type->CovalentRadius + Walker->type->CovalentRadius;
1785 MinDistance *= (IsAngstroem) ? 1. : 1./AtomicLengthToAngstroem;
1786 MaxDistance = MinDistance + BONDTHRESHOLD;
1787 MinDistance -= BONDTHRESHOLD;
1788 distance = OtherWalker->x.PeriodicDistance(&(Walker->x), cell_size);
1789 if ((OtherWalker->father->nr > Walker->father->nr) && (distance <= MaxDistance*MaxDistance) && (distance >= MinDistance*MinDistance)) { // create bond if distance is smaller
1790 //*out << Verbose(0) << "Adding Bond between " << *Walker << " and " << *OtherWalker << "." << endl;
1791 AddBond(Walker->father, OtherWalker->father, 1); // also increases molecule::BondCount
1792 BondCount++;
1793 } else {
1794 //*out << Verbose(1) << "Not Adding: Wrong label order or distance too great." << endl;
1795 }
1796 }
1797 }
1798 }
1799 }
1800 }
1801 }
1802 // 4. free the cell again
1803 for (int i=NumberCells;i--;)
1804 if (CellList[i] != NULL) {
1805 delete(CellList[i]);
1806 }
1807 Free((void **)&CellList, "molecule::CreateAdjacencyList - ** CellList");
1808
1809 // create the adjacency list per atom
1810 CreateListOfBondsPerAtom(out);
1811
1812 // correct Bond degree of each bond by checking both bond partners for a mismatch between valence and current sum of bond degrees,
1813 // iteratively increase the one first where the other bond partner has the fewest number of bonds (i.e. in general bonds oxygene
1814 // preferred over carbon bonds). Beforehand, we had picked the first mismatching partner, which lead to oxygenes with single instead of
1815 // double bonds as was expected.
1816 if (BondCount != 0) {
1817 NoCyclicBonds = 0;
1818 *out << Verbose(1) << "Correcting Bond degree of each bond ... ";
1819 do {
1820 No = 0; // No acts as breakup flag (if 1 we still continue)
1821 Walker = start;
1822 while (Walker->next != end) { // go through every atom
1823 Walker = Walker->next;
1824 // count valence of first partner
1825 NoBonds = 0;
1826 for(j=0;j<NumberOfBondsPerAtom[Walker->nr];j++)
1827 NoBonds += ListOfBondsPerAtom[Walker->nr][j]->BondDegree;
1828 *out << Verbose(3) << "Walker " << *Walker << ": " << (int)Walker->type->NoValenceOrbitals << " > " << NoBonds << "?" << endl;
1829 if ((int)(Walker->type->NoValenceOrbitals) > NoBonds) { // we have a mismatch, check all bonding partners for mismatch
1830 Candidate = NULL;
1831 CandidateBondNo = -1;
1832 for(int i=0;i<NumberOfBondsPerAtom[Walker->nr];i++) { // go through each of its bond partners
1833 OtherWalker = ListOfBondsPerAtom[Walker->nr][i]->GetOtherAtom(Walker);
1834 // count valence of second partner
1835 NoBonds = 0;
1836 for(j=0;j<NumberOfBondsPerAtom[OtherWalker->nr];j++)
1837 NoBonds += ListOfBondsPerAtom[OtherWalker->nr][j]->BondDegree;
1838 *out << Verbose(3) << "OtherWalker " << *OtherWalker << ": " << (int)OtherWalker->type->NoValenceOrbitals << " > " << NoBonds << "?" << endl;
1839 if ((int)(OtherWalker->type->NoValenceOrbitals) > NoBonds) { // check if possible candidate
1840 if ((Candidate == NULL) || (NumberOfBondsPerAtom[Candidate->nr] > NumberOfBondsPerAtom[OtherWalker->nr])) { // pick the one with fewer number of bonds first
1841 Candidate = OtherWalker;
1842 CandidateBondNo = i;
1843 *out << Verbose(3) << "New candidate is " << *Candidate << "." << endl;
1844 }
1845 }
1846 }
1847 if ((Candidate != NULL) && (CandidateBondNo != -1)) {
1848 ListOfBondsPerAtom[Walker->nr][CandidateBondNo]->BondDegree++;
1849 *out << Verbose(2) << "Increased bond degree for bond " << *ListOfBondsPerAtom[Walker->nr][CandidateBondNo] << "." << endl;
1850 } else
1851 *out << Verbose(2) << "Could not find correct degree for atom " << *Walker << "." << endl;
1852 FalseBondDegree++;
1853 }
1854 }
1855 } while (No);
1856 *out << " done." << endl;
1857 } else
1858 *out << Verbose(1) << "BondCount is " << BondCount << ", no bonds between any of the " << AtomCount << " atoms." << endl;
1859 *out << Verbose(1) << "I detected " << BondCount << " bonds in the molecule with distance " << bonddistance << ", " << FalseBondDegree << " bonds could not be corrected." << endl;
1860
1861 // output bonds for debugging (if bond chain list was correctly installed)
1862 *out << Verbose(1) << endl << "From contents of bond chain list:";
1863 bond *Binder = first;
1864 while(Binder->next != last) {
1865 Binder = Binder->next;
1866 *out << *Binder << "\t" << endl;
1867 }
1868 *out << endl;
1869 } else
1870 *out << Verbose(1) << "AtomCount is " << AtomCount << ", thus no bonds, no connections!." << endl;
1871 *out << Verbose(0) << "End of CreateAdjacencyList." << endl;
1872 Free((void **)&matrix, "molecule::CreateAdjacencyList: *matrix");
1873};
1874
1875/** Performs a Depth-First search on this molecule.
1876 * Marks bonds in molecule as cyclic, bridge, ... and atoms as
1877 * articulations points, ...
1878 * We use the algorithm from [Even, Graph Algorithms, p.62].
1879 * \param *out output stream for debugging
1880 * \param *&BackEdgeStack NULL pointer to StackClass with all the found back edges, allocated and filled on return
1881 * \return list of each disconnected subgraph as an individual molecule class structure
1882 */
1883MoleculeLeafClass * molecule::DepthFirstSearchAnalysis(ofstream *out, class StackClass<bond *> *&BackEdgeStack)
1884{
1885 class StackClass<atom *> *AtomStack = new StackClass<atom *>(AtomCount);
1886 BackEdgeStack = new StackClass<bond *> (BondCount);
1887 MoleculeLeafClass *SubGraphs = new MoleculeLeafClass(NULL);
1888 MoleculeLeafClass *LeafWalker = SubGraphs;
1889 int CurrentGraphNr = 0, OldGraphNr;
1890 int ComponentNumber = 0;
1891 atom *Walker = NULL, *OtherAtom = NULL, *Root = start->next;
1892 bond *Binder = NULL;
1893 bool BackStepping = false;
1894
1895 *out << Verbose(0) << "Begin of DepthFirstSearchAnalysis" << endl;
1896
1897 ResetAllBondsToUnused();
1898 ResetAllAtomNumbers();
1899 InitComponentNumbers();
1900 BackEdgeStack->ClearStack();
1901 while (Root != end) { // if there any atoms at all
1902 // (1) mark all edges unused, empty stack, set atom->GraphNr = 0 for all
1903 AtomStack->ClearStack();
1904
1905 // put into new subgraph molecule and add this to list of subgraphs
1906 LeafWalker = new MoleculeLeafClass(LeafWalker);
1907 LeafWalker->Leaf = new molecule(elemente);
1908 LeafWalker->Leaf->AddCopyAtom(Root);
1909
1910 OldGraphNr = CurrentGraphNr;
1911 Walker = Root;
1912 do { // (10)
1913 do { // (2) set number and Lowpoint of Atom to i, increase i, push current atom
1914 if (!BackStepping) { // if we don't just return from (8)
1915 Walker->GraphNr = CurrentGraphNr;
1916 Walker->LowpointNr = CurrentGraphNr;
1917 *out << Verbose(1) << "Setting Walker[" << Walker->Name << "]'s number to " << Walker->GraphNr << " with Lowpoint " << Walker->LowpointNr << "." << endl;
1918 AtomStack->Push(Walker);
1919 CurrentGraphNr++;
1920 }
1921 do { // (3) if Walker has no unused egdes, go to (5)
1922 BackStepping = false; // reset backstepping flag for (8)
1923 if (Binder == NULL) // if we don't just return from (11), Binder is already set to next unused
1924 Binder = FindNextUnused(Walker);
1925 if (Binder == NULL)
1926 break;
1927 *out << Verbose(2) << "Current Unused Bond is " << *Binder << "." << endl;
1928 // (4) Mark Binder used, ...
1929 Binder->MarkUsed(black);
1930 OtherAtom = Binder->GetOtherAtom(Walker);
1931 *out << Verbose(2) << "(4) OtherAtom is " << OtherAtom->Name << "." << endl;
1932 if (OtherAtom->GraphNr != -1) {
1933 // (4a) ... if "other" atom has been visited (GraphNr != 0), set lowpoint to minimum of both, go to (3)
1934 Binder->Type = BackEdge;
1935 BackEdgeStack->Push(Binder);
1936 Walker->LowpointNr = ( Walker->LowpointNr < OtherAtom->GraphNr ) ? Walker->LowpointNr : OtherAtom->GraphNr;
1937 *out << Verbose(3) << "(4a) Visited: Setting Lowpoint of Walker[" << Walker->Name << "] to " << Walker->LowpointNr << "." << endl;
1938 } else {
1939 // (4b) ... otherwise set OtherAtom as Ancestor of Walker and Walker as OtherAtom, go to (2)
1940 Binder->Type = TreeEdge;
1941 OtherAtom->Ancestor = Walker;
1942 Walker = OtherAtom;
1943 *out << Verbose(3) << "(4b) Not Visited: OtherAtom[" << OtherAtom->Name << "]'s Ancestor is now " << OtherAtom->Ancestor->Name << ", Walker is OtherAtom " << OtherAtom->Name << "." << endl;
1944 break;
1945 }
1946 Binder = NULL;
1947 } while (1); // (3)
1948 if (Binder == NULL) {
1949 *out << Verbose(2) << "No more Unused Bonds." << endl;
1950 break;
1951 } else
1952 Binder = NULL;
1953 } while (1); // (2)
1954
1955 // if we came from backstepping, yet there were no more unused bonds, we end up here with no Ancestor, because Walker is Root! Then we are finished!
1956 if ((Walker == Root) && (Binder == NULL))
1957 break;
1958
1959 // (5) if Ancestor of Walker is ...
1960 *out << Verbose(1) << "(5) Number of Walker[" << Walker->Name << "]'s Ancestor[" << Walker->Ancestor->Name << "] is " << Walker->Ancestor->GraphNr << "." << endl;
1961 if (Walker->Ancestor->GraphNr != Root->GraphNr) {
1962 // (6) (Ancestor of Walker is not Root)
1963 if (Walker->LowpointNr < Walker->Ancestor->GraphNr) {
1964 // (6a) set Ancestor's Lowpoint number to minimum of of its Ancestor and itself, go to Step(8)
1965 Walker->Ancestor->LowpointNr = (Walker->Ancestor->LowpointNr < Walker->LowpointNr) ? Walker->Ancestor->LowpointNr : Walker->LowpointNr;
1966 *out << Verbose(2) << "(6) Setting Walker[" << Walker->Name << "]'s Ancestor[" << Walker->Ancestor->Name << "]'s Lowpoint to " << Walker->Ancestor->LowpointNr << "." << endl;
1967 } else {
1968 // (7) (Ancestor of Walker is a separating vertex, remove all from stack till Walker (including), these and Ancestor form a component
1969 Walker->Ancestor->SeparationVertex = true;
1970 *out << Verbose(2) << "(7) Walker[" << Walker->Name << "]'s Ancestor[" << Walker->Ancestor->Name << "]'s is a separating vertex, creating component." << endl;
1971 SetNextComponentNumber(Walker->Ancestor, ComponentNumber);
1972 *out << Verbose(3) << "(7) Walker[" << Walker->Name << "]'s Ancestor's Compont is " << ComponentNumber << "." << endl;
1973 SetNextComponentNumber(Walker, ComponentNumber);
1974 *out << Verbose(3) << "(7) Walker[" << Walker->Name << "]'s Compont is " << ComponentNumber << "." << endl;
1975 do {
1976 OtherAtom = AtomStack->PopLast();
1977 LeafWalker->Leaf->AddCopyAtom(OtherAtom);
1978 SetNextComponentNumber(OtherAtom, ComponentNumber);
1979 *out << Verbose(3) << "(7) Other[" << OtherAtom->Name << "]'s Compont is " << ComponentNumber << "." << endl;
1980 } while (OtherAtom != Walker);
1981 ComponentNumber++;
1982 }
1983 // (8) Walker becomes its Ancestor, go to (3)
1984 *out << Verbose(2) << "(8) Walker[" << Walker->Name << "] is now its Ancestor " << Walker->Ancestor->Name << ", backstepping. " << endl;
1985 Walker = Walker->Ancestor;
1986 BackStepping = true;
1987 }
1988 if (!BackStepping) { // coming from (8) want to go to (3)
1989 // (9) remove all from stack till Walker (including), these and Root form a component
1990 AtomStack->Output(out);
1991 SetNextComponentNumber(Root, ComponentNumber);
1992 *out << Verbose(3) << "(9) Root[" << Root->Name << "]'s Component is " << ComponentNumber << "." << endl;
1993 SetNextComponentNumber(Walker, ComponentNumber);
1994 *out << Verbose(3) << "(9) Walker[" << Walker->Name << "]'s Component is " << ComponentNumber << "." << endl;
1995 do {
1996 OtherAtom = AtomStack->PopLast();
1997 LeafWalker->Leaf->AddCopyAtom(OtherAtom);
1998 SetNextComponentNumber(OtherAtom, ComponentNumber);
1999 *out << Verbose(3) << "(7) Other[" << OtherAtom->Name << "]'s Compont is " << ComponentNumber << "." << endl;
2000 } while (OtherAtom != Walker);
2001 ComponentNumber++;
2002
2003 // (11) Root is separation vertex, set Walker to Root and go to (4)
2004 Walker = Root;
2005 Binder = FindNextUnused(Walker);
2006 *out << Verbose(1) << "(10) Walker is Root[" << Root->Name << "], next Unused Bond is " << Binder << "." << endl;
2007 if (Binder != NULL) { // Root is separation vertex
2008 *out << Verbose(1) << "(11) Root is a separation vertex." << endl;
2009 Walker->SeparationVertex = true;
2010 }
2011 }
2012 } while ((BackStepping) || (Binder != NULL)); // (10) halt only if Root has no unused edges
2013
2014 // From OldGraphNr to CurrentGraphNr ranges an disconnected subgraph
2015 *out << Verbose(0) << "Disconnected subgraph ranges from " << OldGraphNr << " to " << CurrentGraphNr << "." << endl;
2016 LeafWalker->Leaf->Output(out);
2017 *out << endl;
2018
2019 // step on to next root
2020 while ((Root != end) && (Root->GraphNr != -1)) {
2021 //*out << Verbose(1) << "Current next subgraph root candidate is " << Root->Name << "." << endl;
2022 if (Root->GraphNr != -1) // if already discovered, step on
2023 Root = Root->next;
2024 }
2025 }
2026 // set cyclic bond criterium on "same LP" basis
2027 Binder = first;
2028 while(Binder->next != last) {
2029 Binder = Binder->next;
2030 if (Binder->rightatom->LowpointNr == Binder->leftatom->LowpointNr) { // cyclic ??
2031 Binder->Cyclic = true;
2032 NoCyclicBonds++;
2033 }
2034 }
2035
2036
2037 *out << Verbose(1) << "Final graph info for each atom is:" << endl;
2038 Walker = start;
2039 while (Walker->next != end) {
2040 Walker = Walker->next;
2041 *out << Verbose(2) << "Atom " << Walker->Name << " is " << ((Walker->SeparationVertex) ? "a" : "not a") << " separation vertex, components are ";
2042 OutputComponentNumber(out, Walker);
2043 *out << " with Lowpoint " << Walker->LowpointNr << " and Graph Nr. " << Walker->GraphNr << "." << endl;
2044 }
2045
2046 *out << Verbose(1) << "Final graph info for each bond is:" << endl;
2047 Binder = first;
2048 while(Binder->next != last) {
2049 Binder = Binder->next;
2050 *out << Verbose(2) << ((Binder->Type == TreeEdge) ? "TreeEdge " : "BackEdge ") << *Binder << ": <";
2051 *out << ((Binder->leftatom->SeparationVertex) ? "SP," : "") << "L" << Binder->leftatom->LowpointNr << " G" << Binder->leftatom->GraphNr << " Comp.";
2052 OutputComponentNumber(out, Binder->leftatom);
2053 *out << " === ";
2054 *out << ((Binder->rightatom->SeparationVertex) ? "SP," : "") << "L" << Binder->rightatom->LowpointNr << " G" << Binder->rightatom->GraphNr << " Comp.";
2055 OutputComponentNumber(out, Binder->rightatom);
2056 *out << ">." << endl;
2057 if (Binder->Cyclic) // cyclic ??
2058 *out << Verbose(3) << "Lowpoint at each side are equal: CYCLIC!" << endl;
2059 }
2060
2061 // free all and exit
2062 delete(AtomStack);
2063 *out << Verbose(0) << "End of DepthFirstSearchAnalysis" << endl;
2064 return SubGraphs;
2065};
2066
2067/** Analyses the cycles found and returns minimum of all cycle lengths.
2068 * We begin with a list of Back edges found during DepthFirstSearchAnalysis(). We go through this list - one end is the Root,
2069 * the other our initial Walker - and do a Breadth First Search for the Root. We mark down each Predecessor and as soon as
2070 * we have found the Root via BFS, we may climb back the closed cycle via the Predecessors. Thereby we mark atoms and bonds
2071 * as cyclic and print out the cycles.
2072 * \param *out output stream for debugging
2073 * \param *BackEdgeStack stack with all back edges found during DFS scan. Beware: This stack contains the bonds from the total molecule, not from the subgraph!
2074 * \param *&MinimumRingSize contains smallest ring size in molecular structure on return or -1 if no rings were found, if set is maximum search distance
2075 * \todo BFS from the not-same-LP to find back to starting point of tributary cycle over more than one bond
2076 */
2077void molecule::CyclicStructureAnalysis(ofstream *out, class StackClass<bond *> * BackEdgeStack, int *&MinimumRingSize)
2078{
2079 atom **PredecessorList = (atom **) Malloc(sizeof(atom *)*AtomCount, "molecule::CyclicStructureAnalysis: **PredecessorList");
2080 int *ShortestPathList = (int *) Malloc(sizeof(int)*AtomCount, "molecule::CyclicStructureAnalysis: *ShortestPathList");
2081 enum Shading *ColorList = (enum Shading *) Malloc(sizeof(enum Shading)*AtomCount, "molecule::CyclicStructureAnalysis: *ColorList");
2082 class StackClass<atom *> *BFSStack = new StackClass<atom *> (AtomCount); // will hold the current ring
2083 class StackClass<atom *> *TouchedStack = new StackClass<atom *> (AtomCount); // contains all "touched" atoms (that need to be reset after BFS loop)
2084 atom *Walker = NULL, *OtherAtom = NULL, *Root = NULL;
2085 bond *Binder = NULL, *BackEdge = NULL;
2086 int RingSize, NumCycles, MinRingSize = -1;
2087
2088 // initialise each vertex as white with no predecessor, empty queue, color Root lightgray
2089 for (int i=AtomCount;i--;) {
2090 PredecessorList[i] = NULL;
2091 ShortestPathList[i] = -1;
2092 ColorList[i] = white;
2093 }
2094
2095 *out << Verbose(1) << "Back edge list - ";
2096 BackEdgeStack->Output(out);
2097
2098 *out << Verbose(1) << "Analysing cycles ... " << endl;
2099 NumCycles = 0;
2100 while (!BackEdgeStack->IsEmpty()) {
2101 BackEdge = BackEdgeStack->PopFirst();
2102 // this is the target
2103 Root = BackEdge->leftatom;
2104 // this is the source point
2105 Walker = BackEdge->rightatom;
2106 ShortestPathList[Walker->nr] = 0;
2107 BFSStack->ClearStack(); // start with empty BFS stack
2108 BFSStack->Push(Walker);
2109 TouchedStack->Push(Walker);
2110 *out << Verbose(1) << "---------------------------------------------------------------------------------------------------------" << endl;
2111 OtherAtom = NULL;
2112 do { // look for Root
2113 Walker = BFSStack->PopFirst();
2114 *out << Verbose(2) << "Current Walker is " << *Walker << ", we look for SP to Root " << *Root << "." << endl;
2115 for(int i=0;i<NumberOfBondsPerAtom[Walker->nr];i++) {
2116 Binder = ListOfBondsPerAtom[Walker->nr][i];
2117 if (Binder != BackEdge) { // only walk along DFS spanning tree (otherwise we always find SP of one being backedge Binder)
2118 OtherAtom = Binder->GetOtherAtom(Walker);
2119#ifdef ADDHYDROGEN
2120 if (OtherAtom->type->Z != 1) {
2121#endif
2122 *out << Verbose(2) << "Current OtherAtom is: " << OtherAtom->Name << " for bond " << *Binder << "." << endl;
2123 if (ColorList[OtherAtom->nr] == white) {
2124 TouchedStack->Push(OtherAtom);
2125 ColorList[OtherAtom->nr] = lightgray;
2126 PredecessorList[OtherAtom->nr] = Walker; // Walker is the predecessor
2127 ShortestPathList[OtherAtom->nr] = ShortestPathList[Walker->nr]+1;
2128 *out << Verbose(2) << "Coloring OtherAtom " << OtherAtom->Name << " lightgray, its predecessor is " << Walker->Name << " and its Shortest Path is " << ShortestPathList[OtherAtom->nr] << " egde(s) long." << endl;
2129 //if (ShortestPathList[OtherAtom->nr] < MinimumRingSize[Walker->GetTrueFather()->nr]) { // Check for maximum distance
2130 *out << Verbose(3) << "Putting OtherAtom into queue." << endl;
2131 BFSStack->Push(OtherAtom);
2132 //}
2133 } else {
2134 *out << Verbose(3) << "Not Adding, has already been visited." << endl;
2135 }
2136 if (OtherAtom == Root)
2137 break;
2138#ifdef ADDHYDROGEN
2139 } else {
2140 *out << Verbose(2) << "Skipping hydrogen atom " << *OtherAtom << "." << endl;
2141 ColorList[OtherAtom->nr] = black;
2142 }
2143#endif
2144 } else {
2145 *out << Verbose(2) << "Bond " << *Binder << " not Visiting, is the back edge." << endl;
2146 }
2147 }
2148 ColorList[Walker->nr] = black;
2149 *out << Verbose(1) << "Coloring Walker " << Walker->Name << " black." << endl;
2150 if (OtherAtom == Root) { // if we have found the root, check whether this cycle wasn't already found beforehand
2151 // step through predecessor list
2152 while (OtherAtom != BackEdge->rightatom) {
2153 if (!OtherAtom->GetTrueFather()->IsCyclic) // if one bond in the loop is not marked as cyclic, we haven't found this cycle yet
2154 break;
2155 else
2156 OtherAtom = PredecessorList[OtherAtom->nr];
2157 }
2158 if (OtherAtom == BackEdge->rightatom) { // if each atom in found cycle is cyclic, loop's been found before already
2159 *out << Verbose(3) << "This cycle was already found before, skipping and removing seeker from search." << endl;\
2160 do {
2161 OtherAtom = TouchedStack->PopLast();
2162 if (PredecessorList[OtherAtom->nr] == Walker) {
2163 *out << Verbose(4) << "Removing " << *OtherAtom << " from lists and stacks." << endl;
2164 PredecessorList[OtherAtom->nr] = NULL;
2165 ShortestPathList[OtherAtom->nr] = -1;
2166 ColorList[OtherAtom->nr] = white;
2167 BFSStack->RemoveItem(OtherAtom);
2168 }
2169 } while ((!TouchedStack->IsEmpty()) && (PredecessorList[OtherAtom->nr] == NULL));
2170 TouchedStack->Push(OtherAtom); // last was wrongly popped
2171 OtherAtom = BackEdge->rightatom; // set to not Root
2172 } else
2173 OtherAtom = Root;
2174 }
2175 } while ((!BFSStack->IsEmpty()) && (OtherAtom != Root) && (OtherAtom != NULL)); // || (ShortestPathList[OtherAtom->nr] < MinimumRingSize[Walker->GetTrueFather()->nr])));
2176
2177 if (OtherAtom == Root) {
2178 // now climb back the predecessor list and thus find the cycle members
2179 NumCycles++;
2180 RingSize = 1;
2181 Root->GetTrueFather()->IsCyclic = true;
2182 *out << Verbose(1) << "Found ring contains: ";
2183 Walker = Root;
2184 while (Walker != BackEdge->rightatom) {
2185 *out << Walker->Name << " <-> ";
2186 Walker = PredecessorList[Walker->nr];
2187 Walker->GetTrueFather()->IsCyclic = true;
2188 RingSize++;
2189 }
2190 *out << Walker->Name << " with a length of " << RingSize << "." << endl << endl;
2191 // walk through all and set MinimumRingSize
2192 Walker = Root;
2193 MinimumRingSize[Walker->GetTrueFather()->nr] = RingSize;
2194 while (Walker != BackEdge->rightatom) {
2195 Walker = PredecessorList[Walker->nr];
2196 if (RingSize < MinimumRingSize[Walker->GetTrueFather()->nr])
2197 MinimumRingSize[Walker->GetTrueFather()->nr] = RingSize;
2198 }
2199 if ((RingSize < MinRingSize) || (MinRingSize == -1))
2200 MinRingSize = RingSize;
2201 } else {
2202 *out << Verbose(1) << "No ring containing " << *Root << " with length equal to or smaller than " << MinimumRingSize[Walker->GetTrueFather()->nr] << " found." << endl;
2203 }
2204
2205 // now clean the lists
2206 while (!TouchedStack->IsEmpty()){
2207 Walker = TouchedStack->PopFirst();
2208 PredecessorList[Walker->nr] = NULL;
2209 ShortestPathList[Walker->nr] = -1;
2210 ColorList[Walker->nr] = white;
2211 }
2212 }
2213 if (MinRingSize != -1) {
2214 // go over all atoms
2215 Root = start;
2216 while(Root->next != end) {
2217 Root = Root->next;
2218
2219 if (MinimumRingSize[Root->GetTrueFather()->nr] == AtomCount) { // check whether MinimumRingSize is set, if not BFS to next where it is
2220 Walker = Root;
2221 ShortestPathList[Walker->nr] = 0;
2222 BFSStack->ClearStack(); // start with empty BFS stack
2223 BFSStack->Push(Walker);
2224 TouchedStack->Push(Walker);
2225 //*out << Verbose(1) << "---------------------------------------------------------------------------------------------------------" << endl;
2226 OtherAtom = Walker;
2227 while (OtherAtom != NULL) { // look for Root
2228 Walker = BFSStack->PopFirst();
2229 //*out << Verbose(2) << "Current Walker is " << *Walker << ", we look for SP to Root " << *Root << "." << endl;
2230 for(int i=0;i<NumberOfBondsPerAtom[Walker->nr];i++) {
2231 Binder = ListOfBondsPerAtom[Walker->nr][i];
2232 if ((Binder != BackEdge) || (NumberOfBondsPerAtom[Walker->nr] == 1)) { // only walk along DFS spanning tree (otherwise we always find SP of 1 being backedge Binder), but terminal hydrogens may be connected via backedge, hence extra check
2233 OtherAtom = Binder->GetOtherAtom(Walker);
2234 //*out << Verbose(2) << "Current OtherAtom is: " << OtherAtom->Name << " for bond " << *Binder << "." << endl;
2235 if (ColorList[OtherAtom->nr] == white) {
2236 TouchedStack->Push(OtherAtom);
2237 ColorList[OtherAtom->nr] = lightgray;
2238 PredecessorList[OtherAtom->nr] = Walker; // Walker is the predecessor
2239 ShortestPathList[OtherAtom->nr] = ShortestPathList[Walker->nr]+1;
2240 //*out << Verbose(2) << "Coloring OtherAtom " << OtherAtom->Name << " lightgray, its predecessor is " << Walker->Name << " and its Shortest Path is " << ShortestPathList[OtherAtom->nr] << " egde(s) long." << endl;
2241 if (OtherAtom->GetTrueFather()->IsCyclic) { // if the other atom is connected to a ring
2242 MinimumRingSize[Root->GetTrueFather()->nr] = ShortestPathList[OtherAtom->nr]+MinimumRingSize[OtherAtom->GetTrueFather()->nr];
2243 OtherAtom = NULL; //break;
2244 break;
2245 } else
2246 BFSStack->Push(OtherAtom);
2247 } else {
2248 //*out << Verbose(3) << "Not Adding, has already been visited." << endl;
2249 }
2250 } else {
2251 //*out << Verbose(3) << "Not Visiting, is a back edge." << endl;
2252 }
2253 }
2254 ColorList[Walker->nr] = black;
2255 //*out << Verbose(1) << "Coloring Walker " << Walker->Name << " black." << endl;
2256 }
2257
2258 // now clean the lists
2259 while (!TouchedStack->IsEmpty()){
2260 Walker = TouchedStack->PopFirst();
2261 PredecessorList[Walker->nr] = NULL;
2262 ShortestPathList[Walker->nr] = -1;
2263 ColorList[Walker->nr] = white;
2264 }
2265 }
2266 *out << Verbose(1) << "Minimum ring size of " << *Root << " is " << MinimumRingSize[Root->GetTrueFather()->nr] << "." << endl;
2267 }
2268 *out << Verbose(1) << "Minimum ring size is " << MinRingSize << ", over " << NumCycles << " cycles total." << endl;
2269 } else
2270 *out << Verbose(1) << "No rings were detected in the molecular structure." << endl;
2271
2272 Free((void **)&PredecessorList, "molecule::CyclicStructureAnalysis: **PredecessorList");
2273 Free((void **)&ShortestPathList, "molecule::CyclicStructureAnalysis: **ShortestPathList");
2274 Free((void **)&ColorList, "molecule::CyclicStructureAnalysis: **ColorList");
2275 delete(BFSStack);
2276};
2277
2278/** Sets the next component number.
2279 * This is O(N) as the number of bonds per atom is bound.
2280 * \param *vertex atom whose next atom::*ComponentNr is to be set
2281 * \param nr number to use
2282 */
2283void molecule::SetNextComponentNumber(atom *vertex, int nr)
2284{
2285 int i=0;
2286 if (vertex != NULL) {
2287 for(;i<NumberOfBondsPerAtom[vertex->nr];i++) {
2288 if (vertex->ComponentNr[i] == -1) { // check if not yet used
2289 vertex->ComponentNr[i] = nr;
2290 break;
2291 }
2292 else if (vertex->ComponentNr[i] == nr) // if number is already present, don't add another time
2293 break; // breaking here will not cause error!
2294 }
2295 if (i == NumberOfBondsPerAtom[vertex->nr])
2296 cerr << "Error: All Component entries are already occupied!" << endl;
2297 } else
2298 cerr << "Error: Given vertex is NULL!" << endl;
2299};
2300
2301/** Output a list of flags, stating whether the bond was visited or not.
2302 * \param *out output stream for debugging
2303 */
2304void molecule::OutputComponentNumber(ofstream *out, atom *vertex)
2305{
2306 for(int i=0;i<NumberOfBondsPerAtom[vertex->nr];i++)
2307 *out << vertex->ComponentNr[i] << " ";
2308};
2309
2310/** Allocates memory for all atom::*ComponentNr in this molecule and sets each entry to -1.
2311 */
2312void molecule::InitComponentNumbers()
2313{
2314 atom *Walker = start;
2315 while(Walker->next != end) {
2316 Walker = Walker->next;
2317 if (Walker->ComponentNr != NULL)
2318 Free((void **)&Walker->ComponentNr, "molecule::InitComponentNumbers: **Walker->ComponentNr");
2319 Walker->ComponentNr = (int *) Malloc(sizeof(int)*NumberOfBondsPerAtom[Walker->nr], "molecule::InitComponentNumbers: *Walker->ComponentNr");
2320 for (int i=NumberOfBondsPerAtom[Walker->nr];i--;)
2321 Walker->ComponentNr[i] = -1;
2322 }
2323};
2324
2325/** Returns next unused bond for this atom \a *vertex or NULL of none exists.
2326 * \param *vertex atom to regard
2327 * \return bond class or NULL
2328 */
2329bond * molecule::FindNextUnused(atom *vertex)
2330{
2331 for(int i=0;i<NumberOfBondsPerAtom[vertex->nr];i++)
2332 if (ListOfBondsPerAtom[vertex->nr][i]->IsUsed() == white)
2333 return(ListOfBondsPerAtom[vertex->nr][i]);
2334 return NULL;
2335};
2336
2337/** Resets bond::Used flag of all bonds in this molecule.
2338 * \return true - success, false - -failure
2339 */
2340void molecule::ResetAllBondsToUnused()
2341{
2342 bond *Binder = first;
2343 while (Binder->next != last) {
2344 Binder = Binder->next;
2345 Binder->ResetUsed();
2346 }
2347};
2348
2349/** Resets atom::nr to -1 of all atoms in this molecule.
2350 */
2351void molecule::ResetAllAtomNumbers()
2352{
2353 atom *Walker = start;
2354 while (Walker->next != end) {
2355 Walker = Walker->next;
2356 Walker->GraphNr = -1;
2357 }
2358};
2359
2360/** Output a list of flags, stating whether the bond was visited or not.
2361 * \param *out output stream for debugging
2362 * \param *list
2363 */
2364void OutputAlreadyVisited(ofstream *out, int *list)
2365{
2366 *out << Verbose(4) << "Already Visited Bonds:\t";
2367 for(int i=1;i<=list[0];i++) *out << Verbose(0) << list[i] << " ";
2368 *out << endl;
2369};
2370
2371/** Estimates by educated guessing (using upper limit) the expected number of fragments.
2372 * The upper limit is
2373 * \f[
2374 * n = N \cdot C^k
2375 * \f]
2376 * where \f$C=2^c\f$ and c is the maximum bond degree over N number of atoms.
2377 * \param *out output stream for debugging
2378 * \param order bond order k
2379 * \return number n of fragments
2380 */
2381int molecule::GuesstimateFragmentCount(ofstream *out, int order)
2382{
2383 int c = 0;
2384 int FragmentCount;
2385 // get maximum bond degree
2386 atom *Walker = start;
2387 while (Walker->next != end) {
2388 Walker = Walker->next;
2389 c = (NumberOfBondsPerAtom[Walker->nr] > c) ? NumberOfBondsPerAtom[Walker->nr] : c;
2390 }
2391 FragmentCount = NoNonHydrogen*(1 << (c*order));
2392 *out << Verbose(1) << "Upper limit for this subgraph is " << FragmentCount << " for " << NoNonHydrogen << " non-H atoms with maximum bond degree of " << c << "." << endl;
2393 return FragmentCount;
2394};
2395
2396/** Scans a single line for number and puts them into \a KeySet.
2397 * \param *out output stream for debugging
2398 * \param *buffer buffer to scan
2399 * \param &CurrentSet filled KeySet on return
2400 * \return true - at least one valid atom id parsed, false - CurrentSet is empty
2401 */
2402bool molecule::ScanBufferIntoKeySet(ofstream *out, char *buffer, KeySet &CurrentSet)
2403{
2404 stringstream line;
2405 int AtomNr;
2406 int status = 0;
2407
2408 line.str(buffer);
2409 while (!line.eof()) {
2410 line >> AtomNr;
2411 if ((AtomNr >= 0) && (AtomNr < AtomCount)) {
2412 CurrentSet.insert(AtomNr); // insert at end, hence in same order as in file!
2413 status++;
2414 } // else it's "-1" or else and thus must not be added
2415 }
2416 *out << Verbose(1) << "The scanned KeySet is ";
2417 for(KeySet::iterator runner = CurrentSet.begin(); runner != CurrentSet.end(); runner++) {
2418 *out << (*runner) << "\t";
2419 }
2420 *out << endl;
2421 return (status != 0);
2422};
2423
2424/** Parses the KeySet file and fills \a *FragmentList from the known molecule structure.
2425 * Does two-pass scanning:
2426 * -# Scans the keyset file and initialises a temporary graph
2427 * -# Scans TEFactors file and sets the TEFactor of each key set in the temporary graph accordingly
2428 * Finally, the temporary graph is inserted into the given \a FragmentList for return.
2429 * \param *out output stream for debugging
2430 * \param *path path to file
2431 * \param *FragmentList empty, filled on return
2432 * \return true - parsing successfully, false - failure on parsing (FragmentList will be NULL)
2433 */
2434bool molecule::ParseKeySetFile(ofstream *out, char *path, Graph *&FragmentList)
2435{
2436 bool status = true;
2437 ifstream InputFile;
2438 stringstream line;
2439 GraphTestPair testGraphInsert;
2440 int NumberOfFragments = 0;
2441 double TEFactor;
2442 char *filename = (char *) Malloc(sizeof(char)*MAXSTRINGSIZE, "molecule::ParseKeySetFile - filename");
2443
2444 if (FragmentList == NULL) { // check list pointer
2445 FragmentList = new Graph;
2446 }
2447
2448 // 1st pass: open file and read
2449 *out << Verbose(1) << "Parsing the KeySet file ... " << endl;
2450 sprintf(filename, "%s/%s%s", path, FRAGMENTPREFIX, KEYSETFILE);
2451 InputFile.open(filename);
2452 if (InputFile != NULL) {
2453 // each line represents a new fragment
2454 char *buffer = (char *) Malloc(sizeof(char)*MAXSTRINGSIZE, "molecule::ParseKeySetFile - *buffer");
2455 // 1. parse keysets and insert into temp. graph
2456 while (!InputFile.eof()) {
2457 InputFile.getline(buffer, MAXSTRINGSIZE);
2458 KeySet CurrentSet;
2459 if ((strlen(buffer) > 0) && (ScanBufferIntoKeySet(out, buffer, CurrentSet))) { // if at least one valid atom was added, write config
2460 testGraphInsert = FragmentList->insert(GraphPair (CurrentSet,pair<int,double>(NumberOfFragments++,1))); // store fragment number and current factor
2461 if (!testGraphInsert.second) {
2462 cerr << "KeySet file must be corrupt as there are two equal key sets therein!" << endl;
2463 }
2464 //FragmentList->ListOfMolecules[NumberOfFragments++] = StoreFragmentFromKeySet(out, CurrentSet, IsAngstroem);
2465 }
2466 }
2467 // 2. Free and done
2468 InputFile.close();
2469 InputFile.clear();
2470 Free((void **)&buffer, "molecule::ParseKeySetFile - *buffer");
2471 *out << Verbose(1) << "done." << endl;
2472 } else {
2473 *out << Verbose(1) << "File " << filename << " not found." << endl;
2474 status = false;
2475 }
2476
2477 // 2nd pass: open TEFactors file and read
2478 *out << Verbose(1) << "Parsing the TEFactors file ... " << endl;
2479 sprintf(filename, "%s/%s%s", path, FRAGMENTPREFIX, TEFACTORSFILE);
2480 InputFile.open(filename);
2481 if (InputFile != NULL) {
2482 // 3. add found TEFactors to each keyset
2483 NumberOfFragments = 0;
2484 for(Graph::iterator runner = FragmentList->begin();runner != FragmentList->end(); runner++) {
2485 if (!InputFile.eof()) {
2486 InputFile >> TEFactor;
2487 (*runner).second.second = TEFactor;
2488 *out << Verbose(2) << "Setting " << ++NumberOfFragments << " fragment's TEFactor to " << (*runner).second.second << "." << endl;
2489 } else {
2490 status = false;
2491 break;
2492 }
2493 }
2494 // 4. Free and done
2495 InputFile.close();
2496 *out << Verbose(1) << "done." << endl;
2497 } else {
2498 *out << Verbose(1) << "File " << filename << " not found." << endl;
2499 status = false;
2500 }
2501
2502 // free memory
2503 Free((void **)&filename, "molecule::ParseKeySetFile - filename");
2504
2505 return status;
2506};
2507
2508/** Stores keysets and TEFactors to file.
2509 * \param *out output stream for debugging
2510 * \param KeySetList Graph with Keysets and factors
2511 * \param *path path to file
2512 * \return true - file written successfully, false - writing failed
2513 */
2514bool molecule::StoreKeySetFile(ofstream *out, Graph &KeySetList, char *path)
2515{
2516 ofstream output;
2517 bool status = true;
2518 string line;
2519
2520 // open KeySet file
2521 line = path;
2522 line.append("/");
2523 line += FRAGMENTPREFIX;
2524 line += KEYSETFILE;
2525 output.open(line.c_str(), ios::out);
2526 *out << Verbose(1) << "Saving key sets of the total graph ... ";
2527 if(output != NULL) {
2528 for(Graph::iterator runner = KeySetList.begin(); runner != KeySetList.end(); runner++) {
2529 for (KeySet::iterator sprinter = (*runner).first.begin();sprinter != (*runner).first.end(); sprinter++) {
2530 if (sprinter != (*runner).first.begin())
2531 output << "\t";
2532 output << *sprinter;
2533 }
2534 output << endl;
2535 }
2536 *out << "done." << endl;
2537 } else {
2538 cerr << "Unable to open " << line << " for writing keysets!" << endl;
2539 status = false;
2540 }
2541 output.close();
2542 output.clear();
2543
2544 // open TEFactors file
2545 line = path;
2546 line.append("/");
2547 line += FRAGMENTPREFIX;
2548 line += TEFACTORSFILE;
2549 output.open(line.c_str(), ios::out);
2550 *out << Verbose(1) << "Saving TEFactors of the total graph ... ";
2551 if(output != NULL) {
2552 for(Graph::iterator runner = KeySetList.begin(); runner != KeySetList.end(); runner++)
2553 output << (*runner).second.second << endl;
2554 *out << Verbose(1) << "done." << endl;
2555 } else {
2556 *out << Verbose(1) << "failed to open " << line << "." << endl;
2557 status = false;
2558 }
2559 output.close();
2560
2561 return status;
2562};
2563
2564/** Storing the bond structure of a molecule to file.
2565 * Simply stores Atom::nr and then the Atom::nr of all bond partners per line.
2566 * \param *out output stream for debugging
2567 * \param *path path to file
2568 * \return true - file written successfully, false - writing failed
2569 */
2570bool molecule::StoreAdjacencyToFile(ofstream *out, char *path)
2571{
2572 ofstream AdjacencyFile;
2573 atom *Walker = NULL;
2574 stringstream line;
2575 bool status = true;
2576
2577 line << path << "/" << FRAGMENTPREFIX << ADJACENCYFILE;
2578 AdjacencyFile.open(line.str().c_str(), ios::out);
2579 *out << Verbose(1) << "Saving adjacency list ... ";
2580 if (AdjacencyFile != NULL) {
2581 Walker = start;
2582 while(Walker->next != end) {
2583 Walker = Walker->next;
2584 AdjacencyFile << Walker->nr << "\t";
2585 for (int i=0;i<NumberOfBondsPerAtom[Walker->nr];i++)
2586 AdjacencyFile << ListOfBondsPerAtom[Walker->nr][i]->GetOtherAtom(Walker)->nr << "\t";
2587 AdjacencyFile << endl;
2588 }
2589 AdjacencyFile.close();
2590 *out << Verbose(1) << "done." << endl;
2591 } else {
2592 *out << Verbose(1) << "failed to open file " << line.str() << "." << endl;
2593 status = false;
2594 }
2595
2596 return status;
2597};
2598
2599/** Checks contents of adjacency file against bond structure in structure molecule.
2600 * \param *out output stream for debugging
2601 * \param *path path to file
2602 * \param **ListOfAtoms allocated (molecule::AtomCount) and filled lookup table for ids (Atom::nr) to *Atom
2603 * \return true - structure is equal, false - not equivalence
2604 */
2605bool molecule::CheckAdjacencyFileAgainstMolecule(ofstream *out, char *path, atom **ListOfAtoms)
2606{
2607 ifstream File;
2608 stringstream filename;
2609 bool status = true;
2610 char *buffer = (char *) Malloc(sizeof(char)*MAXSTRINGSIZE, "molecule::CheckAdjacencyFileAgainstMolecule: *buffer");
2611
2612 filename << path << "/" << FRAGMENTPREFIX << ADJACENCYFILE;
2613 File.open(filename.str().c_str(), ios::out);
2614 *out << Verbose(1) << "Looking at bond structure stored in adjacency file and comparing to present one ... ";
2615 if (File != NULL) {
2616 // allocate storage structure
2617 int NonMatchNumber = 0; // will number of atoms with differing bond structure
2618 int *CurrentBonds = (int *) Malloc(sizeof(int)*8, "molecule::CheckAdjacencyFileAgainstMolecule - CurrentBonds"); // contains parsed bonds of current atom
2619 int CurrentBondsOfAtom;
2620
2621 // Parse the file line by line and count the bonds
2622 while (!File.eof()) {
2623 File.getline(buffer, MAXSTRINGSIZE);
2624 stringstream line;
2625 line.str(buffer);
2626 int AtomNr = -1;
2627 line >> AtomNr;
2628 CurrentBondsOfAtom = -1; // we count one too far due to line end
2629 // parse into structure
2630 if ((AtomNr >= 0) && (AtomNr < AtomCount)) {
2631 while (!line.eof())
2632 line >> CurrentBonds[ ++CurrentBondsOfAtom ];
2633 // compare against present bonds
2634 //cout << Verbose(2) << "Walker is " << *Walker << ", bond partners: ";
2635 if (CurrentBondsOfAtom == NumberOfBondsPerAtom[AtomNr]) {
2636 for(int i=0;i<NumberOfBondsPerAtom[AtomNr];i++) {
2637 int id = ListOfBondsPerAtom[AtomNr][i]->GetOtherAtom(ListOfAtoms[AtomNr])->nr;
2638 int j = 0;
2639 for (;(j<CurrentBondsOfAtom) && (CurrentBonds[j++] != id);); // check against all parsed bonds
2640 if (CurrentBonds[j-1] != id) { // no match ? Then mark in ListOfAtoms
2641 ListOfAtoms[AtomNr] = NULL;
2642 NonMatchNumber++;
2643 status = false;
2644 //out << "[" << id << "]\t";
2645 } else {
2646 //out << id << "\t";
2647 }
2648 }
2649 //out << endl;
2650 } else {
2651 *out << "Number of bonds for Atom " << *ListOfAtoms[AtomNr] << " does not match, parsed " << CurrentBondsOfAtom << " against " << NumberOfBondsPerAtom[AtomNr] << "." << endl;
2652 status = false;
2653 }
2654 }
2655 }
2656 File.close();
2657 File.clear();
2658 if (status) { // if equal we parse the KeySetFile
2659 *out << Verbose(1) << "done: Equal." << endl;
2660 status = true;
2661 } else
2662 *out << Verbose(1) << "done: Not equal by " << NonMatchNumber << " atoms." << endl;
2663 Free((void **)&CurrentBonds, "molecule::CheckAdjacencyFileAgainstMolecule - **CurrentBonds");
2664 } else {
2665 *out << Verbose(1) << "Adjacency file not found." << endl;
2666 status = false;
2667 }
2668 *out << endl;
2669 Free((void **)&buffer, "molecule::CheckAdjacencyFileAgainstMolecule: *buffer");
2670
2671 return status;
2672};
2673
2674/** Checks whether the OrderAtSite is still below \a Order at some site.
2675 * \param *out output stream for debugging
2676 * \param *AtomMask defines true/false per global Atom::nr to mask in/out each nuclear site, used to activate given number of site to increment order adaptively
2677 * \param *GlobalKeySetList list of keysets with global ids (valid in "this" molecule) needed for adaptive increase
2678 * \param Order desired Order if positive, desired exponent in threshold criteria if negative (0 is single-step)
2679 * \param *MinimumRingSize array of max. possible order to avoid loops
2680 * \param *path path to ENERGYPERFRAGMENT file (may be NULL if Order is non-negative)
2681 * \return true - needs further fragmentation, false - does not need fragmentation
2682 */
2683bool molecule::CheckOrderAtSite(ofstream *out, bool *AtomMask, Graph *GlobalKeySetList, int Order, int *MinimumRingSize, char *path)
2684{
2685 atom *Walker = start;
2686 bool status = false;
2687 ifstream InputFile;
2688
2689 // initialize mask list
2690 for(int i=AtomCount;i--;)
2691 AtomMask[i] = false;
2692
2693 if (Order < 0) { // adaptive increase of BondOrder per site
2694 if (AtomMask[AtomCount] == true) // break after one step
2695 return false;
2696 // parse the EnergyPerFragment file
2697 char *buffer = (char *) Malloc(sizeof(char)*MAXSTRINGSIZE, "molecule::CheckOrderAtSite: *buffer");
2698 sprintf(buffer, "%s/%s%s.dat", path, FRAGMENTPREFIX, ENERGYPERFRAGMENT);
2699 InputFile.open(buffer, ios::in);
2700 if ((InputFile != NULL) && (GlobalKeySetList != NULL)) {
2701 // transmorph graph keyset list into indexed KeySetList
2702 map<int,KeySet> IndexKeySetList;
2703 for(Graph::iterator runner = GlobalKeySetList->begin(); runner != GlobalKeySetList->end(); runner++) {
2704 IndexKeySetList.insert( pair<int,KeySet>(runner->second.first,runner->first) );
2705 }
2706 int lines = 0;
2707 // count the number of lines, i.e. the number of fragments
2708 InputFile.getline(buffer, MAXSTRINGSIZE); // skip comment lines
2709 InputFile.getline(buffer, MAXSTRINGSIZE);
2710 while(!InputFile.eof()) {
2711 InputFile.getline(buffer, MAXSTRINGSIZE);
2712 lines++;
2713 }
2714 //*out << Verbose(2) << "Scanned " << lines-1 << " lines." << endl; // one endline too much
2715 InputFile.clear();
2716 InputFile.seekg(ios::beg);
2717 map<int, pair<double,int> > AdaptiveCriteriaList; // (Root No., (Value, Order)) !
2718 int No, FragOrder;
2719 double Value;
2720 // each line represents a fragment root (Atom::nr) id and its energy contribution
2721 InputFile.getline(buffer, MAXSTRINGSIZE); // skip comment lines
2722 InputFile.getline(buffer, MAXSTRINGSIZE);
2723 while(!InputFile.eof()) {
2724 InputFile.getline(buffer, MAXSTRINGSIZE);
2725 if (strlen(buffer) > 2) {
2726 //*out << Verbose(2) << "Scanning: " << buffer << endl;
2727 stringstream line(buffer);
2728 line >> FragOrder;
2729 line >> ws >> No;
2730 line >> ws >> Value; // skip time entry
2731 line >> ws >> Value;
2732 No -= 1; // indices start at 1 in file, not 0
2733 //*out << Verbose(2) << " - yields (" << No << "," << Value << ", " << FragOrder << ")" << endl;
2734
2735 // clean the list of those entries that have been superceded by higher order terms already
2736 map<int,KeySet>::iterator marker = IndexKeySetList.find(No); // find keyset to Frag No.
2737 if (marker != IndexKeySetList.end()) { // if found
2738 Value *= 1 + MYEPSILON*(*((*marker).second.begin())); // in case of equal energies this makes em not equal without changing anything actually
2739 // as the smallest number in each set has always been the root (we use global id to keep the doubles away), seek smallest and insert into AtomMask
2740 pair <map<int, pair<double,int> >::iterator, bool> InsertedElement = AdaptiveCriteriaList.insert( make_pair(*((*marker).second.begin()), pair<double,int>( fabs(Value), FragOrder) ));
2741 map<int, pair<double,int> >::iterator PresentItem = InsertedElement.first;
2742 if (!InsertedElement.second) { // this root is already present
2743 if ((*PresentItem).second.second < FragOrder) // if order there is lower, update entry with higher-order term
2744 //if ((*PresentItem).second.first < (*runner).first) // as higher-order terms are not always better, we skip this part (which would always include this site into adaptive increase)
2745 { // if value is smaller, update value and order
2746 (*PresentItem).second.first = fabs(Value);
2747 (*PresentItem).second.second = FragOrder;
2748 *out << Verbose(2) << "Updated element (" << (*PresentItem).first << ",[" << (*PresentItem).second.first << "," << (*PresentItem).second.second << "])." << endl;
2749 } else {
2750 *out << Verbose(2) << "Did not update element " << (*PresentItem).first << " as " << FragOrder << " is less than or equal to " << (*PresentItem).second.second << "." << endl;
2751 }
2752 } else {
2753 *out << Verbose(2) << "Inserted element (" << (*PresentItem).first << ",[" << (*PresentItem).second.first << "," << (*PresentItem).second.second << "])." << endl;
2754 }
2755 } else {
2756 *out << Verbose(1) << "No Fragment under No. " << No << "found." << endl;
2757 }
2758 }
2759 }
2760 // then map back onto (Value, (Root Nr., Order)) (i.e. sorted by value to pick the highest ones)
2761 map<double, pair<int,int> > FinalRootCandidates;
2762 *out << Verbose(1) << "Root candidate list is: " << endl;
2763 for(map<int, pair<double,int> >::iterator runner = AdaptiveCriteriaList.begin(); runner != AdaptiveCriteriaList.end(); runner++) {
2764 Walker = FindAtom((*runner).first);
2765 if (Walker != NULL) {
2766 //if ((*runner).second.second >= Walker->AdaptiveOrder) { // only insert if this is an "active" root site for the current order
2767 if (!Walker->MaxOrder) {
2768 *out << Verbose(2) << "(" << (*runner).first << ",[" << (*runner).second.first << "," << (*runner).second.second << "])" << endl;
2769 FinalRootCandidates.insert( make_pair( (*runner).second.first, pair<int,int>((*runner).first, (*runner).second.second) ) );
2770 } else {
2771 *out << Verbose(2) << "Excluding (" << *Walker << ", " << (*runner).first << ",[" << (*runner).second.first << "," << (*runner).second.second << "]), as it has reached its maximum order." << endl;
2772 }
2773 } else {
2774 cerr << "Atom No. " << (*runner).second.first << " was not found in this molecule." << endl;
2775 }
2776 }
2777 // pick the ones still below threshold and mark as to be adaptively updated
2778 for(map<double, pair<int,int> >::iterator runner = FinalRootCandidates.upper_bound(pow(10.,Order)); runner != FinalRootCandidates.end(); runner++) {
2779 No = (*runner).second.first;
2780 Walker = FindAtom(No);
2781 //if (Walker->AdaptiveOrder < MinimumRingSize[Walker->nr]) {
2782 *out << Verbose(2) << "Root " << No << " is still above threshold (10^{" << Order <<"}: " << runner->first << ", setting entry " << No << " of Atom mask to true." << endl;
2783 AtomMask[No] = true;
2784 status = true;
2785 //} else
2786 //*out << Verbose(2) << "Root " << No << " is still above threshold (10^{" << Order <<"}: " << runner->first << ", however MinimumRingSize of " << MinimumRingSize[Walker->nr] << " does not allow further adaptive increase." << endl;
2787 }
2788 // close and done
2789 InputFile.close();
2790 InputFile.clear();
2791 } else {
2792 cerr << "Unable to parse " << buffer << " file, incrementing all." << endl;
2793 while (Walker->next != end) {
2794 Walker = Walker->next;
2795 #ifdef ADDHYDROGEN
2796 if (Walker->type->Z != 1) // skip hydrogen
2797 #endif
2798 {
2799 AtomMask[Walker->nr] = true; // include all (non-hydrogen) atoms
2800 status = true;
2801 }
2802 }
2803 }
2804 Free((void **)&buffer, "molecule::CheckOrderAtSite: *buffer");
2805 // pick a given number of highest values and set AtomMask
2806 } else { // global increase of Bond Order
2807 while (Walker->next != end) {
2808 Walker = Walker->next;
2809 #ifdef ADDHYDROGEN
2810 if (Walker->type->Z != 1) // skip hydrogen
2811 #endif
2812 {
2813 AtomMask[Walker->nr] = true; // include all (non-hydrogen) atoms
2814 if ((Order != 0) && (Walker->AdaptiveOrder < Order)) // && (Walker->AdaptiveOrder < MinimumRingSize[Walker->nr]))
2815 status = true;
2816 }
2817 }
2818 if ((Order == 0) && (AtomMask[AtomCount] == false)) // single stepping, just check
2819 status = true;
2820
2821 if (!status) {
2822 if (Order == 0)
2823 *out << Verbose(1) << "Single stepping done." << endl;
2824 else
2825 *out << Verbose(1) << "Order at every site is already equal or above desired order " << Order << "." << endl;
2826 }
2827 }
2828
2829 // print atom mask for debugging
2830 *out << " ";
2831 for(int i=0;i<AtomCount;i++)
2832 *out << (i % 10);
2833 *out << endl << "Atom mask is: ";
2834 for(int i=0;i<AtomCount;i++)
2835 *out << (AtomMask[i] ? "t" : "f");
2836 *out << endl;
2837
2838 return status;
2839};
2840
2841/** Create a SortIndex to map from atomic labels to the sequence in which the atoms are given in the config file.
2842 * \param *out output stream for debugging
2843 * \param *&SortIndex Mapping array of size molecule::AtomCount
2844 * \return true - success, false - failure of SortIndex alloc
2845 */
2846bool molecule::CreateMappingLabelsToConfigSequence(ofstream *out, int *&SortIndex)
2847{
2848 element *runner = elemente->start;
2849 int AtomNo = 0;
2850 atom *Walker = NULL;
2851
2852 if (SortIndex != NULL) {
2853 *out << Verbose(1) << "SortIndex is " << SortIndex << " and not NULL as expected." << endl;
2854 return false;
2855 }
2856 SortIndex = (int *) Malloc(sizeof(int)*AtomCount, "molecule::FragmentMolecule: *SortIndex");
2857 for(int i=AtomCount;i--;)
2858 SortIndex[i] = -1;
2859 while (runner->next != elemente->end) { // go through every element
2860 runner = runner->next;
2861 if (ElementsInMolecule[runner->Z]) { // if this element got atoms
2862 Walker = start;
2863 while (Walker->next != end) { // go through every atom of this element
2864 Walker = Walker->next;
2865 if (Walker->type->Z == runner->Z) // if this atom fits to element
2866 SortIndex[Walker->nr] = AtomNo++;
2867 }
2868 }
2869 }
2870 return true;
2871};
2872
2873/** Performs a many-body bond order analysis for a given bond order.
2874 * -# parses adjacency, keysets and orderatsite files
2875 * -# performs DFS to find connected subgraphs (to leave this in was a design decision: might be useful later)
2876 * -# RootStack is created for every subgraph (here, later we implement the "update 10 sites with highest energ
2877y contribution", and that's why this consciously not done in the following loop)
2878 * -# in a loop over all subgraphs
2879 * -# calls FragmentBOSSANOVA with this RootStack and within the subgraph molecule structure
2880 * -# creates molecule (fragment)s from the returned keysets (StoreFragmentFromKeySet)
2881 * -# combines the generated molecule lists from all subgraphs
2882 * -# saves to disk: fragment configs, adjacency, orderatsite, keyset files
2883 * Note that as we split "this" molecule up into a list of subgraphs, i.e. a MoleculeListClass, we have two sets
2884 * of vertex indices: Global always means the index in "this" molecule, whereas local refers to the molecule or
2885 * subgraph in the MoleculeListClass.
2886 * \param *out output stream for debugging
2887 * \param Order up to how many neighbouring bonds a fragment contains in BondOrderScheme::BottumUp scheme
2888 * \param *configuration configuration for writing config files for each fragment
2889 * \return 1 - continue, 2 - stop (no fragmentation occured)
2890 */
2891int molecule::FragmentMolecule(ofstream *out, int Order, config *configuration)
2892{
2893 MoleculeListClass *BondFragments = NULL;
2894 int *SortIndex = NULL;
2895 int *MinimumRingSize = new int[AtomCount];
2896 int FragmentCounter;
2897 MoleculeLeafClass *MolecularWalker = NULL;
2898 MoleculeLeafClass *Subgraphs = NULL; // list of subgraphs from DFS analysis
2899 fstream File;
2900 bool FragmentationToDo = true;
2901 class StackClass<bond *> *BackEdgeStack = NULL, *LocalBackEdgeStack = NULL;
2902 bool CheckOrder = false;
2903 Graph **FragmentList = NULL;
2904 Graph *ParsedFragmentList = NULL;
2905 Graph TotalGraph; // graph with all keysets however local numbers
2906 int TotalNumberOfKeySets = 0;
2907 atom **ListOfAtoms = NULL;
2908 atom ***ListOfLocalAtoms = NULL;
2909 bool *AtomMask = NULL;
2910
2911 *out << endl;
2912#ifdef ADDHYDROGEN
2913 *out << Verbose(0) << "I will treat hydrogen special and saturate dangling bonds with it." << endl;
2914#else
2915 *out << Verbose(0) << "Hydrogen is treated just like the rest of the lot." << endl;
2916#endif
2917
2918 // ++++++++++++++++++++++++++++ INITIAL STUFF: Bond structure analysis, file parsing, ... ++++++++++++++++++++++++++++++++++++++++++
2919
2920 // ===== 1. Check whether bond structure is same as stored in files ====
2921
2922 // fill the adjacency list
2923 CreateListOfBondsPerAtom(out);
2924
2925 // create lookup table for Atom::nr
2926 FragmentationToDo = FragmentationToDo && CreateFatherLookupTable(out, start, end, ListOfAtoms, AtomCount);
2927
2928 // === compare it with adjacency file ===
2929 FragmentationToDo = FragmentationToDo && CheckAdjacencyFileAgainstMolecule(out, configuration->configpath, ListOfAtoms);
2930 Free((void **)&ListOfAtoms, "molecule::FragmentMolecule - **ListOfAtoms");
2931
2932 // ===== 2. perform a DFS analysis to gather info on cyclic structure and a list of disconnected subgraphs =====
2933 Subgraphs = DepthFirstSearchAnalysis(out, BackEdgeStack);
2934 // fill the bond structure of the individually stored subgraphs
2935 Subgraphs->next->FillBondStructureFromReference(out, this, (FragmentCounter = 0), ListOfLocalAtoms, false); // we want to keep the created ListOfLocalAtoms
2936 // analysis of the cycles (print rings, get minimum cycle length) for each subgraph
2937 for(int i=AtomCount;i--;)
2938 MinimumRingSize[i] = AtomCount;
2939 MolecularWalker = Subgraphs;
2940 FragmentCounter = 0;
2941 while (MolecularWalker->next != NULL) {
2942 MolecularWalker = MolecularWalker->next;
2943 *out << Verbose(0) << "Analysing the cycles of subgraph " << MolecularWalker->Leaf << " with nr. " << FragmentCounter << "." << endl;
2944 LocalBackEdgeStack = new StackClass<bond *> (MolecularWalker->Leaf->BondCount);
2945// // check the list of local atoms for debugging
2946// *out << Verbose(0) << "ListOfLocalAtoms for this subgraph is:" << endl;
2947// for (int i=0;i<AtomCount;i++)
2948// if (ListOfLocalAtoms[FragmentCounter][i] == NULL)
2949// *out << "\tNULL";
2950// else
2951// *out << "\t" << ListOfLocalAtoms[FragmentCounter][i]->Name;
2952 MolecularWalker->Leaf->PickLocalBackEdges(out, ListOfLocalAtoms[FragmentCounter++], BackEdgeStack, LocalBackEdgeStack);
2953 MolecularWalker->Leaf->CyclicStructureAnalysis(out, LocalBackEdgeStack, MinimumRingSize);
2954 delete(LocalBackEdgeStack);
2955 }
2956
2957 // ===== 3. if structure still valid, parse key set file and others =====
2958 FragmentationToDo = FragmentationToDo && ParseKeySetFile(out, configuration->configpath, ParsedFragmentList);
2959
2960 // ===== 4. check globally whether there's something to do actually (first adaptivity check)
2961 FragmentationToDo = FragmentationToDo && ParseOrderAtSiteFromFile(out, configuration->configpath);
2962
2963 // =================================== Begin of FRAGMENTATION ===============================
2964 // ===== 6a. assign each keyset to its respective subgraph =====
2965 Subgraphs->next->AssignKeySetsToFragment(out, this, ParsedFragmentList, ListOfLocalAtoms, FragmentList, (FragmentCounter = 0), true);
2966
2967 // ===== 6b. prepare and go into the adaptive (Order<0), single-step (Order==0) or incremental (Order>0) cycle
2968 KeyStack *RootStack = new KeyStack[Subgraphs->next->Count()];
2969 AtomMask = new bool[AtomCount+1];
2970 AtomMask[AtomCount] = false;
2971 FragmentationToDo = false; // if CheckOrderAtSite just ones recommends fragmentation, we will save fragments afterwards
2972 while ((CheckOrder = CheckOrderAtSite(out, AtomMask, ParsedFragmentList, Order, MinimumRingSize, configuration->configpath))) {
2973 FragmentationToDo = FragmentationToDo || CheckOrder;
2974 AtomMask[AtomCount] = true; // last plus one entry is used as marker that we have been through this loop once already in CheckOrderAtSite()
2975 // ===== 6b. fill RootStack for each subgraph (second adaptivity check) =====
2976 Subgraphs->next->FillRootStackForSubgraphs(out, RootStack, AtomMask, (FragmentCounter = 0));
2977
2978 // ===== 7. fill the bond fragment list =====
2979 FragmentCounter = 0;
2980 MolecularWalker = Subgraphs;
2981 while (MolecularWalker->next != NULL) {
2982 MolecularWalker = MolecularWalker->next;
2983 *out << Verbose(1) << "Fragmenting subgraph " << MolecularWalker << "." << endl;
2984 // output ListOfBondsPerAtom for debugging
2985 MolecularWalker->Leaf->OutputListOfBonds(out);
2986 if (MolecularWalker->Leaf->first->next != MolecularWalker->Leaf->last) {
2987
2988 // call BOSSANOVA method
2989 *out << Verbose(0) << endl << " ========== BOND ENERGY of subgraph " << FragmentCounter << " ========================= " << endl;
2990 MolecularWalker->Leaf->FragmentBOSSANOVA(out, FragmentList[FragmentCounter], RootStack[FragmentCounter], MinimumRingSize);
2991 } else {
2992 cerr << "Subgraph " << MolecularWalker << " has no atoms!" << endl;
2993 }
2994 FragmentCounter++; // next fragment list
2995 }
2996 }
2997 delete[](RootStack);
2998 delete[](AtomMask);
2999 delete(ParsedFragmentList);
3000 delete[](MinimumRingSize);
3001
3002
3003 // ==================================== End of FRAGMENTATION ============================================
3004
3005 // ===== 8a. translate list into global numbers (i.e. ones that are valid in "this" molecule, not in MolecularWalker->Leaf)
3006 Subgraphs->next->TranslateIndicesToGlobalIDs(out, FragmentList, (FragmentCounter = 0), TotalNumberOfKeySets, TotalGraph);
3007
3008 // free subgraph memory again
3009 FragmentCounter = 0;
3010 if (Subgraphs != NULL) {
3011 while (Subgraphs->next != NULL) {
3012 Subgraphs = Subgraphs->next;
3013 delete(FragmentList[FragmentCounter++]);
3014 delete(Subgraphs->previous);
3015 }
3016 delete(Subgraphs);
3017 }
3018 Free((void **)&FragmentList, "molecule::FragmentMolecule - **FragmentList");
3019
3020 // ===== 8b. gather keyset lists (graphs) from all subgraphs and transform into MoleculeListClass =====
3021 //if (FragmentationToDo) { // we should always store the fragments again as coordination might have changed slightly without changing bond structure
3022 // allocate memory for the pointer array and transmorph graphs into full molecular fragments
3023 BondFragments = new MoleculeListClass(TotalGraph.size(), AtomCount);
3024 int k=0;
3025 for(Graph::iterator runner = TotalGraph.begin(); runner != TotalGraph.end(); runner++) {
3026 KeySet test = (*runner).first;
3027 *out << "Fragment No." << (*runner).second.first << " with TEFactor " << (*runner).second.second << "." << endl;
3028 BondFragments->ListOfMolecules[k] = StoreFragmentFromKeySet(out, test, configuration);
3029 k++;
3030 }
3031 *out << k << "/" << BondFragments->NumberOfMolecules << " fragments generated from the keysets." << endl;
3032
3033 // ===== 9. Save fragments' configuration and keyset files et al to disk ===
3034 if (BondFragments->NumberOfMolecules != 0) {
3035 // create the SortIndex from BFS labels to order in the config file
3036 CreateMappingLabelsToConfigSequence(out, SortIndex);
3037
3038 *out << Verbose(1) << "Writing " << BondFragments->NumberOfMolecules << " possible bond fragmentation configs" << endl;
3039 if (BondFragments->OutputConfigForListOfFragments(out, configuration, SortIndex))
3040 *out << Verbose(1) << "All configs written." << endl;
3041 else
3042 *out << Verbose(1) << "Some config writing failed." << endl;
3043
3044 // store force index reference file
3045 BondFragments->StoreForcesFile(out, configuration->configpath, SortIndex);
3046
3047 // store keysets file
3048 StoreKeySetFile(out, TotalGraph, configuration->configpath);
3049
3050 // store Adjacency file
3051 StoreAdjacencyToFile(out, configuration->configpath);
3052
3053 // store Hydrogen saturation correction file
3054 BondFragments->AddHydrogenCorrection(out, configuration->configpath);
3055
3056 // store adaptive orders into file
3057 StoreOrderAtSiteFile(out, configuration->configpath);
3058
3059 // restore orbital and Stop values
3060 CalculateOrbitals(*configuration);
3061
3062 // free memory for bond part
3063 *out << Verbose(1) << "Freeing bond memory" << endl;
3064 delete(FragmentList); // remove bond molecule from memory
3065 Free((void **)&SortIndex, "molecule::FragmentMolecule: *SortIndex");
3066 } else
3067 *out << Verbose(1) << "FragmentList is zero on return, splitting failed." << endl;
3068 //} else
3069 // *out << Verbose(1) << "No fragments to store." << endl;
3070 *out << Verbose(0) << "End of bond fragmentation." << endl;
3071
3072 return ((int)(!FragmentationToDo)+1); // 1 - continue, 2 - stop (no fragmentation occured)
3073};
3074
3075
3076/** Picks from a global stack with all back edges the ones in the fragment.
3077 * \param *out output stream for debugging
3078 * \param **ListOfLocalAtoms array of father atom::nr to local atom::nr (reverse of atom::father)
3079 * \param *ReferenceStack stack with all the back egdes
3080 * \param *LocalStack stack to be filled
3081 * \return true - everything ok, false - ReferenceStack was empty
3082 */
3083bool molecule::PickLocalBackEdges(ofstream *out, atom **ListOfLocalAtoms, class StackClass<bond *> *&ReferenceStack, class StackClass<bond *> *&LocalStack)
3084{
3085 bool status = true;
3086 if (ReferenceStack->IsEmpty()) {
3087 cerr << "ReferenceStack is empty!" << endl;
3088 return false;
3089 }
3090 bond *Binder = ReferenceStack->PopFirst();
3091 bond *FirstBond = Binder; // mark the first bond, so that we don't loop through the stack indefinitely
3092 atom *Walker = NULL, *OtherAtom = NULL;
3093 ReferenceStack->Push(Binder);
3094
3095 do { // go through all bonds and push local ones
3096 Walker = ListOfLocalAtoms[Binder->leftatom->nr]; // get one atom in the reference molecule
3097 if (Walker == NULL) // if this Walker exists in the subgraph ...
3098 continue;
3099 for(int i=0;i<NumberOfBondsPerAtom[Walker->nr];i++) { // go through the local list of bonds
3100 OtherAtom = ListOfBondsPerAtom[Walker->nr][i]->GetOtherAtom(Walker);
3101 if (OtherAtom == ListOfLocalAtoms[Binder->rightatom->nr]) { // found the bond
3102 LocalStack->Push(ListOfBondsPerAtom[Walker->nr][i]);
3103 break;
3104 }
3105 }
3106 Binder = ReferenceStack->PopFirst(); // loop the stack for next item
3107 ReferenceStack->Push(Binder);
3108 } while (FirstBond != Binder);
3109
3110 return status;
3111};
3112
3113/** Stores pairs (Atom::nr, Atom::AdaptiveOrder) into file.
3114 * Atoms not present in the file get "-1".
3115 * \param *out output stream for debugging
3116 * \param *path path to file ORDERATSITEFILE
3117 * \return true - file writable, false - not writable
3118 */
3119bool molecule::StoreOrderAtSiteFile(ofstream *out, char *path)
3120{
3121 stringstream line;
3122 ofstream file;
3123
3124 line << path << "/" << FRAGMENTPREFIX << ORDERATSITEFILE;
3125 file.open(line.str().c_str());
3126 *out << Verbose(1) << "Writing OrderAtSite " << ORDERATSITEFILE << " ... " << endl;
3127 if (file != NULL) {
3128 atom *Walker = start;
3129 while (Walker->next != end) {
3130 Walker = Walker->next;
3131 file << Walker->nr << "\t" << (int)Walker->AdaptiveOrder << "\t" << (int)Walker->MaxOrder << endl;
3132 *out << Verbose(2) << "Storing: " << Walker->nr << "\t" << (int)Walker->AdaptiveOrder << "\t" << (int)Walker->MaxOrder << "." << endl;
3133 }
3134 file.close();
3135 *out << Verbose(1) << "done." << endl;
3136 return true;
3137 } else {
3138 *out << Verbose(1) << "failed to open file " << line.str() << "." << endl;
3139 return false;
3140 }
3141};
3142
3143/** Parses pairs(Atom::nr, Atom::AdaptiveOrder) from file and stores in molecule's Atom's.
3144 * Atoms not present in the file get "0".
3145 * \param *out output stream for debugging
3146 * \param *path path to file ORDERATSITEFILEe
3147 * \return true - file found and scanned, false - file not found
3148 * \sa ParseKeySetFile() and CheckAdjacencyFileAgainstMolecule() as this is meant to be used in conjunction with the two
3149 */
3150bool molecule::ParseOrderAtSiteFromFile(ofstream *out, char *path)
3151{
3152 unsigned char *OrderArray = (unsigned char *) Malloc(sizeof(unsigned char)*AtomCount, "molecule::ParseOrderAtSiteFromFile - *OrderArray");
3153 bool *MaxArray = (bool *) Malloc(sizeof(bool)*AtomCount, "molecule::ParseOrderAtSiteFromFile - *MaxArray");
3154 bool status;
3155 int AtomNr, value;
3156 stringstream line;
3157 ifstream file;
3158
3159 *out << Verbose(1) << "Begin of ParseOrderAtSiteFromFile" << endl;
3160 for(int i=AtomCount;i--;)
3161 OrderArray[i] = 0;
3162 line << path << "/" << FRAGMENTPREFIX << ORDERATSITEFILE;
3163 file.open(line.str().c_str());
3164 if (file != NULL) {
3165 for (int i=AtomCount;i--;) { // initialise with 0
3166 OrderArray[i] = 0;
3167 MaxArray[i] = 0;
3168 }
3169 while (!file.eof()) { // parse from file
3170 AtomNr = -1;
3171 file >> AtomNr;
3172 if (AtomNr != -1) { // test whether we really parsed something (this is necessary, otherwise last atom is set twice and to 0 on second time)
3173 file >> value;
3174 OrderArray[AtomNr] = value;
3175 file >> value;
3176 MaxArray[AtomNr] = value;
3177 //*out << Verbose(2) << "AtomNr " << AtomNr << " with order " << (int)OrderArray[AtomNr] << " and max order set to " << (int)MaxArray[AtomNr] << "." << endl;
3178 }
3179 }
3180 atom *Walker = start;
3181 while (Walker->next != end) { // fill into atom classes
3182 Walker = Walker->next;
3183 Walker->AdaptiveOrder = OrderArray[Walker->nr];
3184 Walker->MaxOrder = MaxArray[Walker->nr];
3185 *out << Verbose(2) << *Walker << " gets order " << (int)Walker->AdaptiveOrder << " and is " << (!Walker->MaxOrder ? "not " : " ") << "maxed." << endl;
3186 }
3187 file.close();
3188 *out << Verbose(1) << "done." << endl;
3189 status = true;
3190 } else {
3191 *out << Verbose(1) << "failed to open file " << line.str() << "." << endl;
3192 status = false;
3193 }
3194 Free((void **)&OrderArray, "molecule::ParseOrderAtSiteFromFile - *OrderArray");
3195 Free((void **)&MaxArray, "molecule::ParseOrderAtSiteFromFile - *MaxArray");
3196
3197 *out << Verbose(1) << "End of ParseOrderAtSiteFromFile" << endl;
3198 return status;
3199};
3200
3201/** Creates an 2d array of pointer with an entry for each atom and each bond it has.
3202 * Updates molecule::ListOfBondsPerAtom, molecule::NumberOfBondsPerAtom by parsing through
3203 * bond chain list, using molecule::AtomCount and molecule::BondCount.
3204 * Allocates memory, fills the array and exits
3205 * \param *out output stream for debugging
3206 */
3207void molecule::CreateListOfBondsPerAtom(ofstream *out)
3208{
3209 bond *Binder = NULL;
3210 atom *Walker = NULL;
3211 int TotalDegree;
3212 *out << Verbose(1) << "Begin of Creating ListOfBondsPerAtom: AtomCount = " << AtomCount << "\tBondCount = " << BondCount << "\tNoNonBonds = " << NoNonBonds << "." << endl;
3213
3214 // re-allocate memory
3215 *out << Verbose(2) << "(Re-)Allocating memory." << endl;
3216 if (ListOfBondsPerAtom != NULL) {
3217 for(int i=AtomCount;i--;)
3218 Free((void **)&ListOfBondsPerAtom[i], "molecule::CreateListOfBondsPerAtom: ListOfBondsPerAtom[i]");
3219 Free((void **)&ListOfBondsPerAtom, "molecule::CreateListOfBondsPerAtom: ListOfBondsPerAtom");
3220 }
3221 if (NumberOfBondsPerAtom != NULL)
3222 Free((void **)&NumberOfBondsPerAtom, "molecule::CreateListOfBondsPerAtom: NumberOfBondsPerAtom");
3223 ListOfBondsPerAtom = (bond ***) Malloc(sizeof(bond **)*AtomCount, "molecule::CreateListOfBondsPerAtom: ***ListOfBondsPerAtom");
3224 NumberOfBondsPerAtom = (int *) Malloc(sizeof(int)*AtomCount, "molecule::CreateListOfBondsPerAtom: *NumberOfBondsPerAtom");
3225
3226 // reset bond counts per atom
3227 for(int i=AtomCount;i--;)
3228 NumberOfBondsPerAtom[i] = 0;
3229 // count bonds per atom
3230 Binder = first;
3231 while (Binder->next != last) {
3232 Binder = Binder->next;
3233 NumberOfBondsPerAtom[Binder->leftatom->nr]++;
3234 NumberOfBondsPerAtom[Binder->rightatom->nr]++;
3235 }
3236 for(int i=AtomCount;i--;) {
3237 // allocate list of bonds per atom
3238 ListOfBondsPerAtom[i] = (bond **) Malloc(sizeof(bond *)*NumberOfBondsPerAtom[i], "molecule::CreateListOfBondsPerAtom: **ListOfBondsPerAtom[]");
3239 // clear the list again, now each NumberOfBondsPerAtom marks current free field
3240 NumberOfBondsPerAtom[i] = 0;
3241 }
3242 // fill the list
3243 Binder = first;
3244 while (Binder->next != last) {
3245 Binder = Binder->next;
3246 ListOfBondsPerAtom[Binder->leftatom->nr][NumberOfBondsPerAtom[Binder->leftatom->nr]++] = Binder;
3247 ListOfBondsPerAtom[Binder->rightatom->nr][NumberOfBondsPerAtom[Binder->rightatom->nr]++] = Binder;
3248 }
3249
3250 // output list for debugging
3251 *out << Verbose(3) << "ListOfBondsPerAtom for each atom:" << endl;
3252 Walker = start;
3253 while (Walker->next != end) {
3254 Walker = Walker->next;
3255 *out << Verbose(4) << "Atom " << Walker->Name << "/" << Walker->nr << " with " << NumberOfBondsPerAtom[Walker->nr] << " bonds: ";
3256 TotalDegree = 0;
3257 for (int j=0;j<NumberOfBondsPerAtom[Walker->nr];j++) {
3258 *out << *ListOfBondsPerAtom[Walker->nr][j] << "\t";
3259 TotalDegree += ListOfBondsPerAtom[Walker->nr][j]->BondDegree;
3260 }
3261 *out << " -- TotalDegree: " << TotalDegree << endl;
3262 }
3263 *out << Verbose(1) << "End of Creating ListOfBondsPerAtom." << endl << endl;
3264};
3265
3266/** Adds atoms up to \a BondCount distance from \a *Root and notes them down in \a **AddedAtomList.
3267 * Gray vertices are always enqueued in an StackClass<atom *> FIFO queue, the rest is usual BFS with adding vertices found was
3268 * white and putting into queue.
3269 * \param *out output stream for debugging
3270 * \param *Mol Molecule class to add atoms to
3271 * \param **AddedAtomList list with added atom pointers, index is atom father's number
3272 * \param **AddedBondList list with added bond pointers, index is bond father's number
3273 * \param *Root root vertex for BFS
3274 * \param *Bond bond not to look beyond
3275 * \param BondOrder maximum distance for vertices to add
3276 * \param IsAngstroem lengths are in angstroem or bohrradii
3277 */
3278void molecule::BreadthFirstSearchAdd(ofstream *out, molecule *Mol, atom **&AddedAtomList, bond **&AddedBondList, atom *Root, bond *Bond, int BondOrder, bool IsAngstroem)
3279{
3280 atom **PredecessorList = (atom **) Malloc(sizeof(atom *)*AtomCount, "molecule::BreadthFirstSearchAdd: **PredecessorList");
3281 int *ShortestPathList = (int *) Malloc(sizeof(int)*AtomCount, "molecule::BreadthFirstSearchAdd: *ShortestPathList");
3282 enum Shading *ColorList = (enum Shading *) Malloc(sizeof(enum Shading)*AtomCount, "molecule::BreadthFirstSearchAdd: *ColorList");
3283 class StackClass<atom *> *AtomStack = new StackClass<atom *>(AtomCount);
3284 atom *Walker = NULL, *OtherAtom = NULL;
3285 bond *Binder = NULL;
3286
3287 // add Root if not done yet
3288 AtomStack->ClearStack();
3289 if (AddedAtomList[Root->nr] == NULL) // add Root if not yet present
3290 AddedAtomList[Root->nr] = Mol->AddCopyAtom(Root);
3291 AtomStack->Push(Root);
3292
3293 // initialise each vertex as white with no predecessor, empty queue, color Root lightgray
3294 for (int i=AtomCount;i--;) {
3295 PredecessorList[i] = NULL;
3296 ShortestPathList[i] = -1;
3297 if (AddedAtomList[i] != NULL) // mark already present atoms (i.e. Root and maybe others) as visited
3298 ColorList[i] = lightgray;
3299 else
3300 ColorList[i] = white;
3301 }
3302 ShortestPathList[Root->nr] = 0;
3303
3304 // and go on ... Queue always contains all lightgray vertices
3305 while (!AtomStack->IsEmpty()) {
3306 // we have to pop the oldest atom from stack. This keeps the atoms on the stack always of the same ShortestPath distance.
3307 // e.g. if current atom is 2, push to end of stack are of length 3, but first all of length 2 would be popped. They again
3308 // append length of 3 (their neighbours). Thus on stack we have always atoms of a certain length n at bottom of stack and
3309 // followed by n+1 till top of stack.
3310 Walker = AtomStack->PopFirst(); // pop oldest added
3311 *out << Verbose(1) << "Current Walker is: " << Walker->Name << ", and has " << NumberOfBondsPerAtom[Walker->nr] << " bonds." << endl;
3312 for(int i=0;i<NumberOfBondsPerAtom[Walker->nr];i++) {
3313 Binder = ListOfBondsPerAtom[Walker->nr][i];
3314 if (Binder != NULL) { // don't look at bond equal NULL
3315 OtherAtom = Binder->GetOtherAtom(Walker);
3316 *out << Verbose(2) << "Current OtherAtom is: " << OtherAtom->Name << " for bond " << *Binder << "." << endl;
3317 if (ColorList[OtherAtom->nr] == white) {
3318 if (Binder != Bond) // let other atom white if it's via Root bond. In case it's cyclic it has to be reached again (yet Root is from OtherAtom already black, thus no problem)
3319 ColorList[OtherAtom->nr] = lightgray;
3320 PredecessorList[OtherAtom->nr] = Walker; // Walker is the predecessor
3321 ShortestPathList[OtherAtom->nr] = ShortestPathList[Walker->nr]+1;
3322 *out << Verbose(2) << "Coloring OtherAtom " << OtherAtom->Name << " " << ((ColorList[OtherAtom->nr] == white) ? "white" : "lightgray") << ", its predecessor is " << Walker->Name << " and its Shortest Path is " << ShortestPathList[OtherAtom->nr] << " egde(s) long." << endl;
3323 if ((((ShortestPathList[OtherAtom->nr] < BondOrder) && (Binder != Bond))) ) { // Check for maximum distance
3324 *out << Verbose(3);
3325 if (AddedAtomList[OtherAtom->nr] == NULL) { // add if it's not been so far
3326 AddedAtomList[OtherAtom->nr] = Mol->AddCopyAtom(OtherAtom);
3327 *out << "Added OtherAtom " << OtherAtom->Name;
3328 AddedBondList[Binder->nr] = Mol->AddBond(AddedAtomList[Walker->nr], AddedAtomList[OtherAtom->nr], Binder->BondDegree);
3329 AddedBondList[Binder->nr]->Cyclic = Binder->Cyclic;
3330 AddedBondList[Binder->nr]->Type = Binder->Type;
3331 *out << " and bond " << *(AddedBondList[Binder->nr]) << ", ";
3332 } else { // this code should actually never come into play (all white atoms are not yet present in BondMolecule, that's why they are white in the first place)
3333 *out << "Not adding OtherAtom " << OtherAtom->Name;
3334 if (AddedBondList[Binder->nr] == NULL) {
3335 AddedBondList[Binder->nr] = Mol->AddBond(AddedAtomList[Walker->nr], AddedAtomList[OtherAtom->nr], Binder->BondDegree);
3336 AddedBondList[Binder->nr]->Cyclic = Binder->Cyclic;
3337 AddedBondList[Binder->nr]->Type = Binder->Type;
3338 *out << ", added Bond " << *(AddedBondList[Binder->nr]);
3339 } else
3340 *out << ", not added Bond ";
3341 }
3342 *out << ", putting OtherAtom into queue." << endl;
3343 AtomStack->Push(OtherAtom);
3344 } else { // out of bond order, then replace
3345 if ((AddedAtomList[OtherAtom->nr] == NULL) && (Binder->Cyclic))
3346 ColorList[OtherAtom->nr] = white; // unmark if it has not been queued/added, to make it available via its other bonds (cyclic)
3347 if (Binder == Bond)
3348 *out << Verbose(3) << "Not Queueing, is the Root bond";
3349 else if (ShortestPathList[OtherAtom->nr] >= BondOrder)
3350 *out << Verbose(3) << "Not Queueing, is out of Bond Count of " << BondOrder;
3351 if (!Binder->Cyclic)
3352 *out << ", is not part of a cyclic bond, saturating bond with Hydrogen." << endl;
3353 if (AddedBondList[Binder->nr] == NULL) {
3354 if ((AddedAtomList[OtherAtom->nr] != NULL)) { // .. whether we add or saturate
3355 AddedBondList[Binder->nr] = Mol->AddBond(AddedAtomList[Walker->nr], AddedAtomList[OtherAtom->nr], Binder->BondDegree);
3356 AddedBondList[Binder->nr]->Cyclic = Binder->Cyclic;
3357 AddedBondList[Binder->nr]->Type = Binder->Type;
3358 } else {
3359#ifdef ADDHYDROGEN
3360 Mol->AddHydrogenReplacementAtom(out, Binder, AddedAtomList[Walker->nr], Walker, OtherAtom, ListOfBondsPerAtom[Walker->nr], NumberOfBondsPerAtom[Walker->nr], IsAngstroem);
3361#endif
3362 }
3363 }
3364 }
3365 } else {
3366 *out << Verbose(3) << "Not Adding, has already been visited." << endl;
3367 // This has to be a cyclic bond, check whether it's present ...
3368 if (AddedBondList[Binder->nr] == NULL) {
3369 if ((Binder != Bond) && (Binder->Cyclic) && (((ShortestPathList[Walker->nr]+1) < BondOrder))) {
3370 AddedBondList[Binder->nr] = Mol->AddBond(AddedAtomList[Walker->nr], AddedAtomList[OtherAtom->nr], Binder->BondDegree);
3371 AddedBondList[Binder->nr]->Cyclic = Binder->Cyclic;
3372 AddedBondList[Binder->nr]->Type = Binder->Type;
3373 } else { // if it's root bond it has to broken (otherwise we would not create the fragments)
3374#ifdef ADDHYDROGEN
3375 Mol->AddHydrogenReplacementAtom(out, Binder, AddedAtomList[Walker->nr], Walker, OtherAtom, ListOfBondsPerAtom[Walker->nr], NumberOfBondsPerAtom[Walker->nr], IsAngstroem);
3376#endif
3377 }
3378 }
3379 }
3380 }
3381 }
3382 ColorList[Walker->nr] = black;
3383 *out << Verbose(1) << "Coloring Walker " << Walker->Name << " black." << endl;
3384 }
3385 Free((void **)&PredecessorList, "molecule::BreadthFirstSearchAdd: **PredecessorList");
3386 Free((void **)&ShortestPathList, "molecule::BreadthFirstSearchAdd: **ShortestPathList");
3387 Free((void **)&ColorList, "molecule::BreadthFirstSearchAdd: **ColorList");
3388 delete(AtomStack);
3389};
3390
3391/** Adds bond structure to this molecule from \a Father molecule.
3392 * This basically causes this molecule to become an induced subgraph of the \a Father, i.e. for every bond in Father
3393 * with end points present in this molecule, bond is created in this molecule.
3394 * Special care was taken to ensure that this is of complexity O(N), where N is the \a Father's molecule::AtomCount.
3395 * \param *out output stream for debugging
3396 * \param *Father father molecule
3397 * \return true - is induced subgraph, false - there are atoms with fathers not in \a Father
3398 * \todo not checked, not fully working probably
3399 */
3400bool molecule::BuildInducedSubgraph(ofstream *out, const molecule *Father)
3401{
3402 atom *Walker = NULL, *OtherAtom = NULL;
3403 bool status = true;
3404 atom **ParentList = (atom **) Malloc(sizeof(atom *)*Father->AtomCount, "molecule::BuildInducedSubgraph: **ParentList");
3405
3406 *out << Verbose(2) << "Begin of BuildInducedSubgraph." << endl;
3407
3408 // reset parent list
3409 *out << Verbose(3) << "Resetting ParentList." << endl;
3410 for (int i=Father->AtomCount;i--;)
3411 ParentList[i] = NULL;
3412
3413 // fill parent list with sons
3414 *out << Verbose(3) << "Filling Parent List." << endl;
3415 Walker = start;
3416 while (Walker->next != end) {
3417 Walker = Walker->next;
3418 ParentList[Walker->father->nr] = Walker;
3419 // Outputting List for debugging
3420 *out << Verbose(4) << "Son["<< Walker->father->nr <<"] of " << Walker->father << " is " << ParentList[Walker->father->nr] << "." << endl;
3421 }
3422
3423 // check each entry of parent list and if ok (one-to-and-onto matching) create bonds
3424 *out << Verbose(3) << "Creating bonds." << endl;
3425 Walker = Father->start;
3426 while (Walker->next != Father->end) {
3427 Walker = Walker->next;
3428 if (ParentList[Walker->nr] != NULL) {
3429 if (ParentList[Walker->nr]->father != Walker) {
3430 status = false;
3431 } else {
3432 for (int i=0;i<Father->NumberOfBondsPerAtom[Walker->nr];i++) {
3433 OtherAtom = Father->ListOfBondsPerAtom[Walker->nr][i]->GetOtherAtom(Walker);
3434 if (ParentList[OtherAtom->nr] != NULL) { // if otheratom is also a father of an atom on this molecule, create the bond
3435 *out << Verbose(4) << "Endpoints of Bond " << Father->ListOfBondsPerAtom[Walker->nr][i] << " are both present: " << ParentList[Walker->nr]->Name << " and " << ParentList[OtherAtom->nr]->Name << "." << endl;
3436 AddBond(ParentList[Walker->nr], ParentList[OtherAtom->nr], Father->ListOfBondsPerAtom[Walker->nr][i]->BondDegree);
3437 }
3438 }
3439 }
3440 }
3441 }
3442
3443 Free((void **)&ParentList, "molecule::BuildInducedSubgraph: **ParentList");
3444 *out << Verbose(2) << "End of BuildInducedSubgraph." << endl;
3445 return status;
3446};
3447
3448
3449/** Looks through a StackClass<atom *> and returns the likeliest removal candiate.
3450 * \param *out output stream for debugging messages
3451 * \param *&Leaf KeySet to look through
3452 * \param *&ShortestPathList list of the shortest path to decide which atom to suggest as removal candidate in the end
3453 * \param index of the atom suggested for removal
3454 */
3455int molecule::LookForRemovalCandidate(ofstream *&out, KeySet *&Leaf, int *&ShortestPathList)
3456{
3457 atom *Runner = NULL;
3458 int SP, Removal;
3459
3460 *out << Verbose(2) << "Looking for removal candidate." << endl;
3461 SP = -1; //0; // not -1, so that Root is never removed
3462 Removal = -1;
3463 for (KeySet::iterator runner = Leaf->begin(); runner != Leaf->end(); runner++) {
3464 Runner = FindAtom((*runner));
3465 if (Runner->type->Z != 1) { // skip all those added hydrogens when re-filling snake stack
3466 if (ShortestPathList[(*runner)] > SP) { // remove the oldest one with longest shortest path
3467 SP = ShortestPathList[(*runner)];
3468 Removal = (*runner);
3469 }
3470 }
3471 }
3472 return Removal;
3473};
3474
3475/** Stores a fragment from \a KeySet into \a molecule.
3476 * First creates the minimal set of atoms from the KeySet, then creates the bond structure from the complete
3477 * molecule and adds missing hydrogen where bonds were cut.
3478 * \param *out output stream for debugging messages
3479 * \param &Leaflet pointer to KeySet structure
3480 * \param IsAngstroem whether we have Ansgtroem or bohrradius
3481 * \return pointer to constructed molecule
3482 */
3483molecule * molecule::StoreFragmentFromKeySet(ofstream *out, KeySet &Leaflet, bool IsAngstroem)
3484{
3485 atom *Runner = NULL, *FatherOfRunner = NULL, *OtherFather = NULL;
3486 atom **SonList = (atom **) Malloc(sizeof(atom *)*AtomCount, "molecule::StoreFragmentFromStack: **SonList");
3487 molecule *Leaf = new molecule(elemente);
3488 bool LonelyFlag = false;
3489 int size;
3490
3491// *out << Verbose(1) << "Begin of StoreFragmentFromKeyset." << endl;
3492
3493 Leaf->BondDistance = BondDistance;
3494 for(int i=NDIM*2;i--;)
3495 Leaf->cell_size[i] = cell_size[i];
3496
3497 // initialise SonList (indicates when we need to replace a bond with hydrogen instead)
3498 for(int i=AtomCount;i--;)
3499 SonList[i] = NULL;
3500
3501 // first create the minimal set of atoms from the KeySet
3502 size = 0;
3503 for(KeySet::iterator runner = Leaflet.begin(); runner != Leaflet.end(); runner++) {
3504 FatherOfRunner = FindAtom((*runner)); // find the id
3505 SonList[FatherOfRunner->nr] = Leaf->AddCopyAtom(FatherOfRunner);
3506 size++;
3507 }
3508
3509 // create the bonds between all: Make it an induced subgraph and add hydrogen
3510// *out << Verbose(2) << "Creating bonds from father graph (i.e. induced subgraph creation)." << endl;
3511 Runner = Leaf->start;
3512 while (Runner->next != Leaf->end) {
3513 Runner = Runner->next;
3514 LonelyFlag = true;
3515 FatherOfRunner = Runner->father;
3516 if (SonList[FatherOfRunner->nr] != NULL) { // check if this, our father, is present in list
3517 // create all bonds
3518 for (int i=0;i<NumberOfBondsPerAtom[FatherOfRunner->nr];i++) { // go through every bond of father
3519 OtherFather = ListOfBondsPerAtom[FatherOfRunner->nr][i]->GetOtherAtom(FatherOfRunner);
3520// *out << Verbose(2) << "Father " << *FatherOfRunner << " of son " << *SonList[FatherOfRunner->nr] << " is bound to " << *OtherFather;
3521 if (SonList[OtherFather->nr] != NULL) {
3522// *out << ", whose son is " << *SonList[OtherFather->nr] << "." << endl;
3523 if (OtherFather->nr > FatherOfRunner->nr) { // add bond (nr check is for adding only one of both variants: ab, ba)
3524// *out << Verbose(3) << "Adding Bond: ";
3525// *out <<
3526 Leaf->AddBond(Runner, SonList[OtherFather->nr], ListOfBondsPerAtom[FatherOfRunner->nr][i]->BondDegree);
3527// *out << "." << endl;
3528 //NumBonds[Runner->nr]++;
3529 } else {
3530// *out << Verbose(3) << "Not adding bond, labels in wrong order." << endl;
3531 }
3532 LonelyFlag = false;
3533 } else {
3534// *out << ", who has no son in this fragment molecule." << endl;
3535#ifdef ADDHYDROGEN
3536 //*out << Verbose(3) << "Adding Hydrogen to " << Runner->Name << " and a bond in between." << endl;
3537 Leaf->AddHydrogenReplacementAtom(out, ListOfBondsPerAtom[FatherOfRunner->nr][i], Runner, FatherOfRunner, OtherFather, ListOfBondsPerAtom[FatherOfRunner->nr],NumberOfBondsPerAtom[FatherOfRunner->nr], IsAngstroem);
3538#endif
3539 //NumBonds[Runner->nr] += ListOfBondsPerAtom[FatherOfRunner->nr][i]->BondDegree;
3540 }
3541 }
3542 } else {
3543 *out << Verbose(0) << "ERROR: Son " << Runner->Name << " has father " << FatherOfRunner->Name << " but its entry in SonList is " << SonList[FatherOfRunner->nr] << "!" << endl;
3544 }
3545 if ((LonelyFlag) && (size > 1)) {
3546 *out << Verbose(0) << *Runner << "has got bonds only to hydrogens!" << endl;
3547 }
3548#ifdef ADDHYDROGEN
3549 while ((Runner->next != Leaf->end) && (Runner->next->type->Z == 1)) // skip added hydrogen
3550 Runner = Runner->next;
3551#endif
3552 }
3553 Leaf->CreateListOfBondsPerAtom(out);
3554 //Leaflet->Leaf->ScanForPeriodicCorrection(out);
3555 Free((void **)&SonList, "molecule::StoreFragmentFromStack: **SonList");
3556// *out << Verbose(1) << "End of StoreFragmentFromKeyset." << endl;
3557 return Leaf;
3558};
3559
3560/** Creates \a MoleculeListClass of all unique fragments of the \a molecule containing \a Order atoms or vertices.
3561 * The picture to have in mind is that of a DFS "snake" of a certain length \a Order, i.e. as in the infamous
3562 * computer game, that winds through the connected graph representing the molecule. Color (white,
3563 * lightgray, darkgray, black) indicates whether a vertex has been discovered so far or not. Labels will help in
3564 * creating only unique fragments and not additional ones with vertices simply in different sequence.
3565 * The Predecessor is always the one that came before in discovering, needed on backstepping. And
3566 * finally, the ShortestPath is needed for removing vertices from the snake stack during the back-
3567 * stepping.
3568 * \param *out output stream for debugging
3569 * \param Order number of atoms in each fragment
3570 * \param *configuration configuration for writing config files for each fragment
3571 * \return List of all unique fragments with \a Order atoms
3572 */
3573/*
3574MoleculeListClass * molecule::CreateListOfUniqueFragmentsOfOrder(ofstream *out, int Order, config *configuration)
3575{
3576 atom **PredecessorList = (atom **) Malloc(sizeof(atom *)*AtomCount, "molecule::CreateListOfUniqueFragmentsOfOrder: **PredecessorList");
3577 int *ShortestPathList = (int *) Malloc(sizeof(int)*AtomCount, "molecule::CreateListOfUniqueFragmentsOfOrder: *ShortestPathList");
3578 int *Labels = (int *) Malloc(sizeof(int)*AtomCount, "molecule::CreateListOfUniqueFragmentsOfOrder: *Labels");
3579 enum Shading *ColorVertexList = (enum Shading *) Malloc(sizeof(enum Shading)*AtomCount, "molecule::CreateListOfUniqueFragmentsOfOrder: *ColorList");
3580 enum Shading *ColorEdgeList = (enum Shading *) Malloc(sizeof(enum Shading)*BondCount, "molecule::CreateListOfUniqueFragmentsOfOrder: *ColorBondList");
3581 StackClass<atom *> *RootStack = new StackClass<atom *>(AtomCount);
3582 StackClass<atom *> *TouchedStack = new StackClass<atom *>((int)pow(4,Order)+2); // number of atoms reached from one with maximal 4 bonds plus Root itself
3583 StackClass<atom *> *SnakeStack = new StackClass<atom *>(Order+1); // equal to Order is not possible, as then the StackClass<atom *> cannot discern between full and empty stack!
3584 MoleculeLeafClass *Leaflet = NULL, *TempLeaf = NULL;
3585 MoleculeListClass *FragmentList = NULL;
3586 atom *Walker = NULL, *OtherAtom = NULL, *Root = NULL, *Removal = NULL;
3587 bond *Binder = NULL;
3588 int RunningIndex = 0, FragmentCounter = 0;
3589
3590 *out << Verbose(1) << "Begin of CreateListOfUniqueFragmentsOfOrder." << endl;
3591
3592 // reset parent list
3593 *out << Verbose(3) << "Resetting labels, parent, predecessor, color and shortest path lists." << endl;
3594 for (int i=0;i<AtomCount;i++) { // reset all atom labels
3595 // initialise each vertex as white with no predecessor, empty queue, color lightgray, not labelled, no sons
3596 Labels[i] = -1;
3597 SonList[i] = NULL;
3598 PredecessorList[i] = NULL;
3599 ColorVertexList[i] = white;
3600 ShortestPathList[i] = -1;
3601 }
3602 for (int i=0;i<BondCount;i++)
3603 ColorEdgeList[i] = white;
3604 RootStack->ClearStack(); // clearstack and push first atom if exists
3605 TouchedStack->ClearStack();
3606 Walker = start->next;
3607 while ((Walker != end)
3608#ifdef ADDHYDROGEN
3609 && (Walker->type->Z == 1)
3610#endif
3611 ) { // search for first non-hydrogen atom
3612 *out << Verbose(4) << "Current Root candidate is " << Walker->Name << "." << endl;
3613 Walker = Walker->next;
3614 }
3615 if (Walker != end)
3616 RootStack->Push(Walker);
3617 else
3618 *out << Verbose(0) << "ERROR: Could not find an appropriate Root atom!" << endl;
3619 *out << Verbose(3) << "Root " << Walker->Name << " is on AtomStack, beginning loop through all vertices ..." << endl;
3620
3621 ///// OUTER LOOP ////////////
3622 while (!RootStack->IsEmpty()) {
3623 // get new root vertex from atom stack
3624 Root = RootStack->PopFirst();
3625 ShortestPathList[Root->nr] = 0;
3626 if (Labels[Root->nr] == -1)
3627 Labels[Root->nr] = RunningIndex++; // prevent it from getting again on AtomStack
3628 PredecessorList[Root->nr] = Root;
3629 TouchedStack->Push(Root);
3630 *out << Verbose(0) << "Root for this loop is: " << Root->Name << ".\n";
3631
3632 // clear snake stack
3633 SnakeStack->ClearStack();
3634 //SnakeStack->TestImplementation(out, start->next);
3635
3636 ///// INNER LOOP ////////////
3637 // Problems:
3638 // - what about cyclic bonds?
3639 Walker = Root;
3640 do {
3641 *out << Verbose(1) << "Current Walker is: " << Walker->Name;
3642 // initial setting of the new Walker: label, color, shortest path and put on stacks
3643 if (Labels[Walker->nr] == -1) { // give atom a unique, monotonely increasing number
3644 Labels[Walker->nr] = RunningIndex++;
3645 RootStack->Push(Walker);
3646 }
3647 *out << ", has label " << Labels[Walker->nr];
3648 if ((ColorVertexList[Walker->nr] == white) || ((Binder != NULL) && (ColorEdgeList[Binder->nr] == white))) { // color it if newly discovered and push on stacks (and if within reach!)
3649 if ((Binder != NULL) && (ColorEdgeList[Binder->nr] == white)) {
3650 // Binder ought to be set still from last neighbour search
3651 *out << ", coloring bond " << *Binder << " black";
3652 ColorEdgeList[Binder->nr] = black; // mark this bond as used
3653 }
3654 if (ShortestPathList[Walker->nr] == -1) {
3655 ShortestPathList[Walker->nr] = ShortestPathList[PredecessorList[Walker->nr]->nr]+1;
3656 TouchedStack->Push(Walker); // mark every atom for lists cleanup later, whose shortest path has been changed
3657 }
3658 if ((ShortestPathList[Walker->nr] < Order) && (ColorVertexList[Walker->nr] != darkgray)) { // if not already on snake stack
3659 SnakeStack->Push(Walker);
3660 ColorVertexList[Walker->nr] = darkgray; // mark as dark gray of on snake stack
3661 }
3662 }
3663 *out << ", SP of " << ShortestPathList[Walker->nr] << " and its color is " << GetColor(ColorVertexList[Walker->nr]) << "." << endl;
3664
3665 // then check the stack for a newly stumbled upon fragment
3666 if (SnakeStack->ItemCount() == Order) { // is stack full?
3667 // store the fragment if it is one and get a removal candidate
3668 Removal = StoreFragmentFromStack(out, Root, Walker, Leaflet, SnakeStack, ShortestPathList, SonList, Labels, &FragmentCounter, configuration);
3669 // remove the candidate if one was found
3670 if (Removal != NULL) {
3671 *out << Verbose(2) << "Removing item " << Removal->Name << " with SP of " << ShortestPathList[Removal->nr] << " from snake stack." << endl;
3672 SnakeStack->RemoveItem(Removal);
3673 ColorVertexList[Removal->nr] = lightgray; // return back to not on snake stack but explored marking
3674 if (Walker == Removal) { // if the current atom is to be removed, we also have to take a step back
3675 Walker = PredecessorList[Removal->nr];
3676 *out << Verbose(2) << "Stepping back to " << Walker->Name << "." << endl;
3677 }
3678 }
3679 } else
3680 Removal = NULL;
3681
3682 // finally, look for a white neighbour as the next Walker
3683 Binder = NULL;
3684 if ((Removal == NULL) || (Walker != PredecessorList[Removal->nr])) { // don't look, if a new walker has been set above
3685 *out << Verbose(2) << "Snake has currently " << SnakeStack->ItemCount() << " item(s)." << endl;
3686 OtherAtom = NULL; // this is actually not needed, every atom has at least one neighbour
3687 if (ShortestPathList[Walker->nr] < Order) {
3688 for(int i=0;i<NumberOfBondsPerAtom[Walker->nr];i++) {
3689 Binder = ListOfBondsPerAtom[Walker->nr][i];
3690 *out << Verbose(2) << "Current bond is " << *Binder << ": ";
3691 OtherAtom = Binder->GetOtherAtom(Walker);
3692 if ((Labels[OtherAtom->nr] != -1) && (Labels[OtherAtom->nr] < Labels[Root->nr])) { // we don't step up to labels bigger than us
3693 *out << "Label " << Labels[OtherAtom->nr] << " is smaller than Root's " << Labels[Root->nr] << "." << endl;
3694 //ColorVertexList[OtherAtom->nr] = lightgray; // mark as explored
3695 } else { // otherwise check its colour and element
3696 if (
3697#ifdef ADDHYDROGEN
3698 (OtherAtom->type->Z != 1) &&
3699#endif
3700 (ColorEdgeList[Binder->nr] == white)) { // skip hydrogen, look for unexplored vertices
3701 *out << "Moving along " << GetColor(ColorEdgeList[Binder->nr]) << " bond " << Binder << " to " << ((ColorVertexList[OtherAtom->nr] == white) ? "unexplored" : "explored") << " item: " << OtherAtom->Name << "." << endl;
3702 // i find it currently rather sensible to always set the predecessor in order to find one's way back
3703 //if (PredecessorList[OtherAtom->nr] == NULL) {
3704 PredecessorList[OtherAtom->nr] = Walker;
3705 *out << Verbose(3) << "Setting Predecessor of " << OtherAtom->Name << " to " << PredecessorList[OtherAtom->nr]->Name << "." << endl;
3706 //} else {
3707 // *out << Verbose(3) << "Predecessor of " << OtherAtom->Name << " is " << PredecessorList[OtherAtom->nr]->Name << "." << endl;
3708 //}
3709 Walker = OtherAtom;
3710 break;
3711 } else {
3712 if (OtherAtom->type->Z == 1)
3713 *out << "Links to a hydrogen atom." << endl;
3714 else
3715 *out << "Bond has not white but " << GetColor(ColorEdgeList[Binder->nr]) << " color." << endl;
3716 }
3717 }
3718 }
3719 } else { // means we have stepped beyond the horizon: Return!
3720 Walker = PredecessorList[Walker->nr];
3721 OtherAtom = Walker;
3722 *out << Verbose(3) << "We have gone too far, stepping back to " << Walker->Name << "." << endl;
3723 }
3724 if (Walker != OtherAtom) { // if no white neighbours anymore, color it black
3725 *out << Verbose(2) << "Coloring " << Walker->Name << " black." << endl;
3726 ColorVertexList[Walker->nr] = black;
3727 Walker = PredecessorList[Walker->nr];
3728 }
3729 }
3730 } while ((Walker != Root) || (ColorVertexList[Root->nr] != black));
3731 *out << Verbose(2) << "Inner Looping is finished." << endl;
3732
3733 // if we reset all AtomCount atoms, we have again technically O(N^2) ...
3734 *out << Verbose(2) << "Resetting lists." << endl;
3735 Walker = NULL;
3736 Binder = NULL;
3737 while (!TouchedStack->IsEmpty()) {
3738 Walker = TouchedStack->PopLast();
3739 *out << Verbose(3) << "Re-initialising entries of " << *Walker << "." << endl;
3740 for(int i=0;i<NumberOfBondsPerAtom[Walker->nr];i++)
3741 ColorEdgeList[ListOfBondsPerAtom[Walker->nr][i]->nr] = white;
3742 PredecessorList[Walker->nr] = NULL;
3743 ColorVertexList[Walker->nr] = white;
3744 ShortestPathList[Walker->nr] = -1;
3745 }
3746 }
3747 *out << Verbose(1) << "Outer Looping over all vertices is done." << endl;
3748
3749 // copy together
3750 *out << Verbose(1) << "Copying all fragments into MoleculeList structure." << endl;
3751 FragmentList = new MoleculeListClass(FragmentCounter, AtomCount);
3752 RunningIndex = 0;
3753 while ((Leaflet != NULL) && (RunningIndex < FragmentCounter)) {
3754 FragmentList->ListOfMolecules[RunningIndex++] = Leaflet->Leaf;
3755 Leaflet->Leaf = NULL; // prevent molecule from being removed
3756 TempLeaf = Leaflet;
3757 Leaflet = Leaflet->previous;
3758 delete(TempLeaf);
3759 };
3760
3761 // free memory and exit
3762 Free((void **)&PredecessorList, "molecule::CreateListOfUniqueFragmentsOfOrder: **PredecessorList");
3763 Free((void **)&ShortestPathList, "molecule::CreateListOfUniqueFragmentsOfOrder: *ShortestPathList");
3764 Free((void **)&Labels, "molecule::CreateListOfUniqueFragmentsOfOrder: *Labels");
3765 Free((void **)&ColorVertexList, "molecule::CreateListOfUniqueFragmentsOfOrder: *ColorList");
3766 delete(RootStack);
3767 delete(TouchedStack);
3768 delete(SnakeStack);
3769
3770 *out << Verbose(1) << "End of CreateListOfUniqueFragmentsOfOrder." << endl;
3771 return FragmentList;
3772};
3773*/
3774
3775/** Structure containing all values in power set combination generation.
3776 */
3777struct UniqueFragments {
3778 config *configuration;
3779 atom *Root;
3780 Graph *Leaflet;
3781 KeySet *FragmentSet;
3782 int ANOVAOrder;
3783 int FragmentCounter;
3784 int CurrentIndex;
3785 double TEFactor;
3786 int *ShortestPathList;
3787 bool **UsedList;
3788 bond **BondsPerSPList;
3789 int *BondsPerSPCount;
3790};
3791
3792/** From a given set of Bond sorted by Shortest Path distance, create all possible fragments of size \a SetDimension.
3793 * -# loops over every possible combination (2^dimension of edge set)
3794 * -# inserts current set, if there's still space left
3795 * -# yes: calls SPFragmentGenerator with structure, created new edge list and size respective to root dist
3796ance+1
3797 * -# no: stores fragment into keyset list by calling InsertFragmentIntoGraph
3798 * -# removes all items added into the snake stack (in UniqueFragments structure) added during level (root
3799distance) and current set
3800 * \param *out output stream for debugging
3801 * \param FragmentSearch UniqueFragments structure with all values needed
3802 * \param RootDistance current shortest path level, whose set of edges is represented by **BondsSet
3803 * \param SetDimension Number of possible bonds on this level (i.e. size of the array BondsSet[])
3804 * \param SubOrder remaining number of allowed vertices to add
3805 */
3806void molecule::SPFragmentGenerator(ofstream *out, struct UniqueFragments *FragmentSearch, int RootDistance, bond **BondsSet, int SetDimension, int SubOrder)
3807{
3808 atom *OtherWalker = NULL;
3809 int verbosity = 0; //FragmentSearch->ANOVAOrder-SubOrder;
3810 int NumCombinations;
3811 bool bit;
3812 int bits, TouchedIndex, SubSetDimension, SP, Added;
3813 int Removal;
3814 int SpaceLeft;
3815 int *TouchedList = (int *) Malloc(sizeof(int)*(SubOrder+1), "molecule::SPFragmentGenerator: *TouchedList");
3816 bond *Binder = NULL;
3817 bond **BondsList = NULL;
3818 KeySetTestPair TestKeySetInsert;
3819
3820 NumCombinations = 1 << SetDimension;
3821
3822 // Hier muessen von 1 bis NumberOfBondsPerAtom[Walker->nr] alle Kombinationen
3823 // von Endstuecken (aus den Bonds) hinzugefᅵᅵgt werden und fᅵᅵr verbleibende ANOVAOrder
3824 // rekursiv GraphCrawler in der nᅵᅵchsten Ebene aufgerufen werden
3825
3826 *out << Verbose(1+verbosity) << "Begin of SPFragmentGenerator." << endl;
3827 *out << Verbose(1+verbosity) << "We are " << RootDistance << " away from Root, which is " << *FragmentSearch->Root << ", SubOrder is " << SubOrder << ", SetDimension is " << SetDimension << " and this means " << NumCombinations-1 << " combination(s)." << endl;
3828
3829 // initialised touched list (stores added atoms on this level)
3830 *out << Verbose(1+verbosity) << "Clearing touched list." << endl;
3831 for (TouchedIndex=SubOrder+1;TouchedIndex--;) // empty touched list
3832 TouchedList[TouchedIndex] = -1;
3833 TouchedIndex = 0;
3834
3835 // create every possible combination of the endpieces
3836 *out << Verbose(1+verbosity) << "Going through all combinations of the power set." << endl;
3837 for (int i=1;i<NumCombinations;i++) { // sweep through all power set combinations (skip empty set!)
3838 // count the set bit of i
3839 bits = 0;
3840 for (int j=SetDimension;j--;)
3841 bits += (i & (1 << j)) >> j;
3842
3843 *out << Verbose(1+verbosity) << "Current set is " << Binary(i | (1 << SetDimension)) << ", number of bits is " << bits << "." << endl;
3844 if (bits <= SubOrder) { // if not greater than additional atoms allowed on stack, continue
3845 // --1-- add this set of the power set of bond partners to the snake stack
3846 Added = 0;
3847 for (int j=0;j<SetDimension;j++) { // pull out every bit by shifting
3848 bit = ((i & (1 << j)) != 0); // mask the bit for the j-th bond
3849 if (bit) { // if bit is set, we add this bond partner
3850 OtherWalker = BondsSet[j]->rightatom; // rightatom is always the one more distant, i.e. the one to add
3851 //*out << Verbose(1+verbosity) << "Current Bond is " << ListOfBondsPerAtom[Walker->nr][i] << ", checking on " << *OtherWalker << "." << endl;
3852 *out << Verbose(2+verbosity) << "Adding " << *OtherWalker << " with nr " << OtherWalker->nr << "." << endl;
3853 TestKeySetInsert = FragmentSearch->FragmentSet->insert(OtherWalker->nr);
3854 if (TestKeySetInsert.second) {
3855 TouchedList[TouchedIndex++] = OtherWalker->nr; // note as added
3856 Added++;
3857 } else {
3858 *out << Verbose(2+verbosity) << "This was item was already present in the keyset." << endl;
3859 }
3860 //FragmentSearch->UsedList[OtherWalker->nr][i] = true;
3861 //}
3862 } else {
3863 *out << Verbose(2+verbosity) << "Not adding." << endl;
3864 }
3865 }
3866
3867 SpaceLeft = SubOrder - Added ;// SubOrder - bits; // due to item's maybe being already present, this does not work anymore
3868 if (SpaceLeft > 0) {
3869 *out << Verbose(1+verbosity) << "There's still some space left on stack: " << SpaceLeft << "." << endl;
3870 if (SubOrder > 1) { // Due to Added above we have to check extra whether we're not already reaching beyond the desired Order
3871 // --2-- look at all added end pieces of this combination, construct bond subsets and sweep through a power set of these by recursion
3872 SP = RootDistance+1; // this is the next level
3873 // first count the members in the subset
3874 SubSetDimension = 0;
3875 Binder = FragmentSearch->BondsPerSPList[2*SP]; // start node for this level
3876 while (Binder->next != FragmentSearch->BondsPerSPList[2*SP+1]) { // compare to end node of this level
3877 Binder = Binder->next;
3878 for (int k=TouchedIndex;k--;) {
3879 if (Binder->Contains(TouchedList[k])) // if we added this very endpiece
3880 SubSetDimension++;
3881 }
3882 }
3883 // then allocate and fill the list
3884 BondsList = (bond **) Malloc(sizeof(bond *)*SubSetDimension, "molecule::SPFragmentGenerator: **BondsList");
3885 SubSetDimension = 0;
3886 Binder = FragmentSearch->BondsPerSPList[2*SP];
3887 while (Binder->next != FragmentSearch->BondsPerSPList[2*SP+1]) {
3888 Binder = Binder->next;
3889 for (int k=0;k<TouchedIndex;k++) {
3890 if (Binder->leftatom->nr == TouchedList[k]) // leftatom is always the close one
3891 BondsList[SubSetDimension++] = Binder;
3892 }
3893 }
3894 *out << Verbose(2+verbosity) << "Calling subset generator " << SP << " away from root " << *FragmentSearch->Root << " with sub set dimension " << SubSetDimension << "." << endl;
3895 SPFragmentGenerator(out, FragmentSearch, SP, BondsList, SubSetDimension, SubOrder-bits);
3896 Free((void **)&BondsList, "molecule::SPFragmentGenerator: **BondsList");
3897 }
3898 } else {
3899 // --2-- otherwise store the complete fragment
3900 *out << Verbose(1+verbosity) << "Enough items on stack for a fragment!" << endl;
3901 // store fragment as a KeySet
3902 *out << Verbose(2) << "Found a new fragment[" << FragmentSearch->FragmentCounter << "], local nr.s are: ";
3903 for(KeySet::iterator runner = FragmentSearch->FragmentSet->begin(); runner != FragmentSearch->FragmentSet->end(); runner++)
3904 *out << (*runner) << " ";
3905 *out << endl;
3906 //if (!CheckForConnectedSubgraph(out, FragmentSearch->FragmentSet))
3907 //*out << Verbose(0) << "ERROR: The found fragment is not a connected subgraph!" << endl;
3908 InsertFragmentIntoGraph(out, FragmentSearch);
3909 //Removal = LookForRemovalCandidate(out, FragmentSearch->FragmentSet, FragmentSearch->ShortestPathList);
3910 //Removal = StoreFragmentFromStack(out, FragmentSearch->Root, FragmentSearch->Leaflet, FragmentSearch->FragmentStack, FragmentSearch->ShortestPathList, &FragmentSearch->FragmentCounter, FragmentSearch->configuration);
3911 }
3912
3913 // --3-- remove all added items in this level from snake stack
3914 *out << Verbose(1+verbosity) << "Removing all items that were added on this SP level " << RootDistance << "." << endl;
3915 for(int j=0;j<TouchedIndex;j++) {
3916 Removal = TouchedList[j];
3917 *out << Verbose(2+verbosity) << "Removing item nr. " << Removal << " from snake stack." << endl;
3918 FragmentSearch->FragmentSet->erase(Removal);
3919 TouchedList[j] = -1;
3920 }
3921 *out << Verbose(2) << "Remaining local nr.s on snake stack are: ";
3922 for(KeySet::iterator runner = FragmentSearch->FragmentSet->begin(); runner != FragmentSearch->FragmentSet->end(); runner++)
3923 *out << (*runner) << " ";
3924 *out << endl;
3925 TouchedIndex = 0; // set Index to 0 for list of atoms added on this level
3926 } else {
3927 *out << Verbose(2+verbosity) << "More atoms to add for this set (" << bits << ") than space left on stack " << SubOrder << ", skipping this set." << endl;
3928 }
3929 }
3930 Free((void **)&TouchedList, "molecule::SPFragmentGenerator: *TouchedList");
3931 *out << Verbose(1+verbosity) << "End of SPFragmentGenerator, " << RootDistance << " away from Root " << *FragmentSearch->Root << " and SubOrder is " << SubOrder << "." << endl;
3932};
3933
3934/** For a given keyset \a *Fragment, checks whether it is connected in the current molecule.
3935 * \param *out output stream for debugging
3936 * \param *Fragment Keyset of fragment's vertices
3937 * \return true - connected, false - disconnected
3938 * \note this is O(n^2) for it's just a bug checker not meant for permanent use!
3939 */
3940bool molecule::CheckForConnectedSubgraph(ofstream *out, KeySet *Fragment)
3941{
3942 atom *Walker = NULL, *Walker2 = NULL;
3943 bool BondStatus = false;
3944 int size;
3945
3946 *out << Verbose(1) << "Begin of CheckForConnectedSubgraph" << endl;
3947 *out << Verbose(2) << "Disconnected atom: ";
3948
3949 // count number of atoms in graph
3950 size = 0;
3951 for(KeySet::iterator runner = Fragment->begin(); runner != Fragment->end(); runner++)
3952 size++;
3953 if (size > 1)
3954 for(KeySet::iterator runner = Fragment->begin(); runner != Fragment->end(); runner++) {
3955 Walker = FindAtom(*runner);
3956 BondStatus = false;
3957 for(KeySet::iterator runners = Fragment->begin(); runners != Fragment->end(); runners++) {
3958 Walker2 = FindAtom(*runners);
3959 for (int i=0;i<NumberOfBondsPerAtom[Walker->nr]; i++) {
3960 if (ListOfBondsPerAtom[Walker->nr][i]->GetOtherAtom(Walker) == Walker2) {
3961 BondStatus = true;
3962 break;
3963 }
3964 if (BondStatus)
3965 break;
3966 }
3967 }
3968 if (!BondStatus) {
3969 *out << (*Walker) << endl;
3970 return false;
3971 }
3972 }
3973 else {
3974 *out << "none." << endl;
3975 return true;
3976 }
3977 *out << "none." << endl;
3978
3979 *out << Verbose(1) << "End of CheckForConnectedSubgraph" << endl;
3980
3981 return true;
3982}
3983
3984/** Creates a list of all unique fragments of certain vertex size from a given graph \a Fragment for a given root vertex in the context of \a this molecule.
3985 * -# initialises UniqueFragments structure
3986 * -# fills edge list via BFS
3987 * -# creates the fragment by calling recursive function SPFragmentGenerator with UniqueFragments structure, 0 as
3988 root distance, the edge set, its dimension and the current suborder
3989 * -# Free'ing structure
3990 * Note that we may use the fact that the atoms are SP-ordered on the atomstack. I.e. when popping always the last, we first get all
3991 * with SP of 2, then those with SP of 3, then those with SP of 4 and so on.
3992 * \param *out output stream for debugging
3993 * \param Order bond order (limits BFS exploration and "number of digits" in power set generation
3994 * \param FragmentSearch UniqueFragments structure containing TEFactor, root atom and so on
3995 * \param RestrictedKeySet Restricted vertex set to use in context of molecule
3996 * \return number of inserted fragments
3997 * \note ShortestPathList in FragmentSearch structure is probably due to NumberOfAtomsSPLevel and SP not needed anymore
3998 */
3999int molecule::PowerSetGenerator(ofstream *out, int Order, struct UniqueFragments &FragmentSearch, KeySet RestrictedKeySet)
4000{
4001 int SP, AtomKeyNr;
4002 atom *Walker = NULL, *OtherWalker = NULL, *Predecessor = NULL;
4003 bond *Binder = NULL;
4004 bond *CurrentEdge = NULL;
4005 bond **BondsList = NULL;
4006 int RootKeyNr = FragmentSearch.Root->GetTrueFather()->nr;
4007 int Counter = FragmentSearch.FragmentCounter;
4008 int RemainingWalkers;
4009
4010 *out << endl;
4011 *out << Verbose(0) << "Begin of PowerSetGenerator with order " << Order << " at Root " << *FragmentSearch.Root << "." << endl;
4012
4013 // prepare Label and SP arrays of the BFS search
4014 FragmentSearch.ShortestPathList[FragmentSearch.Root->nr] = 0;
4015
4016 // prepare root level (SP = 0) and a loop bond denoting Root
4017 for (int i=1;i<Order;i++)
4018 FragmentSearch.BondsPerSPCount[i] = 0;
4019 FragmentSearch.BondsPerSPCount[0] = 1;
4020 Binder = new bond(FragmentSearch.Root, FragmentSearch.Root);
4021 add(Binder, FragmentSearch.BondsPerSPList[1]);
4022
4023 // do a BFS search to fill the SP lists and label the found vertices
4024 // Actually, we should construct a spanning tree vom the root atom and select all edges therefrom and put them into
4025 // according shortest path lists. However, we don't. Rather we fill these lists right away, as they do form a spanning
4026 // tree already sorted into various SP levels. That's why we just do loops over the depth (CurrentSP) and breadth
4027 // (EdgeinSPLevel) of this tree ...
4028 // In another picture, the bonds always contain a direction by rightatom being the one more distant from root and hence
4029 // naturally leftatom forming its predecessor, preventing the BFS"seeker" from continuing in the wrong direction.
4030 *out << endl;
4031 *out << Verbose(0) << "Starting BFS analysis ..." << endl;
4032 for (SP = 0; SP < (Order-1); SP++) {
4033 *out << Verbose(1) << "New SP level reached: " << SP << ", creating new SP list with " << FragmentSearch.BondsPerSPCount[SP] << " item(s)";
4034 if (SP > 0) {
4035 *out << ", old level closed with " << FragmentSearch.BondsPerSPCount[SP-1] << " item(s)." << endl;
4036 FragmentSearch.BondsPerSPCount[SP] = 0;
4037 } else
4038 *out << "." << endl;
4039
4040 RemainingWalkers = FragmentSearch.BondsPerSPCount[SP];
4041 CurrentEdge = FragmentSearch.BondsPerSPList[2*SP]; /// start of this SP level's list
4042 while (CurrentEdge->next != FragmentSearch.BondsPerSPList[2*SP+1]) { /// end of this SP level's list
4043 CurrentEdge = CurrentEdge->next;
4044 RemainingWalkers--;
4045 Walker = CurrentEdge->rightatom; // rightatom is always the one more distant
4046 Predecessor = CurrentEdge->leftatom; // ... and leftatom is predecessor
4047 AtomKeyNr = Walker->nr;
4048 *out << Verbose(0) << "Current Walker is: " << *Walker << " with nr " << Walker->nr << " and SP of " << SP << ", with " << RemainingWalkers << " remaining walkers on this level." << endl;
4049 // check for new sp level
4050 // go through all its bonds
4051 *out << Verbose(1) << "Going through all bonds of Walker." << endl;
4052 for (int i=0;i<NumberOfBondsPerAtom[AtomKeyNr];i++) {
4053 Binder = ListOfBondsPerAtom[AtomKeyNr][i];
4054 OtherWalker = Binder->GetOtherAtom(Walker);
4055 if ((RestrictedKeySet.find(OtherWalker->nr) != RestrictedKeySet.end())
4056 #ifdef ADDHYDROGEN
4057 && (OtherWalker->type->Z != 1)
4058 #endif
4059 ) { // skip hydrogens and restrict to fragment
4060 *out << Verbose(2) << "Current partner is " << *OtherWalker << " with nr " << OtherWalker->nr << " in bond " << *Binder << "." << endl;
4061 // set the label if not set (and push on root stack as well)
4062 if ((OtherWalker != Predecessor) && (OtherWalker->GetTrueFather()->nr > RootKeyNr)) { // only pass through those with label bigger than Root's
4063 FragmentSearch.ShortestPathList[OtherWalker->nr] = SP+1;
4064 *out << Verbose(3) << "Set Shortest Path to " << FragmentSearch.ShortestPathList[OtherWalker->nr] << "." << endl;
4065 // add the bond in between to the SP list
4066 Binder = new bond(Walker, OtherWalker); // create a new bond in such a manner, that bond::rightatom is always the one more distant
4067 add(Binder, FragmentSearch.BondsPerSPList[2*(SP+1)+1]);
4068 FragmentSearch.BondsPerSPCount[SP+1]++;
4069 *out << Verbose(3) << "Added its bond to SP list, having now " << FragmentSearch.BondsPerSPCount[SP+1] << " item(s)." << endl;
4070 } else {
4071 if (OtherWalker != Predecessor)
4072 *out << Verbose(3) << "Not passing on, as index of " << *OtherWalker << " " << OtherWalker->GetTrueFather()->nr << " is smaller than that of Root " << RootKeyNr << "." << endl;
4073 else
4074 *out << Verbose(3) << "This is my predecessor " << *Predecessor << "." << endl;
4075 }
4076 } else *out << Verbose(2) << "Is not in the restricted keyset or skipping hydrogen " << *OtherWalker << "." << endl;
4077 }
4078 }
4079 }
4080
4081 // outputting all list for debugging
4082 *out << Verbose(0) << "Printing all found lists." << endl;
4083 for(int i=1;i<Order;i++) { // skip the root edge in the printing
4084 Binder = FragmentSearch.BondsPerSPList[2*i];
4085 *out << Verbose(1) << "Current SP level is " << i << "." << endl;
4086 while (Binder->next != FragmentSearch.BondsPerSPList[2*i+1]) {
4087 Binder = Binder->next;
4088 *out << Verbose(2) << *Binder << endl;
4089 }
4090 }
4091
4092 // creating fragments with the found edge sets (may be done in reverse order, faster)
4093 SP = -1; // the Root <-> Root edge must be subtracted!
4094 for(int i=Order;i--;) { // sum up all found edges
4095 Binder = FragmentSearch.BondsPerSPList[2*i];
4096 while (Binder->next != FragmentSearch.BondsPerSPList[2*i+1]) {
4097 Binder = Binder->next;
4098 SP ++;
4099 }
4100 }
4101 *out << Verbose(0) << "Total number of edges is " << SP << "." << endl;
4102 if (SP >= (Order-1)) {
4103 // start with root (push on fragment stack)
4104 *out << Verbose(0) << "Starting fragment generation with " << *FragmentSearch.Root << ", local nr is " << FragmentSearch.Root->nr << "." << endl;
4105 FragmentSearch.FragmentSet->clear();
4106 *out << Verbose(0) << "Preparing subset for this root and calling generator." << endl;
4107 // prepare the subset and call the generator
4108 BondsList = (bond **) Malloc(sizeof(bond *)*FragmentSearch.BondsPerSPCount[0], "molecule::PowerSetGenerator: **BondsList");
4109 BondsList[0] = FragmentSearch.BondsPerSPList[0]->next; // on SP level 0 there's only the root bond
4110
4111 SPFragmentGenerator(out, &FragmentSearch, 0, BondsList, FragmentSearch.BondsPerSPCount[0], Order);
4112
4113 Free((void **)&BondsList, "molecule::PowerSetGenerator: **BondsList");
4114 } else {
4115 *out << Verbose(0) << "Not enough total number of edges to build " << Order << "-body fragments." << endl;
4116 }
4117
4118 // as FragmentSearch structure is used only once, we don't have to clean it anymore
4119 // remove root from stack
4120 *out << Verbose(0) << "Removing root again from stack." << endl;
4121 FragmentSearch.FragmentSet->erase(FragmentSearch.Root->nr);
4122
4123 // free'ing the bonds lists
4124 *out << Verbose(0) << "Free'ing all found lists. and resetting index lists" << endl;
4125 for(int i=Order;i--;) {
4126 *out << Verbose(1) << "Current SP level is " << i << ": ";
4127 Binder = FragmentSearch.BondsPerSPList[2*i];
4128 while (Binder->next != FragmentSearch.BondsPerSPList[2*i+1]) {
4129 Binder = Binder->next;
4130 // *out << "Removing atom " << Binder->leftatom->nr << " and " << Binder->rightatom->nr << "." << endl; // make sure numbers are local
4131 FragmentSearch.ShortestPathList[Binder->leftatom->nr] = -1;
4132 FragmentSearch.ShortestPathList[Binder->rightatom->nr] = -1;
4133 }
4134 // delete added bonds
4135 cleanup(FragmentSearch.BondsPerSPList[2*i], FragmentSearch.BondsPerSPList[2*i+1]);
4136 // also start and end node
4137 *out << "cleaned." << endl;
4138 }
4139
4140 // return list
4141 *out << Verbose(0) << "End of PowerSetGenerator." << endl;
4142 return (FragmentSearch.FragmentCounter - Counter);
4143};
4144
4145/** Corrects the nuclei position if the fragment was created over the cell borders.
4146 * Scans all bonds, checks the distance, if greater than typical, we have a candidate for the correction.
4147 * We remove the bond whereafter the graph probably separates. Then, we translate the one component periodically
4148 * and re-add the bond. Looping on the distance check.
4149 * \param *out ofstream for debugging messages
4150 */
4151void molecule::ScanForPeriodicCorrection(ofstream *out)
4152{
4153 bond *Binder = NULL;
4154 bond *OtherBinder = NULL;
4155 atom *Walker = NULL;
4156 atom *OtherWalker = NULL;
4157 double *matrix = ReturnFullMatrixforSymmetric(cell_size);
4158 enum Shading *ColorList = NULL;
4159 double tmp;
4160 Vector Translationvector;
4161 //class StackClass<atom *> *CompStack = NULL;
4162 class StackClass<atom *> *AtomStack = new StackClass<atom *>(AtomCount);
4163 bool flag = true;
4164
4165 *out << Verbose(2) << "Begin of ScanForPeriodicCorrection." << endl;
4166
4167 ColorList = (enum Shading *) Malloc(sizeof(enum Shading)*AtomCount, "molecule::ScanForPeriodicCorrection: *ColorList");
4168 while (flag) {
4169 // remove bonds that are beyond bonddistance
4170 for(int i=NDIM;i--;)
4171 Translationvector.x[i] = 0.;
4172 // scan all bonds
4173 Binder = first;
4174 flag = false;
4175 while ((!flag) && (Binder->next != last)) {
4176 Binder = Binder->next;
4177 for (int i=NDIM;i--;) {
4178 tmp = fabs(Binder->leftatom->x.x[i] - Binder->rightatom->x.x[i]);
4179 //*out << Verbose(3) << "Checking " << i << "th distance of " << *Binder->leftatom << " to " << *Binder->rightatom << ": " << tmp << "." << endl;
4180 if (tmp > BondDistance) {
4181 OtherBinder = Binder->next; // note down binding partner for later re-insertion
4182 unlink(Binder); // unlink bond
4183 *out << Verbose(2) << "Correcting at bond " << *Binder << "." << endl;
4184 flag = true;
4185 break;
4186 }
4187 }
4188 }
4189 if (flag) {
4190 // create translation vector from their periodically modified distance
4191 for (int i=NDIM;i--;) {
4192 tmp = Binder->leftatom->x.x[i] - Binder->rightatom->x.x[i];
4193 if (fabs(tmp) > BondDistance)
4194 Translationvector.x[i] = (tmp < 0) ? +1. : -1.;
4195 }
4196 Translationvector.MatrixMultiplication(matrix);
4197 //*out << Verbose(3) << "Translation vector is ";
4198 Translationvector.Output(out);
4199 *out << endl;
4200 // apply to all atoms of first component via BFS
4201 for (int i=AtomCount;i--;)
4202 ColorList[i] = white;
4203 AtomStack->Push(Binder->leftatom);
4204 while (!AtomStack->IsEmpty()) {
4205 Walker = AtomStack->PopFirst();
4206 //*out << Verbose (3) << "Current Walker is: " << *Walker << "." << endl;
4207 ColorList[Walker->nr] = black; // mark as explored
4208 Walker->x.AddVector(&Translationvector); // translate
4209 for (int i=0;i<NumberOfBondsPerAtom[Walker->nr];i++) { // go through all binding partners
4210 if (ListOfBondsPerAtom[Walker->nr][i] != Binder) {
4211 OtherWalker = ListOfBondsPerAtom[Walker->nr][i]->GetOtherAtom(Walker);
4212 if (ColorList[OtherWalker->nr] == white) {
4213 AtomStack->Push(OtherWalker); // push if yet unexplored
4214 }
4215 }
4216 }
4217 }
4218 // re-add bond
4219 link(Binder, OtherBinder);
4220 } else {
4221 *out << Verbose(3) << "No corrections for this fragment." << endl;
4222 }
4223 //delete(CompStack);
4224 }
4225
4226 // free allocated space from ReturnFullMatrixforSymmetric()
4227 delete(AtomStack);
4228 Free((void **)&ColorList, "molecule::ScanForPeriodicCorrection: *ColorList");
4229 Free((void **)&matrix, "molecule::ScanForPeriodicCorrection: *matrix");
4230 *out << Verbose(2) << "End of ScanForPeriodicCorrection." << endl;
4231};
4232
4233/** Blows the 6-dimensional \a cell_size array up to a full NDIM by NDIM matrix.
4234 * \param *symm 6-dim array of unique symmetric matrix components
4235 * \return allocated NDIM*NDIM array with the symmetric matrix
4236 */
4237double * molecule::ReturnFullMatrixforSymmetric(double *symm)
4238{
4239 double *matrix = (double *) Malloc(sizeof(double)*NDIM*NDIM, "molecule::ReturnFullMatrixforSymmetric: *matrix");
4240 matrix[0] = symm[0];
4241 matrix[1] = symm[1];
4242 matrix[2] = symm[3];
4243 matrix[3] = symm[1];
4244 matrix[4] = symm[2];
4245 matrix[5] = symm[4];
4246 matrix[6] = symm[3];
4247 matrix[7] = symm[4];
4248 matrix[8] = symm[5];
4249 return matrix;
4250};
4251
4252bool KeyCompare::operator() (const KeySet SubgraphA, const KeySet SubgraphB) const
4253{
4254 //cout << "my check is used." << endl;
4255 if (SubgraphA.size() < SubgraphB.size()) {
4256 return true;
4257 } else {
4258 if (SubgraphA.size() > SubgraphB.size()) {
4259 return false;
4260 } else {
4261 KeySet::iterator IteratorA = SubgraphA.begin();
4262 KeySet::iterator IteratorB = SubgraphB.begin();
4263 while ((IteratorA != SubgraphA.end()) && (IteratorB != SubgraphB.end())) {
4264 if ((*IteratorA) < (*IteratorB))
4265 return true;
4266 else if ((*IteratorA) > (*IteratorB)) {
4267 return false;
4268 } // else, go on to next index
4269 IteratorA++;
4270 IteratorB++;
4271 } // end of while loop
4272 }// end of check in case of equal sizes
4273 }
4274 return false; // if we reach this point, they are equal
4275};
4276
4277//bool operator < (KeySet SubgraphA, KeySet SubgraphB)
4278//{
4279// return KeyCompare(SubgraphA, SubgraphB);
4280//};
4281
4282/** Checking whether KeySet is not already present in Graph, if so just adds factor.
4283 * \param *out output stream for debugging
4284 * \param &set KeySet to insert
4285 * \param &graph Graph to insert into
4286 * \param *counter pointer to unique fragment count
4287 * \param factor energy factor for the fragment
4288 */
4289inline void InsertFragmentIntoGraph(ofstream *out, struct UniqueFragments *Fragment)
4290{
4291 GraphTestPair testGraphInsert;
4292
4293 testGraphInsert = Fragment->Leaflet->insert(GraphPair (*Fragment->FragmentSet,pair<int,double>(Fragment->FragmentCounter,Fragment->TEFactor))); // store fragment number and current factor
4294 if (testGraphInsert.second) {
4295 *out << Verbose(2) << "KeySet " << Fragment->FragmentCounter << " successfully inserted." << endl;
4296 Fragment->FragmentCounter++;
4297 } else {
4298 *out << Verbose(2) << "KeySet " << Fragment->FragmentCounter << " failed to insert, present fragment is " << ((*(testGraphInsert.first)).second).first << endl;
4299 ((*(testGraphInsert.first)).second).second += Fragment->TEFactor; // increase the "created" counter
4300 *out << Verbose(2) << "New factor is " << ((*(testGraphInsert.first)).second).second << "." << endl;
4301 }
4302};
4303//void inline InsertIntoGraph(ofstream *out, KeyStack &stack, Graph &graph, int *counter, double factor)
4304//{
4305// // copy stack contents to set and call overloaded function again
4306// KeySet set;
4307// for(KeyStack::iterator runner = stack.begin(); runner != stack.begin(); runner++)
4308// set.insert((*runner));
4309// InsertIntoGraph(out, set, graph, counter, factor);
4310//};
4311
4312/** Inserts each KeySet in \a graph2 into \a graph1.
4313 * \param *out output stream for debugging
4314 * \param graph1 first (dest) graph
4315 * \param graph2 second (source) graph
4316 * \param *counter keyset counter that gets increased
4317 */
4318inline void InsertGraphIntoGraph(ofstream *out, Graph &graph1, Graph &graph2, int *counter)
4319{
4320 GraphTestPair testGraphInsert;
4321
4322 for(Graph::iterator runner = graph2.begin(); runner != graph2.end(); runner++) {
4323 testGraphInsert = graph1.insert(GraphPair ((*runner).first,pair<int,double>((*counter)++,((*runner).second).second))); // store fragment number and current factor
4324 if (testGraphInsert.second) {
4325 *out << Verbose(2) << "KeySet " << (*counter)-1 << " successfully inserted." << endl;
4326 } else {
4327 *out << Verbose(2) << "KeySet " << (*counter)-1 << " failed to insert, present fragment is " << ((*(testGraphInsert.first)).second).first << endl;
4328 ((*(testGraphInsert.first)).second).second += (*runner).second.second;
4329 *out << Verbose(2) << "New factor is " << (*(testGraphInsert.first)).second.second << "." << endl;
4330 }
4331 }
4332};
4333
4334
4335/** Performs BOSSANOVA decomposition at selected sites, increasing the cutoff by one at these sites.
4336 * -# constructs a complete keyset of the molecule
4337 * -# In a loop over all possible roots from the given rootstack
4338 * -# increases order of root site
4339 * -# calls PowerSetGenerator with this order, the complete keyset and the rootkeynr
4340 * -# for all consecutive lower levels PowerSetGenerator is called with the suborder, the higher order keyset
4341as the restricted one and each site in the set as the root)
4342 * -# these are merged into a fragment list of keysets
4343 * -# All fragment lists (for all orders, i.e. from all destination fields) are merged into one list for return
4344 * Important only is that we create all fragments, it is not important if we create them more than once
4345 * as these copies are filtered out via use of the hash table (KeySet).
4346 * \param *out output stream for debugging
4347 * \param Fragment&*List list of already present keystacks (adaptive scheme) or empty list
4348 * \param &RootStack stack with all root candidates (unequal to each atom in complete molecule if adaptive scheme is applied)
4349 * \param *MinimumRingSize minimum ring size for each atom (molecule::Atomcount)
4350 * \return pointer to Graph list
4351 */
4352void molecule::FragmentBOSSANOVA(ofstream *out, Graph *&FragmentList, KeyStack &RootStack, int *MinimumRingSize)
4353{
4354 Graph ***FragmentLowerOrdersList = NULL;
4355 int NumLevels, NumMolecules, TotalNumMolecules = 0, *NumMoleculesOfOrder = NULL;
4356 int counter = 0, Order;
4357 int UpgradeCount = RootStack.size();
4358 KeyStack FragmentRootStack;
4359 int RootKeyNr, RootNr;
4360 struct UniqueFragments FragmentSearch;
4361
4362 *out << Verbose(0) << "Begin of FragmentBOSSANOVA." << endl;
4363
4364 // FragmentLowerOrdersList is a 2D-array of pointer to MoleculeListClass objects, one dimension represents the ANOVA expansion of a single order (i.e. 5)
4365 // with all needed lower orders that are subtracted, the other dimension is the BondOrder (i.e. from 1 to 5)
4366 NumMoleculesOfOrder = (int *) Malloc(sizeof(int)*UpgradeCount, "molecule::FragmentBOSSANOVA: *NumMoleculesOfOrder");
4367 FragmentLowerOrdersList = (Graph ***) Malloc(sizeof(Graph **)*UpgradeCount, "molecule::FragmentBOSSANOVA: ***FragmentLowerOrdersList");
4368
4369 // initialise the fragments structure
4370 FragmentSearch.ShortestPathList = (int *) Malloc(sizeof(int)*AtomCount, "molecule::PowerSetGenerator: *ShortestPathList");
4371 FragmentSearch.FragmentCounter = 0;
4372 FragmentSearch.FragmentSet = new KeySet;
4373 FragmentSearch.Root = FindAtom(RootKeyNr);
4374 for (int i=AtomCount;i--;) {
4375 FragmentSearch.ShortestPathList[i] = -1;
4376 }
4377
4378 // Construct the complete KeySet which we need for topmost level only (but for all Roots)
4379 atom *Walker = start;
4380 KeySet CompleteMolecule;
4381 while (Walker->next != end) {
4382 Walker = Walker->next;
4383 CompleteMolecule.insert(Walker->GetTrueFather()->nr);
4384 }
4385
4386 // this can easily be seen: if Order is 5, then the number of levels for each lower order is the total sum of the number of levels above, as
4387 // each has to be split up. E.g. for the second level we have one from 5th, one from 4th, two from 3th (which in turn is one from 5th, one from 4th),
4388 // hence we have overall four 2th order levels for splitting. This also allows for putting all into a single array (FragmentLowerOrdersList[])
4389 // with the order along the cells as this: 5433222211111111 for BondOrder 5 needing 16=pow(2,5-1) cells (only we use bit-shifting which is faster)
4390 RootNr = 0; // counts through the roots in RootStack
4391 while ((RootNr < UpgradeCount) && (!RootStack.empty())) {
4392 RootKeyNr = RootStack.front();
4393 RootStack.pop_front();
4394 Walker = FindAtom(RootKeyNr);
4395 // check cyclic lengths
4396 //if ((MinimumRingSize[Walker->GetTrueFather()->nr] != -1) && (Walker->GetTrueFather()->AdaptiveOrder+1 > MinimumRingSize[Walker->GetTrueFather()->nr])) {
4397 // *out << Verbose(0) << "Bond order " << Walker->GetTrueFather()->AdaptiveOrder << " of Root " << *Walker << " greater than or equal to Minimum Ring size of " << MinimumRingSize << " found is not allowed." << endl;
4398 //} else
4399 {
4400 // increase adaptive order by one
4401 Walker->GetTrueFather()->AdaptiveOrder++;
4402 Order = Walker->AdaptiveOrder = Walker->GetTrueFather()->AdaptiveOrder;
4403
4404 // initialise Order-dependent entries of UniqueFragments structure
4405 FragmentSearch.BondsPerSPList = (bond **) Malloc(sizeof(bond *)*Order*2, "molecule::PowerSetGenerator: ***BondsPerSPList");
4406 FragmentSearch.BondsPerSPCount = (int *) Malloc(sizeof(int)*Order, "molecule::PowerSetGenerator: *BondsPerSPCount");
4407 for (int i=Order;i--;) {
4408 FragmentSearch.BondsPerSPList[2*i] = new bond(); // start node
4409 FragmentSearch.BondsPerSPList[2*i+1] = new bond(); // end node
4410 FragmentSearch.BondsPerSPList[2*i]->next = FragmentSearch.BondsPerSPList[2*i+1]; // intertwine these two
4411 FragmentSearch.BondsPerSPList[2*i+1]->previous = FragmentSearch.BondsPerSPList[2*i];
4412 FragmentSearch.BondsPerSPCount[i] = 0;
4413 }
4414
4415 // allocate memory for all lower level orders in this 1D-array of ptrs
4416 NumLevels = 1 << (Order-1); // (int)pow(2,Order);
4417 FragmentLowerOrdersList[RootNr] = (Graph **) Malloc(sizeof(Graph *)*NumLevels, "molecule::FragmentBOSSANOVA: **FragmentLowerOrdersList[]");
4418 for (int i=0;i<NumLevels;i++)
4419 FragmentLowerOrdersList[RootNr][i] = NULL;
4420
4421 // create top order where nothing is reduced
4422 *out << Verbose(0) << "==============================================================================================================" << endl;
4423 *out << Verbose(0) << "Creating KeySets of Bond Order " << Order << " for " << *Walker << ", " << (RootStack.size()-RootNr) << " Roots remaining." << endl; // , NumLevels is " << NumLevels << "
4424
4425 // Create list of Graphs of current Bond Order (i.e. F_{ij})
4426 FragmentLowerOrdersList[RootNr][0] = new Graph;
4427 FragmentSearch.TEFactor = 1.;
4428 FragmentSearch.Leaflet = FragmentLowerOrdersList[RootNr][0]; // set to insertion graph
4429 FragmentSearch.Root = Walker;
4430 NumMoleculesOfOrder[RootNr] = PowerSetGenerator(out, Walker->AdaptiveOrder, FragmentSearch, CompleteMolecule);
4431 *out << Verbose(1) << "Number of resulting KeySets is: " << NumMoleculesOfOrder[RootNr] << "." << endl;
4432 if (NumMoleculesOfOrder[RootNr] != 0) {
4433 NumMolecules = 0;
4434
4435 // we don't have to dive into suborders! These keysets are all already created on lower orders!
4436 // this was all ancient stuff, when we still depended on the TEFactors (and for those the suborders were needed)
4437
4438// if ((NumLevels >> 1) > 0) {
4439// // create lower order fragments
4440// *out << Verbose(0) << "Creating list of unique fragments of lower Bond Order terms to be subtracted." << endl;
4441// Order = Walker->AdaptiveOrder;
4442// for (int source=0;source<(NumLevels >> 1);source++) { // 1-terms don't need any more splitting, that's why only half is gone through (shift again)
4443// // step down to next order at (virtual) boundary of powers of 2 in array
4444// while (source >= (1 << (Walker->AdaptiveOrder-Order))) // (int)pow(2,Walker->AdaptiveOrder-Order))
4445// Order--;
4446// *out << Verbose(0) << "Current Order is: " << Order << "." << endl;
4447// for (int SubOrder=Order-1;SubOrder>0;SubOrder--) {
4448// int dest = source + (1 << (Walker->AdaptiveOrder-(SubOrder+1)));
4449// *out << Verbose(0) << "--------------------------------------------------------------------------------------------------------------" << endl;
4450// *out << Verbose(0) << "Current SubOrder is: " << SubOrder << " with source " << source << " to destination " << dest << "." << endl;
4451//
4452// // every molecule is split into a list of again (Order - 1) molecules, while counting all molecules
4453// //*out << Verbose(1) << "Splitting the " << (*FragmentLowerOrdersList[RootNr][source]).size() << " molecules of the " << source << "th cell in the array." << endl;
4454// //NumMolecules = 0;
4455// FragmentLowerOrdersList[RootNr][dest] = new Graph;
4456// for(Graph::iterator runner = (*FragmentLowerOrdersList[RootNr][source]).begin();runner != (*FragmentLowerOrdersList[RootNr][source]).end(); runner++) {
4457// for (KeySet::iterator sprinter = (*runner).first.begin();sprinter != (*runner).first.end(); sprinter++) {
4458// Graph TempFragmentList;
4459// FragmentSearch.TEFactor = -(*runner).second.second;
4460// FragmentSearch.Leaflet = &TempFragmentList; // set to insertion graph
4461// FragmentSearch.Root = FindAtom(*sprinter);
4462// NumMoleculesOfOrder[RootNr] += PowerSetGenerator(out, SubOrder, FragmentSearch, (*runner).first);
4463// // insert new keysets FragmentList into FragmentLowerOrdersList[Walker->AdaptiveOrder-1][dest]
4464// *out << Verbose(1) << "Merging resulting key sets with those present in destination " << dest << "." << endl;
4465// InsertGraphIntoGraph(out, *FragmentLowerOrdersList[RootNr][dest], TempFragmentList, &NumMolecules);
4466// }
4467// }
4468// *out << Verbose(1) << "Number of resulting molecules for SubOrder " << SubOrder << " is: " << NumMolecules << "." << endl;
4469// }
4470// }
4471// }
4472 } else {
4473 Walker->GetTrueFather()->MaxOrder = true;
4474// *out << Verbose(1) << "Hence, we don't dive into SubOrders ... " << endl;
4475 }
4476 // now, we have completely filled each cell of FragmentLowerOrdersList[] for the current Walker->AdaptiveOrder
4477 //NumMoleculesOfOrder[Walker->AdaptiveOrder-1] = NumMolecules;
4478 TotalNumMolecules += NumMoleculesOfOrder[RootNr];
4479// *out << Verbose(1) << "Number of resulting molecules for Order " << (int)Walker->GetTrueFather()->AdaptiveOrder << " is: " << NumMoleculesOfOrder[RootNr] << "." << endl;
4480 RootStack.push_back(RootKeyNr); // put back on stack
4481 RootNr++;
4482
4483 // free Order-dependent entries of UniqueFragments structure for next loop cycle
4484 Free((void **)&FragmentSearch.BondsPerSPCount, "molecule::PowerSetGenerator: *BondsPerSPCount");
4485 for (int i=Order;i--;) {
4486 delete(FragmentSearch.BondsPerSPList[2*i]);
4487 delete(FragmentSearch.BondsPerSPList[2*i+1]);
4488 }
4489 Free((void **)&FragmentSearch.BondsPerSPList, "molecule::PowerSetGenerator: ***BondsPerSPList");
4490 }
4491 }
4492 *out << Verbose(0) << "==============================================================================================================" << endl;
4493 *out << Verbose(1) << "Total number of resulting molecules is: " << TotalNumMolecules << "." << endl;
4494 *out << Verbose(0) << "==============================================================================================================" << endl;
4495
4496 // cleanup FragmentSearch structure
4497 Free((void **)&FragmentSearch.ShortestPathList, "molecule::PowerSetGenerator: *ShortestPathList");
4498 delete(FragmentSearch.FragmentSet);
4499
4500 // now, FragmentLowerOrdersList is complete, it looks - for BondOrder 5 - as this (number is the ANOVA Order of the terms therein)
4501 // 5433222211111111
4502 // 43221111
4503 // 3211
4504 // 21
4505 // 1
4506
4507 // Subsequently, we combine all into a single list (FragmentList)
4508
4509 *out << Verbose(0) << "Combining the lists of all orders per order and finally into a single one." << endl;
4510 if (FragmentList == NULL) {
4511 FragmentList = new Graph;
4512 counter = 0;
4513 } else {
4514 counter = FragmentList->size();
4515 }
4516 RootNr = 0;
4517 while (!RootStack.empty()) {
4518 RootKeyNr = RootStack.front();
4519 RootStack.pop_front();
4520 Walker = FindAtom(RootKeyNr);
4521 NumLevels = 1 << (Walker->AdaptiveOrder - 1);
4522 for(int i=0;i<NumLevels;i++) {
4523 if (FragmentLowerOrdersList[RootNr][i] != NULL) {
4524 InsertGraphIntoGraph(out, *FragmentList, (*FragmentLowerOrdersList[RootNr][i]), &counter);
4525 delete(FragmentLowerOrdersList[RootNr][i]);
4526 }
4527 }
4528 Free((void **)&FragmentLowerOrdersList[RootNr], "molecule::FragmentBOSSANOVA: **FragmentLowerOrdersList[]");
4529 RootNr++;
4530 }
4531 Free((void **)&FragmentLowerOrdersList, "molecule::FragmentBOSSANOVA: ***FragmentLowerOrdersList");
4532 Free((void **)&NumMoleculesOfOrder, "molecule::FragmentBOSSANOVA: *NumMoleculesOfOrder");
4533
4534 *out << Verbose(0) << "End of FragmentBOSSANOVA." << endl;
4535};
4536
4537/** Comparison function for GSL heapsort on distances in two molecules.
4538 * \param *a
4539 * \param *b
4540 * \return <0, \a *a less than \a *b, ==0 if equal, >0 \a *a greater than \a *b
4541 */
4542inline int CompareDoubles (const void * a, const void * b)
4543{
4544 if (*(double *)a > *(double *)b)
4545 return -1;
4546 else if (*(double *)a < *(double *)b)
4547 return 1;
4548 else
4549 return 0;
4550};
4551
4552/** Determines whether two molecules actually contain the same atoms and coordination.
4553 * \param *out output stream for debugging
4554 * \param *OtherMolecule the molecule to compare this one to
4555 * \param threshold upper limit of difference when comparing the coordination.
4556 * \return NULL - not equal, otherwise an allocated (molecule::AtomCount) permutation map of the atom numbers (which corresponds to which)
4557 */
4558int * molecule::IsEqualToWithinThreshold(ofstream *out, molecule *OtherMolecule, double threshold)
4559{
4560 int flag;
4561 double *Distances = NULL, *OtherDistances = NULL;
4562 Vector CenterOfGravity, OtherCenterOfGravity;
4563 size_t *PermMap = NULL, *OtherPermMap = NULL;
4564 int *PermutationMap = NULL;
4565 atom *Walker = NULL;
4566 bool result = true; // status of comparison
4567
4568 *out << Verbose(3) << "Begin of IsEqualToWithinThreshold." << endl;
4569 /// first count both their atoms and elements and update lists thereby ...
4570 //*out << Verbose(0) << "Counting atoms, updating list" << endl;
4571 CountAtoms(out);
4572 OtherMolecule->CountAtoms(out);
4573 CountElements();
4574 OtherMolecule->CountElements();
4575
4576 /// ... and compare:
4577 /// -# AtomCount
4578 if (result) {
4579 if (AtomCount != OtherMolecule->AtomCount) {
4580 *out << Verbose(4) << "AtomCounts don't match: " << AtomCount << " == " << OtherMolecule->AtomCount << endl;
4581 result = false;
4582 } else *out << Verbose(4) << "AtomCounts match: " << AtomCount << " == " << OtherMolecule->AtomCount << endl;
4583 }
4584 /// -# ElementCount
4585 if (result) {
4586 if (ElementCount != OtherMolecule->ElementCount) {
4587 *out << Verbose(4) << "ElementCount don't match: " << ElementCount << " == " << OtherMolecule->ElementCount << endl;
4588 result = false;
4589 } else *out << Verbose(4) << "ElementCount match: " << ElementCount << " == " << OtherMolecule->ElementCount << endl;
4590 }
4591 /// -# ElementsInMolecule
4592 if (result) {
4593 for (flag=MAX_ELEMENTS;flag--;) {
4594 //*out << Verbose(5) << "Element " << flag << ": " << ElementsInMolecule[flag] << " <-> " << OtherMolecule->ElementsInMolecule[flag] << "." << endl;
4595 if (ElementsInMolecule[flag] != OtherMolecule->ElementsInMolecule[flag])
4596 break;
4597 }
4598 if (flag < MAX_ELEMENTS) {
4599 *out << Verbose(4) << "ElementsInMolecule don't match." << endl;
4600 result = false;
4601 } else *out << Verbose(4) << "ElementsInMolecule match." << endl;
4602 }
4603 /// then determine and compare center of gravity for each molecule ...
4604 if (result) {
4605 *out << Verbose(5) << "Calculating Centers of Gravity" << endl;
4606 DetermineCenter(CenterOfGravity);
4607 OtherMolecule->DetermineCenter(OtherCenterOfGravity);
4608 *out << Verbose(5) << "Center of Gravity: ";
4609 CenterOfGravity.Output(out);
4610 *out << endl << Verbose(5) << "Other Center of Gravity: ";
4611 OtherCenterOfGravity.Output(out);
4612 *out << endl;
4613 if (CenterOfGravity.Distance(&OtherCenterOfGravity) > threshold) {
4614 *out << Verbose(4) << "Centers of gravity don't match." << endl;
4615 result = false;
4616 }
4617 }
4618
4619 /// ... then make a list with the euclidian distance to this center for each atom of both molecules
4620 if (result) {
4621 *out << Verbose(5) << "Calculating distances" << endl;
4622 Distances = (double *) Malloc(sizeof(double)*AtomCount, "molecule::IsEqualToWithinThreshold: Distances");
4623 OtherDistances = (double *) Malloc(sizeof(double)*AtomCount, "molecule::IsEqualToWithinThreshold: OtherDistances");
4624 Walker = start;
4625 while (Walker->next != end) {
4626 Walker = Walker->next;
4627 Distances[Walker->nr] = CenterOfGravity.Distance(&Walker->x);
4628 }
4629 Walker = OtherMolecule->start;
4630 while (Walker->next != OtherMolecule->end) {
4631 Walker = Walker->next;
4632 OtherDistances[Walker->nr] = OtherCenterOfGravity.Distance(&Walker->x);
4633 }
4634
4635 /// ... sort each list (using heapsort (o(N log N)) from GSL)
4636 *out << Verbose(5) << "Sorting distances" << endl;
4637 PermMap = (size_t *) Malloc(sizeof(size_t)*AtomCount, "molecule::IsEqualToWithinThreshold: *PermMap");
4638 OtherPermMap = (size_t *) Malloc(sizeof(size_t)*AtomCount, "molecule::IsEqualToWithinThreshold: *OtherPermMap");
4639 gsl_heapsort_index (PermMap, Distances, AtomCount, sizeof(double), CompareDoubles);
4640 gsl_heapsort_index (OtherPermMap, OtherDistances, AtomCount, sizeof(double), CompareDoubles);
4641 PermutationMap = (int *) Malloc(sizeof(int)*AtomCount, "molecule::IsEqualToWithinThreshold: *PermutationMap");
4642 *out << Verbose(5) << "Combining Permutation Maps" << endl;
4643 for(int i=AtomCount;i--;)
4644 PermutationMap[PermMap[i]] = (int) OtherPermMap[i];
4645
4646 /// ... and compare them step by step, whether the difference is individiually(!) below \a threshold for all
4647 *out << Verbose(4) << "Comparing distances" << endl;
4648 flag = 0;
4649 for (int i=0;i<AtomCount;i++) {
4650 *out << Verbose(5) << "Distances: |" << Distances[PermMap[i]] << " - " << OtherDistances[OtherPermMap[i]] << "| = " << fabs(Distances[PermMap[i]] - OtherDistances[OtherPermMap[i]]) << " ?<? " << threshold << endl;
4651 if (fabs(Distances[PermMap[i]] - OtherDistances[OtherPermMap[i]]) > threshold)
4652 flag = 1;
4653 }
4654 Free((void **)&PermMap, "molecule::IsEqualToWithinThreshold: *PermMap");
4655 Free((void **)&OtherPermMap, "molecule::IsEqualToWithinThreshold: *OtherPermMap");
4656
4657 /// free memory
4658 Free((void **)&Distances, "molecule::IsEqualToWithinThreshold: Distances");
4659 Free((void **)&OtherDistances, "molecule::IsEqualToWithinThreshold: OtherDistances");
4660 if (flag) { // if not equal
4661 Free((void **)&PermutationMap, "molecule::IsEqualToWithinThreshold: *PermutationMap");
4662 result = false;
4663 }
4664 }
4665 /// return pointer to map if all distances were below \a threshold
4666 *out << Verbose(3) << "End of IsEqualToWithinThreshold." << endl;
4667 if (result) {
4668 *out << Verbose(3) << "Result: Equal." << endl;
4669 return PermutationMap;
4670 } else {
4671 *out << Verbose(3) << "Result: Not equal." << endl;
4672 return NULL;
4673 }
4674};
4675
4676/** Returns an index map for two father-son-molecules.
4677 * The map tells which atom in this molecule corresponds to which one in the other molecul with their fathers.
4678 * \param *out output stream for debugging
4679 * \param *OtherMolecule corresponding molecule with fathers
4680 * \return allocated map of size molecule::AtomCount with map
4681 * \todo make this with a good sort O(n), not O(n^2)
4682 */
4683int * molecule::GetFatherSonAtomicMap(ofstream *out, molecule *OtherMolecule)
4684{
4685 atom *Walker = NULL, *OtherWalker = NULL;
4686 *out << Verbose(3) << "Begin of GetFatherAtomicMap." << endl;
4687 int *AtomicMap = (int *) Malloc(sizeof(int)*AtomCount, "molecule::GetAtomicMap: *AtomicMap"); //Calloc
4688 for (int i=AtomCount;i--;)
4689 AtomicMap[i] = -1;
4690 if (OtherMolecule == this) { // same molecule
4691 for (int i=AtomCount;i--;) // no need as -1 means already that there is trivial correspondence
4692 AtomicMap[i] = i;
4693 *out << Verbose(4) << "Map is trivial." << endl;
4694 } else {
4695 *out << Verbose(4) << "Map is ";
4696 Walker = start;
4697 while (Walker->next != end) {
4698 Walker = Walker->next;
4699 if (Walker->father == NULL) {
4700 AtomicMap[Walker->nr] = -2;
4701 } else {
4702 OtherWalker = OtherMolecule->start;
4703 while (OtherWalker->next != OtherMolecule->end) {
4704 OtherWalker = OtherWalker->next;
4705 //for (int i=0;i<AtomCount;i++) { // search atom
4706 //for (int j=0;j<OtherMolecule->AtomCount;j++) {
4707 //*out << Verbose(4) << "Comparing father " << Walker->father << " with the other one " << OtherWalker->father << "." << endl;
4708 if (Walker->father == OtherWalker)
4709 AtomicMap[Walker->nr] = OtherWalker->nr;
4710 }
4711 }
4712 *out << AtomicMap[Walker->nr] << "\t";
4713 }
4714 *out << endl;
4715 }
4716 *out << Verbose(3) << "End of GetFatherAtomicMap." << endl;
4717 return AtomicMap;
4718};
4719
4720/** Stores the temperature evaluated from velocities in molecule::Trajectories.
4721 * We simply use the formula equivaleting temperature and kinetic energy:
4722 * \f$k_B T = \sum_i m_i v_i^2\f$
4723 * \param *out output stream for debugging
4724 * \param startstep first MD step in molecule::Trajectories
4725 * \param endstep last plus one MD step in molecule::Trajectories
4726 * \param *output output stream of temperature file
4727 * \return file written (true), failure on writing file (false)
4728 */
4729bool molecule::OutputTemperatureFromTrajectories(ofstream *out, int startstep, int endstep, ofstream *output)
4730{
4731 double temperature;
4732 atom *Walker = NULL;
4733 // test stream
4734 if (output == NULL)
4735 return false;
4736 else
4737 *output << "# Step Temperature [K] Temperature [a.u.]" << endl;
4738 for (int step=startstep;step < endstep; step++) { // loop over all time steps
4739 temperature = 0.;
4740 Walker = start;
4741 while (Walker->next != end) {
4742 Walker = Walker->next;
4743 for (int i=NDIM;i--;)
4744 temperature += Walker->type->mass * Trajectories[Walker].U.at(step).x[i]* Trajectories[Walker].U.at(step).x[i];
4745 }
4746 *output << step << "\t" << temperature*AtomicEnergyToKelvin << "\t" << temperature << endl;
4747 }
4748 return true;
4749};
Note: See TracBrowser for help on using the repository browser.