source: src/molecules.cpp@ 08f1a0

Action_Thermostats Add_AtomRandomPerturbation Add_FitFragmentPartialChargesAction Add_RotateAroundBondAction Add_SelectAtomByNameAction Added_ParseSaveFragmentResults AddingActions_SaveParseParticleParameters Adding_Graph_to_ChangeBondActions Adding_MD_integration_tests Adding_ParticleName_to_Atom Adding_StructOpt_integration_tests AtomFragments Automaking_mpqc_open AutomationFragmentation_failures Candidate_v1.5.4 Candidate_v1.6.0 Candidate_v1.6.1 ChangeBugEmailaddress ChangingTestPorts ChemicalSpaceEvaluator CombiningParticlePotentialParsing Combining_Subpackages Debian_Package_split Debian_package_split_molecuildergui_only Disabling_MemDebug Docu_Python_wait EmpiricalPotential_contain_HomologyGraph EmpiricalPotential_contain_HomologyGraph_documentation Enable_parallel_make_install Enhance_userguide Enhanced_StructuralOptimization Enhanced_StructuralOptimization_continued Example_ManyWaysToTranslateAtom Exclude_Hydrogens_annealWithBondGraph FitPartialCharges_GlobalError Fix_BoundInBox_CenterInBox_MoleculeActions Fix_ChargeSampling_PBC Fix_ChronosMutex Fix_FitPartialCharges Fix_FitPotential_needs_atomicnumbers Fix_ForceAnnealing Fix_IndependentFragmentGrids Fix_ParseParticles Fix_ParseParticles_split_forward_backward_Actions Fix_PopActions Fix_QtFragmentList_sorted_selection Fix_Restrictedkeyset_FragmentMolecule Fix_StatusMsg Fix_StepWorldTime_single_argument Fix_Verbose_Codepatterns Fix_fitting_potentials Fixes ForceAnnealing_goodresults ForceAnnealing_oldresults ForceAnnealing_tocheck ForceAnnealing_with_BondGraph ForceAnnealing_with_BondGraph_continued ForceAnnealing_with_BondGraph_continued_betteresults ForceAnnealing_with_BondGraph_contraction-expansion FragmentAction_writes_AtomFragments FragmentMolecule_checks_bonddegrees GeometryObjects Gui_Fixes Gui_displays_atomic_force_velocity ImplicitCharges IndependentFragmentGrids IndependentFragmentGrids_IndividualZeroInstances IndependentFragmentGrids_IntegrationTest IndependentFragmentGrids_Sole_NN_Calculation JobMarket_RobustOnKillsSegFaults JobMarket_StableWorkerPool JobMarket_unresolvable_hostname_fix MoreRobust_FragmentAutomation ODR_violation_mpqc_open PartialCharges_OrthogonalSummation PdbParser_setsAtomName PythonUI_with_named_parameters QtGui_reactivate_TimeChanged_changes Recreated_GuiChecks Rewrite_FitPartialCharges RotateToPrincipalAxisSystem_UndoRedo SaturateAtoms_findBestMatching SaturateAtoms_singleDegree StoppableMakroAction Subpackage_CodePatterns Subpackage_JobMarket Subpackage_LinearAlgebra Subpackage_levmar Subpackage_mpqc_open Subpackage_vmg Switchable_LogView ThirdParty_MPQC_rebuilt_buildsystem TrajectoryDependenant_MaxOrder TremoloParser_IncreasedPrecision TremoloParser_MultipleTimesteps TremoloParser_setsAtomName Ubuntu_1604_changes stable
Last change on this file since 08f1a0 was 96838d, checked in by Frederik Heber <heber@…>, 17 years ago

AddXYZFile(): Bugfix - if element could not be parsed (e.g. elements db was not loaded correctly)

This has so far not spawned an error message, now it does and atom's element is set to hydrogen.

  • Property mode set to 100644
File size: 176.7 KB
Line 
1/** \file molecules.cpp
2 *
3 * Functions for the class molecule.
4 *
5 */
6
7#include "molecules.hpp"
8
9/************************************* Other Functions *************************************/
10
11/** Determines sum of squared distances of \a X to all \a **vectors.
12 * \param *x reference vector
13 * \param *params
14 * \return sum of square distances
15 */
16double LSQ (const gsl_vector * x, void * params)
17{
18 double sum = 0.;
19 struct LSQ_params *par = (struct LSQ_params *)params;
20 vector **vectors = par->vectors;
21 int num = par->num;
22
23 for (int i=0;i<num;i++) {
24 for(int j=0;j<NDIM;j++)
25 sum += (gsl_vector_get(x,j) - (vectors[i])->x[j])*(gsl_vector_get(x,j) - (vectors[i])->x[j]);
26 }
27
28 return sum;
29};
30
31/************************************* Functions for class molecule *********************************/
32
33/** Constructor of class molecule.
34 * Initialises molecule list with correctly referenced start and end, and sets molecule::last_atom to zero.
35 */
36molecule::molecule(periodentafel *teil)
37{
38 // init atom chain list
39 start = new atom;
40 end = new atom;
41 start->father = NULL;
42 end->father = NULL;
43 link(start,end);
44 // init bond chain list
45 first = new bond(start, end, 1, -1);
46 last = new bond(start, end, 1, -1);
47 link(first,last);
48 // other stuff
49 last_atom = 0;
50 elemente = teil;
51 AtomCount = 0;
52 BondCount = 0;
53 NoNonBonds = 0;
54 NoNonHydrogen = 0;
55 NoCyclicBonds = 0;
56 ListOfBondsPerAtom = NULL;
57 NumberOfBondsPerAtom = NULL;
58 ElementCount = 0;
59 for(int i=0;i<MAX_ELEMENTS;i++)
60 ElementsInMolecule[i] = 0;
61 cell_size[0] = cell_size[2] = cell_size[5]= 20.;
62 cell_size[1] = cell_size[3] = cell_size[4]= 0.;
63};
64
65/** Destructor of class molecule.
66 * Initialises molecule list with correctly referenced start and end, and sets molecule::last_atom to zero.
67 */
68molecule::~molecule()
69{
70 if (ListOfBondsPerAtom != NULL)
71 for(int i=0;i<AtomCount;i++)
72 Free((void **)&ListOfBondsPerAtom[i], "molecule::~molecule: ListOfBondsPerAtom[i]");
73 Free((void **)&ListOfBondsPerAtom, "molecule::~molecule: ListOfBondsPerAtom");
74 Free((void **)&NumberOfBondsPerAtom, "molecule::~molecule: NumberOfBondsPerAtom");
75 CleanupMolecule();
76 delete(first);
77 delete(last);
78 delete(end);
79 delete(start);
80};
81
82/** Adds given atom \a *pointer from molecule list.
83 * Increases molecule::last_atom and gives last number to added atom and names it according to its element::abbrev and molecule::AtomCount
84 * \param *pointer allocated and set atom
85 * \return true - succeeded, false - atom not found in list
86 */
87bool molecule::AddAtom(atom *pointer)
88{
89 if (pointer != NULL) {
90 pointer->sort = &pointer->nr;
91 pointer->nr = last_atom++; // increase number within molecule
92 AtomCount++;
93 if (pointer->type != NULL) {
94 if (ElementsInMolecule[pointer->type->Z] == 0)
95 ElementCount++;
96 ElementsInMolecule[pointer->type->Z]++; // increase number of elements
97 if (pointer->type->Z != 1)
98 NoNonHydrogen++;
99 if (pointer->Name == NULL) {
100 Free((void **)&pointer->Name, "molecule::AddAtom: *pointer->Name");
101 pointer->Name = (char *) Malloc(sizeof(char)*6, "molecule::AddAtom: *pointer->Name");
102 sprintf(pointer->Name, "%2s%02d", pointer->type->symbol, pointer->nr+1);
103 }
104 }
105 return add(pointer, end);
106 } else
107 return false;
108};
109
110/** Adds a copy of the given atom \a *pointer from molecule list.
111 * Increases molecule::last_atom and gives last number to added atom.
112 * \param *pointer allocated and set atom
113 * \return true - succeeded, false - atom not found in list
114 */
115atom * molecule::AddCopyAtom(atom *pointer)
116{
117 if (pointer != NULL) {
118 atom *walker = new atom();
119 walker->type = pointer->type; // copy element of atom
120 walker->x.CopyVector(&pointer->x); // copy coordination
121 walker->v.CopyVector(&pointer->v); // copy velocity
122 walker->FixedIon = pointer->FixedIon;
123 walker->sort = &walker->nr;
124 walker->nr = last_atom++; // increase number within molecule
125 walker->father = pointer; //->GetTrueFather();
126 walker->Name = (char *) Malloc(sizeof(char)*strlen(pointer->Name)+1, "molecule::AddCopyAtom: *Name");
127 strcpy (walker->Name, pointer->Name);
128 add(walker, end);
129 if ((pointer->type != NULL) && (pointer->type->Z != 1))
130 NoNonHydrogen++;
131 AtomCount++;
132 return walker;
133 } else
134 return NULL;
135};
136
137/** Adds a Hydrogen atom in replacement for the given atom \a *partner in bond with a *origin.
138 * Here, we have to distinguish between single, double or triple bonds as stated by \a BondDegree, that each demand
139 * a different scheme when adding \a *replacement atom for the given one.
140 * -# Single Bond: Simply add new atom with bond distance rescaled to typical hydrogen one
141 * -# Double Bond: Here, we need the **BondList of the \a *origin atom, by scanning for the other bonds instead of
142 * *Bond, we use the through these connected atoms to determine the plane they lie in, vector::MakeNormalVector().
143 * The orthonormal vector to this plane along with the vector in *Bond direction determines the plane the two
144 * replacing hydrogens shall lie in. Now, all remains to do is take the usual hydrogen double bond angle for the
145 * element of *origin and form the sin/cos admixture of both plane vectors for the new coordinates of the two
146 * hydrogens forming this angle with *origin.
147 * -# Triple Bond: The idea is to set up a tetraoid (C1-H1-H2-H3) (however the lengths \f$b\f$ of the sides of the base
148 * triangle formed by the to be added hydrogens are not equal to the typical bond distance \f$l\f$ but have to be
149 * determined from the typical angle \f$\alpha\f$ for a hydrogen triple connected to the element of *origin):
150 * We have the height \f$d\f$ as the vector in *Bond direction (from triangle C1-H1-H2).
151 * \f[ h = l \cdot \cos{\left (\frac{\alpha}{2} \right )} \qquad b = 2l \cdot \sin{\left (\frac{\alpha}{2} \right)} \quad \rightarrow \quad d = l \cdot \sqrt{\cos^2{\left (\frac{\alpha}{2} \right)}-\frac{1}{3}\cdot\sin^2{\left (\frac{\alpha}{2}\right )}}
152 * \f]
153 * vector::GetNormalVector() creates one orthonormal vector from this *Bond vector and vector::MakeNormalVector creates
154 * the third one from the former two vectors. The latter ones form the plane of the base triangle mentioned above.
155 * The lengths for these are \f$f\f$ and \f$g\f$ (from triangle H1-H2-(center of H1-H2-H3)) with knowledge that
156 * the median lines in an isosceles triangle meet in the center point with a ratio 2:1.
157 * \f[ f = \frac{b}{\sqrt{3}} \qquad g = \frac{b}{2}
158 * \f]
159 * as the coordination of all three atoms in the coordinate system of these three vectors:
160 * \f$\pmatrix{d & f & 0}\f$, \f$\pmatrix{d & -0.5 \cdot f & g}\f$ and \f$\pmatrix{d & -0.5 \cdot f & -g}\f$.
161 *
162 * \param *out output stream for debugging
163 * \param *Bond pointer to bond between \a *origin and \a *replacement
164 * \param *TopOrigin son of \a *origin of upper level molecule (the atom added to this molecule as a copy of \a *origin)
165 * \param *origin pointer to atom which acts as the origin for scaling the added hydrogen to correct bond length
166 * \param *replacement pointer to the atom which shall be copied as a hydrogen atom in this molecule
167 * \param **BondList list of bonds \a *replacement has (necessary to determine plane for double and triple bonds)
168 * \param NumBond number of bonds in \a **BondList
169 * \param isAngstroem whether the coordination of the given atoms is in AtomicLength (false) or Angstrom(true)
170 * \return number of atoms added, if < bond::BondDegree then something went wrong
171 * \todo double and triple bonds splitting (always use the tetraeder angle!)
172 */
173bool molecule::AddHydrogenReplacementAtom(ofstream *out, bond *TopBond, atom *BottomOrigin, atom *TopOrigin, atom *TopReplacement, bond **BondList, int NumBond, bool IsAngstroem)
174{
175 double bondlength; // bond length of the bond to be replaced/cut
176 double bondangle; // bond angle of the bond to be replaced/cut
177 double BondRescale; // rescale value for the hydrogen bond length
178 bool AllWentWell = true; // flag gathering the boolean return value of molecule::AddAtom and other functions, as return value on exit
179 bond *FirstBond = NULL, *SecondBond = NULL; // Other bonds in double bond case to determine "other" plane
180 atom *FirstOtherAtom = NULL, *SecondOtherAtom = NULL, *ThirdOtherAtom = NULL; // pointer to hydrogen atoms to be added
181 int i; // loop variable
182 double b,l,d,f,g, alpha, factors[NDIM]; // hold temporary values in triple bond case for coordination determination
183 vector OrthoVector1, OrthoVector2; // temporary vectors in coordination construction
184 vector InBondVector; // vector in direction of *Bond
185 bond *Binder = NULL;
186 double *matrix;
187
188 *out << Verbose(3) << "Begin of AddHydrogenReplacementAtom." << endl;
189 // create vector in direction of bond
190 InBondVector.CopyVector(&TopReplacement->x);
191 InBondVector.SubtractVector(&TopOrigin->x);
192 bondlength = InBondVector.Norm();
193
194 // is greater than typical bond distance? Then we have to correct periodically
195 // the problem is not the H being out of the box, but InBondVector have the wrong direction
196 // due to TopReplacement or Origin being on the wrong side!
197 if (bondlength > BondDistance) {
198 *out << Verbose(4) << "InBondVector is: ";
199 InBondVector.Output(out);
200 *out << endl;
201 OrthoVector1.Zero();
202 for (int i=0;i<NDIM;i++) {
203 l = TopReplacement->x.x[i] - TopOrigin->x.x[i];
204 if (fabs(l) > BondDistance) { // is component greater than bond distance
205 OrthoVector1.x[i] = (l < 0) ? -1. : +1.;
206 } // (signs are correct, was tested!)
207 }
208 matrix = ReturnFullMatrixforSymmetric(cell_size);
209 OrthoVector1.MatrixMultiplication(matrix);
210 InBondVector.SubtractVector(&OrthoVector1); // subtract just the additional translation
211 Free((void **)&matrix, "molecule::AddHydrogenReplacementAtom: *matrix");
212 bondlength = InBondVector.Norm();
213 *out << Verbose(4) << "Corrected InBondVector is now: ";
214 InBondVector.Output(out);
215 *out << endl;
216 } // periodic correction finished
217
218 InBondVector.Normalize();
219 // get typical bond length and store as scale factor for later
220 BondRescale = TopOrigin->type->HBondDistance[TopBond->BondDegree-1];
221 if (BondRescale == -1) {
222 cerr << Verbose(3) << "WARNING: There is no typical bond distance for bond (" << TopOrigin->Name << "<->" << TopReplacement->Name << ") of degree " << TopBond->BondDegree << "!" << endl;
223 BondRescale = bondlength;
224 } else {
225 if (!IsAngstroem)
226 BondRescale /= (1.*AtomicLengthToAngstroem);
227 }
228
229 // discern single, double and triple bonds
230 switch(TopBond->BondDegree) {
231 case 1:
232 FirstOtherAtom = new atom(); // new atom
233 FirstOtherAtom->type = elemente->FindElement(1); // element is Hydrogen
234 FirstOtherAtom->v.CopyVector(&TopReplacement->v); // copy velocity
235 FirstOtherAtom->FixedIon = TopReplacement->FixedIon;
236 if (TopReplacement->type->Z == 1) { // neither rescale nor replace if it's already hydrogen
237 FirstOtherAtom->father = TopReplacement;
238 BondRescale = bondlength;
239 } else {
240 FirstOtherAtom->father = NULL; // if we replace hydrogen, we mark it as our father, otherwise we are just an added hydrogen with no father
241 }
242 InBondVector.Scale(&BondRescale); // rescale the distance vector to Hydrogen bond length
243 FirstOtherAtom->x.CopyVector(&TopOrigin->x); // set coordination to origin ...
244 FirstOtherAtom->x.AddVector(&InBondVector); // ... and add distance vector to replacement atom
245 AllWentWell = AllWentWell && AddAtom(FirstOtherAtom);
246 *out << Verbose(4) << "Added " << *FirstOtherAtom << " at: ";
247 FirstOtherAtom->x.Output(out);
248 *out << endl;
249 Binder = AddBond(BottomOrigin, FirstOtherAtom, 1);
250 Binder->Cyclic = false;
251 Binder->Type = TreeEdge;
252 break;
253 case 2:
254 // determine two other bonds (warning if there are more than two other) plus valence sanity check
255 for (i=0;i<NumBond;i++) {
256 if (BondList[i] != TopBond) {
257 if (FirstBond == NULL) {
258 FirstBond = BondList[i];
259 FirstOtherAtom = BondList[i]->GetOtherAtom(TopOrigin);
260 } else if (SecondBond == NULL) {
261 SecondBond = BondList[i];
262 SecondOtherAtom = BondList[i]->GetOtherAtom(TopOrigin);
263 } else {
264 *out << Verbose(3) << "WARNING: Detected more than four bonds for atom " << TopOrigin->Name;
265 }
266 }
267 }
268 if (SecondOtherAtom == NULL) { // then we have an atom with valence four, but only 3 bonds: one to replace and one which is TopBond (third is FirstBond)
269 SecondBond = TopBond;
270 SecondOtherAtom = TopReplacement;
271 }
272 if (FirstOtherAtom != NULL) { // then we just have this double bond and the plane does not matter at all
273 *out << Verbose(3) << "Regarding the double bond (" << TopOrigin->Name << "<->" << TopReplacement->Name << ") to be constructed: Taking " << FirstOtherAtom->Name << " and " << SecondOtherAtom->Name << " along with " << TopOrigin->Name << " to determine orthogonal plane." << endl;
274
275 // determine the plane of these two with the *origin
276 AllWentWell = AllWentWell && OrthoVector1.MakeNormalVector(&TopOrigin->x, &FirstOtherAtom->x, &SecondOtherAtom->x);
277 } else {
278 OrthoVector1.GetOneNormalVector(&InBondVector);
279 }
280 //*out << Verbose(3)<< "Orthovector1: ";
281 //OrthoVector1.Output(out);
282 //*out << endl;
283 // orthogonal vector and bond vector between origin and replacement form the new plane
284 OrthoVector1.MakeNormalVector(&InBondVector);
285 OrthoVector1.Normalize();
286 //*out << Verbose(3) << "ReScaleCheck: " << OrthoVector1.Norm() << " and " << InBondVector.Norm() << "." << endl;
287
288 // create the two Hydrogens ...
289 FirstOtherAtom = new atom();
290 SecondOtherAtom = new atom();
291 FirstOtherAtom->type = elemente->FindElement(1);
292 SecondOtherAtom->type = elemente->FindElement(1);
293 FirstOtherAtom->v.CopyVector(&TopReplacement->v); // copy velocity
294 FirstOtherAtom->FixedIon = TopReplacement->FixedIon;
295 SecondOtherAtom->v.CopyVector(&TopReplacement->v); // copy velocity
296 SecondOtherAtom->FixedIon = TopReplacement->FixedIon;
297 FirstOtherAtom->father = NULL; // we are just an added hydrogen with no father
298 SecondOtherAtom->father = NULL; // we are just an added hydrogen with no father
299 bondangle = TopOrigin->type->HBondAngle[1];
300 if (bondangle == -1) {
301 *out << Verbose(3) << "WARNING: There is no typical bond angle for bond (" << TopOrigin->Name << "<->" << TopReplacement->Name << ") of degree " << TopBond->BondDegree << "!" << endl;
302 bondangle = 0;
303 }
304 bondangle *= M_PI/180./2.;
305// *out << Verbose(3) << "ReScaleCheck: InBondVector ";
306// InBondVector.Output(out);
307// *out << endl;
308// *out << Verbose(3) << "ReScaleCheck: Orthovector ";
309// OrthoVector1.Output(out);
310// *out << endl;
311 *out << Verbose(3) << "Half the bond angle is " << bondangle << ", sin and cos of it: " << sin(bondangle) << ", " << cos(bondangle) << endl;
312 FirstOtherAtom->x.Zero();
313 SecondOtherAtom->x.Zero();
314 for(i=0;i<NDIM;i++) { // rotate by half the bond angle in both directions (InBondVector is bondangle = 0 direction)
315 FirstOtherAtom->x.x[i] = InBondVector.x[i] * cos(bondangle) + OrthoVector1.x[i] * (sin(bondangle));
316 SecondOtherAtom->x.x[i] = InBondVector.x[i] * cos(bondangle) + OrthoVector1.x[i] * (-sin(bondangle));
317 }
318 FirstOtherAtom->x.Scale(&BondRescale); // rescale by correct BondDistance
319 SecondOtherAtom->x.Scale(&BondRescale);
320 //*out << Verbose(3) << "ReScaleCheck: " << FirstOtherAtom->x.Norm() << " and " << SecondOtherAtom->x.Norm() << "." << endl;
321 for(i=0;i<NDIM;i++) { // and make relative to origin atom
322 FirstOtherAtom->x.x[i] += TopOrigin->x.x[i];
323 SecondOtherAtom->x.x[i] += TopOrigin->x.x[i];
324 }
325 // ... and add to molecule
326 AllWentWell = AllWentWell && AddAtom(FirstOtherAtom);
327 AllWentWell = AllWentWell && AddAtom(SecondOtherAtom);
328 *out << Verbose(4) << "Added " << *FirstOtherAtom << " at: ";
329 FirstOtherAtom->x.Output(out);
330 *out << endl;
331 *out << Verbose(4) << "Added " << *SecondOtherAtom << " at: ";
332 SecondOtherAtom->x.Output(out);
333 *out << endl;
334 Binder = AddBond(BottomOrigin, FirstOtherAtom, 1);
335 Binder->Cyclic = false;
336 Binder->Type = TreeEdge;
337 Binder = AddBond(BottomOrigin, SecondOtherAtom, 1);
338 Binder->Cyclic = false;
339 Binder->Type = TreeEdge;
340 break;
341 case 3:
342 // take the "usual" tetraoidal angle and add the three Hydrogen in direction of the bond (height of the tetraoid)
343 FirstOtherAtom = new atom();
344 SecondOtherAtom = new atom();
345 ThirdOtherAtom = new atom();
346 FirstOtherAtom->type = elemente->FindElement(1);
347 SecondOtherAtom->type = elemente->FindElement(1);
348 ThirdOtherAtom->type = elemente->FindElement(1);
349 FirstOtherAtom->v.CopyVector(&TopReplacement->v); // copy velocity
350 FirstOtherAtom->FixedIon = TopReplacement->FixedIon;
351 SecondOtherAtom->v.CopyVector(&TopReplacement->v); // copy velocity
352 SecondOtherAtom->FixedIon = TopReplacement->FixedIon;
353 ThirdOtherAtom->v.CopyVector(&TopReplacement->v); // copy velocity
354 ThirdOtherAtom->FixedIon = TopReplacement->FixedIon;
355 FirstOtherAtom->father = NULL; // we are just an added hydrogen with no father
356 SecondOtherAtom->father = NULL; // we are just an added hydrogen with no father
357 ThirdOtherAtom->father = NULL; // we are just an added hydrogen with no father
358
359 // we need to vectors orthonormal the InBondVector
360 AllWentWell = AllWentWell && OrthoVector1.GetOneNormalVector(&InBondVector);
361 *out << Verbose(3) << "Orthovector1: ";
362 OrthoVector1.Output(out);
363 *out << endl;
364 AllWentWell = AllWentWell && OrthoVector2.MakeNormalVector(&InBondVector, &OrthoVector1);
365 *out << Verbose(3) << "Orthovector2: ";
366 OrthoVector2.Output(out);
367 *out << endl;
368
369 // create correct coordination for the three atoms
370 alpha = (TopOrigin->type->HBondAngle[2])/180.*M_PI/2.; // retrieve triple bond angle from database
371 l = BondRescale; // desired bond length
372 b = 2.*l*sin(alpha); // base length of isosceles triangle
373 d = l*sqrt(cos(alpha)*cos(alpha) - sin(alpha)*sin(alpha)/3.); // length for InBondvector
374 f = b/sqrt(3.); // length for OrthVector1
375 g = b/2.; // length for OrthVector2
376 *out << Verbose(3) << "Bond length and half-angle: " << l << ", " << alpha << "\t (b,d,f,g) = " << b << ", " << d << ", " << f << ", " << g << ", " << endl;
377 *out << Verbose(3) << "The three Bond lengths: " << sqrt(d*d+f*f) << ", " << sqrt(d*d+(-0.5*f)*(-0.5*f)+g*g) << ", " << sqrt(d*d+(-0.5*f)*(-0.5*f)+g*g) << endl;
378 factors[0] = d;
379 factors[1] = f;
380 factors[2] = 0.;
381 FirstOtherAtom->x.LinearCombinationOfVectors(&InBondVector, &OrthoVector1, &OrthoVector2, factors);
382 factors[1] = -0.5*f;
383 factors[2] = g;
384 SecondOtherAtom->x.LinearCombinationOfVectors(&InBondVector, &OrthoVector1, &OrthoVector2, factors);
385 factors[2] = -g;
386 ThirdOtherAtom->x.LinearCombinationOfVectors(&InBondVector, &OrthoVector1, &OrthoVector2, factors);
387
388 // rescale each to correct BondDistance
389// FirstOtherAtom->x.Scale(&BondRescale);
390// SecondOtherAtom->x.Scale(&BondRescale);
391// ThirdOtherAtom->x.Scale(&BondRescale);
392
393 // and relative to *origin atom
394 FirstOtherAtom->x.AddVector(&TopOrigin->x);
395 SecondOtherAtom->x.AddVector(&TopOrigin->x);
396 ThirdOtherAtom->x.AddVector(&TopOrigin->x);
397
398 // ... and add to molecule
399 AllWentWell = AllWentWell && AddAtom(FirstOtherAtom);
400 AllWentWell = AllWentWell && AddAtom(SecondOtherAtom);
401 AllWentWell = AllWentWell && AddAtom(ThirdOtherAtom);
402 *out << Verbose(4) << "Added " << *FirstOtherAtom << " at: ";
403 FirstOtherAtom->x.Output(out);
404 *out << endl;
405 *out << Verbose(4) << "Added " << *SecondOtherAtom << " at: ";
406 SecondOtherAtom->x.Output(out);
407 *out << endl;
408 *out << Verbose(4) << "Added " << *ThirdOtherAtom << " at: ";
409 ThirdOtherAtom->x.Output(out);
410 *out << endl;
411 Binder = AddBond(BottomOrigin, FirstOtherAtom, 1);
412 Binder->Cyclic = false;
413 Binder->Type = TreeEdge;
414 Binder = AddBond(BottomOrigin, SecondOtherAtom, 1);
415 Binder->Cyclic = false;
416 Binder->Type = TreeEdge;
417 Binder = AddBond(BottomOrigin, ThirdOtherAtom, 1);
418 Binder->Cyclic = false;
419 Binder->Type = TreeEdge;
420 break;
421 default:
422 cerr << "ERROR: BondDegree does not state single, double or triple bond!" << endl;
423 AllWentWell = false;
424 break;
425 }
426
427 *out << Verbose(3) << "End of AddHydrogenReplacementAtom." << endl;
428 return AllWentWell;
429};
430
431/** Adds given atom \a *pointer from molecule list.
432 * Increases molecule::last_atom and gives last number to added atom.
433 * \param filename name and path of xyz file
434 * \return true - succeeded, false - file not found
435 */
436bool molecule::AddXYZFile(string filename)
437{
438 istringstream *input = NULL;
439 int NumberOfAtoms = 0; // atom number in xyz read
440 int i, j; // loop variables
441 atom *first = NULL; // pointer to added atom
442 char shorthand[3]; // shorthand for atom name
443 ifstream xyzfile; // xyz file
444 string line; // currently parsed line
445 double x[3]; // atom coordinates
446
447 xyzfile.open(filename.c_str());
448 if (!xyzfile)
449 return false;
450
451 getline(xyzfile,line,'\n'); // Read numer of atoms in file
452 input = new istringstream(line);
453 *input >> NumberOfAtoms;
454 cout << Verbose(0) << "Parsing " << NumberOfAtoms << " atoms in file." << endl;
455 getline(xyzfile,line,'\n'); // Read comment
456 cout << Verbose(1) << "Comment: " << line << endl;
457
458 for(i=0;i<NumberOfAtoms;i++){
459 first = new atom;
460 getline(xyzfile,line,'\n');
461 istringstream *item = new istringstream(line);
462 //istringstream input(line);
463 cout << Verbose(1) << "Reading: " << line << endl;
464 *item >> shorthand;
465 *item >> x[0];
466 *item >> x[1];
467 *item >> x[2];
468 first->type = elemente->FindElement(shorthand);
469 if (first->type == NULL) {
470 cerr << "Could not parse the element at line: '" << line << "', setting to H.";
471 first->type = elemente->FindElement(1);
472 }
473 for(j=0;j<NDIM;j++)
474 first->x.x[j] = x[j];
475 AddAtom(first); // add to molecule
476 delete(item);
477 }
478 xyzfile.close();
479 delete(input);
480 return true;
481};
482
483/** Creates a copy of this molecule.
484 * \return copy of molecule
485 */
486molecule *molecule::CopyMolecule()
487{
488 molecule *copy = new molecule(elemente);
489 atom *CurrentAtom = NULL;
490 atom *LeftAtom = NULL, *RightAtom = NULL;
491 atom *Walker = NULL;
492
493 // copy all atoms
494 Walker = start;
495 while(Walker->next != end) {
496 Walker = Walker->next;
497 CurrentAtom = copy->AddCopyAtom(Walker);
498 }
499
500 // copy all bonds
501 bond *Binder = first;
502 bond *NewBond = NULL;
503 while(Binder->next != last) {
504 Binder = Binder->next;
505 // get the pendant atoms of current bond in the copy molecule
506 LeftAtom = copy->start;
507 while (LeftAtom->next != copy->end) {
508 LeftAtom = LeftAtom->next;
509 if (LeftAtom->father == Binder->leftatom)
510 break;
511 }
512 RightAtom = copy->start;
513 while (RightAtom->next != copy->end) {
514 RightAtom = RightAtom->next;
515 if (RightAtom->father == Binder->rightatom)
516 break;
517 }
518 NewBond = copy->AddBond(LeftAtom, RightAtom, Binder->BondDegree);
519 NewBond->Cyclic = Binder->Cyclic;
520 if (Binder->Cyclic)
521 copy->NoCyclicBonds++;
522 NewBond->Type = Binder->Type;
523 }
524 // correct fathers
525 Walker = copy->start;
526 while(Walker->next != copy->end) {
527 Walker = Walker->next;
528 if (Walker->father->father == Walker->father) // same atom in copy's father points to itself
529 Walker->father = Walker; // set father to itself (copy of a whole molecule)
530 else
531 Walker->father = Walker->father->father; // set father to original's father
532 }
533 // copy values
534 copy->CountAtoms((ofstream *)&cout);
535 copy->CountElements();
536 if (first->next != last) { // if adjaceny list is present
537 copy->BondDistance = BondDistance;
538 copy->CreateListOfBondsPerAtom((ofstream *)&cout);
539 }
540
541 return copy;
542};
543
544/** Adds a bond to a the molecule specified by two atoms, \a *first and \a *second.
545 * Also updates molecule::BondCount and molecule::NoNonBonds.
546 * \param *first first atom in bond
547 * \param *second atom in bond
548 * \return pointer to bond or NULL on failure
549 */
550bond * molecule::AddBond(atom *atom1, atom *atom2, int degree=1)
551{
552 bond *Binder = NULL;
553 if ((atom1 != NULL) && (FindAtom(atom1->nr) != NULL) && (atom2 != NULL) && (FindAtom(atom2->nr) != NULL)) {
554 Binder = new bond(atom1, atom2, degree, BondCount++);
555 if ((atom1->type != NULL) && (atom1->type->Z != 1) && (atom2->type != NULL) && (atom2->type->Z != 1))
556 NoNonBonds++;
557 add(Binder, last);
558 } else {
559 cerr << Verbose(1) << "ERROR: Could not add bond between " << atom1->Name << " and " << atom2->Name << " as one or both are not present in the molecule." << endl;
560 }
561 return Binder;
562};
563
564/** Remove bond from bond chain list.
565 * \todo Function not implemented yet
566 * \param *pointer bond pointer
567 * \return true - bound found and removed, false - bond not found/removed
568 */
569bool molecule::RemoveBond(bond *pointer)
570{
571 //cerr << Verbose(1) << "molecule::RemoveBond: Function not implemented yet." << endl;
572 removewithoutcheck(pointer);
573 return true;
574};
575
576/** Remove every bond from bond chain list that atom \a *BondPartner is a constituent of.
577 * \todo Function not implemented yet
578 * \param *BondPartner atom to be removed
579 * \return true - bounds found and removed, false - bonds not found/removed
580 */
581bool molecule::RemoveBonds(atom *BondPartner)
582{
583 cerr << Verbose(1) << "molecule::RemoveBond: Function not implemented yet." << endl;
584 return false;
585};
586
587/** Sets the molecule::cell_size to the components of \a *dim (rectangular box)
588 * \param *dim vector class
589 */
590void molecule::SetBoxDimension(vector *dim)
591{
592 cell_size[0] = dim->x[0];
593 cell_size[1] = 0.;
594 cell_size[2] = dim->x[1];
595 cell_size[3] = 0.;
596 cell_size[4] = 0.;
597 cell_size[5] = dim->x[2];
598};
599
600/** Centers the edge of the atoms at (0,0,0).
601 * \param *out output stream for debugging
602 * \param *max coordinates of other edge, specifying box dimensions.
603 */
604void molecule::CenterEdge(ofstream *out, vector *max)
605{
606 vector *min = new vector;
607
608 *out << Verbose(3) << "Begin of CenterEdge." << endl;
609 atom *ptr = start->next; // start at first in list
610 if (ptr != end) { //list not empty?
611 for (int i=0;i<NDIM;i++) {
612 max->x[i] = ptr->x.x[i];
613 min->x[i] = ptr->x.x[i];
614 }
615 while (ptr->next != end) { // continue with second if present
616 ptr = ptr->next;
617 //ptr->Output(1,1,out);
618 for (int i=0;i<NDIM;i++) {
619 max->x[i] = (max->x[i] < ptr->x.x[i]) ? ptr->x.x[i] : max->x[i];
620 min->x[i] = (min->x[i] > ptr->x.x[i]) ? ptr->x.x[i] : min->x[i];
621 }
622 }
623 *out << Verbose(4) << "Maximum is ";
624 max->Output(out);
625 *out << ", Minimum is ";
626 min->Output(out);
627 *out << endl;
628
629 for (int i=0;i<NDIM;i++) {
630 min->x[i] *= -1.;
631 max->x[i] += min->x[i];
632 }
633 Translate(min);
634 }
635 delete(min);
636 *out << Verbose(3) << "End of CenterEdge." << endl;
637};
638
639/** Centers the center of the atoms at (0,0,0).
640 * \param *out output stream for debugging
641 * \param *center return vector for translation vector
642 */
643void molecule::CenterOrigin(ofstream *out, vector *center)
644{
645 int Num = 0;
646 atom *ptr = start->next; // start at first in list
647
648 for(int i=0;i<NDIM;i++) // zero center vector
649 center->x[i] = 0.;
650
651 if (ptr != end) { //list not empty?
652 while (ptr->next != end) { // continue with second if present
653 ptr = ptr->next;
654 Num++;
655 center->AddVector(&ptr->x);
656 }
657 center->Scale(-1./Num); // divide through total number (and sign for direction)
658 Translate(center);
659 }
660};
661
662/** Centers the center of gravity of the atoms at (0,0,0).
663 * \param *out output stream for debugging
664 * \param *center return vector for translation vector
665 */
666void molecule::CenterGravity(ofstream *out, vector *center)
667{
668 double Num = 0;
669 atom *ptr = start->next; // start at first in list
670 vector tmp;
671
672 for(int i=0;i<NDIM;i++) // zero center vector
673 center->x[i] = 0.;
674
675 if (ptr != end) { //list not empty?
676 while (ptr->next != end) { // continue with second if present
677 ptr = ptr->next;
678 Num += ptr->type->mass;
679 tmp.CopyVector(&ptr->x);
680 tmp.Scale(ptr->type->mass); // scale by mass
681 center->AddVector(&tmp);
682 }
683 center->Scale(-1./Num); // divide through total mass (and sign for direction)
684 Translate(center);
685 }
686};
687
688/** Scales all atoms by \a *factor.
689 * \param *factor pointer to scaling factor
690 */
691void molecule::Scale(double **factor)
692{
693 atom *ptr = start;
694
695 while (ptr->next != end) {
696 ptr = ptr->next;
697 ptr->x.Scale(factor);
698 }
699};
700
701/** Translate all atoms by given vector.
702 * \param trans[] translation vector.
703 */
704void molecule::Translate(const vector *trans)
705{
706 atom *ptr = start;
707
708 while (ptr->next != end) {
709 ptr = ptr->next;
710 ptr->x.Translate(trans);
711 }
712};
713
714/** Mirrors all atoms against a given plane.
715 * \param n[] normal vector of mirror plane.
716 */
717void molecule::Mirror(const vector *n)
718{
719 atom *ptr = start;
720
721 while (ptr->next != end) {
722 ptr = ptr->next;
723 ptr->x.Mirror(n);
724 }
725};
726
727/** Determines center of gravity (yet not considering atom masses).
728 * \param CenterOfGravity reference to return vector
729 */
730void molecule::DetermineCenterOfGravity(vector &CenterOfGravity)
731{
732 atom *Walker = start;
733 bond *Binder = NULL;
734 double *matrix = ReturnFullMatrixforSymmetric(cell_size);
735 double tmp;
736 bool flag;
737 vector TestVector, TranslationVector;
738
739 do {
740 CenterOfGravity.Zero();
741 flag = true;
742 while (Walker->next != end) {
743 Walker = Walker->next;
744#ifdef ADDHYDROGEN
745 if (Walker->type->Z != 1) {
746#endif
747 TestVector.CopyVector(&Walker->x);
748 TestVector.InverseMatrixMultiplication(matrix);
749 TranslationVector.Zero();
750 for (int i=0;i<NumberOfBondsPerAtom[Walker->nr]; i++) {
751 Binder = ListOfBondsPerAtom[Walker->nr][i];
752 if (Walker->nr < Binder->GetOtherAtom(Walker)->nr) // otherwise we shift one to, the other fro and gain nothing
753 for (int j=0;j<NDIM;j++) {
754 tmp = Walker->x.x[j] - Binder->GetOtherAtom(Walker)->x.x[j];
755 if ((fabs(tmp)) > BondDistance) {
756 flag = false;
757 cout << Verbose(0) << "Hit: atom " << Walker->Name << " in bond " << *Binder << " has to be shifted due to " << tmp << "." << endl;
758 if (tmp > 0)
759 TranslationVector.x[j] -= 1.;
760 else
761 TranslationVector.x[j] += 1.;
762 }
763 }
764 }
765 TestVector.AddVector(&TranslationVector);
766 TestVector.MatrixMultiplication(matrix);
767 CenterOfGravity.AddVector(&TestVector);
768 cout << Verbose(1) << "Vector is: ";
769 TestVector.Output((ofstream *)&cout);
770 cout << endl;
771#ifdef ADDHYDROGEN
772 // now also change all hydrogens
773 for (int i=0;i<NumberOfBondsPerAtom[Walker->nr]; i++) {
774 Binder = ListOfBondsPerAtom[Walker->nr][i];
775 if (Binder->GetOtherAtom(Walker)->type->Z == 1) {
776 TestVector.CopyVector(&Binder->GetOtherAtom(Walker)->x);
777 TestVector.InverseMatrixMultiplication(matrix);
778 TestVector.AddVector(&TranslationVector);
779 TestVector.MatrixMultiplication(matrix);
780 CenterOfGravity.AddVector(&TestVector);
781 cout << Verbose(1) << "Hydrogen Vector is: ";
782 TestVector.Output((ofstream *)&cout);
783 cout << endl;
784 }
785 }
786 }
787#endif
788 }
789 } while (!flag);
790 Free((void **)&matrix, "molecule::DetermineCenterOfGravity: *matrix");
791 CenterOfGravity.Scale(1./(double)AtomCount);
792};
793
794/** Align all atoms in such a manner that given vector \a *n is along z axis.
795 * \param n[] alignment vector.
796 */
797void molecule::Align(vector *n)
798{
799 atom *ptr = start;
800 double alpha, tmp;
801 vector z_axis;
802 z_axis.x[0] = 0.;
803 z_axis.x[1] = 0.;
804 z_axis.x[2] = 1.;
805
806 // rotate on z-x plane
807 cout << Verbose(0) << "Begin of Aligning all atoms." << endl;
808 alpha = atan(-n->x[0]/n->x[2]);
809 cout << Verbose(1) << "Z-X-angle: " << alpha << " ... ";
810 while (ptr->next != end) {
811 ptr = ptr->next;
812 tmp = ptr->x.x[0];
813 ptr->x.x[0] = cos(alpha) * tmp + sin(alpha) * ptr->x.x[2];
814 ptr->x.x[2] = -sin(alpha) * tmp + cos(alpha) * ptr->x.x[2];
815 }
816 // rotate n vector
817 tmp = n->x[0];
818 n->x[0] = cos(alpha) * tmp + sin(alpha) * n->x[2];
819 n->x[2] = -sin(alpha) * tmp + cos(alpha) * n->x[2];
820 cout << Verbose(1) << "alignment vector after first rotation: ";
821 n->Output((ofstream *)&cout);
822 cout << endl;
823
824 // rotate on z-y plane
825 ptr = start;
826 alpha = atan(-n->x[1]/n->x[2]);
827 cout << Verbose(1) << "Z-Y-angle: " << alpha << " ... ";
828 while (ptr->next != end) {
829 ptr = ptr->next;
830 tmp = ptr->x.x[1];
831 ptr->x.x[1] = cos(alpha) * tmp + sin(alpha) * ptr->x.x[2];
832 ptr->x.x[2] = -sin(alpha) * tmp + cos(alpha) * ptr->x.x[2];
833 }
834 // rotate n vector (for consistency check)
835 tmp = n->x[1];
836 n->x[1] = cos(alpha) * tmp + sin(alpha) * n->x[2];
837 n->x[2] = -sin(alpha) * tmp + cos(alpha) * n->x[2];
838
839 cout << Verbose(1) << "alignment vector after second rotation: ";
840 n->Output((ofstream *)&cout);
841 cout << Verbose(1) << endl;
842 cout << Verbose(0) << "End of Aligning all atoms." << endl;
843};
844
845/** Removes atom from molecule list.
846 * \param *pointer atom to be removed
847 * \return true - succeeded, false - atom not found in list
848 */
849bool molecule::RemoveAtom(atom *pointer)
850{
851 if (ElementsInMolecule[pointer->type->Z] != 0) // this would indicate an error
852 ElementsInMolecule[pointer->type->Z]--; // decrease number of atom of this element
853 else
854 cerr << "ERROR: Atom " << pointer->Name << " is of element " << pointer->type->Z << " but the entry in the table of the molecule is 0!" << endl;
855 if (ElementsInMolecule[pointer->type->Z] == 0) // was last atom of this element?
856 ElementCount--;
857 return remove(pointer, start, end);
858};
859
860/** Removes every atom from molecule list.
861 * \return true - succeeded, false - atom not found in list
862 */
863bool molecule::CleanupMolecule()
864{
865 return (cleanup(start,end) && cleanup(first,last));
866};
867
868/** Finds an atom specified by its continuous number.
869 * \param Nr number of atom withim molecule
870 * \return pointer to atom or NULL
871 */
872atom * molecule::FindAtom(int Nr) const{
873 atom * walker = find(&Nr, start,end);
874 if (walker != NULL) {
875 //cout << Verbose(0) << "Found Atom Nr. " << walker->nr << endl;
876 return walker;
877 } else {
878 cout << Verbose(0) << "Atom not found in list." << endl;
879 return NULL;
880 }
881};
882
883/** Asks for atom number, and checks whether in list.
884 * \param *text question before entering
885 */
886atom * molecule::AskAtom(char *text)
887{
888 int No;
889 atom *ion = NULL;
890 do {
891 //cout << Verbose(0) << "============Atom list==========================" << endl;
892 //mol->Output((ofstream *)&cout);
893 //cout << Verbose(0) << "===============================================" << endl;
894 cout << Verbose(0) << text;
895 cin >> No;
896 ion = this->FindAtom(No);
897 } while (ion == NULL);
898 return ion;
899};
900
901/** Checks if given coordinates are within cell volume.
902 * \param *x array of coordinates
903 * \return true - is within, false - out of cell
904 */
905bool molecule::CheckBounds(const vector *x) const
906{
907 bool result = true;
908 int j =-1;
909 for (int i=0;i<3;i++) {
910 j += i+1;
911 result = result && ((x->x[i] >= 0) && (x->x[i] < cell_size[j]));
912 }
913 //return result;
914 return true; /// probably not gonna use the check no more
915};
916
917/** Calculates sum over least square distance to line hidden in \a *x.
918 * \param *x offset and direction vector
919 * \param *params pointer to lsq_params structure
920 * \return \f$ sum_i^N | y_i - (a + t_i b)|^2\f$
921 */
922double LeastSquareDistance (const gsl_vector * x, void * params)
923{
924 double res = 0, t;
925 vector a,b,c,d;
926 struct lsq_params *par = (struct lsq_params *)params;
927 atom *ptr = par->mol->start;
928
929 // initialize vectors
930 a.x[0] = gsl_vector_get(x,0);
931 a.x[1] = gsl_vector_get(x,1);
932 a.x[2] = gsl_vector_get(x,2);
933 b.x[0] = gsl_vector_get(x,3);
934 b.x[1] = gsl_vector_get(x,4);
935 b.x[2] = gsl_vector_get(x,5);
936 // go through all atoms
937 while (ptr != par->mol->end) {
938 ptr = ptr->next;
939 if (ptr->type == ((struct lsq_params *)params)->type) { // for specific type
940 c.CopyVector(&ptr->x); // copy vector to temporary one
941 c.SubtractVector(&a); // subtract offset vector
942 t = c.ScalarProduct(&b); // get direction parameter
943 d.CopyVector(&b); // and create vector
944 d.Scale(&t);
945 c.SubtractVector(&d); // ... yielding distance vector
946 res += d.ScalarProduct((const vector *)&d); // add squared distance
947 }
948 }
949 return res;
950};
951
952/** By minimizing the least square distance gains alignment vector.
953 * \bug this is not yet working properly it seems
954 */
955void molecule::GetAlignVector(struct lsq_params * par) const
956{
957 int np = 6;
958
959 const gsl_multimin_fminimizer_type *T =
960 gsl_multimin_fminimizer_nmsimplex;
961 gsl_multimin_fminimizer *s = NULL;
962 gsl_vector *ss;
963 gsl_multimin_function minex_func;
964
965 size_t iter = 0, i;
966 int status;
967 double size;
968
969 /* Initial vertex size vector */
970 ss = gsl_vector_alloc (np);
971
972 /* Set all step sizes to 1 */
973 gsl_vector_set_all (ss, 1.0);
974
975 /* Starting point */
976 par->x = gsl_vector_alloc (np);
977 par->mol = this;
978
979 gsl_vector_set (par->x, 0, 0.0); // offset
980 gsl_vector_set (par->x, 1, 0.0);
981 gsl_vector_set (par->x, 2, 0.0);
982 gsl_vector_set (par->x, 3, 0.0); // direction
983 gsl_vector_set (par->x, 4, 0.0);
984 gsl_vector_set (par->x, 5, 1.0);
985
986 /* Initialize method and iterate */
987 minex_func.f = &LeastSquareDistance;
988 minex_func.n = np;
989 minex_func.params = (void *)par;
990
991 s = gsl_multimin_fminimizer_alloc (T, np);
992 gsl_multimin_fminimizer_set (s, &minex_func, par->x, ss);
993
994 do
995 {
996 iter++;
997 status = gsl_multimin_fminimizer_iterate(s);
998
999 if (status)
1000 break;
1001
1002 size = gsl_multimin_fminimizer_size (s);
1003 status = gsl_multimin_test_size (size, 1e-2);
1004
1005 if (status == GSL_SUCCESS)
1006 {
1007 printf ("converged to minimum at\n");
1008 }
1009
1010 printf ("%5d ", (int)iter);
1011 for (i = 0; i < (size_t)np; i++)
1012 {
1013 printf ("%10.3e ", gsl_vector_get (s->x, i));
1014 }
1015 printf ("f() = %7.3f size = %.3f\n", s->fval, size);
1016 }
1017 while (status == GSL_CONTINUE && iter < 100);
1018
1019 for (i=0;i<(size_t)np;i++)
1020 gsl_vector_set(par->x, i, gsl_vector_get(s->x, i));
1021 //gsl_vector_free(par->x);
1022 gsl_vector_free(ss);
1023 gsl_multimin_fminimizer_free (s);
1024};
1025
1026/** Prints molecule to *out.
1027 * \param *out output stream
1028 */
1029bool molecule::Output(ofstream *out)
1030{
1031 element *runner = elemente->start;
1032 atom *walker = NULL;
1033 int ElementNo, AtomNo;
1034 CountElements();
1035
1036 if (out == NULL) {
1037 return false;
1038 } else {
1039 *out << "#Ion_TypeNr._Nr.R[0] R[1] R[2] MoveType (0 MoveIon, 1 FixedIon)" << endl;
1040 ElementNo = 0;
1041 while (runner->next != elemente->end) { // go through every element
1042 runner = runner->next;
1043 if (ElementsInMolecule[runner->Z]) { // if this element got atoms
1044 ElementNo++;
1045 AtomNo = 0;
1046 walker = start;
1047 while (walker->next != end) { // go through every atom of this element
1048 walker = walker->next;
1049 if (walker->type == runner) { // if this atom fits to element
1050 AtomNo++;
1051 walker->Output(ElementNo, AtomNo, out);
1052 }
1053 }
1054 }
1055 }
1056 return true;
1057 }
1058};
1059
1060/** Output of element before the actual coordination list.
1061 * \param *out stream pointer
1062 */
1063bool molecule::Checkout(ofstream *out) const
1064{
1065 return elemente->Checkout(out, ElementsInMolecule);
1066};
1067
1068/** Prints molecule to *out as xyz file.
1069 * \param *out output stream
1070 */
1071bool molecule::OutputXYZ(ofstream *out) const
1072{
1073 atom *walker = NULL;
1074 int No = 0;
1075 time_t now;
1076
1077 now = time((time_t *)NULL); // Get the system time and put it into 'now' as 'calender time'
1078 walker = start;
1079 while (walker->next != end) { // go through every atom and count
1080 walker = walker->next;
1081 No++;
1082 }
1083 if (out != NULL) {
1084 *out << No << "\n\tCreated by molecuilder on " << ctime(&now);
1085 walker = start;
1086 while (walker->next != end) { // go through every atom of this element
1087 walker = walker->next;
1088 walker->OutputXYZLine(out);
1089 }
1090 return true;
1091 } else
1092 return false;
1093};
1094
1095/** Brings molecule::AtomCount and atom::*Name up-to-date.
1096 * \param *out output stream for debugging
1097 */
1098void molecule::CountAtoms(ofstream *out)
1099{
1100 int i = 0;
1101 atom *Walker = start;
1102 while (Walker->next != end) {
1103 Walker = Walker->next;
1104 i++;
1105 }
1106 if ((AtomCount == 0) || (i != AtomCount)) {
1107 *out << Verbose(3) << "Mismatch in AtomCount " << AtomCount << " and recounted number " << i << ", renaming all." << endl;
1108 AtomCount = i;
1109
1110 // count NonHydrogen atoms and give each atom a unique name
1111 if (AtomCount != 0) {
1112 i=0;
1113 NoNonHydrogen = 0;
1114 Walker = start;
1115 while (Walker->next != end) {
1116 Walker = Walker->next;
1117 Walker->nr = i; // update number in molecule (for easier referencing in FragmentMolecule lateron)
1118 if (Walker->type->Z != 1) // count non-hydrogen atoms whilst at it
1119 NoNonHydrogen++;
1120 Free((void **)&Walker->Name, "molecule::CountAtoms: *walker->Name");
1121 Walker->Name = (char *) Malloc(sizeof(char)*6, "molecule::CountAtoms: *walker->Name");
1122 sprintf(Walker->Name, "%2s%02d", Walker->type->symbol, Walker->nr+1);
1123 *out << "Naming atom nr. " << Walker->nr << " " << Walker->Name << "." << endl;
1124 i++;
1125 }
1126 } else
1127 *out << Verbose(3) << "AtomCount is still " << AtomCount << ", thus counting nothing." << endl;
1128 }
1129};
1130
1131/** Brings molecule::ElementCount and molecule::ElementsInMolecule up-to-date.
1132 */
1133void molecule::CountElements()
1134{
1135 int i = 0;
1136 for(i=0;i<MAX_ELEMENTS;i++)
1137 ElementsInMolecule[i] = 0;
1138 ElementCount = 0;
1139
1140 atom *walker = start;
1141 while (walker->next != end) {
1142 walker = walker->next;
1143 ElementsInMolecule[walker->type->Z]++;
1144 i++;
1145 }
1146 for(i=0;i<MAX_ELEMENTS;i++)
1147 ElementCount += (ElementsInMolecule[i] != 0 ? 1 : 0);
1148};
1149
1150/** Counts all cyclic bonds and returns their number.
1151 * \note Hydrogen bonds can never by cyclic, thus no check for that
1152 * \param *out output stream for debugging
1153 * \return number opf cyclic bonds
1154 */
1155int molecule::CountCyclicBonds(ofstream *out)
1156{
1157 int No = 0;
1158 int MinimumRingSize;
1159 MoleculeLeafClass *Subgraphs = NULL;
1160 bond *Binder = first;
1161 if ((Binder->next != last) && (Binder->next->Type == Undetermined)) {
1162 *out << Verbose(0) << "No Depth-First-Search analysis performed so far, calling ..." << endl;
1163 Subgraphs = DepthFirstSearchAnalysis(out, false, MinimumRingSize);
1164 while (Subgraphs->next != NULL) {
1165 Subgraphs = Subgraphs->next;
1166 delete(Subgraphs->previous);
1167 }
1168 delete(Subgraphs);
1169 }
1170 while(Binder->next != last) {
1171 Binder = Binder->next;
1172 if (Binder->Cyclic)
1173 No++;
1174 }
1175 return No;
1176};
1177
1178/** Returns Shading as a char string.
1179 * \param color the Shading
1180 * \return string of the flag
1181 */
1182char * molecule::GetColor(enum Shading color)
1183{
1184 switch(color) {
1185 case white:
1186 return "white";
1187 break;
1188 case lightgray:
1189 return "lightgray";
1190 break;
1191 case darkgray:
1192 return "darkgray";
1193 break;
1194 case black:
1195 return "black";
1196 break;
1197 default:
1198 return "uncolored";
1199 break;
1200 };
1201};
1202
1203
1204/** Counts necessary number of valence electrons and returns number and SpinType.
1205 * \param configuration containing everything
1206 */
1207void molecule::CalculateOrbitals(class config &configuration)
1208{
1209 configuration.MaxPsiDouble = configuration.PsiMaxNoDown = configuration.PsiMaxNoUp = configuration.PsiType = 0;
1210 for(int i=0;i<MAX_ELEMENTS;i++) {
1211 if (ElementsInMolecule[i] != 0) {
1212 //cout << "CalculateOrbitals: " << elemente->FindElement(i)->name << " has a valence of " << (int)elemente->FindElement(i)->Valence << " and there are " << ElementsInMolecule[i] << " of it." << endl;
1213 configuration.MaxPsiDouble += ElementsInMolecule[i]*((int)elemente->FindElement(i)->Valence);
1214 }
1215 }
1216 configuration.PsiMaxNoDown = configuration.MaxPsiDouble/2 + (configuration.MaxPsiDouble % 2);
1217 configuration.PsiMaxNoUp = configuration.MaxPsiDouble/2;
1218 configuration.MaxPsiDouble /= 2;
1219 configuration.PsiType = (configuration.PsiMaxNoDown == configuration.PsiMaxNoUp) ? 0 : 1;
1220 if ((configuration.PsiType == 1) && (configuration.ProcPEPsi < 2)) {
1221 configuration.ProcPEGamma /= 2;
1222 configuration.ProcPEPsi *= 2;
1223 } else {
1224 configuration.ProcPEGamma *= configuration.ProcPEPsi;
1225 configuration.ProcPEPsi = 1;
1226 }
1227 configuration.InitMaxMinStopStep = configuration.MaxMinStopStep = configuration.MaxPsiDouble;
1228};
1229
1230/** Creates an adjacency list of the molecule.
1231 * Generally, we use the CSD approach to bond recognition, that is the the distance
1232 * between two atoms A and B must be within [Rcov(A)+Rcov(B)-t,Rcov(A)+Rcov(B)+t] with
1233 * a threshold t = 0.4 Angstroem.
1234 * To make it O(N log N) the function uses the linked-cell technique as follows:
1235 * The procedure is step-wise:
1236 * -# Remove every bond in list
1237 * -# Count the atoms in the molecule with CountAtoms()
1238 * -# partition cell into smaller linked cells of size \a bonddistance
1239 * -# put each atom into its corresponding cell
1240 * -# go through every cell, check the atoms therein against all possible bond partners in the 27 adjacent cells, add bond if true
1241 * -# create the list of bonds via CreateListOfBondsPerAtom()
1242 * -# correct the bond degree iteratively (single->double->triple bond)
1243 * -# finally print the bond list to \a *out if desired
1244 * \param *out out stream for printing the matrix, NULL if no output
1245 * \param bonddistance length of linked cells (i.e. maximum minimal length checked)
1246 */
1247void molecule::CreateAdjacencyList(ofstream *out, double bonddistance)
1248{
1249 atom *Walker = NULL, *OtherWalker = NULL;
1250 int No, NoBonds;
1251 bond *Binder = NULL;
1252 int NumberCells, divisor[NDIM], n[NDIM], N[NDIM], index, Index, j;
1253 molecule **CellList;
1254 double distance, MinDistance, MaxDistance;
1255 double *matrix = ReturnFullMatrixforSymmetric(cell_size);
1256 vector x;
1257
1258 BondDistance = bonddistance;
1259 *out << Verbose(0) << "Begin of CreateAdjacencyList." << endl;
1260 // remove every bond from the list
1261 if ((first->next != last) && (last->previous != first)) { // there are bonds present
1262 cleanup(first,last);
1263 }
1264
1265 // count atoms in molecule = dimension of matrix (also give each unique name and continuous numbering)
1266 CountAtoms(out);
1267 *out << Verbose(1) << "AtomCount " << AtomCount << "." << endl;
1268
1269 if (AtomCount != 0) {
1270 // 1. find divisor for each axis, such that a sphere with radius of at least bonddistance can be placed into each cell
1271 j=-1;
1272 for (int i=0;i<NDIM;i++) {
1273 j += i+1;
1274 divisor[i] = (int)floor(cell_size[j]/bonddistance); // take smaller value such that size of linked cell is at least bonddistance
1275 *out << Verbose(1) << "divisor[" << i << "] = " << divisor[i] << "." << endl;
1276 }
1277 // 2a. allocate memory for the cell list
1278 NumberCells = divisor[0]*divisor[1]*divisor[2];
1279 *out << Verbose(1) << "Allocating " << NumberCells << " cells." << endl;
1280 CellList = (molecule **) Malloc(sizeof(molecule *)*NumberCells, "molecule::CreateAdjacencyList - ** CellList");
1281 for (int i=0;i<NumberCells;i++)
1282 CellList[i] = NULL;
1283
1284 // 2b. put all atoms into its corresponding list
1285 Walker = start;
1286 while(Walker->next != end) {
1287 Walker = Walker->next;
1288 //*out << Verbose(1) << "Current atom is " << *Walker << " with coordinates ";
1289 //Walker->x.Output(out);
1290 //*out << "." << endl;
1291 // compute the cell by the atom's coordinates
1292 j=-1;
1293 for (int i=0;i<NDIM;i++) {
1294 j += i+1;
1295 x.CopyVector(&(Walker->x));
1296 x.KeepPeriodic(out, matrix);
1297 n[i] = (int)floor(x.x[i]/cell_size[j]*(double)divisor[i]);
1298 }
1299 index = n[2] + (n[1] + n[0] * divisor[1]) * divisor[2];
1300 *out << Verbose(1) << "Atom " << *Walker << " goes into cell number [" << n[0] << "," << n[1] << "," << n[2] << "] = " << index << "." << endl;
1301 // add copy atom to this cell
1302 if (CellList[index] == NULL) // allocate molecule if not done
1303 CellList[index] = new molecule(elemente);
1304 OtherWalker = CellList[index]->AddCopyAtom(Walker); // add a copy of walker to this atom, father will be walker for later reference
1305 //*out << Verbose(1) << "Copy Atom is " << *OtherWalker << "." << endl;
1306 }
1307 //for (int i=0;i<NumberCells;i++)
1308 //*out << Verbose(1) << "Cell number " << i << ": " << CellList[i] << "." << endl;
1309
1310 // 3a. go through every cell
1311 for (N[0]=0;N[0]<divisor[0];N[0]++)
1312 for (N[1]=0;N[1]<divisor[1];N[1]++)
1313 for (N[2]=0;N[2]<divisor[2];N[2]++) {
1314 Index = N[2] + (N[1] + N[0] * divisor[1]) * divisor[2];
1315 if (CellList[Index] != NULL) { // if there atoms in this cell
1316 //*out << Verbose(1) << "Current cell is " << Index << "." << endl;
1317 // 3b. for every atom therein
1318 Walker = CellList[Index]->start;
1319 while (Walker->next != CellList[Index]->end) { // go through every atom
1320 Walker = Walker->next;
1321 //*out << Verbose(0) << "Current Atom is " << *Walker << "." << endl;
1322 // 3c. check for possible bond between each atom in this and every one in the 27 cells
1323 for (n[0]=-1;n[0]<=1;n[0]++)
1324 for (n[1]=-1;n[1]<=1;n[1]++)
1325 for (n[2]=-1;n[2]<=1;n[2]++) {
1326 // compute the index of this comparison cell and make it periodic
1327 index = ((N[2]+n[2]+divisor[2])%divisor[2]) + (((N[1]+n[1]+divisor[1])%divisor[1]) + ((N[0]+n[0]+divisor[0])%divisor[0]) * divisor[1]) * divisor[2];
1328 //*out << Verbose(1) << "Number of comparison cell is " << index << "." << endl;
1329 if (CellList[index] != NULL) { // if there are any atoms in this cell
1330 OtherWalker = CellList[index]->start;
1331 while(OtherWalker->next != CellList[index]->end) { // go through every atom in this cell
1332 OtherWalker = OtherWalker->next;
1333 //*out << Verbose(0) << "Current comparison atom is " << *OtherWalker << "." << endl;
1334 /// \todo periodic check is missing here!
1335 //*out << Verbose(1) << "Checking distance " << OtherWalker->x.PeriodicDistance(&(Walker->x), cell_size) << " against typical bond length of " << bonddistance*bonddistance << "." << endl;
1336 MinDistance = OtherWalker->type->CovalentRadius + Walker->type->CovalentRadius;
1337 MaxDistance = MinDistance + BONDTHRESHOLD;
1338 MinDistance -= BONDTHRESHOLD;
1339 distance = OtherWalker->x.PeriodicDistance(&(Walker->x), cell_size);
1340 if ((OtherWalker->father->nr > Walker->father->nr) && (distance <= MaxDistance*MaxDistance) && (distance >= MinDistance*MinDistance)) { // create bond if distance is smaller
1341 *out << Verbose(0) << "Adding Bond between " << *Walker << " and " << *OtherWalker << "." << endl;
1342 AddBond(Walker->father, OtherWalker->father, 1); // also increases molecule::BondCount
1343 } else {
1344 //*out << Verbose(1) << "Not Adding: Wrong label order or distance too great." << endl;
1345 }
1346 }
1347 }
1348 }
1349 }
1350 }
1351 }
1352 // 4. free the cell again
1353 for (int i=0;i<NumberCells;i++)
1354 if (CellList[i] != NULL) {
1355 delete(CellList[i]);
1356 }
1357 Free((void **)&CellList, "molecule::CreateAdjacencyList - ** CellList");
1358
1359 // create the adjacency list per atom
1360 CreateListOfBondsPerAtom(out);
1361
1362 // correct Bond degree of each bond by checking of updated(!) sum of bond degree for an atom match its valence count
1363 // bond degrres are correctled iteratively by one, so that 2-2 instead of 1-3 or 3-1 corrections are favoured: We want
1364 // a rather symmetric distribution of higher bond degrees
1365 if (BondCount != 0) {
1366 NoCyclicBonds = 0;
1367 *out << Verbose(1) << "correct Bond degree of each bond" << endl;
1368 do {
1369 No = 0; // No acts as breakup flag (if 1 we still continue)
1370 Walker = start;
1371 while (Walker->next != end) { // go through every atom
1372 Walker = Walker->next;
1373 for(int i=0;i<NumberOfBondsPerAtom[Walker->nr];i++) { // go through each of its bond partners
1374 OtherWalker = ListOfBondsPerAtom[Walker->nr][i]->GetOtherAtom(Walker);
1375 // count valence of first partner (updated!), might have changed during last bond partner
1376 NoBonds = 0;
1377 for(j=0;j<NumberOfBondsPerAtom[Walker->nr];j++)
1378 NoBonds += ListOfBondsPerAtom[Walker->nr][j]->BondDegree;
1379 *out << Verbose(3) << "Walker: " << (int)Walker->type->NoValenceOrbitals << " > " << NoBonds << "?" << endl;
1380 if ((int)(Walker->type->NoValenceOrbitals) > NoBonds) { // we have a mismatch, check NoBonds of other atom
1381 // count valence of second partner
1382 NoBonds = 0;
1383 for(j=0;j<NumberOfBondsPerAtom[OtherWalker->nr];j++)
1384 NoBonds += ListOfBondsPerAtom[OtherWalker->nr][j]->BondDegree;
1385 *out << Verbose(3) << "OtherWalker: " << (int)OtherWalker->type->NoValenceOrbitals << " > " << NoBonds << "?" << endl;
1386 if ((int)(OtherWalker->type->NoValenceOrbitals) > NoBonds) // increase bond degree by one
1387 ListOfBondsPerAtom[Walker->nr][i]->BondDegree++;
1388 }
1389 }
1390 }
1391 } while (No);
1392
1393 } else
1394 *out << Verbose(1) << "BondCount is " << BondCount << ", no bonds between any of the " << AtomCount << " atoms." << endl;
1395 *out << Verbose(1) << "I detected " << BondCount << " bonds in the molecule with distance " << bonddistance << "." << endl;
1396
1397 // output bonds for debugging (if bond chain list was correctly installed)
1398 *out << Verbose(1) << endl << "From contents of bond chain list:";
1399 Binder = first;
1400 while(Binder->next != last) {
1401 Binder = Binder->next;
1402 *out << *Binder << "\t" << endl;
1403 }
1404 *out << endl;
1405 } else
1406 *out << Verbose(1) << "AtomCount is " << AtomCount << ", thus no bonds, no connections!." << endl;
1407 *out << Verbose(0) << "End of CreateAdjacencyList." << endl;
1408 Free((void **)&matrix, "molecule::CreateAdjacencyList: *matrix");
1409};
1410
1411/** Performs a Depth-First search on this molecule.
1412 * Marks bonds in molecule as cyclic, bridge, ... and atoms as
1413 * articulations points, ...
1414 * We use the algorithm from [Even, Graph Algorithms, p.62].
1415 * \param *out output stream for debugging
1416 * \param ReturnStack true - return pointer to atom stack of separable components, false - return NULL
1417 * \param MinimumRingSize contains smallest ring size in molecular structure on return or -1 if no rings were found
1418 * \return list of each disconnected subgraph as an individual molecule class structure
1419 */
1420MoleculeLeafClass * molecule::DepthFirstSearchAnalysis(ofstream *out, bool ReturnStack, int &MinimumRingSize)
1421{
1422 AtomStackClass *AtomStack = new AtomStackClass(AtomCount);
1423 MoleculeLeafClass *SubGraphs = new MoleculeLeafClass(NULL);
1424 MoleculeLeafClass *LeafWalker = SubGraphs;
1425 int CurrentGraphNr = 0, OldGraphNr;
1426 int CyclicBonds;
1427 int ComponentNumber = 0;
1428 atom *Walker = NULL, *OtherAtom = NULL, *Root = start->next;
1429 bond *Binder = NULL;
1430 bool BackStepping = false;
1431
1432 *out << Verbose(0) << "Begin of DepthFirstSearchAnalysis" << endl;
1433
1434 ResetAllBondsToUnused();
1435 ResetAllAtomNumbers();
1436 InitComponentNumbers();
1437 while (Root != end) { // if there any atoms at all
1438 // (1) mark all edges unused, empty stack, set atom->GraphNr = 0 for all
1439 AtomStack->ClearStack();
1440
1441 // put into new subgraph molecule and add this to list of subgraphs
1442 LeafWalker = new MoleculeLeafClass(LeafWalker);
1443 LeafWalker->Leaf = new molecule(elemente);
1444 LeafWalker->Leaf->AddCopyAtom(Root);
1445
1446 OldGraphNr = CurrentGraphNr;
1447 Walker = Root;
1448 do { // (10)
1449 do { // (2) set number and Lowpoint of Atom to i, increase i, push current atom
1450 if (!BackStepping) { // if we don't just return from (8)
1451 Walker->GraphNr = CurrentGraphNr;
1452 Walker->LowpointNr = CurrentGraphNr;
1453 *out << Verbose(1) << "Setting Walker[" << Walker->Name << "]'s number to " << Walker->GraphNr << " with Lowpoint " << Walker->LowpointNr << "." << endl;
1454 AtomStack->Push(Walker);
1455 CurrentGraphNr++;
1456 }
1457 do { // (3) if Walker has no unused egdes, go to (5)
1458 BackStepping = false; // reset backstepping flag for (8)
1459 if (Binder == NULL) // if we don't just return from (11), Binder is already set to next unused
1460 Binder = FindNextUnused(Walker);
1461 if (Binder == NULL)
1462 break;
1463 *out << Verbose(2) << "Current Unused Bond is " << *Binder << "." << endl;
1464 // (4) Mark Binder used, ...
1465 Binder->MarkUsed(black);
1466 OtherAtom = Binder->GetOtherAtom(Walker);
1467 *out << Verbose(2) << "(4) OtherAtom is " << OtherAtom->Name << "." << endl;
1468 if (OtherAtom->GraphNr != -1) {
1469 // (4a) ... if "other" atom has been visited (GraphNr != 0), set lowpoint to minimum of both, go to (3)
1470 Binder->Type = BackEdge;
1471 Walker->LowpointNr = ( Walker->LowpointNr < OtherAtom->GraphNr ) ? Walker->LowpointNr : OtherAtom->GraphNr;
1472 *out << Verbose(3) << "(4a) Visited: Setting Lowpoint of Walker[" << Walker->Name << "] to " << Walker->LowpointNr << "." << endl;
1473 } else {
1474 // (4b) ... otherwise set OtherAtom as Ancestor of Walker and Walker as OtherAtom, go to (2)
1475 Binder->Type = TreeEdge;
1476 OtherAtom->Ancestor = Walker;
1477 Walker = OtherAtom;
1478 *out << Verbose(3) << "(4b) Not Visited: OtherAtom[" << OtherAtom->Name << "]'s Ancestor is now " << OtherAtom->Ancestor->Name << ", Walker is OtherAtom " << OtherAtom->Name << "." << endl;
1479 break;
1480 }
1481 Binder = NULL;
1482 } while (1); // (3)
1483 if (Binder == NULL) {
1484 *out << Verbose(2) << "No more Unused Bonds." << endl;
1485 break;
1486 } else
1487 Binder = NULL;
1488 } while (1); // (2)
1489
1490 // if we came from backstepping, yet there were no more unused bonds, we end up here with no Ancestor, because Walker is Root! Then we are finished!
1491 if ((Walker == Root) && (Binder == NULL))
1492 break;
1493
1494 // (5) if Ancestor of Walker is ...
1495 *out << Verbose(1) << "(5) Number of Walker[" << Walker->Name << "]'s Ancestor[" << Walker->Ancestor->Name << "] is " << Walker->Ancestor->GraphNr << "." << endl;
1496 if (Walker->Ancestor->GraphNr != Root->GraphNr) {
1497 // (6) (Ancestor of Walker is not Root)
1498 if (Walker->LowpointNr < Walker->Ancestor->GraphNr) {
1499 // (6a) set Ancestor's Lowpoint number to minimum of of its Ancestor and itself, go to Step(8)
1500 Walker->Ancestor->LowpointNr = (Walker->Ancestor->LowpointNr < Walker->LowpointNr) ? Walker->Ancestor->LowpointNr : Walker->LowpointNr;
1501 *out << Verbose(2) << "(6) Setting Walker[" << Walker->Name << "]'s Ancestor[" << Walker->Ancestor->Name << "]'s Lowpoint to " << Walker->Ancestor->LowpointNr << "." << endl;
1502 } else {
1503 // (7) (Ancestor of Walker is a separating vertex, remove all from stack till Walker (including), these and Ancestor form a component
1504 Walker->Ancestor->SeparationVertex = true;
1505 *out << Verbose(2) << "(7) Walker[" << Walker->Name << "]'s Ancestor[" << Walker->Ancestor->Name << "]'s is a separating vertex, creating component." << endl;
1506 SetNextComponentNumber(Walker->Ancestor, ComponentNumber);
1507 *out << Verbose(3) << "(7) Walker[" << Walker->Name << "]'s Ancestor's Compont is " << ComponentNumber << "." << endl;
1508 SetNextComponentNumber(Walker, ComponentNumber);
1509 *out << Verbose(3) << "(7) Walker[" << Walker->Name << "]'s Compont is " << ComponentNumber << "." << endl;
1510 do {
1511 OtherAtom = AtomStack->PopLast();
1512 LeafWalker->Leaf->AddCopyAtom(OtherAtom);
1513 SetNextComponentNumber(OtherAtom, ComponentNumber);
1514 *out << Verbose(3) << "(7) Other[" << OtherAtom->Name << "]'s Compont is " << ComponentNumber << "." << endl;
1515 } while (OtherAtom != Walker);
1516 ComponentNumber++;
1517 }
1518 // (8) Walker becomes its Ancestor, go to (3)
1519 *out << Verbose(2) << "(8) Walker[" << Walker->Name << "] is now its Ancestor " << Walker->Ancestor->Name << ", backstepping. " << endl;
1520 Walker = Walker->Ancestor;
1521 BackStepping = true;
1522 }
1523 if (!BackStepping) { // coming from (8) want to go to (3)
1524 // (9) remove all from stack till Walker (including), these and Root form a component
1525 AtomStack->Output(out);
1526 SetNextComponentNumber(Root, ComponentNumber);
1527 *out << Verbose(3) << "(9) Root[" << Root->Name << "]'s Component is " << ComponentNumber << "." << endl;
1528 SetNextComponentNumber(Walker, ComponentNumber);
1529 *out << Verbose(3) << "(9) Walker[" << Walker->Name << "]'s Component is " << ComponentNumber << "." << endl;
1530 do {
1531 OtherAtom = AtomStack->PopLast();
1532 LeafWalker->Leaf->AddCopyAtom(OtherAtom);
1533 SetNextComponentNumber(OtherAtom, ComponentNumber);
1534 *out << Verbose(3) << "(7) Other[" << OtherAtom->Name << "]'s Compont is " << ComponentNumber << "." << endl;
1535 } while (OtherAtom != Walker);
1536 ComponentNumber++;
1537
1538 // (11) Root is separation vertex, set Walker to Root and go to (4)
1539 Walker = Root;
1540 Binder = FindNextUnused(Walker);
1541 *out << Verbose(1) << "(10) Walker is Root[" << Root->Name << "], next Unused Bond is " << Binder << "." << endl;
1542 if (Binder != NULL) { // Root is separation vertex
1543 *out << Verbose(1) << "(11) Root is a separation vertex." << endl;
1544 Walker->SeparationVertex = true;
1545 }
1546 }
1547 } while ((BackStepping) || (Binder != NULL)); // (10) halt only if Root has no unused edges
1548
1549 // From OldGraphNr to CurrentGraphNr ranges an disconnected subgraph
1550 *out << Verbose(0) << "Disconnected subgraph ranges from " << OldGraphNr << " to " << CurrentGraphNr << "." << endl;
1551 LeafWalker->Leaf->Output(out);
1552 *out << endl;
1553
1554 // step on to next root
1555 while ((Root != end) && (Root->GraphNr != -1)) {
1556 //*out << Verbose(1) << "Current next subgraph root candidate is " << Root->Name << "." << endl;
1557 if (Root->GraphNr != -1) // if already discovered, step on
1558 Root = Root->next;
1559 }
1560 }
1561 // set cyclic bond criterium on "same LP" basis
1562 Binder = first;
1563 while(Binder->next != last) {
1564 Binder = Binder->next;
1565 if (Binder->rightatom->LowpointNr == Binder->leftatom->LowpointNr) { // cyclic ??
1566 Binder->Cyclic = true;
1567 NoCyclicBonds++;
1568 }
1569 }
1570
1571 // correct cyclic bonds that are not included in "same LP" argument
1572 Binder = first;
1573 while (Binder->next != last) {
1574 Binder = Binder->next;
1575 Walker = Binder->leftatom;
1576 OtherAtom = Binder->rightatom;
1577 // now check whether both have a cyclic bond in their list
1578 CyclicBonds = 0; // counts cyclic bonds;
1579 for(int i=0;i<NumberOfBondsPerAtom[Walker->nr];i++)
1580 if ((CyclicBonds == 0) && (ListOfBondsPerAtom[Walker->nr][i]->Cyclic))
1581 CyclicBonds = 1;
1582 for(int i=0;i<NumberOfBondsPerAtom[OtherAtom->nr];i++)
1583 if ((CyclicBonds == 1) && (ListOfBondsPerAtom[OtherAtom->nr][i]->Cyclic))
1584 CyclicBonds = 2;
1585 Binder->Cyclic = (Binder->Cyclic) || (CyclicBonds == 2); // set the Cyclic criterium either or ...
1586 }
1587
1588 // further analysis of the found cycles (print rings, get minimum cycle length)
1589 CyclicStructureAnalysis(out, MinimumRingSize);
1590 *out << Verbose(1) << "Final graph info for each atom is:" << endl;
1591 Walker = start;
1592 while (Walker->next != end) {
1593 Walker = Walker->next;
1594 *out << Verbose(2) << "Atom " << Walker->Name << " is " << ((Walker->SeparationVertex) ? "a" : "not a") << " separation vertex, components are ";
1595 OutputComponentNumber(out, Walker);
1596 *out << " with Lowpoint " << Walker->LowpointNr << " and Graph Nr. " << Walker->GraphNr << "." << endl;
1597 }
1598
1599 *out << Verbose(1) << "Final graph info for each bond is:" << endl;
1600 Binder = first;
1601 while(Binder->next != last) {
1602 Binder = Binder->next;
1603 *out << Verbose(2) << ((Binder->Type == TreeEdge) ? "TreeEdge " : "BackEdge ") << *Binder << ": <";
1604 *out << ((Binder->leftatom->SeparationVertex) ? "SP," : "") << "L" << Binder->leftatom->LowpointNr << " G" << Binder->leftatom->GraphNr << " Comp.";
1605 OutputComponentNumber(out, Binder->leftatom);
1606 *out << " === ";
1607 *out << ((Binder->rightatom->SeparationVertex) ? "SP," : "") << "L" << Binder->rightatom->LowpointNr << " G" << Binder->rightatom->GraphNr << " Comp.";
1608 OutputComponentNumber(out, Binder->rightatom);
1609 *out << ">." << endl;
1610 if (Binder->Cyclic) // cyclic ??
1611 *out << Verbose(3) << "Lowpoint at each side are equal: CYCLIC!" << endl;
1612 }
1613
1614 // further analysis of the found cycles (print rings, get minimum cycle length)
1615 CyclicStructureAnalysis(out, MinimumRingSize);
1616
1617 // free all and exit
1618 delete(AtomStack);
1619 *out << Verbose(0) << "End of DepthFirstSearchAnalysis" << endl;
1620 return SubGraphs;
1621};
1622
1623/** Analyses the cycles found and returns minimum of all cycle lengths.
1624 * \param *out output stream for debugging
1625 * \param MinimumRingSize contains smallest ring size in molecular structure on return or -1 if no rings were found
1626 * \todo BFS from the not-same-LP to find back to starting point of tributary cycle over more than one bond
1627 */
1628void molecule::CyclicStructureAnalysis(ofstream *out, int &MinimumRingSize)
1629{
1630 AtomStackClass *AtomStack = new AtomStackClass(AtomCount);
1631 int LP;
1632 atom *Walker = NULL, *OtherAtom = NULL, *Root = NULL, *Runner = NULL;
1633 bond *Binder = NULL;
1634 int RingSize, NumCycles;
1635
1636 // go through every atom
1637 AtomStack->ClearStack();
1638 int *NoCyclicBondsPerAtom = (int *) Malloc(sizeof(int)*AtomCount, "molecule::CyclicStructureAnalysis: *NoCyclicBondsPerAtom");
1639 Walker = start;
1640 while (Walker->next != end) {
1641 Walker = Walker->next;
1642 NoCyclicBondsPerAtom[Walker->nr] = 0;
1643 // check whether it's connected to cyclic bonds and count per atom
1644 // 0 means not part of a cycle, 2 means in a cycle, 3 or more means interconnection site of cycles
1645 for (int i=0;i<NumberOfBondsPerAtom[Walker->nr]; i++) {
1646 Binder = ListOfBondsPerAtom[Walker->nr][i];
1647 NoCyclicBondsPerAtom[Walker->nr] += (int) Binder->Cyclic;
1648 if (NoCyclicBondsPerAtom[Walker->nr] == 3) //push all intersections
1649 AtomStack->Push(Walker);
1650 }
1651 }
1652 *out << Verbose(1) << "NoCyclicBondsPerAtom: ";
1653 for(int i=0;i<AtomCount;i++) {
1654 *out << NoCyclicBondsPerAtom[i] << " ";
1655 }
1656 *out << endl;
1657 *out << Verbose(1) << "Analysing cycles ... " << endl;
1658 MinimumRingSize = -1;
1659 NumCycles = 0;
1660 while (!AtomStack->IsEmpty()) {
1661 Walker = AtomStack->PopFirst();
1662 if (NoCyclicBondsPerAtom[Walker->nr] > 1) {
1663 NoCyclicBondsPerAtom[Walker->nr]--; // remove one for being intersection
1664 RingSize = 0;
1665 *out << Verbose(2) << "Current intersection is " << *Walker << ", expect to find " << NoCyclicBondsPerAtom[Walker->nr] << " cycles." << endl;
1666 for(int i=0;i<NumberOfBondsPerAtom[Walker->nr];i++) {
1667 Binder = ListOfBondsPerAtom[Walker->nr][i];
1668 OtherAtom = Binder->GetOtherAtom(Walker);
1669 // note down the LowPoint number of this cycle
1670 if (NoCyclicBondsPerAtom[OtherAtom->nr] > 1) {
1671 LP = OtherAtom->LowpointNr;
1672 NoCyclicBondsPerAtom[Walker->nr]--; // walker is start of cycle
1673 if (LP != Walker->LowpointNr)
1674 *out << Verbose(2) << "Tributary cycle: ... <-> " << Walker->Name;
1675 else
1676 *out << Verbose(2) << "Main cycle: ... <-> " << Walker->Name;
1677 Root = Walker; // root acts as predecessor marker so that we don't step back accidentally
1678 RingSize = 1;
1679 do {
1680 for(int j=0;j<NumberOfBondsPerAtom[OtherAtom->nr];j++) { // search among its bonds for next in cycle (same lowpoint nr)
1681 Runner = ListOfBondsPerAtom[OtherAtom->nr][j]->GetOtherAtom(OtherAtom);
1682 if (((Runner->LowpointNr == LP) || (Runner->LowpointNr == Walker->LowpointNr)) && (Runner != Root)) {
1683 // first check is to stay in the cycle
1684 // middle check is allow for getting back into main cycle briefly from tributary cycle (just one step, then while further down stops)
1685 // last check is not step back
1686 *out << " <-> " << OtherAtom->Name;
1687 NoCyclicBondsPerAtom[OtherAtom->nr]--;
1688 Root = OtherAtom;
1689 OtherAtom = Runner;
1690 NoCyclicBondsPerAtom[Root->nr]--;
1691 RingSize++;
1692 break;
1693 }
1694 }
1695 } while ((OtherAtom->LowpointNr == LP) && (Walker != OtherAtom) && (Root->LowpointNr == OtherAtom->LowpointNr));
1696 // now check if the LP is different from Walker's, as then there is one more bond to follow
1697 if (LP != Walker->LowpointNr) {
1698 // find last bond to home base
1699 for(int j=0;j<NumberOfBondsPerAtom[OtherAtom->nr];j++)
1700 if (ListOfBondsPerAtom[OtherAtom->nr][j]->GetOtherAtom(OtherAtom) == Root) {
1701 *out << " <-> " << OtherAtom->Name;
1702 RingSize++;
1703 NoCyclicBondsPerAtom[OtherAtom->nr]--;
1704 }
1705 } else {
1706 // we have made the complete cycle
1707 }
1708 *out << " <-> ... with cycle length of " << RingSize << "." << endl;
1709 NumCycles++;
1710 if ((RingSize < MinimumRingSize) || (MinimumRingSize == -1))
1711 MinimumRingSize = RingSize;
1712 }
1713 }
1714 }
1715 }
1716
1717 // print NoCyclicBondsPerAtom to visually check of all are zero
1718 *out << Verbose(1) << "NoCyclicBondsPerAtom: ";
1719 for(int i=0;i<AtomCount;i++) {
1720 if (NoCyclicBondsPerAtom[i] > 0)
1721 cerr << "There was an error in molecule::CyclicStructureAnalysis!" << endl;
1722 *out << NoCyclicBondsPerAtom[i] << " ";
1723 }
1724 *out << endl;
1725
1726 if (MinimumRingSize != -1)
1727 *out << Verbose(1) << "Minimum ring size is " << MinimumRingSize << ", over " << NumCycles << " cycles total." << endl;
1728 else
1729 *out << Verbose(1) << "No rings were detected in the molecular structure." << endl;
1730
1731 Free((void **)&NoCyclicBondsPerAtom, "molecule::CyclicStructureAnalysis: *NoCyclicBondsPerAtom");
1732 delete(AtomStack);
1733};
1734
1735/** Sets the next component number.
1736 * This is O(N) as the number of bonds per atom is bound.
1737 * \param *vertex atom whose next atom::*ComponentNr is to be set
1738 * \param nr number to use
1739 */
1740void molecule::SetNextComponentNumber(atom *vertex, int nr)
1741{
1742 int i=0;
1743 if (vertex != NULL) {
1744 for(;i<NumberOfBondsPerAtom[vertex->nr];i++) {
1745 if (vertex->ComponentNr[i] == -1) { // check if not yet used
1746 vertex->ComponentNr[i] = nr;
1747 break;
1748 }
1749 else if (vertex->ComponentNr[i] == nr) // if number is already present, don't add another time
1750 break; // breaking here will not cause error!
1751 }
1752 if (i == NumberOfBondsPerAtom[vertex->nr])
1753 cerr << "Error: All Component entries are already occupied!" << endl;
1754 } else
1755 cerr << "Error: Given vertex is NULL!" << endl;
1756};
1757
1758/** Output a list of flags, stating whether the bond was visited or not.
1759 * \param *out output stream for debugging
1760 */
1761void molecule::OutputComponentNumber(ofstream *out, atom *vertex)
1762{
1763 for(int i=0;i<NumberOfBondsPerAtom[vertex->nr];i++)
1764 *out << vertex->ComponentNr[i] << " ";
1765};
1766
1767/** Allocates memory for all atom::*ComponentNr in this molecule and sets each entry to -1.
1768 */
1769void molecule::InitComponentNumbers()
1770{
1771 atom *Walker = start;
1772 while(Walker->next != end) {
1773 Walker = Walker->next;
1774 if (Walker->ComponentNr != NULL)
1775 Free((void **)&Walker->ComponentNr, "molecule::InitComponentNumbers: **Walker->ComponentNr");
1776 Walker->ComponentNr = (int *) Malloc(sizeof(int)*NumberOfBondsPerAtom[Walker->nr], "molecule::InitComponentNumbers: *Walker->ComponentNr");
1777 for (int i=0;i<NumberOfBondsPerAtom[Walker->nr];i++)
1778 Walker->ComponentNr[i] = -1;
1779 }
1780};
1781
1782/** Returns next unused bond for this atom \a *vertex or NULL of none exists.
1783 * \param *vertex atom to regard
1784 * \return bond class or NULL
1785 */
1786bond * molecule::FindNextUnused(atom *vertex)
1787{
1788 for(int i=0;i<NumberOfBondsPerAtom[vertex->nr];i++)
1789 if (ListOfBondsPerAtom[vertex->nr][i]->IsUsed() == white)
1790 return(ListOfBondsPerAtom[vertex->nr][i]);
1791 return NULL;
1792};
1793
1794/** Resets bond::Used flag of all bonds in this molecule.
1795 * \return true - success, false - -failure
1796 */
1797void molecule::ResetAllBondsToUnused()
1798{
1799 bond *Binder = first;
1800 while (Binder->next != last) {
1801 Binder = Binder->next;
1802 Binder->ResetUsed();
1803 }
1804};
1805
1806/** Resets atom::nr to -1 of all atoms in this molecule.
1807 */
1808void molecule::ResetAllAtomNumbers()
1809{
1810 atom *Walker = start;
1811 while (Walker->next != end) {
1812 Walker = Walker->next;
1813 Walker->GraphNr = -1;
1814 }
1815};
1816
1817/** Output a list of flags, stating whether the bond was visited or not.
1818 * \param *out output stream for debugging
1819 * \param *list
1820 */
1821void OutputAlreadyVisited(ofstream *out, int *list)
1822{
1823 *out << Verbose(4) << "Already Visited Bonds:\t";
1824 for(int i=1;i<=list[0];i++) *out << Verbose(0) << list[i] << " ";
1825 *out << endl;
1826};
1827
1828/** Estimates by educated guessing (using upper limit) the expected number of fragments.
1829 * The upper limit is
1830 * \f[
1831 * n = N \cdot C^k
1832 * \f]
1833 * where \f$C=2^c\f$ and c is the maximum bond degree over N number of atoms.
1834 * \param *out output stream for debugging
1835 * \param order bond order k
1836 * \return number n of fragments
1837 */
1838int molecule::GuesstimateFragmentCount(ofstream *out, int order)
1839{
1840 int c = 0;
1841 int FragmentCount;
1842 // get maximum bond degree
1843 atom *Walker = start;
1844 while (Walker->next != end) {
1845 Walker = Walker->next;
1846 c = (NumberOfBondsPerAtom[Walker->nr] > c) ? NumberOfBondsPerAtom[Walker->nr] : c;
1847 }
1848 FragmentCount = NoNonHydrogen*(1 << (c*order));
1849 *out << Verbose(1) << "Upper limit for this subgraph is " << FragmentCount << " for " << NoNonHydrogen << " non-H atoms with maximum bond degree of " << c << "." << endl;
1850 return FragmentCount;
1851};
1852
1853/** Performs a many-body bond order analysis for a given bond order.
1854 * Writes for each fragment a config file.
1855 * \param *out output stream for debugging
1856 * \param BottomUpOrder up to how many neighbouring bonds a fragment contains in BondOrderScheme::BottumUp scheme
1857 * \param TopDownOrder up to how many neighbouring bonds a fragment contains in BondOrderScheme::TopDown scheme
1858 * \param Scheme which BondOrderScheme to use for the fragmentation
1859 * \param *configuration configuration for writing config files for each fragment
1860 * \param CutCyclic whether to add cut cyclic bond or to saturate
1861 */
1862void molecule::FragmentMolecule(ofstream *out, int BottomUpOrder, int TopDownOrder, enum BondOrderScheme Scheme, config *configuration, enum CutCyclicBond CutCyclic)
1863{
1864 MoleculeListClass **BondFragments = NULL;
1865 MoleculeListClass *FragmentList = NULL;
1866 atom *Walker = NULL;
1867 int *SortIndex = NULL;
1868 element *runner = NULL;
1869 int AtomNo;
1870 int MinimumRingSize;
1871 int TotalFragmentCounter = 0;
1872 int FragmentCounter = 0;
1873 MoleculeLeafClass *MolecularWalker = NULL;
1874 MoleculeLeafClass *Subgraphs = NULL; // list of subgraphs from DFS analysis
1875
1876#ifdef ADDHYDROGEN
1877 cout << Verbose(0) << "I will treat hydrogen special and saturate dangling bonds with it." << endl;
1878#else
1879 cout << Verbose(0) << "Hydrogen is treated just like the rest of the lot." << endl;
1880#endif
1881
1882 CreateListOfBondsPerAtom(out);
1883
1884 // first perform a DFS analysis to gather info on cyclic structure and a list of disconnected subgraphs
1885 Subgraphs = DepthFirstSearchAnalysis((ofstream *)&cout, false, MinimumRingSize);
1886 MolecularWalker = Subgraphs;
1887 // fill the bond structure of the individually stored subgraphs
1888 while (MolecularWalker->next != NULL) {
1889 MolecularWalker = MolecularWalker->next;
1890 cout << Verbose(1) << "Creating adjacency list for subgraph " << MolecularWalker << "." << endl;
1891 MolecularWalker->Leaf->CreateAdjacencyList((ofstream *)&cout, BondDistance);
1892 MolecularWalker->Leaf->CreateListOfBondsPerAtom((ofstream *)&cout);
1893 }
1894 // fragment all subgraphs
1895 if ((MinimumRingSize != -1) && ((BottomUpOrder >= MinimumRingSize) || (TopDownOrder >= MinimumRingSize))) {
1896 cout << Verbose(0) << "Bond order greater than or equal to Minimum Ring size of " << MinimumRingSize << " found is not allowed." << endl;
1897 } else {
1898 FragmentCounter = 0;
1899 MolecularWalker = Subgraphs;
1900 // count subgraphs
1901 while (MolecularWalker->next != NULL) {
1902 MolecularWalker = MolecularWalker->next;
1903 FragmentCounter++;
1904 }
1905 BondFragments = (MoleculeListClass **) Malloc(sizeof(MoleculeListClass *)*FragmentCounter, "molecule::FragmentMolecule - **BondFragments");
1906 // fill the bond fragment list
1907 FragmentCounter = 0;
1908 MolecularWalker = Subgraphs;
1909 while (MolecularWalker->next != NULL) {
1910 MolecularWalker = MolecularWalker->next;
1911 cout << Verbose(1) << "Fragmenting subgraph " << MolecularWalker << "." << endl;
1912 if (MolecularWalker->Leaf->first->next != MolecularWalker->Leaf->last) {
1913 // output ListOfBondsPerAtom for debugging
1914 *out << Verbose(0) << endl << "From Contents of ListOfBondsPerAtom, all non-hydrogen atoms:" << endl;
1915 Walker = MolecularWalker->Leaf->start;
1916 while (Walker->next != MolecularWalker->Leaf->end) {
1917 Walker = Walker->next;
1918#ifdef ADDHYDROGEN
1919 if (Walker->type->Z != 1) { // regard only non-hydrogen
1920#endif
1921 *out << Verbose(0) << "Atom " << Walker->Name << " has Bonds: "<<endl;
1922 for(int j=0;j<MolecularWalker->Leaf->NumberOfBondsPerAtom[Walker->nr];j++) {
1923 *out << Verbose(1) << *(MolecularWalker->Leaf->ListOfBondsPerAtom)[Walker->nr][j] << endl;
1924 }
1925#ifdef ADDHYDROGEN
1926 }
1927#endif
1928 }
1929 *out << endl;
1930
1931 *out << Verbose(0) << endl << " ========== BOND ENERGY ========================= " << endl;
1932 *out << Verbose(0) << "Begin of bond fragmentation." << endl;
1933 BondFragments[FragmentCounter] = NULL;
1934 if (Scheme == ANOVA) {
1935 BondFragments[FragmentCounter] = MolecularWalker->Leaf->FragmentBOSSANOVA(out,BottomUpOrder,configuration);
1936 }
1937 if ((Scheme == BottomUp) || (Scheme == Combined)) { // get overlapping subgraphs
1938 BondFragments[FragmentCounter] = FragmentList = MolecularWalker->Leaf->FragmentBottomUp(out, BottomUpOrder, configuration, CutCyclic);
1939 }
1940 if (Scheme == TopDown) { // initialise top level with whole molecule
1941 *out << Verbose(2) << "Initial memory allocating and initialising for whole molecule." << endl;
1942 FragmentList = new MoleculeListClass(1, MolecularWalker->Leaf->AtomCount);
1943 FragmentList->ListOfMolecules[0] = MolecularWalker->Leaf->CopyMolecule();
1944 FragmentList->TEList[0] = 1.;
1945 }
1946 if ((Scheme == Combined) || (Scheme == TopDown)) {
1947 *out << Verbose(1) << "Calling TopDown." << endl;
1948 BondFragments[FragmentCounter] = FragmentList->FragmentTopDown(out, TopDownOrder, BondDistance, configuration, CutCyclic);
1949 // remove this molecule from list again and free wrapper list
1950 delete(FragmentList);
1951 FragmentList = NULL;
1952 }
1953 } else {
1954 cout << Verbose(0) << "Connection matrix has not yet been generated!" << endl;
1955 }
1956 TotalFragmentCounter += BondFragments[FragmentCounter]->NumberOfMolecules;
1957 FragmentCounter++; // next fragment list
1958 }
1959 }
1960
1961 // combine bond fragments list into a single one
1962 FragmentList = new MoleculeListClass(TotalFragmentCounter, AtomCount);
1963 TotalFragmentCounter = 0;
1964 for (int i=0;i<FragmentCounter;i++) {
1965 for(int j=0;j<BondFragments[i]->NumberOfMolecules;j++) {
1966 FragmentList->ListOfMolecules[TotalFragmentCounter] = BondFragments[i]->ListOfMolecules[j];
1967 BondFragments[i]->ListOfMolecules[j] = NULL;
1968 FragmentList->TEList[TotalFragmentCounter++] = BondFragments[i]->TEList[j];
1969 }
1970 delete(BondFragments[i]);
1971 }
1972 Free((void **)&BondFragments, "molecule::FragmentMolecule - **BondFragments");
1973
1974 // now if there are actually any fragments to save on disk ...
1975 if (FragmentList != NULL) {
1976 // create a SortIndex to map from BFS labels to the sequence in which the atoms are given in the config file
1977 SortIndex = (int *) Malloc(sizeof(int)*AtomCount, "molecule::FragmentMolecule: *SortIndex");
1978 for(int i=0;i<AtomCount;i++)
1979 SortIndex[i] = -1;
1980 runner = elemente->start;
1981 AtomNo = 0;
1982 while (runner->next != elemente->end) { // go through every element
1983 runner = runner->next;
1984 if (ElementsInMolecule[runner->Z]) { // if this element got atoms
1985 Walker = start;
1986 while (Walker->next != end) { // go through every atom of this element
1987 Walker = Walker->next;
1988 if (Walker->type->Z == runner->Z) // if this atom fits to element
1989 SortIndex[Walker->nr] = AtomNo++;
1990 }
1991 }
1992 }
1993 *out << Verbose(1) << "Writing " << FragmentList->NumberOfMolecules << " possible bond fragmentation configs" << endl;
1994 if (FragmentList->OutputConfigForListOfFragments("BondFragment", configuration, SortIndex))
1995 *out << Verbose(1) << "All configs written." << endl;
1996 else
1997 *out << Verbose(1) << "Some configs' writing failed." << endl;
1998 Free((void **)&SortIndex, "molecule::FragmentMolecule: *SortIndex");
1999
2000 // restore orbital and Stop values
2001 CalculateOrbitals(*configuration);
2002
2003 // free memory for bond part
2004 *out << Verbose(1) << "Freeing bond memory" << endl;
2005 delete(FragmentList); // remove bond molecule from memory
2006 FragmentList = NULL;
2007 } else
2008 *out << Verbose(1) << "FragmentList is zero on return, splitting failed." << endl;
2009 // free subgraph memory again
2010 while (Subgraphs->next != NULL) {
2011 Subgraphs = Subgraphs->next;
2012 delete(Subgraphs->previous);
2013 }
2014 delete(Subgraphs);
2015
2016 *out << Verbose(0) << "End of bond fragmentation." << endl;
2017};
2018
2019/** Creates an 2d array of pointer with an entry for each atom and each bond it has.
2020 * Updates molecule::ListOfBondsPerAtom, molecule::NumberOfBondsPerAtom by parsing through
2021 * bond chain list, using molecule::AtomCount and molecule::BondCount.
2022 * Allocates memory, fills the array and exits
2023 * \param *out output stream for debugging
2024 */
2025void molecule::CreateListOfBondsPerAtom(ofstream *out)
2026{
2027 bond *Binder = NULL;
2028 atom *Walker = NULL;
2029 int TotalDegree;
2030 *out << Verbose(1) << "Begin of Creating ListOfBondsPerAtom: AtomCount = " << AtomCount << "\tBondCount = " << BondCount << "\tNoNonBonds = " << NoNonBonds << "." << endl;
2031
2032 // re-allocate memory
2033 *out << Verbose(2) << "(Re-)Allocating memory." << endl;
2034 if (ListOfBondsPerAtom != NULL) {
2035 for(int i=0;i<AtomCount;i++)
2036 Free((void **)&ListOfBondsPerAtom[i], "molecule::CreateListOfBondsPerAtom: ListOfBondsPerAtom[i]");
2037 Free((void **)&ListOfBondsPerAtom, "molecule::CreateListOfBondsPerAtom: ListOfBondsPerAtom");
2038 }
2039 if (NumberOfBondsPerAtom != NULL)
2040 Free((void **)&NumberOfBondsPerAtom, "molecule::CreateListOfBondsPerAtom: NumberOfBondsPerAtom");
2041 ListOfBondsPerAtom = (bond ***) Malloc(sizeof(bond **)*AtomCount, "molecule::CreateListOfBondsPerAtom: ***ListOfBondsPerAtom");
2042 NumberOfBondsPerAtom = (int *) Malloc(sizeof(int)*AtomCount, "molecule::CreateListOfBondsPerAtom: *NumberOfBondsPerAtom");
2043
2044 // reset bond counts per atom
2045 for(int i=0;i<AtomCount;i++)
2046 NumberOfBondsPerAtom[i] = 0;
2047 // count bonds per atom
2048 Binder = first;
2049 while (Binder->next != last) {
2050 Binder = Binder->next;
2051 NumberOfBondsPerAtom[Binder->leftatom->nr]++;
2052 NumberOfBondsPerAtom[Binder->rightatom->nr]++;
2053 }
2054 // allocate list of bonds per atom
2055 for(int i=0;i<AtomCount;i++)
2056 ListOfBondsPerAtom[i] = (bond **) Malloc(sizeof(bond *)*NumberOfBondsPerAtom[i], "molecule::CreateListOfBondsPerAtom: **ListOfBondsPerAtom[]");
2057 // clear the list again, now each NumberOfBondsPerAtom marks current free field
2058 for(int i=0;i<AtomCount;i++)
2059 NumberOfBondsPerAtom[i] = 0;
2060 // fill the list
2061 Binder = first;
2062 while (Binder->next != last) {
2063 Binder = Binder->next;
2064 ListOfBondsPerAtom[Binder->leftatom->nr][NumberOfBondsPerAtom[Binder->leftatom->nr]++] = Binder;
2065 ListOfBondsPerAtom[Binder->rightatom->nr][NumberOfBondsPerAtom[Binder->rightatom->nr]++] = Binder;
2066 }
2067
2068 // output list for debugging
2069 *out << Verbose(3) << "ListOfBondsPerAtom for each atom:" << endl;
2070 Walker = start;
2071 while (Walker->next != end) {
2072 Walker = Walker->next;
2073 *out << Verbose(4) << "Atom " << Walker->Name << " with " << NumberOfBondsPerAtom[Walker->nr] << " bonds: ";
2074 TotalDegree = 0;
2075 for (int j=0;j<NumberOfBondsPerAtom[Walker->nr];j++) {
2076 *out << *ListOfBondsPerAtom[Walker->nr][j] << "\t";
2077 TotalDegree += ListOfBondsPerAtom[Walker->nr][j]->BondDegree;
2078 }
2079 *out << " -- TotalDegree: " << TotalDegree << endl;
2080 }
2081 *out << Verbose(1) << "End of Creating ListOfBondsPerAtom." << endl << endl;
2082};
2083
2084/** Splits up a molecule into atomic, non-hydrogen, hydrogen-saturated fragments.
2085 * \param *out output stream for debugging
2086 * \param NumberOfTopAtoms number to initialise second parameter of MoleculeListClass with
2087 * \param IsAngstroem whether atomic coordination is in Angstroem (true) or atomic length/bohrradous (false)
2088 * \param factor additional factor TE and forces factors are multiplied with
2089 * \param CutCyclic whether to add cut cyclic bond or to saturate
2090 * \return MoleculelistClass of pointer to each atomic fragment.
2091 */
2092MoleculeListClass * molecule::GetAtomicFragments(ofstream *out, int NumberOfTopAtoms, bool IsAngstroem, double factor, enum CutCyclicBond CutCyclic)
2093{
2094 atom *TopAtom = NULL, *BottomAtom = NULL; // Top = this, Bottom = AtomicFragment->ListOfMolecules[No]
2095 atom *Walker = NULL;
2096 MoleculeListClass *AtomicFragments = NULL;
2097 atom **AtomList = (atom **) Malloc(sizeof(atom *)*AtomCount, "molecule::GetAtomicFragments: **AtomList");
2098 for (int i=0;i<AtomCount;i++)
2099 AtomList[i] = NULL;
2100 bond **BondList = (bond **) Malloc(sizeof(bond *)*BondCount, "molecule::GetAtomicFragments: **AtomList");
2101 for (int i=0;i<BondCount;i++)
2102 BondList[i] = NULL;
2103 int No = 0, Cyclic;
2104
2105 *out << Verbose(0) << "Begin of GetAtomicFragments." << endl;
2106
2107 *out << Verbose(1) << "Atoms in Molecule: ";
2108 Walker = start;
2109 while (Walker->next != end) {
2110 Walker = Walker->next;
2111 *out << Walker << "\t";
2112 }
2113 *out << endl;
2114#ifdef ADDHYDROGEN
2115 if (NoNonHydrogen != 0) {
2116 AtomicFragments = new MoleculeListClass(NoNonHydrogen, NumberOfTopAtoms);
2117 } else {
2118 *out << Verbose(1) << "NoNonHydrogen is " << NoNonHydrogen << ", can't allocated MoleculeListClass." << endl;
2119#else
2120 if (AtomCount != 0) {
2121 AtomicFragments = new MoleculeListClass(AtomCount, NumberOfTopAtoms);
2122 } else {
2123 *out << Verbose(1) << "AtomCount is " << AtomCount << ", can't allocated MoleculeListClass." << endl;
2124#endif
2125 return (AtomicFragments);
2126 }
2127
2128 TopAtom = start;
2129 while (TopAtom->next != end) {
2130 TopAtom = TopAtom->next;
2131 //for(int i=0;i<AtomCount;i++) {
2132#ifdef ADDHYDROGEN
2133 if (TopAtom->type->Z != 1) { // regard only non-hydrogen
2134#endif
2135 //TopAtom = AtomsInMolecule[i];
2136 *out << Verbose(1) << "Current non-Hydrogen Atom: " << TopAtom->Name << endl;
2137
2138 // go through all bonds to check if cyclic
2139 Cyclic = 0;
2140 for(int i=0;i<NumberOfBondsPerAtom[TopAtom->nr];i++)
2141 Cyclic += (ListOfBondsPerAtom[TopAtom->nr][i]->Cyclic) ? 1 : 0;
2142
2143#ifdef ADDHYDROGEN
2144 if (No > NoNonHydrogen) {
2145#else
2146 if (No > AtomCount) {
2147#endif
2148 *out << Verbose(1) << "Access on created AtomicFragmentsListOfMolecules[" << No << "] beyond NumberOfMolecules " << AtomicFragments->NumberOfMolecules << "." << endl;
2149 break;
2150 }
2151 if (AtomList[TopAtom->nr] == NULL) {
2152 // create new molecule
2153 AtomicFragments->ListOfMolecules[No] = new molecule(elemente); // allocate memory
2154 AtomicFragments->TEList[No] = factor;
2155 AtomicFragments->ListOfMolecules[No]->BondDistance = BondDistance;
2156
2157 // add central atom
2158 BottomAtom = AtomicFragments->ListOfMolecules[No]->AddCopyAtom(TopAtom); // add this central atom to molecule
2159 AtomList[TopAtom->nr] = BottomAtom; // mark down in list
2160
2161 // create fragment
2162 *out << Verbose(1) << "New fragment around atom: " << TopAtom->Name << endl;
2163 BreadthFirstSearchAdd(out,AtomicFragments->ListOfMolecules[No], AtomList, BondList, TopAtom, NULL, 0, IsAngstroem, (Cyclic == 0) ? SaturateBond : CutCyclic);
2164 AtomicFragments->ListOfMolecules[No]->CountAtoms(out);
2165 // actually we now have to reset both arrays to NULL again, but BFS is overkill anyway for getting the atomic fragments
2166 // thus we do it in O(1) and avoid the O(n) which would make this routine O(N^2)!
2167 AtomList[TopAtom->nr] = NULL; // remove this fragment's central atom again from the list
2168
2169 *out << Verbose(1) << "Atoms in Fragment " << TopAtom->nr << ": ";
2170 Walker = AtomicFragments->ListOfMolecules[No]->start;
2171 while (Walker->next != AtomicFragments->ListOfMolecules[No]->end) {
2172 Walker = Walker->next;
2173 //for(int k=0;k<AtomicFragments->ListOfMolecules[No]->AtomCount;k++)
2174 *out << Walker << "(" << Walker->father << ")\t";
2175 }
2176 *out << endl;
2177 No++;
2178 }
2179#ifdef ADDHYDROGEN
2180 } else
2181 *out << Verbose(1) << "Current Hydrogen Atom: " << TopAtom->Name << endl;
2182#endif
2183 }
2184
2185 // output of full list before reduction
2186 if (AtomicFragments != NULL) {
2187 *out << "AtomicFragments: ";
2188 AtomicFragments->Output(out);
2189 *out << endl;
2190 } else
2191 *out << Verbose(1) << "AtomicFragments is zero on return, splitting failed." << endl;
2192
2193 // Reducing the atomic fragments
2194 if (AtomicFragments != NULL) {
2195 // check whether there are equal fragments by GetMappingToUniqueFragments
2196 AtomicFragments->ReduceToUniqueList(out, &cell_size[0], BondDistance);
2197 } else
2198 *out << Verbose(1) << "AtomicFragments is zero, reducing failed." << endl;
2199 Free((void **)&BondList, "molecule::GetAtomicFragments: **BondList");
2200 Free((void **)&AtomList, "molecule::GetAtomicFragments: **AtomList");
2201 *out << Verbose(0) << "End of GetAtomicFragments." << endl;
2202 return (AtomicFragments);
2203};
2204
2205/** Splits up the bond in a molecule into a left and a right fragment.
2206 * \param *out output stream for debugging
2207 * \param *Bond bond to broken up into getting allocated ...
2208 * \param *LeftFragment ... left fragment molecule ... (ptr to the memory cell wherein the adress for the Fragment is to be stored)
2209 * \param *RightFragment ... and right fragment molecule to be returned.(ptr to the memory cell wherein the adress for the Fragment is to be stored)
2210 * \param IsAngstroem whether atomic coordination is in Angstroem (true) or atomic length/bohrradous (false)
2211 * \param CutCyclic whether to add cut cyclic bond or not
2212 * \sa FragmentTopDown()
2213 */
2214void molecule::FragmentMoleculeByBond(ofstream *out, bond *Bond, molecule **LeftFragment, molecule **RightFragment, bool IsAngstroem, enum CutCyclicBond CutCyclic)
2215{
2216 *out << Verbose(0) << "Begin of FragmentMoleculeByBond." << endl;
2217#ifdef ADDHYDROGEN
2218 if ((Bond->leftatom->type->Z != 1) && (Bond->rightatom->type->Z != 1)) { // if both bond partners aren't hydrogen ...
2219#endif
2220 *out << Verbose(1) << "Current Non-Hydrogen Bond: " << Bond->leftatom->Name << " and " << Bond->rightatom->Name << endl;
2221 *LeftFragment = new molecule(elemente);
2222 *RightFragment = new molecule(elemente);
2223 // initialise marker list for all atoms
2224 atom **AddedAtomListLeft = (atom **) Malloc(sizeof(atom *)*AtomCount, "molecule::FragmentMoleculeByBond: **AddedAtomListLeft");
2225 atom **AddedAtomListRight = (atom **) Malloc(sizeof(atom *)*AtomCount, "molecule::FragmentMoleculeByBond: **AddedAtomListRight");
2226 for (int i=0;i<AtomCount;i++) {
2227 AddedAtomListLeft[i] = NULL;
2228 AddedAtomListRight[i] = NULL;
2229 }
2230 bond **AddedBondListLeft = (bond **) Malloc(sizeof(bond *)*BondCount, "molecule::FragmentMoleculeByBond: **AddedBondListLeft");
2231 bond **AddedBondListRight = (bond **) Malloc(sizeof(bond *)*BondCount, "molecule::FragmentMoleculeByBond: **AddedBondListRight");
2232 for (int i=0;i<BondCount;i++) {
2233 AddedBondListLeft[i] = NULL;
2234 AddedBondListRight[i] = NULL;
2235 }
2236
2237 // tag and add all atoms that have to be included
2238 *out << Verbose(1) << "Adding BFS-wise on left hand side with Bond Order " << NoNonBonds-1 << "." << endl;
2239 AddedAtomListLeft[Bond->leftatom->nr] = (*LeftFragment)->AddCopyAtom(Bond->leftatom);
2240 BreadthFirstSearchAdd(out, *LeftFragment, AddedAtomListLeft, AddedBondListLeft, Bond->leftatom, Bond,
2241#ifdef ADDHYDROGEN
2242 NoNonBonds
2243#else
2244 BondCount
2245#endif
2246 , IsAngstroem, CutCyclic);
2247 *out << Verbose(1) << "Adding BFS-wise on right hand side with Bond Order " << NoNonBonds-1 << "." << endl;
2248 AddedAtomListRight[Bond->rightatom->nr] = (*RightFragment)->AddCopyAtom(Bond->rightatom);
2249 BreadthFirstSearchAdd(out, *RightFragment, AddedAtomListRight, AddedBondListRight, Bond->rightatom, Bond,
2250#ifdef ADDHYDROGEN
2251 NoNonBonds
2252#else
2253 BondCount
2254#endif
2255 , IsAngstroem, CutCyclic);
2256
2257 // count atoms
2258 (*LeftFragment)->CountAtoms(out);
2259 (*RightFragment)->CountAtoms(out);
2260 // free all and exit
2261 Free((void **)&AddedAtomListLeft, "molecule::FragmentMoleculeByBond: **AddedAtomListLeft");
2262 Free((void **)&AddedAtomListRight, "molecule::FragmentMoleculeByBond: **AddedAtomListRight");
2263 Free((void **)&AddedBondListLeft, "molecule::FragmentMoleculeByBond: **AddedBondListLeft");
2264 Free((void **)&AddedBondListRight, "molecule::FragmentMoleculeByBond: **AddedBondListRight");
2265#ifdef ADDHYDROGEN
2266 }
2267#endif
2268 *out << Verbose(0) << "End of FragmentMoleculeByBond." << endl;
2269};
2270
2271/** Returns the given \a **FragmentList filled with molecules around each bond including up to \a BondDegree neighbours.
2272 * \param *out output stream for debugging
2273 * \param BondOrder neighbours on each side to be ...
2274 * \param IsAngstroem whether atomic coordination is in Angstroem (true) or atomic length/bohrradous (false)
2275 * \param CutCyclic whether to add cut cyclic bond or to saturate
2276 * \sa FragmentBottomUp(), molecule::AddBondOrdertoMolecule()
2277 */
2278MoleculeListClass * molecule::GetEachBondFragmentOfOrder(ofstream *out, int BondOrder, bool IsAngstroem, enum CutCyclicBond CutCyclic)
2279{
2280 /// Allocate memory for Bond list and go through each bond and fragment molecule up to bond order and fill the list to be returned.
2281 MoleculeListClass *FragmentList = NULL;
2282 atom **AddedAtomList = (atom **) Malloc(sizeof(atom *)*AtomCount, "molecule::GetBondFragmentOfOrder: **AddedAtomList");
2283 bond **AddedBondList = (bond **) Malloc(sizeof(bond *)*BondCount, "molecule::GetBondFragmentOfOrder: **AddedBondList");
2284 bond *Binder = NULL;
2285
2286 *out << Verbose(0) << "Begin of GetEachBondFragmentOfOrder." << endl;
2287#ifdef ADDHYDROGEN
2288 if (NoNonBonds != 0) {
2289 FragmentList = new MoleculeListClass(NoNonBonds, AtomCount);
2290 } else {
2291 *out << Verbose(1) << "NoNonBonds is " << NoNonBonds << ", can't allocate list." << endl;
2292#else
2293 if (BondCount != 0) {
2294 FragmentList = new MoleculeListClass(BondCount, AtomCount);
2295 } else {
2296 *out << Verbose(1) << "BondCount is " << BondCount << ", can't allocate list." << endl;
2297#endif
2298 }
2299 int No = 0;
2300 Binder = first;
2301 while (Binder->next != last) { // get each bond, NULL is returned if it is a H-H bond
2302 Binder = Binder->next;
2303#ifdef ADDHYDROGEN
2304 if ((Binder->leftatom->type->Z != 1) && (Binder->rightatom->type->Z != 1)) // if both bond partners aren't hydrogen ...
2305#endif
2306 if ((CutCyclic == SaturateBond) || (!Binder->Cyclic)) {
2307 *out << Verbose(1) << "Getting Fragment for Non-Hydrogen Bond: " << Binder->leftatom->Name << " and " << Binder->rightatom->Name << endl;
2308 FragmentList->ListOfMolecules[No] = new molecule(elemente);
2309 // initialise marker list for all atoms
2310 for (int i=0;i<AtomCount;i++)
2311 AddedAtomList[i] = NULL;
2312 for (int i=0;i<BondCount;i++)
2313 AddedBondList[i] = NULL;
2314
2315 // add root bond as first bond (this is needed later on fragmenting)
2316 *out << Verbose(1) << "Adding Root Bond " << *Binder << " and its atom." << endl;
2317 AddedAtomList[Binder->leftatom->nr] = FragmentList->ListOfMolecules[No]->AddCopyAtom(Binder->leftatom);
2318 AddedAtomList[Binder->rightatom->nr] = FragmentList->ListOfMolecules[No]->AddCopyAtom(Binder->rightatom);
2319 AddedBondList[Binder->nr] = FragmentList->ListOfMolecules[No]->AddBond(AddedAtomList[Binder->leftatom->nr], AddedAtomList[Binder->rightatom->nr], Binder->BondDegree);
2320
2321 // tag and add all atoms that have to be included
2322 *out << Verbose(1) << "Adding BFS-wise on left hand side." << endl;
2323 BreadthFirstSearchAdd(out, FragmentList->ListOfMolecules[No], AddedAtomList, AddedBondList, Binder->leftatom, NULL, BondOrder, IsAngstroem, CutCyclic);
2324 *out << Verbose(1) << "Adding BFS-wise on right hand side." << endl;
2325 BreadthFirstSearchAdd(out, FragmentList->ListOfMolecules[No], AddedAtomList, AddedBondList, Binder->rightatom, NULL, BondOrder, IsAngstroem, CutCyclic);
2326
2327 // count atoms
2328 FragmentList->ListOfMolecules[No]->CountAtoms(out);
2329 FragmentList->TEList[No] = 1.;
2330 *out << Verbose(1) << "GetBondFragmentOfOrder: " << Binder->nr << "th Fragment: " << FragmentList->ListOfMolecules[No] << "." << endl;
2331 No++;
2332 }
2333 }
2334 // free all lists
2335 Free((void **)&AddedAtomList, "molecule::GetBondFragmentOfOrder: **AddedAtomList");
2336 Free((void **)&AddedBondList, "molecule::GetBondFragmentOfOrder: **AddedBondList");
2337 // output and exit
2338 FragmentList->Output(out);
2339 *out << Verbose(0) << "End of GetEachBondFragmentOfOrder." << endl;
2340 return (FragmentList);
2341};
2342
2343/** Adds atoms up to \a BondCount distance from \a *Root and notes them down in \a **AddedAtomList.
2344 * Gray vertices are always enqueued in an AtomStackClass FIFO queue, the rest is usual BFS with adding vertices found was
2345 * white and putting into queue.
2346 * \param *out output stream for debugging
2347 * \param *Mol Molecule class to add atoms to
2348 * \param **AddedAtomList list with added atom pointers, index is atom father's number
2349 * \param **AddedBondList list with added bond pointers, index is bond father's number
2350 * \param *Root root vertex for BFS
2351 * \param *Bond bond not to look beyond
2352 * \param BondOrder maximum distance for vertices to add
2353 * \param IsAngstroem lengths are in angstroem or bohrradii
2354 * \param CutCyclic whether to cut cyclic bonds (means saturate on need with hydrogen) or to always add
2355 */
2356void molecule::BreadthFirstSearchAdd(ofstream *out, molecule *Mol, atom **&AddedAtomList, bond **&AddedBondList, atom *Root, bond *Bond, int BondOrder, bool IsAngstroem, enum CutCyclicBond CutCyclic)
2357{
2358 atom **PredecessorList = (atom **) Malloc(sizeof(atom *)*AtomCount, "molecule::BreadthFirstSearchAdd: **PredecessorList");
2359 int *ShortestPathList = (int *) Malloc(sizeof(int)*AtomCount, "molecule::BreadthFirstSearchAdd: *ShortestPathList");
2360 enum Shading *ColorList = (enum Shading *) Malloc(sizeof(enum Shading)*AtomCount, "molecule::BreadthFirstSearchAdd: *ColorList");
2361 AtomStackClass *AtomStack = new AtomStackClass(AtomCount);
2362 atom *Walker = NULL, *OtherAtom = NULL;
2363 bond *Binder = NULL;
2364
2365 // add Root if not done yet
2366 AtomStack->ClearStack();
2367 if (AddedAtomList[Root->nr] == NULL) // add Root if not yet present
2368 AddedAtomList[Root->nr] = Mol->AddCopyAtom(Root);
2369 AtomStack->Push(Root);
2370
2371 // initialise each vertex as white with no predecessor, empty queue, color Root lightgray
2372 for (int i=0;i<AtomCount;i++) {
2373 PredecessorList[i] = NULL;
2374 ShortestPathList[i] = -1;
2375 if (AddedAtomList[i] != NULL) // mark already present atoms (i.e. Root and maybe others) as visited
2376 ColorList[i] = lightgray;
2377 else
2378 ColorList[i] = white;
2379 }
2380 ShortestPathList[Root->nr] = 0;
2381
2382 // and go on ... Queue always contains all lightgray vertices
2383 while (!AtomStack->IsEmpty()) {
2384 // we have to pop the oldest atom from stack. This keeps the atoms on the stack always of the same ShortestPath distance.
2385 // e.g. if current atom is 2, push to end of stack are of length 3, but first all of length 2 would be popped. They again
2386 // append length of 3 (their neighbours). Thus on stack we have always atoms of a certain length n at bottom of stack and
2387 // followed by n+1 till top of stack.
2388 Walker = AtomStack->PopFirst(); // pop oldest added
2389 *out << Verbose(1) << "Current Walker is: " << Walker->Name << ", and has " << NumberOfBondsPerAtom[Walker->nr] << " bonds." << endl;
2390 for(int i=0;i<NumberOfBondsPerAtom[Walker->nr];i++) {
2391 Binder = ListOfBondsPerAtom[Walker->nr][i];
2392 if (Binder != NULL) { // don't look at bond equal NULL
2393 OtherAtom = Binder->GetOtherAtom(Walker);
2394 *out << Verbose(2) << "Current OtherAtom is: " << OtherAtom->Name << " for bond " << *Binder << "." << endl;
2395 if (ColorList[OtherAtom->nr] == white) {
2396 if (Binder != Bond) // let other atom white if it's via Root bond. In case it's cyclic it has to be reached again (yet Root is from OtherAtom already black, thus no problem)
2397 ColorList[OtherAtom->nr] = lightgray;
2398 PredecessorList[OtherAtom->nr] = Walker; // Walker is the predecessor
2399 ShortestPathList[OtherAtom->nr] = ShortestPathList[Walker->nr]+1;
2400 *out << Verbose(2) << "Coloring OtherAtom " << OtherAtom->Name << " " << ((ColorList[OtherAtom->nr] == white) ? "white" : "lightgray") << ", its predecessor is " << Walker->Name << " and its Shortest Path is " << ShortestPathList[OtherAtom->nr] << " egde(s) long." << endl;
2401 if ((((ShortestPathList[OtherAtom->nr] < BondOrder) && (Binder != Bond)) || (Binder->Cyclic && (CutCyclic == KeepBond))) ) { // Check for maximum distance
2402 *out << Verbose(3);
2403 if (AddedAtomList[OtherAtom->nr] == NULL) { // add if it's not been so far
2404 AddedAtomList[OtherAtom->nr] = Mol->AddCopyAtom(OtherAtom);
2405 *out << "Added OtherAtom " << OtherAtom->Name;
2406 AddedBondList[Binder->nr] = Mol->AddBond(AddedAtomList[Walker->nr], AddedAtomList[OtherAtom->nr], Binder->BondDegree);
2407 AddedBondList[Binder->nr]->Cyclic = Binder->Cyclic;
2408 AddedBondList[Binder->nr]->Type = Binder->Type;
2409 *out << " and bond " << *(AddedBondList[Binder->nr]) << ", ";
2410 } else { // this code should actually never come into play (all white atoms are not yet present in BondMolecule, that's why they are white in the first place)
2411 *out << "Not adding OtherAtom " << OtherAtom->Name;
2412 if (AddedBondList[Binder->nr] == NULL) {
2413 AddedBondList[Binder->nr] = Mol->AddBond(AddedAtomList[Walker->nr], AddedAtomList[OtherAtom->nr], Binder->BondDegree);
2414 AddedBondList[Binder->nr]->Cyclic = Binder->Cyclic;
2415 AddedBondList[Binder->nr]->Type = Binder->Type;
2416 *out << ", added Bond " << *(AddedBondList[Binder->nr]);
2417 } else
2418 *out << ", not added Bond ";
2419 }
2420 *out << ", putting OtherAtom into queue." << endl;
2421 AtomStack->Push(OtherAtom);
2422 } else { // out of bond order, then replace
2423 if ((AddedAtomList[OtherAtom->nr] == NULL) && (Binder->Cyclic))
2424 ColorList[OtherAtom->nr] = white; // unmark if it has not been queued/added, to make it available via its other bonds (cyclic)
2425 if (Binder == Bond)
2426 *out << Verbose(3) << "Not Queueing, is the Root bond";
2427 else if (ShortestPathList[OtherAtom->nr] >= BondOrder)
2428 *out << Verbose(3) << "Not Queueing, is out of Bond Count of " << BondOrder;
2429 if ((Binder->Cyclic && (CutCyclic != KeepBond)))
2430 *out << ", is part of a cyclic bond yet we don't keep them, saturating bond with Hydrogen." << endl;
2431 if (!Binder->Cyclic)
2432 *out << ", is not part of a cyclic bond, saturating bond with Hydrogen." << endl;
2433 if (AddedBondList[Binder->nr] == NULL) {
2434 if ((AddedAtomList[OtherAtom->nr] != NULL) && (CutCyclic == KeepBond)) { // .. whether we add or saturate
2435 AddedBondList[Binder->nr] = Mol->AddBond(AddedAtomList[Walker->nr], AddedAtomList[OtherAtom->nr], Binder->BondDegree);
2436 AddedBondList[Binder->nr]->Cyclic = Binder->Cyclic;
2437 AddedBondList[Binder->nr]->Type = Binder->Type;
2438 } else {
2439#ifdef ADDHYDROGEN
2440 Mol->AddHydrogenReplacementAtom(out, Binder, AddedAtomList[Walker->nr], Walker, OtherAtom, ListOfBondsPerAtom[Walker->nr], NumberOfBondsPerAtom[Walker->nr], IsAngstroem);
2441#endif
2442 }
2443 }
2444 }
2445 } else {
2446 *out << Verbose(3) << "Not Adding, has already been visited." << endl;
2447 // This has to be a cyclic bond, check whether it's present ...
2448 if (AddedBondList[Binder->nr] == NULL) {
2449 if ((Binder != Bond) && (Binder->Cyclic) && (((ShortestPathList[Walker->nr]+1) < BondOrder) || (CutCyclic == KeepBond))) {
2450 AddedBondList[Binder->nr] = Mol->AddBond(AddedAtomList[Walker->nr], AddedAtomList[OtherAtom->nr], Binder->BondDegree);
2451 AddedBondList[Binder->nr]->Cyclic = Binder->Cyclic;
2452 AddedBondList[Binder->nr]->Type = Binder->Type;
2453 } else { // if it's root bond it has to broken (otherwise we would not create the fragments)
2454#ifdef ADDHYDROGEN
2455 Mol->AddHydrogenReplacementAtom(out, Binder, AddedAtomList[Walker->nr], Walker, OtherAtom, ListOfBondsPerAtom[Walker->nr], NumberOfBondsPerAtom[Walker->nr], IsAngstroem);
2456#endif
2457 }
2458 }
2459 }
2460 }
2461 }
2462 ColorList[Walker->nr] = black;
2463 *out << Verbose(1) << "Coloring Walker " << Walker->Name << " black." << endl;
2464 }
2465 Free((void **)&PredecessorList, "molecule::BreadthFirstSearchAdd: **PredecessorList");
2466 Free((void **)&ShortestPathList, "molecule::BreadthFirstSearchAdd: **ShortestPathList");
2467 Free((void **)&ColorList, "molecule::BreadthFirstSearchAdd: **ColorList");
2468 delete(AtomStack);
2469};
2470
2471/** Adds bond structure to this molecule from \a Father molecule.
2472 * This basically causes this molecule to become an induced subgraph of the \a Father, i.e. for every bond in Father
2473 * with end points present in this molecule, bond is created in this molecule.
2474 * Special care was taken to ensure that this is of complexity O(N), where N is the \a Father's molecule::AtomCount.
2475 * \param *out output stream for debugging
2476 * \param *Father father molecule
2477 * \return true - is induced subgraph, false - there are atoms with fathers not in \a Father
2478 * \todo not checked, not fully working probably
2479 */
2480bool molecule::BuildInducedSubgraph(ofstream *out, const molecule *Father)
2481{
2482 atom *Walker = NULL, *OtherAtom = NULL;
2483 bool status = true;
2484 atom **ParentList = (atom **) Malloc(sizeof(atom *)*Father->AtomCount, "molecule::BuildInducedSubgraph: **ParentList");
2485
2486 *out << Verbose(2) << "Begin of BuildInducedSubgraph." << endl;
2487
2488 // reset parent list
2489 *out << Verbose(3) << "Resetting ParentList." << endl;
2490 for (int i=0;i<Father->AtomCount;i++)
2491 ParentList[i] = NULL;
2492
2493 // fill parent list with sons
2494 *out << Verbose(3) << "Filling Parent List." << endl;
2495 Walker = start;
2496 while (Walker->next != end) {
2497 Walker = Walker->next;
2498 ParentList[Walker->father->nr] = Walker;
2499 // Outputting List for debugging
2500 *out << Verbose(4) << "Son["<< Walker->father->nr <<"] of " << Walker->father << " is " << ParentList[Walker->father->nr] << "." << endl;
2501 }
2502
2503 // check each entry of parent list and if ok (one-to-and-onto matching) create bonds
2504 *out << Verbose(3) << "Creating bonds." << endl;
2505 Walker = Father->start;
2506 while (Walker->next != Father->end) {
2507 Walker = Walker->next;
2508 if (ParentList[Walker->nr] != NULL) {
2509 if (ParentList[Walker->nr]->father != Walker) {
2510 status = false;
2511 } else {
2512 for (int i=0;i<Father->NumberOfBondsPerAtom[Walker->nr];i++) {
2513 OtherAtom = Father->ListOfBondsPerAtom[Walker->nr][i]->GetOtherAtom(Walker);
2514 if (ParentList[OtherAtom->nr] != NULL) { // if otheratom is also a father of an atom on this molecule, create the bond
2515 *out << Verbose(4) << "Endpoints of Bond " << Father->ListOfBondsPerAtom[Walker->nr][i] << " are both present: " << ParentList[Walker->nr]->Name << " and " << ParentList[OtherAtom->nr]->Name << "." << endl;
2516 AddBond(ParentList[Walker->nr], ParentList[OtherAtom->nr], Father->ListOfBondsPerAtom[Walker->nr][i]->BondDegree);
2517 }
2518 }
2519 }
2520 }
2521 }
2522
2523 Free((void **)&ParentList, "molecule::BuildInducedSubgraph: **ParentList");
2524 *out << Verbose(2) << "End of BuildInducedSubgraph." << endl;
2525 return status;
2526};
2527
2528
2529/** Looks through a AtomStackClass and returns the likeliest removal candiate.
2530 * \param *out output stream for debugging messages
2531 * \param *&Leaf KeySet to look through
2532 * \param *&ShortestPathList list of the shortest path to decide which atom to suggest as removal candidate in the end
2533 * \param index of the atom suggested for removal
2534 */
2535int molecule::LookForRemovalCandidate(ofstream *&out, KeySet *&Leaf, int *&ShortestPathList)
2536{
2537 atom *Runner = NULL;
2538 int SP, Removal;
2539
2540 *out << Verbose(2) << "Looking for removal candidate." << endl;
2541 SP = -1; //0; // not -1, so that Root is never removed
2542 Removal = -1;
2543 for (KeySet::iterator runner = Leaf->begin(); runner != Leaf->end(); runner++) {
2544 Runner = FindAtom((*runner));
2545 if (Runner->type->Z != 1) { // skip all those added hydrogens when re-filling snake stack
2546 if (ShortestPathList[(*runner)] > SP) { // remove the oldest one with longest shortest path
2547 SP = ShortestPathList[(*runner)];
2548 Removal = (*runner);
2549 }
2550 }
2551 }
2552 return Removal;
2553};
2554
2555/** Stores a fragment from \a SnakeStack into \a molecule.
2556 * First creates the minimal set of atoms from the KeySet, then creates the bond structure from the complete
2557 * molecule and adds missing hydrogen where bonds were cut.
2558 * \param *out output stream for debugging messages
2559 * \param &Leaflet pointer to KeySet structure
2560 * \param *configuration configuration for writing config files for each fragment
2561 * \return pointer to constructed molecule
2562 */
2563molecule * molecule::StoreFragmentFromKeyset(ofstream *&out, KeySet &Leaflet, config *&configuration)
2564{
2565 atom *Runner = NULL, *FatherOfRunner = NULL, *OtherFather = NULL;
2566 atom **SonList = (atom **) Malloc(sizeof(atom *)*AtomCount, "molecule::StoreFragmentFromStack: **SonList");
2567 molecule *Leaf = new molecule(elemente);
2568
2569 *out << Verbose(1) << "Begin of StoreFragmentFromKeyset." << endl;
2570
2571 Leaf->BondDistance = BondDistance;
2572 for(int i=0;i<NDIM*2;i++)
2573 Leaf->cell_size[i] = cell_size[i];
2574
2575 // initialise SonList (indicates when we need to replace a bond with hydrogen instead)
2576 for(int i=0;i<AtomCount;i++)
2577 SonList[i] = NULL;
2578
2579 // first create the minimal set of atoms from the KeySet
2580 for(KeySet::iterator runner = Leaflet.begin(); runner != Leaflet.end(); runner++) {
2581 FatherOfRunner = FindAtom((*runner));
2582 SonList[FatherOfRunner->nr] = Leaf->AddCopyAtom(FatherOfRunner);
2583 }
2584
2585 // create the bonds between all: Make it an induced subgraph and add hydrogen
2586 *out << Verbose(2) << "Creating bonds from father graph (i.e. induced subgraph creation)." << endl;
2587 Runner = Leaf->start;
2588 while (Runner->next != Leaf->end) {
2589 Runner = Runner->next;
2590 FatherOfRunner = Runner->father;
2591 if (SonList[FatherOfRunner->nr] != NULL) { // check if this, our father, is present in list
2592 // create all bonds
2593 for (int i=0;i<NumberOfBondsPerAtom[FatherOfRunner->nr];i++) { // go through every bond of father
2594 OtherFather = ListOfBondsPerAtom[FatherOfRunner->nr][i]->GetOtherAtom(FatherOfRunner);
2595 *out << Verbose(2) << "Father " << *FatherOfRunner << " of son " << *SonList[FatherOfRunner->nr] << " is bound to " << *OtherFather;
2596 if (SonList[OtherFather->nr] != NULL) {
2597 *out << ", whose son is " << *SonList[OtherFather->nr] << "." << endl;
2598 if (OtherFather->nr > FatherOfRunner->nr) { // add bond (nr check is for adding only one of both variants: ab, ba)
2599 *out << Verbose(3) << "Adding Bond: " << Leaf->AddBond(Runner, SonList[OtherFather->nr], ListOfBondsPerAtom[FatherOfRunner->nr][i]->BondDegree) << "." << endl;
2600 //NumBonds[Runner->nr]++;
2601 } else {
2602 *out << Verbose(3) << "Not adding bond, labels in wrong order." << endl;
2603 }
2604 } else {
2605 *out << ", who has no son in this fragment molecule." << endl;
2606#ifdef ADDHYDROGEN
2607 *out << Verbose(3) << "Adding Hydrogen to " << Runner->Name << " and a bond in between." << endl;
2608 Leaf->AddHydrogenReplacementAtom(out, ListOfBondsPerAtom[FatherOfRunner->nr][i], Runner, FatherOfRunner, OtherFather, ListOfBondsPerAtom[FatherOfRunner->nr],NumberOfBondsPerAtom[FatherOfRunner->nr], configuration->GetIsAngstroem());
2609#endif
2610 //NumBonds[Runner->nr] += ListOfBondsPerAtom[FatherOfRunner->nr][i]->BondDegree;
2611 }
2612 }
2613 } else {
2614 *out << Verbose(0) << "ERROR: Son " << Runner->Name << " has father " << FatherOfRunner->Name << " but its entry in SonList is " << SonList[FatherOfRunner->nr] << "!" << endl;
2615 }
2616#ifdef ADDHYDROGEN
2617 while ((Runner->next != Leaf->end) && (Runner->next->type->Z == 1)) // skip added hydrogen
2618 Runner = Runner->next;
2619#endif
2620 }
2621 Leaf->CreateListOfBondsPerAtom(out);
2622 //Leaflet->Leaf->ScanForPeriodicCorrection(out);
2623 Free((void **)&SonList, "molecule::StoreFragmentFromStack: **SonList");
2624 *out << Verbose(1) << "End of StoreFragmentFromKeyset." << endl;
2625 return Leaf;
2626};
2627
2628/** Creates \a MoleculeListClass of all unique fragments of the \a molecule containing \a Order atoms or vertices.
2629 * The picture to have in mind is that of a DFS "snake" of a certain length \a Order, i.e. as in the infamous
2630 * computer game, that winds through the connected graph representing the molecule. Color (white,
2631 * lightgray, darkgray, black) indicates whether a vertex has been discovered so far or not. Labels will help in
2632 * creating only unique fragments and not additional ones with vertices simply in different sequence.
2633 * The Predecessor is always the one that came before in discovering, needed on backstepping. And
2634 * finally, the ShortestPath is needed for removing vertices from the snake stack during the back-
2635 * stepping.
2636 * \param *out output stream for debugging
2637 * \param Order number of atoms in each fragment
2638 * \param *configuration configuration for writing config files for each fragment
2639 * \return List of all unique fragments with \a Order atoms
2640 */
2641/*
2642MoleculeListClass * molecule::CreateListOfUniqueFragmentsOfOrder(ofstream *out, int Order, config *configuration)
2643{
2644 atom **PredecessorList = (atom **) Malloc(sizeof(atom *)*AtomCount, "molecule::CreateListOfUniqueFragmentsOfOrder: **PredecessorList");
2645 int *ShortestPathList = (int *) Malloc(sizeof(int)*AtomCount, "molecule::CreateListOfUniqueFragmentsOfOrder: *ShortestPathList");
2646 int *Labels = (int *) Malloc(sizeof(int)*AtomCount, "molecule::CreateListOfUniqueFragmentsOfOrder: *Labels");
2647 enum Shading *ColorVertexList = (enum Shading *) Malloc(sizeof(enum Shading)*AtomCount, "molecule::CreateListOfUniqueFragmentsOfOrder: *ColorList");
2648 enum Shading *ColorEdgeList = (enum Shading *) Malloc(sizeof(enum Shading)*BondCount, "molecule::CreateListOfUniqueFragmentsOfOrder: *ColorBondList");
2649 AtomStackClass *RootStack = new AtomStackClass(AtomCount);
2650 AtomStackClass *TouchedStack = new AtomStackClass((int)pow(4,Order)+2); // number of atoms reached from one with maximal 4 bonds plus Root itself
2651 AtomStackClass *SnakeStack = new AtomStackClass(Order+1); // equal to Order is not possible, as then the AtomStackClass cannot discern between full and empty stack!
2652 MoleculeLeafClass *Leaflet = NULL, *TempLeaf = NULL;
2653 MoleculeListClass *FragmentList = NULL;
2654 atom *Walker = NULL, *OtherAtom = NULL, *Root = NULL, *Removal = NULL;
2655 bond *Binder = NULL;
2656 int RunningIndex = 0, FragmentCounter = 0;
2657
2658 *out << Verbose(1) << "Begin of CreateListOfUniqueFragmentsOfOrder." << endl;
2659
2660 // reset parent list
2661 *out << Verbose(3) << "Resetting labels, parent, predecessor, color and shortest path lists." << endl;
2662 for (int i=0;i<AtomCount;i++) { // reset all atom labels
2663 // initialise each vertex as white with no predecessor, empty queue, color lightgray, not labelled, no sons
2664 Labels[i] = -1;
2665 SonList[i] = NULL;
2666 PredecessorList[i] = NULL;
2667 ColorVertexList[i] = white;
2668 ShortestPathList[i] = -1;
2669 }
2670 for (int i=0;i<BondCount;i++)
2671 ColorEdgeList[i] = white;
2672 RootStack->ClearStack(); // clearstack and push first atom if exists
2673 TouchedStack->ClearStack();
2674 Walker = start->next;
2675 while ((Walker != end)
2676#ifdef ADDHYDROGEN
2677 && (Walker->type->Z == 1)
2678#endif
2679 ) { // search for first non-hydrogen atom
2680 *out << Verbose(4) << "Current Root candidate is " << Walker->Name << "." << endl;
2681 Walker = Walker->next;
2682 }
2683 if (Walker != end)
2684 RootStack->Push(Walker);
2685 else
2686 *out << Verbose(0) << "ERROR: Could not find an appropriate Root atom!" << endl;
2687 *out << Verbose(3) << "Root " << Walker->Name << " is on AtomStack, beginning loop through all vertices ..." << endl;
2688
2689 ///// OUTER LOOP ////////////
2690 while (!RootStack->IsEmpty()) {
2691 // get new root vertex from atom stack
2692 Root = RootStack->PopFirst();
2693 ShortestPathList[Root->nr] = 0;
2694 if (Labels[Root->nr] == -1)
2695 Labels[Root->nr] = RunningIndex++; // prevent it from getting again on AtomStack
2696 PredecessorList[Root->nr] = Root;
2697 TouchedStack->Push(Root);
2698 *out << Verbose(0) << "Root for this loop is: " << Root->Name << ".\n";
2699
2700 // clear snake stack
2701 SnakeStack->ClearStack();
2702 //SnakeStack->TestImplementation(out, start->next);
2703
2704 ///// INNER LOOP ////////////
2705 // Problems:
2706 // - what about cyclic bonds?
2707 Walker = Root;
2708 do {
2709 *out << Verbose(1) << "Current Walker is: " << Walker->Name;
2710 // initial setting of the new Walker: label, color, shortest path and put on stacks
2711 if (Labels[Walker->nr] == -1) { // give atom a unique, monotonely increasing number
2712 Labels[Walker->nr] = RunningIndex++;
2713 RootStack->Push(Walker);
2714 }
2715 *out << ", has label " << Labels[Walker->nr];
2716 if ((ColorVertexList[Walker->nr] == white) || ((Binder != NULL) && (ColorEdgeList[Binder->nr] == white))) { // color it if newly discovered and push on stacks (and if within reach!)
2717 if ((Binder != NULL) && (ColorEdgeList[Binder->nr] == white)) {
2718 // Binder ought to be set still from last neighbour search
2719 *out << ", coloring bond " << *Binder << " black";
2720 ColorEdgeList[Binder->nr] = black; // mark this bond as used
2721 }
2722 if (ShortestPathList[Walker->nr] == -1) {
2723 ShortestPathList[Walker->nr] = ShortestPathList[PredecessorList[Walker->nr]->nr]+1;
2724 TouchedStack->Push(Walker); // mark every atom for lists cleanup later, whose shortest path has been changed
2725 }
2726 if ((ShortestPathList[Walker->nr] < Order) && (ColorVertexList[Walker->nr] != darkgray)) { // if not already on snake stack
2727 SnakeStack->Push(Walker);
2728 ColorVertexList[Walker->nr] = darkgray; // mark as dark gray of on snake stack
2729 }
2730 }
2731 *out << ", SP of " << ShortestPathList[Walker->nr] << " and its color is " << GetColor(ColorVertexList[Walker->nr]) << "." << endl;
2732
2733 // then check the stack for a newly stumbled upon fragment
2734 if (SnakeStack->ItemCount() == Order) { // is stack full?
2735 // store the fragment if it is one and get a removal candidate
2736 Removal = StoreFragmentFromStack(out, Root, Walker, Leaflet, SnakeStack, ShortestPathList, SonList, Labels, &FragmentCounter, configuration);
2737 // remove the candidate if one was found
2738 if (Removal != NULL) {
2739 *out << Verbose(2) << "Removing item " << Removal->Name << " with SP of " << ShortestPathList[Removal->nr] << " from snake stack." << endl;
2740 SnakeStack->RemoveItem(Removal);
2741 ColorVertexList[Removal->nr] = lightgray; // return back to not on snake stack but explored marking
2742 if (Walker == Removal) { // if the current atom is to be removed, we also have to take a step back
2743 Walker = PredecessorList[Removal->nr];
2744 *out << Verbose(2) << "Stepping back to " << Walker->Name << "." << endl;
2745 }
2746 }
2747 } else
2748 Removal = NULL;
2749
2750 // finally, look for a white neighbour as the next Walker
2751 Binder = NULL;
2752 if ((Removal == NULL) || (Walker != PredecessorList[Removal->nr])) { // don't look, if a new walker has been set above
2753 *out << Verbose(2) << "Snake has currently " << SnakeStack->ItemCount() << " item(s)." << endl;
2754 OtherAtom = NULL; // this is actually not needed, every atom has at least one neighbour
2755 if (ShortestPathList[Walker->nr] < Order) {
2756 for(int i=0;i<NumberOfBondsPerAtom[Walker->nr];i++) {
2757 Binder = ListOfBondsPerAtom[Walker->nr][i];
2758 *out << Verbose(2) << "Current bond is " << *Binder << ": ";
2759 OtherAtom = Binder->GetOtherAtom(Walker);
2760 if ((Labels[OtherAtom->nr] != -1) && (Labels[OtherAtom->nr] < Labels[Root->nr])) { // we don't step up to labels bigger than us
2761 *out << "Label " << Labels[OtherAtom->nr] << " is smaller than Root's " << Labels[Root->nr] << "." << endl;
2762 //ColorVertexList[OtherAtom->nr] = lightgray; // mark as explored
2763 } else { // otherwise check its colour and element
2764 if (
2765#ifdef ADDHYDROGEN
2766 (OtherAtom->type->Z != 1) &&
2767#endif
2768 (ColorEdgeList[Binder->nr] == white)) { // skip hydrogen, look for unexplored vertices
2769 *out << "Moving along " << GetColor(ColorEdgeList[Binder->nr]) << " bond " << Binder << " to " << ((ColorVertexList[OtherAtom->nr] == white) ? "unexplored" : "explored") << " item: " << OtherAtom->Name << "." << endl;
2770 // i find it currently rather sensible to always set the predecessor in order to find one's way back
2771 //if (PredecessorList[OtherAtom->nr] == NULL) {
2772 PredecessorList[OtherAtom->nr] = Walker;
2773 *out << Verbose(3) << "Setting Predecessor of " << OtherAtom->Name << " to " << PredecessorList[OtherAtom->nr]->Name << "." << endl;
2774 //} else {
2775 // *out << Verbose(3) << "Predecessor of " << OtherAtom->Name << " is " << PredecessorList[OtherAtom->nr]->Name << "." << endl;
2776 //}
2777 Walker = OtherAtom;
2778 break;
2779 } else {
2780 if (OtherAtom->type->Z == 1)
2781 *out << "Links to a hydrogen atom." << endl;
2782 else
2783 *out << "Bond has not white but " << GetColor(ColorEdgeList[Binder->nr]) << " color." << endl;
2784 }
2785 }
2786 }
2787 } else { // means we have stepped beyond the horizon: Return!
2788 Walker = PredecessorList[Walker->nr];
2789 OtherAtom = Walker;
2790 *out << Verbose(3) << "We have gone too far, stepping back to " << Walker->Name << "." << endl;
2791 }
2792 if (Walker != OtherAtom) { // if no white neighbours anymore, color it black
2793 *out << Verbose(2) << "Coloring " << Walker->Name << " black." << endl;
2794 ColorVertexList[Walker->nr] = black;
2795 Walker = PredecessorList[Walker->nr];
2796 }
2797 }
2798 } while ((Walker != Root) || (ColorVertexList[Root->nr] != black));
2799 *out << Verbose(2) << "Inner Looping is finished." << endl;
2800
2801 // if we reset all AtomCount atoms, we have again technically O(N^2) ...
2802 *out << Verbose(2) << "Resetting lists." << endl;
2803 Walker = NULL;
2804 Binder = NULL;
2805 while (!TouchedStack->IsEmpty()) {
2806 Walker = TouchedStack->PopLast();
2807 *out << Verbose(3) << "Re-initialising entries of " << *Walker << "." << endl;
2808 for(int i=0;i<NumberOfBondsPerAtom[Walker->nr];i++)
2809 ColorEdgeList[ListOfBondsPerAtom[Walker->nr][i]->nr] = white;
2810 PredecessorList[Walker->nr] = NULL;
2811 ColorVertexList[Walker->nr] = white;
2812 ShortestPathList[Walker->nr] = -1;
2813 }
2814 }
2815 *out << Verbose(1) << "Outer Looping over all vertices is done." << endl;
2816
2817 // copy together
2818 *out << Verbose(1) << "Copying all fragments into MoleculeList structure." << endl;
2819 FragmentList = new MoleculeListClass(FragmentCounter, AtomCount);
2820 RunningIndex = 0;
2821 while ((Leaflet != NULL) && (RunningIndex < FragmentCounter)) {
2822 FragmentList->ListOfMolecules[RunningIndex++] = Leaflet->Leaf;
2823 Leaflet->Leaf = NULL; // prevent molecule from being removed
2824 TempLeaf = Leaflet;
2825 Leaflet = Leaflet->previous;
2826 delete(TempLeaf);
2827 };
2828
2829 // free memory and exit
2830 Free((void **)&PredecessorList, "molecule::CreateListOfUniqueFragmentsOfOrder: **PredecessorList");
2831 Free((void **)&ShortestPathList, "molecule::CreateListOfUniqueFragmentsOfOrder: *ShortestPathList");
2832 Free((void **)&Labels, "molecule::CreateListOfUniqueFragmentsOfOrder: *Labels");
2833 Free((void **)&ColorVertexList, "molecule::CreateListOfUniqueFragmentsOfOrder: *ColorList");
2834 delete(RootStack);
2835 delete(TouchedStack);
2836 delete(SnakeStack);
2837
2838 *out << Verbose(1) << "End of CreateListOfUniqueFragmentsOfOrder." << endl;
2839 return FragmentList;
2840};
2841*/
2842
2843/** Structure containing all values in power set combination generation.
2844 */
2845struct UniqueFragments {
2846 config *configuration;
2847 atom *Root;
2848 Graph *Leaflet;
2849 KeySet *FragmentSet;
2850 int ANOVAOrder;
2851 int FragmentCounter;
2852 int CurrentIndex;
2853 int *Labels;
2854 int *ShortestPathList;
2855 bool **UsedList;
2856 bond **BondsPerSPList;
2857 double TEFactor;
2858 int *BondsPerSPCount;
2859};
2860
2861/** From a given set of Bond sorted by Shortest Path distance, create all possible fragments of size \a SetDimension.
2862 * This basically involves recursion to create all power set combinations.
2863 * \param *out output stream for debugging
2864 * \param FragmentSearch UniqueFragments structure with all values needed
2865 * \param RootDistance current shortest path level, whose set of edges is represented by **BondsSet
2866 * \param SetDimension Number of possible bonds on this level (i.e. size of the array BondsSet[])
2867 * \param SubOrder remaining number of allowed vertices to add
2868 */
2869void molecule::SPFragmentGenerator(ofstream *out, struct UniqueFragments *FragmentSearch, int RootDistance, bond **BondsSet, int SetDimension, int SubOrder)
2870{
2871 atom *OtherWalker = NULL;
2872 int verbosity = 0; //FragmentSearch->ANOVAOrder-SubOrder;
2873 int NumCombinations;
2874 bool bit;
2875 int bits, TouchedIndex, SubSetDimension, SP;
2876 int Removal;
2877 int *TouchedList = (int *) Malloc(sizeof(int)*(SubOrder+1), "molecule::SPFragmentGenerator: *TouchedList");
2878 bond *Binder = NULL;
2879 bond **BondsList = NULL;
2880
2881 NumCombinations = 1 << SetDimension;
2882
2883 // Hier muessen von 1 bis NumberOfBondsPerAtom[Walker->nr] alle Kombinationen
2884 // von Endstuecken (aus den Bonds) hinzugefÃŒgt werden und fÃŒr verbleibende ANOVAOrder
2885 // rekursiv GraphCrawler in der nÀchsten Ebene aufgerufen werden
2886
2887 *out << Verbose(1+verbosity) << "Begin of SPFragmentGenerator." << endl;
2888 *out << Verbose(1+verbosity) << "We are " << RootDistance << " away from Root, which is " << *FragmentSearch->Root << ", SubOrder is " << SubOrder << ", SetDimension is " << SetDimension << " and this means " << NumCombinations-1 << " combination(s)." << endl;
2889
2890 // initialised touched list (stores added atoms on this level)
2891 *out << Verbose(1+verbosity) << "Clearing touched list." << endl;
2892 for (TouchedIndex=0;TouchedIndex<=SubOrder;TouchedIndex++) // empty touched list
2893 TouchedList[TouchedIndex] = -1;
2894 TouchedIndex = 0;
2895
2896 // create every possible combination of the endpieces
2897 *out << Verbose(1+verbosity) << "Going through all combinations of the power set." << endl;
2898 for (int i=1;i<NumCombinations;i++) { // sweep through all power set combinations (skip empty set!)
2899 // count the set bit of i
2900 bits = 0;
2901 for (int j=0;j<SetDimension;j++)
2902 bits += (i & (1 << j)) >> j;
2903
2904 *out << Verbose(1+verbosity) << "Current set is " << Binary(i | (1 << SetDimension)) << ", number of bits is " << bits << "." << endl;
2905 if (bits <= SubOrder) { // if not greater than additional atoms allowed on stack, continue
2906 // --1-- add this set of the power set of bond partners to the snake stack
2907 for (int j=0;j<SetDimension;j++) { // pull out every bit by shifting
2908 bit = ((i & (1 << j)) != 0); // mask the bit for the j-th bond
2909 if (bit) { // if bit is set, we add this bond partner
2910 OtherWalker = BondsSet[j]->rightatom; // rightatom is always the one more distant, i.e. the one to add
2911 //*out << Verbose(1+verbosity) << "Current Bond is " << ListOfBondsPerAtom[Walker->nr][i] << ", checking on " << *OtherWalker << "." << endl;
2912 //if ((!FragmentSearch->UsedList[OtherWalker->nr][i]) && (FragmentSearch->Labels[OtherWalker->nr] > FragmentSearch->Labels[FragmentSearch->Root->nr])) {
2913 //*out << Verbose(2+verbosity) << "Not used so far, label " << FragmentSearch->Labels[OtherWalker->nr] << " is bigger than Root's " << FragmentSearch->Labels[FragmentSearch->Root->nr] << "." << endl;
2914 *out << Verbose(2+verbosity) << "Adding " << *OtherWalker << "." << endl;
2915 TouchedList[TouchedIndex++] = OtherWalker->nr; // note as added
2916 FragmentSearch->FragmentSet->insert( FragmentSearch->FragmentSet->end(), OtherWalker->nr);
2917 //FragmentSearch->UsedList[OtherWalker->nr][i] = true;
2918 //}
2919 } else {
2920 *out << Verbose(2+verbosity) << "Not adding." << endl;
2921 }
2922 }
2923
2924 if (bits < SubOrder) {
2925 *out << Verbose(1+verbosity) << "There's still some space left on stack: " << (SubOrder - bits) << "." << endl;
2926 // --2-- look at all added end pieces of this combination, construct bond subsets and sweep through a power set of these by recursion
2927 SP = RootDistance+1; // this is the next level
2928 // first count the members in the subset
2929 SubSetDimension = 0;
2930 Binder = FragmentSearch->BondsPerSPList[2*SP]; // start node for this level
2931 while (Binder->next != FragmentSearch->BondsPerSPList[2*SP+1]) { // compare to end node of this level
2932 Binder = Binder->next;
2933 for (int k=0;k<TouchedIndex;k++) {
2934 if (Binder->Contains(TouchedList[k])) // if we added this very endpiece
2935 SubSetDimension++;
2936 }
2937 }
2938 // then allocate and fill the list
2939 BondsList = (bond **) Malloc(sizeof(bond *)*SubSetDimension, "molecule::SPFragmentGenerator: **BondsList");
2940 SubSetDimension = 0;
2941 Binder = FragmentSearch->BondsPerSPList[2*SP];
2942 while (Binder->next != FragmentSearch->BondsPerSPList[2*SP+1]) {
2943 Binder = Binder->next;
2944 for (int k=0;k<TouchedIndex;k++) {
2945 if (Binder->leftatom->nr == TouchedList[k]) // leftatom is always the close one
2946 BondsList[SubSetDimension++] = Binder;
2947 }
2948 }
2949 *out << Verbose(2+verbosity) << "Calling subset generator " << SP << " away from root " << *FragmentSearch->Root << " with sub set dimension " << SubSetDimension << "." << endl;
2950 SPFragmentGenerator(out, FragmentSearch, SP, BondsList, SubSetDimension, SubOrder-bits);
2951 Free((void **)&BondsList, "molecule::SPFragmentGenerator: **BondsList");
2952 } else {
2953 // --2-- otherwise store the complete fragment
2954 *out << Verbose(1+verbosity) << "Enough items on stack for a fragment!" << endl;
2955 // store fragment as a KeySet
2956 *out << Verbose(2) << "Found a new fragment[" << FragmentSearch->FragmentCounter << "], indices are: ";
2957 for(KeySet::iterator runner = FragmentSearch->FragmentSet->begin(); runner != FragmentSearch->FragmentSet->end(); runner++) {
2958 *out << (*runner)+1 << " ";
2959 }
2960 InsertFragmentIntoGraph(out, FragmentSearch);
2961 Removal = LookForRemovalCandidate(out, FragmentSearch->FragmentSet, FragmentSearch->ShortestPathList);
2962 //Removal = StoreFragmentFromStack(out, FragmentSearch->Root, FragmentSearch->Leaflet, FragmentSearch->FragmentStack, FragmentSearch->ShortestPathList,FragmentSearch->Labels, &FragmentSearch->FragmentCounter, FragmentSearch->configuration);
2963 }
2964
2965 // --3-- remove all added items in this level from snake stack
2966 *out << Verbose(1+verbosity) << "Removing all items that were added on this SP level " << RootDistance << "." << endl;
2967 for(int j=0;j<TouchedIndex;j++) {
2968 Removal = TouchedList[j];
2969 *out << Verbose(2+verbosity) << "Removing item nr. " << Removal+1 << " from snake stack." << endl;
2970 FragmentSearch->FragmentSet->erase(Removal);
2971 TouchedList[j] = -1;
2972 }
2973 TouchedIndex = 0; // set Index to 0 for list of atoms added on this level
2974 } else {
2975 *out << Verbose(2+verbosity) << "More atoms to add for this set (" << bits << ") than space left on stack " << SubOrder << ", skipping this set." << endl;
2976 }
2977 }
2978 Free((void **)&TouchedList, "molecule::SPFragmentGenerator: *TouchedList");
2979 *out << Verbose(1+verbosity) << "End of SPFragmentGenerator " << RootDistance << " away from Root " << *FragmentSearch->Root << " and SubOrder is " << SubOrder << "." << endl;
2980};
2981
2982/** Creates a list of all unique fragments of certain vertex size from a given graph \a Fragment in the context of \a this molecule.
2983 * Note that we may use the fact that the atoms are SP-ordered on the atomstack. I.e. when popping always the last, we first get all
2984 * with SP of 2, then those with SP of 3, then those with SP of 4 and so on.
2985 * \param *out output stream for debugging
2986 * \param Order number of vertices
2987 * \param *ListOfGraph Graph structure to insert found fragments into
2988 * \param Fragment Restricted vertex set to use in context of molecule
2989 * \param TEFactor TEFactor to store in graphlist in the end
2990 * \param *configuration configuration needed for IsAngstroem
2991 * \return number of inserted fragments
2992 * \note ShortestPathList in FragmentSearch structure is probably due to NumberOfAtomsSPLevel and SP not needed anymore
2993 */
2994int molecule::CreateListOfUniqueFragmentsOfOrder(ofstream *out, int Order, Graph *ListOfGraph, KeySet Fragment, double TEFactor, config *configuration)
2995{
2996 int SP, UniqueIndex, RootKeyNr, AtomKeyNr;
2997 int *NumberOfAtomsSPLevel = (int *) Malloc(sizeof(int)*Order, "molecule::CreateListOfUniqueFragmentsOfOrder: *SPLevelCount");
2998 atom *Walker = NULL, *OtherWalker = NULL;
2999 bond *Binder = NULL;
3000 bond **BondsList = NULL;
3001 KeyStack RootStack;
3002 KeyStack AtomStack;
3003 atom **PredecessorList = (atom **) Malloc(sizeof(atom *)*AtomCount, "molecule::CreateListOfUniqueFragmentsOfOrder: **PredecessorList");
3004 KeySet::iterator runner;
3005
3006 // initialise the fragments structure
3007 struct UniqueFragments FragmentSearch;
3008 FragmentSearch.BondsPerSPList = (bond **) Malloc(sizeof(bond *)*Order*2, "molecule::CreateListOfUniqueFragmentsOfOrder: ***BondsPerSPList");
3009 FragmentSearch.BondsPerSPCount = (int *) Malloc(sizeof(int)*Order, "molecule::CreateListOfUniqueFragmentsOfOrder: *BondsPerSPCount");
3010 FragmentSearch.ShortestPathList = (int *) Malloc(sizeof(int)*AtomCount, "molecule::CreateListOfUniqueFragmentsOfOrder: *ShortestPathList");
3011 FragmentSearch.Labels = (int *) Malloc(sizeof(int)*AtomCount, "molecule::CreateListOfUniqueFragmentsOfOrder: *Labels");
3012 FragmentSearch.FragmentCounter = 0;
3013 FragmentSearch.FragmentSet = new KeySet;
3014 FragmentSearch.configuration = configuration;
3015 FragmentSearch.TEFactor = TEFactor;
3016 FragmentSearch.Leaflet = ListOfGraph; // set to insertion graph
3017 for (int i=0;i<AtomCount;i++) {
3018 FragmentSearch.Labels[i] = -1;
3019 FragmentSearch.ShortestPathList[i] = -1;
3020 PredecessorList[i] = NULL;
3021 }
3022 for (int i=0;i<Order;i++) {
3023 FragmentSearch.BondsPerSPList[2*i] = new bond(); // start node
3024 FragmentSearch.BondsPerSPList[2*i+1] = new bond(); // end node
3025 FragmentSearch.BondsPerSPList[2*i]->next = FragmentSearch.BondsPerSPList[2*i+1]; // intertwine these two
3026 FragmentSearch.BondsPerSPList[2*i+1]->previous = FragmentSearch.BondsPerSPList[2*i];
3027 FragmentSearch.BondsPerSPCount[i] = 0;
3028 }
3029
3030 *out << endl;
3031 *out << Verbose(0) << "Begin of CreateListOfUniqueFragmentsOfOrder with order " << Order << "." << endl;
3032
3033 RootStack.clear();
3034 // find first root candidates
3035 runner = Fragment.begin();
3036 Walker = NULL;
3037 while ((Walker == NULL) && (runner != Fragment.end())) { // search for first non-hydrogen atom
3038 Walker = FindAtom((*runner));
3039 *out << Verbose(4) << "Current Root candidate is " << Walker->Name << "." << endl;
3040#ifdef ADDHYDROGEN
3041 if (Walker->type->Z == 1) // skip hydrogen
3042 Walker = NULL;
3043#endif
3044 runner++;
3045 }
3046 if (Walker != NULL)
3047 RootStack.push_back(Walker->nr);
3048 else
3049 *out << Verbose(0) << "ERROR: Could not find an appropriate Root atom!" << endl;
3050
3051 UniqueIndex = 0;
3052 while (!RootStack.empty()) {
3053 // Get Root and prepare
3054 RootKeyNr = RootStack.front();
3055 RootStack.pop_front();
3056 FragmentSearch.Root = FindAtom(RootKeyNr);
3057 if (FragmentSearch.Labels[RootKeyNr] == -1)
3058 FragmentSearch.Labels[RootKeyNr] = UniqueIndex++;
3059 FragmentSearch.ShortestPathList[RootKeyNr] = 0;
3060 // prepare the atom stack counters (number of atoms with certain SP on stack)
3061 for (int i=0;i<Order;i++)
3062 NumberOfAtomsSPLevel[i] = 0;
3063 NumberOfAtomsSPLevel[0] = 1; // for root
3064 SP = -1;
3065 *out << endl;
3066 *out << Verbose(0) << "Starting BFS analysis with current Root: " << *FragmentSearch.Root << "." << endl;
3067 // push as first on atom stack and goooo ...
3068 AtomStack.clear();
3069 AtomStack.push_back(RootKeyNr);
3070 *out << Verbose(0) << "Cleared AtomStack and pushed root as first item onto it." << endl;
3071 // do a BFS search to fill the SP lists and label the found vertices
3072 while (!AtomStack.empty()) {
3073 // pop next atom
3074 AtomKeyNr = AtomStack.front();
3075 AtomStack.pop_front();
3076 if (SP != -1)
3077 NumberOfAtomsSPLevel[SP]--;
3078 if ((SP == -1) || (NumberOfAtomsSPLevel[SP] == -1)) {
3079 ////if (SP < FragmentSearch.ShortestPathList[AtomKeyNr]) { // bfs has reached new SP level, hence allocate for new list
3080 SP++;
3081 NumberOfAtomsSPLevel[SP]--; // carry over "-1" to next level
3082 ////SP = FragmentSearch.ShortestPathList[AtomKeyNr];
3083 *out << Verbose(1) << "New SP level reached: " << SP << ", creating new SP list with 0 item(s)";
3084 if (SP > 0)
3085 *out << ", old level closed with " << FragmentSearch.BondsPerSPCount[SP-1] << " item(s)." << endl;
3086 else
3087 *out << "." << endl;
3088 FragmentSearch.BondsPerSPCount[SP] = 0;
3089 } else {
3090 *out << Verbose(1) << "Still " << NumberOfAtomsSPLevel[SP]+1 << " on this SP (" << SP << ") level, currently having " << FragmentSearch.BondsPerSPCount[SP] << " item(s)." << endl;
3091 }
3092 Walker = FindAtom(AtomKeyNr);
3093 *out << Verbose(0) << "Current Walker is: " << *Walker << " with label " << FragmentSearch.Labels[AtomKeyNr] << " and SP of " << SP << "." << endl;
3094 // check for new sp level
3095 // go through all its bonds
3096 *out << Verbose(1) << "Going through all bonds of Walker." << endl;
3097 for (int i=0;i<NumberOfBondsPerAtom[AtomKeyNr];i++) {
3098 Binder = ListOfBondsPerAtom[AtomKeyNr][i];
3099 OtherWalker = Binder->GetOtherAtom(Walker);
3100 if ((Fragment.find(OtherWalker->nr) != Fragment.end())
3101#ifdef ADDHYDROGEN
3102 && (OtherWalker->type->Z != 1)
3103#endif
3104 ) { // skip hydrogens and restrict to fragment
3105 *out << Verbose(2) << "Current partner is " << *OtherWalker << " in bond " << *Binder << "." << endl;
3106 // set the label if not set (and push on root stack as well)
3107 if (FragmentSearch.Labels[OtherWalker->nr] == -1) {
3108 RootStack.push_back(OtherWalker->nr);
3109 FragmentSearch.Labels[OtherWalker->nr] = UniqueIndex++;
3110 *out << Verbose(3) << "Set label to " << FragmentSearch.Labels[OtherWalker->nr] << "." << endl;
3111 } else {
3112 *out << Verbose(3) << "Label is already " << FragmentSearch.Labels[OtherWalker->nr] << "." << endl;
3113 }
3114 if ((OtherWalker != PredecessorList[AtomKeyNr]) && (FragmentSearch.Labels[OtherWalker->nr] > FragmentSearch.Labels[RootKeyNr])) { // only pass through those with label bigger than Root's
3115 // set shortest path if not set or longer
3116 //if ((FragmentSearch.ShortestPathList[OtherWalker->nr] == -1) || (FragmentSearch.ShortestPathList[OtherWalker->nr] > FragmentSearch.ShortestPathList[AtomKeyNr])) {
3117 FragmentSearch.ShortestPathList[OtherWalker->nr] = SP+1;
3118 *out << Verbose(3) << "Set Shortest Path to " << FragmentSearch.ShortestPathList[OtherWalker->nr] << "." << endl;
3119 //} else {
3120 // *out << Verbose(3) << "Shortest Path is already " << FragmentSearch.ShortestPathList[OtherWalker->nr] << "." << endl;
3121 //}
3122 if (FragmentSearch.ShortestPathList[OtherWalker->nr] < Order) { // only pass through those within reach of Order
3123 // push for exploration on stack (only if the SP of OtherWalker is longer than of Walker! (otherwise it has been added already!)
3124 if (FragmentSearch.ShortestPathList[OtherWalker->nr] > SP) {
3125 if (FragmentSearch.ShortestPathList[OtherWalker->nr] < (Order-1)) {
3126 *out << Verbose(3) << "Putting on atom stack for further exploration." << endl;
3127 PredecessorList[OtherWalker->nr] = Walker; // note down the one further up the exploration tree
3128 AtomStack.push_back(OtherWalker->nr);
3129 NumberOfAtomsSPLevel[FragmentSearch.ShortestPathList[OtherWalker->nr]]++;
3130 } else {
3131 *out << Verbose(3) << "Not putting on atom stack, is at end of reach." << endl;
3132 }
3133 // add the bond in between to the SP list
3134 Binder = new bond(Walker, OtherWalker); // create a new bond in such a manner, that bond::rightatom is always the one more distant
3135 add(Binder, FragmentSearch.BondsPerSPList[2*SP+1]);
3136 FragmentSearch.BondsPerSPCount[SP]++;
3137 *out << Verbose(3) << "Added its bond to SP list, having now " << FragmentSearch.BondsPerSPCount[SP] << " item(s)." << endl;
3138 } else {
3139 *out << Verbose(3) << "Not putting on atom stack, nor adding bond, as " << *OtherWalker << "'s SP is shorter than Walker's." << endl;
3140 }
3141 } else {
3142 *out << Verbose(3) << "Not continuing, as " << *OtherWalker << " is out of reach of order " << Order << "." << endl;
3143 }
3144 } else {
3145 *out << Verbose(3) << "Not passing on, as label of " << *OtherWalker << " " << FragmentSearch.Labels[OtherWalker->nr] << " is smaller than that of Root " << FragmentSearch.Labels[RootKeyNr] << " or this is my predecessor." << endl;
3146 }
3147 } else {
3148 *out << Verbose(2) << "Is not in the Fragment or skipping hydrogen " << *OtherWalker << "." << endl;
3149 }
3150 }
3151 }
3152 // reset predecessor list
3153 for(int i=0;i<Order;i++) {
3154 Binder = FragmentSearch.BondsPerSPList[2*i];
3155 *out << Verbose(1) << "Current SP level is " << i << "." << endl;
3156 while (Binder->next != FragmentSearch.BondsPerSPList[2*i+1]) {
3157 Binder = Binder->next;
3158 PredecessorList[Binder->rightatom->nr] = NULL; // By construction "OtherAtom" is always Bond::rightatom!
3159 }
3160 }
3161 *out << endl;
3162 *out << Verbose(0) << "Printing all found lists." << endl;
3163 // outputting all list for debugging
3164 for(int i=0;i<Order;i++) {
3165 Binder = FragmentSearch.BondsPerSPList[2*i];
3166 *out << Verbose(1) << "Current SP level is " << i << "." << endl;
3167 while (Binder->next != FragmentSearch.BondsPerSPList[2*i+1]) {
3168 Binder = Binder->next;
3169 *out << Verbose(2) << *Binder << endl;
3170 }
3171 }
3172
3173 // creating fragments with the found edge sets
3174 SP = 0;
3175 for(int i=0;i<Order;i++) { // sum up all found edges
3176 Binder = FragmentSearch.BondsPerSPList[2*i];
3177 while (Binder->next != FragmentSearch.BondsPerSPList[2*i+1]) {
3178 Binder = Binder->next;
3179 SP ++;
3180 }
3181 }
3182 *out << Verbose(0) << "Total number of edges is " << SP << "." << endl;
3183 if (SP >= (Order-1)) {
3184 // start with root (push on fragment stack)
3185 *out << Verbose(0) << "Starting fragment generation with " << *FragmentSearch.Root << "." << endl;
3186 FragmentSearch.FragmentSet->clear();
3187 FragmentSearch.FragmentSet->insert(FragmentSearch.Root->nr);
3188
3189 if (FragmentSearch.FragmentSet->size() == (unsigned int) Order) {
3190 *out << Verbose(0) << "Enough items on stack already for a fragment!" << endl;
3191 // store fragment as a KeySet
3192 *out << Verbose(2) << "Found a new fragment[" << FragmentSearch.FragmentCounter << "], indices are: ";
3193 for(KeySet::iterator runner = FragmentSearch.FragmentSet->begin(); runner != FragmentSearch.FragmentSet->end(); runner++) {
3194 *out << (*runner)+1 << " ";
3195 }
3196 *out << endl;
3197 InsertFragmentIntoGraph(out, &FragmentSearch);
3198 //StoreFragmentFromStack(out, FragmentSearch.Root, FragmentSearch.Leaflet, FragmentSearch.FragmentStack, FragmentSearch.ShortestPathList,FragmentSearch.Labels, &FragmentSearch.FragmentCounter, FragmentSearch.configuration);
3199 } else {
3200 *out << Verbose(0) << "Preparing subset for this root and calling generator." << endl;
3201 // prepare the subset and call the generator
3202 BondsList = (bond **) Malloc(sizeof(bond *)*FragmentSearch.BondsPerSPCount[0], "molecule::CreateListOfUniqueFragmentsOfOrder: **BondsList");
3203 Binder = FragmentSearch.BondsPerSPList[0];
3204 for(int i=0;i<FragmentSearch.BondsPerSPCount[0];i++) {
3205 Binder = Binder->next;
3206 BondsList[i] = Binder;
3207 }
3208 SPFragmentGenerator(out, &FragmentSearch, 0, BondsList, FragmentSearch.BondsPerSPCount[0], Order-1);
3209 Free((void **)&BondsList, "molecule::CreateListOfUniqueFragmentsOfOrder: **BondsList");
3210 }
3211 } else {
3212 *out << Verbose(0) << "Not enough total number of edges to build " << Order << "-body fragments." << endl;
3213 }
3214
3215 // remove root from stack
3216 *out << Verbose(0) << "Removing root again from stack." << endl;
3217 FragmentSearch.FragmentSet->erase(FragmentSearch.Root->nr);
3218
3219 // free'ing the bonds lists
3220 *out << Verbose(0) << "Free'ing all found lists. and resetting index lists" << endl;
3221 for(int i=0;i<Order;i++) {
3222 *out << Verbose(1) << "Current SP level is " << i << ": ";
3223 Binder = FragmentSearch.BondsPerSPList[2*i];
3224 while (Binder->next != FragmentSearch.BondsPerSPList[2*i+1]) {
3225 Binder = Binder->next;
3226 FragmentSearch.ShortestPathList[Binder->leftatom->nr] = -1;
3227 FragmentSearch.ShortestPathList[Binder->rightatom->nr] = -1;
3228 }
3229 // delete added bonds
3230 cleanup(FragmentSearch.BondsPerSPList[2*i], FragmentSearch.BondsPerSPList[2*i+1]);
3231 // also start and end node
3232 *out << "cleaned." << endl;
3233 }
3234 }
3235
3236 // free allocated memory
3237 Free((void **)&NumberOfAtomsSPLevel, "molecule::CreateListOfUniqueFragmentsOfOrder: *SPLevelCount");
3238 Free((void **)&PredecessorList, "molecule::CreateListOfUniqueFragmentsOfOrder: **PredecessorList");
3239 for(int i=0;i<Order;i++) { // delete start and end of each list
3240 delete(FragmentSearch.BondsPerSPList[2*i]);
3241 delete(FragmentSearch.BondsPerSPList[2*i+1]);
3242 }
3243 Free((void **)&FragmentSearch.BondsPerSPList, "molecule::CreateListOfUniqueFragmentsOfOrder: ***BondsPerSPList");
3244 Free((void **)&FragmentSearch.BondsPerSPCount, "molecule::CreateListOfUniqueFragmentsOfOrder: *BondsPerSPCount");
3245 Free((void **)&FragmentSearch.ShortestPathList, "molecule::CreateListOfUniqueFragmentsOfOrder: *ShortestPathList");
3246 Free((void **)&FragmentSearch.Labels, "molecule::CreateListOfUniqueFragmentsOfOrder: *Labels");
3247 delete(FragmentSearch.FragmentSet);
3248
3249// // gather all the leaves together
3250// *out << Verbose(0) << "Copying all fragments into MoleculeList structure." << endl;
3251// FragmentList = new Graph;
3252// UniqueIndex = 0;
3253// while ((FragmentSearch.Leaflet != NULL) && (UniqueIndex < FragmentSearch.FragmentCounter)) {
3254// FragmentList->insert();
3255// FragmentList->ListOfMolecules[UniqueIndex++] = FragmentSearch.Leaflet->Leaf;
3256// FragmentSearch.Leaflet->Leaf = NULL; // prevent molecule from being removed
3257// TempLeaf = FragmentSearch.Leaflet;
3258// FragmentSearch.Leaflet = FragmentSearch.Leaflet->previous;
3259// delete(TempLeaf);
3260// };
3261
3262 // return list
3263 *out << Verbose(0) << "End of CreateListOfUniqueFragmentsOfOrder." << endl;
3264 return FragmentSearch.FragmentCounter;
3265};
3266
3267/** Corrects the nuclei position if the fragment was created over the cell borders.
3268 * Scans all bonds, checks the distance, if greater than typical, we have a candidate for the correction.
3269 * We remove the bond whereafter the graph probably separates. Then, we translate the one component periodically
3270 * and re-add the bond. Looping on the distance check.
3271 * \param *out ofstream for debugging messages
3272 */
3273void molecule::ScanForPeriodicCorrection(ofstream *out)
3274{
3275 bond *Binder = NULL;
3276 bond *OtherBinder = NULL;
3277 atom *Walker = NULL;
3278 atom *OtherWalker = NULL;
3279 double *matrix = ReturnFullMatrixforSymmetric(cell_size);
3280 enum Shading *ColorList = NULL;
3281 double tmp;
3282 vector TranslationVector;
3283 //AtomStackClass *CompStack = NULL;
3284 AtomStackClass *AtomStack = new AtomStackClass(AtomCount);
3285 bool flag = true;
3286
3287 *out << Verbose(1) << "Begin of ScanForPeriodicCorrection." << endl;
3288
3289 ColorList = (enum Shading *) Malloc(sizeof(enum Shading)*AtomCount, "molecule::ScanForPeriodicCorrection: *ColorList");
3290 while (flag) {
3291 // remove bonds that are beyond bonddistance
3292 for(int i=0;i<NDIM;i++)
3293 TranslationVector.x[i] = 0.;
3294 // scan all bonds
3295 Binder = first;
3296 flag = false;
3297 while ((!flag) && (Binder->next != last)) {
3298 Binder = Binder->next;
3299 for (int i=0;i<NDIM;i++) {
3300 tmp = fabs(Binder->leftatom->x.x[i] - Binder->rightatom->x.x[i]);
3301 //*out << Verbose(3) << "Checking " << i << "th distance of " << *Binder->leftatom << " to " << *Binder->rightatom << ": " << tmp << "." << endl;
3302 if (tmp > BondDistance) {
3303 OtherBinder = Binder->next; // note down binding partner for later re-insertion
3304 unlink(Binder); // unlink bond
3305 *out << Verbose(2) << "Correcting at bond " << *Binder << "." << endl;
3306 flag = true;
3307 break;
3308 }
3309 }
3310 }
3311 if (flag) {
3312 // create translation vector from their periodically modified distance
3313 for (int i=0;i<NDIM;i++) {
3314 tmp = Binder->leftatom->x.x[i] - Binder->rightatom->x.x[i];
3315 if (fabs(tmp) > BondDistance)
3316 TranslationVector.x[i] = (tmp < 0) ? +1. : -1.;
3317 }
3318 TranslationVector.MatrixMultiplication(matrix);
3319 //*out << "Translation vector is ";
3320 //TranslationVector.Output(out);
3321 //*out << endl;
3322 // apply to all atoms of first component via BFS
3323 for (int i=0;i<AtomCount;i++)
3324 ColorList[i] = white;
3325 AtomStack->Push(Binder->leftatom);
3326 while (!AtomStack->IsEmpty()) {
3327 Walker = AtomStack->PopFirst();
3328 //*out << Verbose (3) << "Current Walker is: " << *Walker << "." << endl;
3329 ColorList[Walker->nr] = black; // mark as explored
3330 Walker->x.AddVector(&TranslationVector); // translate
3331 for (int i=0;i<NumberOfBondsPerAtom[Walker->nr];i++) { // go through all binding partners
3332 if (ListOfBondsPerAtom[Walker->nr][i] != Binder) {
3333 OtherWalker = ListOfBondsPerAtom[Walker->nr][i]->GetOtherAtom(Walker);
3334 if (ColorList[OtherWalker->nr] == white) {
3335 AtomStack->Push(OtherWalker); // push if yet unexplored
3336 }
3337 }
3338 }
3339 }
3340 // re-add bond
3341 link(Binder, OtherBinder);
3342 } else {
3343 *out << Verbose(2) << "No corrections for this fragment." << endl;
3344 }
3345 //delete(CompStack);
3346 }
3347
3348 // free allocated space from ReturnFullMatrixforSymmetric()
3349 delete(AtomStack);
3350 Free((void **)&ColorList, "molecule::ScanForPeriodicCorrection: *ColorList");
3351 Free((void **)&matrix, "molecule::ScanForPeriodicCorrection: *matrix");
3352 *out << Verbose(1) << "End of ScanForPeriodicCorrection." << endl;
3353};
3354
3355/** Blows the 6-dimensional \a cell_size array up to a full NDIM by NDIM matrix.
3356 * \param *symm 6-dim array of unique symmetric matrix components
3357 * \return allocated NDIM*NDIM array with the symmetric matrix
3358 */
3359double * molecule::ReturnFullMatrixforSymmetric(double *symm)
3360{
3361 double *matrix = (double *) Malloc(sizeof(double)*NDIM*NDIM, "molecule::ReturnFullMatrixforSymmetric: *matrix");
3362 matrix[0] = symm[0];
3363 matrix[1] = symm[1];
3364 matrix[2] = symm[3];
3365 matrix[3] = symm[1];
3366 matrix[4] = symm[2];
3367 matrix[5] = symm[4];
3368 matrix[6] = symm[3];
3369 matrix[7] = symm[4];
3370 matrix[8] = symm[5];
3371 return matrix;
3372};
3373
3374bool KeyCompare::operator() (const KeySet SubgraphA, const KeySet SubgraphB) const
3375{
3376 //cout << "my check is used." << endl;
3377 if (SubgraphA.size() < SubgraphB.size()) {
3378 return true;
3379 } else {
3380 if (SubgraphA.size() > SubgraphB.size()) {
3381 return false;
3382 } else {
3383 KeySet::iterator IteratorA = SubgraphA.begin();
3384 KeySet::iterator IteratorB = SubgraphB.begin();
3385 while ((IteratorA != SubgraphA.end()) && (IteratorB != SubgraphB.end())) {
3386 if ((*IteratorA) < (*IteratorB))
3387 return true;
3388 else if ((*IteratorA) > (*IteratorB)) {
3389 return false;
3390 } // else, go on to next index
3391 IteratorA++;
3392 IteratorB++;
3393 } // end of while loop
3394 }// end of check in case of equal sizes
3395 }
3396 return false; // if we reach this point, they are equal
3397};
3398
3399//bool operator < (KeySet SubgraphA, KeySet SubgraphB)
3400//{
3401// return KeyCompare(SubgraphA, SubgraphB);
3402//};
3403
3404/** Checking whether KeySet is not already present in Graph, if so just adds factor.
3405 * \param *out output stream for debugging
3406 * \param &set KeySet to insert
3407 * \param &graph Graph to insert into
3408 * \param *counter pointer to unique fragment count
3409 * \param factor energy factor for the fragment
3410 */
3411inline void InsertFragmentIntoGraph(ofstream *out, struct UniqueFragments *Fragment)
3412{
3413 GraphTestPair testGraphInsert;
3414
3415 testGraphInsert = Fragment->Leaflet->insert(GraphPair (*Fragment->FragmentSet,pair<int,double>(Fragment->FragmentCounter,Fragment->TEFactor))); // store fragment number and current factor
3416 if (testGraphInsert.second) {
3417 *out << Verbose(2) << "KeySet " << Fragment->FragmentCounter << " successfully inserted." << endl;
3418 Fragment->FragmentCounter++;
3419 } else {
3420 *out << Verbose(2) << "KeySet " << Fragment->FragmentCounter << " failed to insert, present fragment is " << ((*(testGraphInsert.first)).second).first << endl;
3421 ((*(testGraphInsert.first)).second).second += Fragment->TEFactor;
3422 *out << Verbose(2) << "New factor is " << ((*(testGraphInsert.first)).second).second << "." << endl;
3423 }
3424};
3425//void inline InsertIntoGraph(ofstream *out, KeyStack &stack, Graph &graph, int *counter, double factor)
3426//{
3427// // copy stack contents to set and call overloaded function again
3428// KeySet set;
3429// for(KeyStack::iterator runner = stack.begin(); runner != stack.begin(); runner++)
3430// set.insert((*runner));
3431// InsertIntoGraph(out, set, graph, counter, factor);
3432//};
3433
3434/** Inserts each KeySet in \a graph2 into \a graph1.
3435 * \param *out output stream for debugging
3436 * \param graph1 first (dest) graph
3437 * \param graph2 second (source) graph
3438 */
3439inline void InsertGraphIntoGraph(ofstream *out, Graph &graph1, Graph &graph2, int *counter)
3440{
3441 GraphTestPair testGraphInsert;
3442
3443 for(Graph::iterator runner = graph2.begin(); runner != graph2.end(); runner++) {
3444 testGraphInsert = graph1.insert(GraphPair ((*runner).first,pair<int,double>((*counter)++,((*runner).second).second))); // store fragment number and current factor
3445 if (testGraphInsert.second) {
3446 *out << Verbose(2) << "KeySet " << (*counter)-1 << " successfully inserted." << endl;
3447 } else {
3448 *out << Verbose(2) << "KeySet " << (*counter)-1 << " failed to insert, present fragment is " << ((*(testGraphInsert.first)).second).first << endl;
3449 ((*(testGraphInsert.first)).second).second += (*runner).second.second;
3450 *out << Verbose(2) << "New factor is " << (*(testGraphInsert.first)).second.second << "." << endl;
3451 }
3452 }
3453};
3454
3455
3456/** Creates truncated BOSSANOVA expansion up to order \a k.
3457 * \param *out output stream for debugging
3458 * \param ANOVAOrder ANOVA expansion is truncated above this order
3459 * \param *configuration configuration for writing config files for each fragment
3460 * \return pointer to MoleculeListClass with all the fragments or NULL if something went wrong.
3461 */
3462MoleculeListClass * molecule::FragmentBOSSANOVA(ofstream *out, int ANOVAOrder, config *configuration)
3463{
3464 Graph *FragmentList = NULL, ***FragmentLowerOrdersList = NULL;
3465 MoleculeListClass *FragmentMoleculeList = NULL;
3466 int Order, NumLevels, NumMolecules, TotalNumMolecules = 0, *NumMoleculesOfOrder = NULL;
3467 int counter = 0;
3468
3469 *out << Verbose(0) << "Begin of FragmentBOSSANOVA." << endl;
3470
3471 // FragmentLowerOrdersList is a 2D-array of pointer to MoleculeListClass objects, one dimension represents the ANOVA expansion of a single order (i.e. 5)
3472 // with all needed lower orders that are subtracted, the other dimension is the BondOrder (i.e. from 1 to 5)
3473 NumMoleculesOfOrder = (int *) Malloc(sizeof(int)*ANOVAOrder, "molecule::FragmentBOSSANOVA: *NumMoleculesOfOrder");
3474 FragmentLowerOrdersList = (Graph ***) Malloc(sizeof(Graph **)*ANOVAOrder, "molecule::FragmentBOSSANOVA: ***FragmentLowerOrdersList");
3475
3476 // Construct the complete KeySet
3477 atom *Walker = start;
3478 KeySet CompleteMolecule;
3479 while (Walker->next != end) {
3480 Walker = Walker->next;
3481 CompleteMolecule.insert(Walker->nr);
3482 }
3483
3484 for (int BondOrder=1;BondOrder<=ANOVAOrder;BondOrder++) {
3485 // this can easily be seen: if Order is 5, then the number of levels for each lower order is the total sum of the number of levels above, as
3486 // each has to be split up. E.g. for the second level we have one from 5th, one from 4th, two from 3th (which in turn is one from 5th, one from 4th),
3487 // hence we have overall four 2th order levels for splitting. This also allows for putting all into a single array (FragmentLowerOrdersList[])
3488 // with the order along the cells as this: 5433222211111111 for BondOrder 5 needing 16=pow(2,5-1) cells (only we use bit-shifting which is faster)
3489 NumLevels = 1 << (BondOrder-1); // (int)pow(2,BondOrder-1);
3490 *out << Verbose(0) << "BondOrder is (" << BondOrder << "/" << ANOVAOrder << ") and NumLevels is " << NumLevels << "." << endl;
3491
3492 // allocate memory for all lower level orders in this 1D-array of ptrs
3493 FragmentLowerOrdersList[BondOrder-1] = (Graph **) Malloc(sizeof(Graph *)*NumLevels, "molecule::FragmentBOSSANOVA: **FragmentLowerOrdersList[]");
3494
3495 // create top order where nothing is reduced
3496 *out << Verbose(0) << "==============================================================================================================" << endl;
3497 *out << Verbose(0) << "Creating list of unique fragments of Bond Order " << BondOrder << " itself." << endl;
3498 // Create list of Graphs of current Bond Order (i.e. F_{ij})
3499 FragmentLowerOrdersList[BondOrder-1][0] = new Graph;
3500 NumMoleculesOfOrder[BondOrder-1] = CreateListOfUniqueFragmentsOfOrder(out, BondOrder, FragmentLowerOrdersList[BondOrder-1][0], CompleteMolecule, 1., configuration);
3501 *out << Verbose(1) << "Number of resulting molecules is: " << NumMoleculesOfOrder[BondOrder-1] << "." << endl;
3502 NumMolecules = 0;
3503
3504 // create lower order fragments
3505 *out << Verbose(0) << "Creating list of unique fragments of lower Bond Order terms to be subtracted." << endl;
3506 Order = BondOrder;
3507 for (int source=0;source<(NumLevels >> 1);source++) { // 1-terms don't need any more splitting, that's why only half is gone through (shift again)
3508
3509 // step down to next order at (virtual) boundary of powers of 2 in array
3510 while (source >= (1 << (BondOrder-Order))) // (int)pow(2,BondOrder-Order))
3511 Order--;
3512 *out << Verbose(0) << "Current Order is: " << Order << "." << endl;
3513 for (int SubOrder=Order;SubOrder>1;SubOrder--) {
3514 int dest = source + (1 << (BondOrder-SubOrder));
3515 *out << Verbose(0) << "--------------------------------------------------------------------------------------------------------------" << endl;
3516 *out << Verbose(0) << "Current SubOrder is: " << SubOrder-1 << " with source " << source << " to destination " << dest << "." << endl;
3517
3518 // every molecule is split into a list of again (Order - 1) molecules, while counting all molecules
3519 //*out << Verbose(1) << "Splitting the " << (*FragmentLowerOrdersList[BondOrder-1][source]).size() << " molecules of the " << source << "th cell in the array." << endl;
3520 //NumMolecules = 0;
3521 FragmentLowerOrdersList[BondOrder-1][dest] = new Graph;
3522 for(Graph::iterator runner = (*FragmentLowerOrdersList[BondOrder-1][source]).begin();runner != (*FragmentLowerOrdersList[BondOrder-1][source]).end(); runner++) {
3523 NumMolecules += CreateListOfUniqueFragmentsOfOrder(out,SubOrder-1, FragmentLowerOrdersList[BondOrder-1][dest], (*runner).first, -(*runner).second.second, configuration);
3524 }
3525 *out << Verbose(1) << "Number of resulting molecules is: " << NumMolecules << "." << endl;
3526 }
3527 }
3528 // now, we have completely filled each cell of FragmentLowerOrdersList[] for the current BondOrder
3529 //NumMoleculesOfOrder[BondOrder-1] = NumMolecules;
3530 TotalNumMolecules += NumMoleculesOfOrder[BondOrder-1];
3531 *out << Verbose(1) << "Number of resulting molecules for Order " << BondOrder << " is: " << NumMoleculesOfOrder[BondOrder-1] << "." << endl;
3532 }
3533 *out << Verbose(1) << "Total number of resulting molecules is: " << TotalNumMolecules << "." << endl;
3534 // now, FragmentLowerOrdersList is complete, it looks - for BondOrder 5 - as this (number is the ANOVA Order of the terms therein)
3535 // 5433222211111111
3536 // 43221111
3537 // 3211
3538 // 21
3539 // 1
3540 // Subsequently, we combine same orders into a single list (FragmentByOrderList) and reduce these by order
3541
3542 *out << Verbose(0) << "Combining the lists of all orders per order and finally into a single one." << endl;
3543 FragmentList = new Graph;
3544 for (int BondOrder=1;BondOrder<=ANOVAOrder;BondOrder++) {
3545 NumLevels = 1 << (BondOrder-1);
3546 for(int i=0;i<NumLevels;i++) {
3547 InsertGraphIntoGraph(out, *FragmentList, (*FragmentLowerOrdersList[BondOrder-1][i]), &counter);
3548 delete(FragmentLowerOrdersList[BondOrder-1][i]);
3549 }
3550 Free((void **)&FragmentLowerOrdersList[BondOrder-1], "molecule::FragmentBOSSANOVA: **FragmentLowerOrdersList[]");
3551 }
3552 Free((void **)&FragmentLowerOrdersList, "molecule::FragmentBOSSANOVA: ***FragmentLowerOrdersList");
3553 Free((void **)&NumMoleculesOfOrder, "molecule::FragmentBOSSANOVA: *NumMoleculesOfOrder");
3554 // allocate memory for the pointer array and transmorph graphs into full molecular fragments
3555 FragmentMoleculeList = new MoleculeListClass(TotalNumMolecules, AtomCount);
3556 int k=0;
3557 for(Graph::iterator runner = FragmentList->begin(); runner != FragmentList->end(); runner++) {
3558 KeySet test = (*runner).first;
3559 FragmentMoleculeList->ListOfMolecules[k] = StoreFragmentFromKeyset(out, test, configuration);
3560 FragmentMoleculeList->TEList[k] = ((*runner).second).second;
3561 k++;
3562 }
3563
3564 *out << Verbose(0) << "End of FragmentBOSSANOVA." << endl;
3565 delete(FragmentList);
3566 return FragmentMoleculeList;
3567};
3568
3569/** Fragments a molecule, taking \a BondDegree neighbours into accent.
3570 * First of all, we have to split up the molecule into bonds ranging out till \a BondDegree.
3571 * These fragments serve in the following as the basis the calculate the bond energy of the bond
3572 * they originated from. Thus, they are split up in a left and a right part, each calculated for
3573 * the total energy, including the fragment as a whole and then we get:
3574 * E(fragment) - E(left) - E(right) = E(bond)
3575 * The splitting up is done via Breadth-First-Search, \sa BreadthFirstSearchAdd().
3576 * \param *out output stream for debugging
3577 * \param BondOrder up to how many neighbouring bonds a fragment contains
3578 * \param *configuration configuration for writing config files for each fragment
3579 * \param CutCyclic whether to add cut cyclic bond or to saturate
3580 * \return pointer to MoleculeListClass with all the fragments or NULL if something went wrong.
3581 */
3582MoleculeListClass * molecule::FragmentBottomUp(ofstream *out, int BondOrder, config *configuration, enum CutCyclicBond CutCyclic)
3583{
3584 int Num;
3585 MoleculeListClass *FragmentList = NULL, **FragmentsList = NULL;
3586 bond *Bond = NULL;
3587
3588 *out << Verbose(0) << "Begin of FragmentBottomUp." << endl;
3589 FragmentsList = (MoleculeListClass **) Malloc(sizeof(MoleculeListClass *)*2, "molecule::FragmentBottomUp: **FragmentsList");
3590 *out << Verbose(0) << "Getting Atomic fragments." << endl;
3591 FragmentsList[0] = GetAtomicFragments(out, AtomCount, configuration->GetIsAngstroem(), 1., CutCyclic);
3592
3593 // create the fragments including each one bond of the original molecule and up to \a BondDegree neighbours
3594 *out << Verbose(0) << "Getting " <<
3595#ifdef ADDHYDROGEN
3596 NoNonBonds
3597#else
3598 BondCount
3599#endif
3600 << " Bond fragments." << endl;
3601 FragmentList = GetEachBondFragmentOfOrder(out, BondOrder, configuration->GetIsAngstroem(), CutCyclic);
3602
3603 // check whether there are equal fragments by ReduceToUniqueOnes
3604 FragmentList->ReduceToUniqueList(out, &cell_size[0], BondDistance);
3605
3606 *out << Verbose(0) << "Begin of Separating " << FragmentList->NumberOfMolecules << " Fragments into Bond pieces." << endl;
3607 // as we have the list, we have to take each fragment split it relative to its originating
3608 // bond into left and right and store these in a new list
3609 *out << Verbose(2) << endl << "Allocating MoleculeListClass" << endl;
3610 FragmentsList[1] = new MoleculeListClass(3*FragmentList->NumberOfMolecules, AtomCount); // for each molecule the whole and its left and right part
3611 *out << Verbose(2) << "Creating TEList." << endl;
3612 // and create TE summation for these bond energy approximations (bond = whole - left - right)
3613 for(int i=0;i<FragmentList->NumberOfMolecules;i++) {
3614 // make up factors to regain total energy of whole molecule
3615 FragmentsList[1]->TEList[3*i] = FragmentList->TEList[i]; // bond energy is 1 * whole
3616 FragmentsList[1]->TEList[3*i+1] = -FragmentList->TEList[i]; // - 1. * left part
3617 FragmentsList[1]->TEList[3*i+2] = -FragmentList->TEList[i]; // - 1. * right part
3618
3619 // shift the pointer on whole molecule to new list in order to avoid that this molecule is deleted on deconstructing FragmentList
3620 FragmentsList[1]->ListOfMolecules[3*i] = FragmentList->ListOfMolecules[i];
3621 *out << Verbose(2) << "shifting whole fragment pointer for fragment " << FragmentList->ListOfMolecules[i] << " -> " << FragmentsList[1]->ListOfMolecules[3*i] << "." << endl;
3622 // create bond matrix and count bonds
3623 *out << Verbose(2) << "Updating bond list for fragment " << i << " [" << FragmentList << "]: " << FragmentList->ListOfMolecules[i] << endl;
3624 // create list of bonds per atom for this fragment (atoms were counted above)
3625 FragmentsList[1]->ListOfMolecules[3*i]->CreateListOfBondsPerAtom(out);
3626
3627 *out << Verbose(0) << "Getting left & right fragments for fragment " << i << "." << endl;
3628 // the bond around which the fragment has been setup is always the first by construction (bond partners are first added atoms)
3629 Bond = FragmentsList[1]->ListOfMolecules[3*i]->first->next; // is the bond between atom 0 and another in the middle
3630 FragmentsList[1]->ListOfMolecules[3*i]->FragmentMoleculeByBond(out, Bond, &(FragmentsList[1]->ListOfMolecules[3*i+1]), &(FragmentsList[1]->ListOfMolecules[3*i+2]), configuration->GetIsAngstroem(), CutCyclic);
3631 if ((FragmentsList[1]->ListOfMolecules[3*i+1] == NULL) || (FragmentsList[1]->ListOfMolecules[3*i+2] == NULL)) {
3632 *out << Verbose(2) << "Left and/or Right Fragment is NULL!" << endl;
3633 } else {
3634 *out << Verbose(3) << "Left Fragment is " << FragmentsList[1]->ListOfMolecules[3*i+1] << ": " << endl;
3635 FragmentsList[1]->ListOfMolecules[3*i+1]->Output(out);
3636 *out << Verbose(3) << "Right Fragment is " << FragmentsList[1]->ListOfMolecules[3*i+2] << ": " << endl;
3637 FragmentsList[1]->ListOfMolecules[3*i+2]->Output(out);
3638 *out << endl;
3639 }
3640 // remove in old list, so that memory for this molecule is not free'd on final delete of this list
3641 FragmentList->ListOfMolecules[i] = NULL;
3642 }
3643 *out << Verbose(0) << "End of Separating Fragments into Bond pieces." << endl;
3644 delete(FragmentList);
3645 FragmentList = NULL;
3646
3647 // combine atomic and bond list
3648 FragmentList = new MoleculeListClass(FragmentsList[0]->NumberOfMolecules + FragmentsList[1]->NumberOfMolecules, AtomCount);
3649 Num = 0;
3650 for(int i=0;i<2;i++) {
3651 for(int j=0;j<FragmentsList[i]->NumberOfMolecules;j++) {
3652 // transfer molecule
3653 FragmentList->ListOfMolecules[Num] = FragmentsList[i]->ListOfMolecules[j];
3654 FragmentsList[i]->ListOfMolecules[j] = NULL;
3655 // transfer TE factor
3656 FragmentList->TEList[Num] = FragmentsList[i]->TEList[j];
3657 Num++;
3658 }
3659 delete(FragmentsList[i]);
3660 FragmentsList[i] = NULL;
3661 }
3662 *out << Verbose(2) << "Memory cleanup and return with filled list." << endl;
3663 Free((void **)&FragmentsList, "molecule::FragmentBottomUp: **FragmentsList");
3664
3665 // reducing list
3666 FragmentList->ReduceToUniqueList(out, &cell_size[0], BondDistance);
3667
3668 // write configs for all fragements (are written in FragmentMolecule)
3669 // free FragmentList
3670 *out << Verbose(0) << "End of FragmentBottomUp." << endl;
3671 return FragmentList;
3672};
3673
3674
3675/** Comparision function for GSL heapsort on distances in two molecules.
3676 * \param *a
3677 * \param *b
3678 * \return <0, \a *a less than \a *b, ==0 if equal, >0 \a *a greater than \a *b
3679 */
3680int CompareDoubles (const void * a, const void * b)
3681{
3682 if (*(double *)a > *(double *)b)
3683 return -1;
3684 else if (*(double *)a < *(double *)b)
3685 return 1;
3686 else
3687 return 0;
3688};
3689
3690/** Determines whether two molecules actually contain the same atoms and coordination.
3691 * \param *out output stream for debugging
3692 * \param *OtherMolecule the molecule to compare this one to
3693 * \param threshold upper limit of difference when comparing the coordination.
3694 * \return NULL - not equal, otherwise an allocated (molecule::AtomCount) permutation map of the atom numbers (which corresponds to which)
3695 */
3696int * molecule::IsEqualToWithinThreshold(ofstream *out, molecule *OtherMolecule, double threshold)
3697{
3698 int flag;
3699 double *Distances = NULL, *OtherDistances = NULL;
3700 vector CenterOfGravity, OtherCenterOfGravity;
3701 size_t *PermMap = NULL, *OtherPermMap = NULL;
3702 int *PermutationMap = NULL;
3703 atom *Walker = NULL;
3704 bool result = true; // status of comparison
3705
3706 *out << Verbose(3) << "Begin of IsEqualToWithinThreshold." << endl;
3707 /// first count both their atoms and elements and update lists thereby ...
3708 //*out << Verbose(0) << "Counting atoms, updating list" << endl;
3709 CountAtoms(out);
3710 OtherMolecule->CountAtoms(out);
3711 CountElements();
3712 OtherMolecule->CountElements();
3713
3714 /// ... and compare:
3715 /// -# AtomCount
3716 if (result) {
3717 if (AtomCount != OtherMolecule->AtomCount) {
3718 *out << Verbose(4) << "AtomCounts don't match: " << AtomCount << " == " << OtherMolecule->AtomCount << endl;
3719 result = false;
3720 } else *out << Verbose(4) << "AtomCounts match: " << AtomCount << " == " << OtherMolecule->AtomCount << endl;
3721 }
3722 /// -# ElementCount
3723 if (result) {
3724 if (ElementCount != OtherMolecule->ElementCount) {
3725 *out << Verbose(4) << "ElementCount don't match: " << ElementCount << " == " << OtherMolecule->ElementCount << endl;
3726 result = false;
3727 } else *out << Verbose(4) << "ElementCount match: " << ElementCount << " == " << OtherMolecule->ElementCount << endl;
3728 }
3729 /// -# ElementsInMolecule
3730 if (result) {
3731 for (flag=0;flag<MAX_ELEMENTS;flag++) {
3732 //*out << Verbose(5) << "Element " << flag << ": " << ElementsInMolecule[flag] << " <-> " << OtherMolecule->ElementsInMolecule[flag] << "." << endl;
3733 if (ElementsInMolecule[flag] != OtherMolecule->ElementsInMolecule[flag])
3734 break;
3735 }
3736 if (flag < MAX_ELEMENTS) {
3737 *out << Verbose(4) << "ElementsInMolecule don't match." << endl;
3738 result = false;
3739 } else *out << Verbose(4) << "ElementsInMolecule match." << endl;
3740 }
3741 /// then determine and compare center of gravity for each molecule ...
3742 if (result) {
3743 *out << Verbose(5) << "Calculating Centers of Gravity" << endl;
3744 DetermineCenterOfGravity(CenterOfGravity);
3745 OtherMolecule->DetermineCenterOfGravity(OtherCenterOfGravity);
3746 *out << Verbose(5) << "Center of Gravity: ";
3747 CenterOfGravity.Output(out);
3748 *out << endl << Verbose(5) << "Other Center of Gravity: ";
3749 OtherCenterOfGravity.Output(out);
3750 *out << endl;
3751 if (CenterOfGravity.Distance(&OtherCenterOfGravity) > threshold) {
3752 *out << Verbose(4) << "Centers of gravity don't match." << endl;
3753 result = false;
3754 }
3755 }
3756
3757 /// ... then make a list with the euclidian distance to this center for each atom of both molecules
3758 if (result) {
3759 *out << Verbose(5) << "Calculating distances" << endl;
3760 Distances = (double *) Malloc(sizeof(double)*AtomCount, "molecule::IsEqualToWithinThreshold: Distances");
3761 OtherDistances = (double *) Malloc(sizeof(double)*AtomCount, "molecule::IsEqualToWithinThreshold: OtherDistances");
3762 Walker = start;
3763 while (Walker->next != end) {
3764 Walker = Walker->next;
3765 //for (i=0;i<AtomCount;i++) {
3766 Distances[Walker->nr] = CenterOfGravity.Distance(&Walker->x);
3767 }
3768 Walker = OtherMolecule->start;
3769 while (Walker->next != OtherMolecule->end) {
3770 Walker = Walker->next;
3771 OtherDistances[Walker->nr] = OtherCenterOfGravity.Distance(&Walker->x);
3772 }
3773
3774 /// ... sort each list (using heapsort (o(N log N)) from GSL)
3775 *out << Verbose(5) << "Sorting distances" << endl;
3776 PermMap = (size_t *) Malloc(sizeof(size_t)*AtomCount, "molecule::IsEqualToWithinThreshold: *PermMap");
3777 OtherPermMap = (size_t *) Malloc(sizeof(size_t)*AtomCount, "molecule::IsEqualToWithinThreshold: *OtherPermMap");
3778 gsl_heapsort_index (PermMap, Distances, AtomCount, sizeof(double), CompareDoubles);
3779 gsl_heapsort_index (OtherPermMap, OtherDistances, AtomCount, sizeof(double), CompareDoubles);
3780 PermutationMap = (int *) Malloc(sizeof(int)*AtomCount, "molecule::IsEqualToWithinThreshold: *PermutationMap");
3781 *out << Verbose(5) << "Combining Permutation Maps" << endl;
3782 for(int i=0;i<AtomCount;i++)
3783 PermutationMap[PermMap[i]] = (int) OtherPermMap[i];
3784
3785 /// ... and compare them step by step, whether the difference is individiually(!) below \a threshold for all
3786 *out << Verbose(4) << "Comparing distances" << endl;
3787 flag = 0;
3788 for (int i=0;i<AtomCount;i++) {
3789 *out << Verbose(5) << "Distances: |" << Distances[PermMap[i]] << " - " << OtherDistances[OtherPermMap[i]] << "| = " << fabs(Distances[PermMap[i]] - OtherDistances[OtherPermMap[i]]) << " ?<? " << threshold << endl;
3790 if (fabs(Distances[PermMap[i]] - OtherDistances[OtherPermMap[i]]) > threshold)
3791 flag = 1;
3792 }
3793 Free((void **)&PermMap, "molecule::IsEqualToWithinThreshold: *PermMap");
3794 Free((void **)&OtherPermMap, "molecule::IsEqualToWithinThreshold: *OtherPermMap");
3795
3796 /// free memory
3797 Free((void **)&Distances, "molecule::IsEqualToWithinThreshold: Distances");
3798 Free((void **)&OtherDistances, "molecule::IsEqualToWithinThreshold: OtherDistances");
3799 if (flag) { // if not equal
3800 Free((void **)&PermutationMap, "molecule::IsEqualToWithinThreshold: *PermutationMap");
3801 result = false;
3802 }
3803 }
3804 /// return pointer to map if all distances were below \a threshold
3805 *out << Verbose(3) << "End of IsEqualToWithinThreshold." << endl;
3806 if (result) {
3807 *out << Verbose(3) << "Result: Equal." << endl;
3808 return PermutationMap;
3809 } else {
3810 *out << Verbose(3) << "Result: Not equal." << endl;
3811 return NULL;
3812 }
3813};
3814
3815/** Returns an index map for two father-son-molecules.
3816 * The map tells which atom in this molecule corresponds to which one in the other molecul with their fathers.
3817 * \param *out output stream for debugging
3818 * \param *OtherMolecule corresponding molecule with fathers
3819 * \return allocated map of size molecule::AtomCount with map
3820 * \todo make this with a good sort O(n), not O(n^2)
3821 */
3822int * molecule::GetFatherSonAtomicMap(ofstream *out, molecule *OtherMolecule)
3823{
3824 atom *Walker = NULL, *OtherWalker = NULL;
3825 *out << Verbose(3) << "Begin of GetFatherAtomicMap." << endl;
3826 int *AtomicMap = (int *) Malloc(sizeof(int)*AtomCount, "molecule::GetAtomicMap: *AtomicMap"); //Calloc
3827 for (int i=0;i<AtomCount;i++)
3828 AtomicMap[i] = -1;
3829 if (OtherMolecule == this) { // same molecule
3830 for (int i=0;i<AtomCount;i++) // no need as -1 means already that there is trivial correspondence
3831 AtomicMap[i] = i;
3832 *out << Verbose(4) << "Map is trivial." << endl;
3833 } else {
3834 *out << Verbose(4) << "Map is ";
3835 Walker = start;
3836 while (Walker->next != end) {
3837 Walker = Walker->next;
3838 if (Walker->father == NULL) {
3839 AtomicMap[Walker->nr] = -2;
3840 } else {
3841 OtherWalker = OtherMolecule->start;
3842 while (OtherWalker->next != OtherMolecule->end) {
3843 OtherWalker = OtherWalker->next;
3844 //for (int i=0;i<AtomCount;i++) { // search atom
3845 //for (int j=0;j<OtherMolecule->AtomCount;j++) {
3846 //*out << Verbose(4) << "Comparing father " << Walker->father << " with the other one " << OtherWalker->father << "." << endl;
3847 if (Walker->father == OtherWalker)
3848 AtomicMap[Walker->nr] = OtherWalker->nr;
3849 }
3850 }
3851 *out << AtomicMap[Walker->nr] << "\t";
3852 }
3853 *out << endl;
3854 }
3855 *out << Verbose(3) << "End of GetFatherAtomicMap." << endl;
3856 return AtomicMap;
3857};
3858
Note: See TracBrowser for help on using the repository browser.