source: src/molecules.cpp@ eeec8f

Action_Thermostats Add_AtomRandomPerturbation Add_FitFragmentPartialChargesAction Add_RotateAroundBondAction Add_SelectAtomByNameAction Added_ParseSaveFragmentResults AddingActions_SaveParseParticleParameters Adding_Graph_to_ChangeBondActions Adding_MD_integration_tests Adding_ParticleName_to_Atom Adding_StructOpt_integration_tests AtomFragments Automaking_mpqc_open AutomationFragmentation_failures Candidate_v1.5.4 Candidate_v1.6.0 Candidate_v1.6.1 ChangeBugEmailaddress ChangingTestPorts ChemicalSpaceEvaluator CombiningParticlePotentialParsing Combining_Subpackages Debian_Package_split Debian_package_split_molecuildergui_only Disabling_MemDebug Docu_Python_wait EmpiricalPotential_contain_HomologyGraph EmpiricalPotential_contain_HomologyGraph_documentation Enable_parallel_make_install Enhance_userguide Enhanced_StructuralOptimization Enhanced_StructuralOptimization_continued Example_ManyWaysToTranslateAtom Exclude_Hydrogens_annealWithBondGraph FitPartialCharges_GlobalError Fix_BoundInBox_CenterInBox_MoleculeActions Fix_ChargeSampling_PBC Fix_ChronosMutex Fix_FitPartialCharges Fix_FitPotential_needs_atomicnumbers Fix_ForceAnnealing Fix_IndependentFragmentGrids Fix_ParseParticles Fix_ParseParticles_split_forward_backward_Actions Fix_PopActions Fix_QtFragmentList_sorted_selection Fix_Restrictedkeyset_FragmentMolecule Fix_StatusMsg Fix_StepWorldTime_single_argument Fix_Verbose_Codepatterns Fix_fitting_potentials Fixes ForceAnnealing_goodresults ForceAnnealing_oldresults ForceAnnealing_tocheck ForceAnnealing_with_BondGraph ForceAnnealing_with_BondGraph_continued ForceAnnealing_with_BondGraph_continued_betteresults ForceAnnealing_with_BondGraph_contraction-expansion FragmentAction_writes_AtomFragments FragmentMolecule_checks_bonddegrees GeometryObjects Gui_Fixes Gui_displays_atomic_force_velocity ImplicitCharges IndependentFragmentGrids IndependentFragmentGrids_IndividualZeroInstances IndependentFragmentGrids_IntegrationTest IndependentFragmentGrids_Sole_NN_Calculation JobMarket_RobustOnKillsSegFaults JobMarket_StableWorkerPool JobMarket_unresolvable_hostname_fix MoreRobust_FragmentAutomation ODR_violation_mpqc_open PartialCharges_OrthogonalSummation PdbParser_setsAtomName PythonUI_with_named_parameters QtGui_reactivate_TimeChanged_changes Recreated_GuiChecks Rewrite_FitPartialCharges RotateToPrincipalAxisSystem_UndoRedo SaturateAtoms_findBestMatching SaturateAtoms_singleDegree StoppableMakroAction Subpackage_CodePatterns Subpackage_JobMarket Subpackage_LinearAlgebra Subpackage_levmar Subpackage_mpqc_open Subpackage_vmg Switchable_LogView ThirdParty_MPQC_rebuilt_buildsystem TrajectoryDependenant_MaxOrder TremoloParser_IncreasedPrecision TremoloParser_MultipleTimesteps TremoloParser_setsAtomName Ubuntu_1604_changes stable
Last change on this file since eeec8f was 65de9b, checked in by Frederik Heber <heber@…>, 16 years ago

molecule::PickLocalBackEdges(): BUGFIX: if Walker as not in subgraph, next candidate wasn't popped from stack due to wrong brackets of if clause.

This caused to loop to run indefinitely (hence, the new output messages for the functions in molecule::FragmentMolecule(). It is fixed.

  • Property mode set to 100644
File size: 211.2 KB
Line 
1/** \file molecules.cpp
2 *
3 * Functions for the class molecule.
4 *
5 */
6
7#include "molecules.hpp"
8
9/************************************* Other Functions *************************************/
10
11/** Determines sum of squared distances of \a X to all \a **vectors.
12 * \param *x reference vector
13 * \param *params
14 * \return sum of square distances
15 */
16double LSQ (const gsl_vector * x, void * params)
17{
18 double sum = 0.;
19 struct LSQ_params *par = (struct LSQ_params *)params;
20 Vector **vectors = par->vectors;
21 int num = par->num;
22
23 for (int i=num;i--;) {
24 for(int j=NDIM;j--;)
25 sum += (gsl_vector_get(x,j) - (vectors[i])->x[j])*(gsl_vector_get(x,j) - (vectors[i])->x[j]);
26 }
27
28 return sum;
29};
30
31/************************************* Functions for class molecule *********************************/
32
33/** Constructor of class molecule.
34 * Initialises molecule list with correctly referenced start and end, and sets molecule::last_atom to zero.
35 */
36molecule::molecule(periodentafel *teil)
37{
38 // init atom chain list
39 start = new atom;
40 end = new atom;
41 start->father = NULL;
42 end->father = NULL;
43 link(start,end);
44 // init bond chain list
45 first = new bond(start, end, 1, -1);
46 last = new bond(start, end, 1, -1);
47 link(first,last);
48 // other stuff
49 MDSteps = 0;
50 last_atom = 0;
51 elemente = teil;
52 AtomCount = 0;
53 BondCount = 0;
54 NoNonBonds = 0;
55 NoNonHydrogen = 0;
56 NoCyclicBonds = 0;
57 ListOfBondsPerAtom = NULL;
58 NumberOfBondsPerAtom = NULL;
59 ElementCount = 0;
60 for(int i=MAX_ELEMENTS;i--;)
61 ElementsInMolecule[i] = 0;
62 cell_size[0] = cell_size[2] = cell_size[5]= 20.;
63 cell_size[1] = cell_size[3] = cell_size[4]= 0.;
64};
65
66/** Destructor of class molecule.
67 * Initialises molecule list with correctly referenced start and end, and sets molecule::last_atom to zero.
68 */
69molecule::~molecule()
70{
71 if (ListOfBondsPerAtom != NULL)
72 for(int i=AtomCount;i--;)
73 Free((void **)&ListOfBondsPerAtom[i], "molecule::~molecule: ListOfBondsPerAtom[i]");
74 Free((void **)&ListOfBondsPerAtom, "molecule::~molecule: ListOfBondsPerAtom");
75 Free((void **)&NumberOfBondsPerAtom, "molecule::~molecule: NumberOfBondsPerAtom");
76 CleanupMolecule();
77 delete(first);
78 delete(last);
79 delete(end);
80 delete(start);
81};
82
83/** Adds given atom \a *pointer from molecule list.
84 * Increases molecule::last_atom and gives last number to added atom and names it according to its element::abbrev and molecule::AtomCount
85 * \param *pointer allocated and set atom
86 * \return true - succeeded, false - atom not found in list
87 */
88bool molecule::AddAtom(atom *pointer)
89{
90 if (pointer != NULL) {
91 pointer->sort = &pointer->nr;
92 pointer->nr = last_atom++; // increase number within molecule
93 AtomCount++;
94 if (pointer->type != NULL) {
95 if (ElementsInMolecule[pointer->type->Z] == 0)
96 ElementCount++;
97 ElementsInMolecule[pointer->type->Z]++; // increase number of elements
98 if (pointer->type->Z != 1)
99 NoNonHydrogen++;
100 if (pointer->Name == NULL) {
101 Free((void **)&pointer->Name, "molecule::AddAtom: *pointer->Name");
102 pointer->Name = (char *) Malloc(sizeof(char)*6, "molecule::AddAtom: *pointer->Name");
103 sprintf(pointer->Name, "%2s%02d", pointer->type->symbol, pointer->nr+1);
104 }
105 }
106 return add(pointer, end);
107 } else
108 return false;
109};
110
111/** Adds a copy of the given atom \a *pointer from molecule list.
112 * Increases molecule::last_atom and gives last number to added atom.
113 * \param *pointer allocated and set atom
114 * \return true - succeeded, false - atom not found in list
115 */
116atom * molecule::AddCopyAtom(atom *pointer)
117{
118 if (pointer != NULL) {
119 atom *walker = new atom();
120 walker->type = pointer->type; // copy element of atom
121 walker->x.CopyVector(&pointer->x); // copy coordination
122 walker->v.CopyVector(&pointer->v); // copy velocity
123 walker->FixedIon = pointer->FixedIon;
124 walker->sort = &walker->nr;
125 walker->nr = last_atom++; // increase number within molecule
126 walker->father = pointer; //->GetTrueFather();
127 walker->Name = (char *) Malloc(sizeof(char)*strlen(pointer->Name)+1, "molecule::AddCopyAtom: *Name");
128 strcpy (walker->Name, pointer->Name);
129 add(walker, end);
130 if ((pointer->type != NULL) && (pointer->type->Z != 1))
131 NoNonHydrogen++;
132 AtomCount++;
133 return walker;
134 } else
135 return NULL;
136};
137
138/** Adds a Hydrogen atom in replacement for the given atom \a *partner in bond with a *origin.
139 * Here, we have to distinguish between single, double or triple bonds as stated by \a BondDegree, that each demand
140 * a different scheme when adding \a *replacement atom for the given one.
141 * -# Single Bond: Simply add new atom with bond distance rescaled to typical hydrogen one
142 * -# Double Bond: Here, we need the **BondList of the \a *origin atom, by scanning for the other bonds instead of
143 * *Bond, we use the through these connected atoms to determine the plane they lie in, vector::MakeNormalvector().
144 * The orthonormal vector to this plane along with the vector in *Bond direction determines the plane the two
145 * replacing hydrogens shall lie in. Now, all remains to do is take the usual hydrogen double bond angle for the
146 * element of *origin and form the sin/cos admixture of both plane vectors for the new coordinates of the two
147 * hydrogens forming this angle with *origin.
148 * -# Triple Bond: The idea is to set up a tetraoid (C1-H1-H2-H3) (however the lengths \f$b\f$ of the sides of the base
149 * triangle formed by the to be added hydrogens are not equal to the typical bond distance \f$l\f$ but have to be
150 * determined from the typical angle \f$\alpha\f$ for a hydrogen triple connected to the element of *origin):
151 * We have the height \f$d\f$ as the vector in *Bond direction (from triangle C1-H1-H2).
152 * \f[ h = l \cdot \cos{\left (\frac{\alpha}{2} \right )} \qquad b = 2l \cdot \sin{\left (\frac{\alpha}{2} \right)} \quad \rightarrow \quad d = l \cdot \sqrt{\cos^2{\left (\frac{\alpha}{2} \right)}-\frac{1}{3}\cdot\sin^2{\left (\frac{\alpha}{2}\right )}}
153 * \f]
154 * vector::GetNormalvector() creates one orthonormal vector from this *Bond vector and vector::MakeNormalvector creates
155 * the third one from the former two vectors. The latter ones form the plane of the base triangle mentioned above.
156 * The lengths for these are \f$f\f$ and \f$g\f$ (from triangle H1-H2-(center of H1-H2-H3)) with knowledge that
157 * the median lines in an isosceles triangle meet in the center point with a ratio 2:1.
158 * \f[ f = \frac{b}{\sqrt{3}} \qquad g = \frac{b}{2}
159 * \f]
160 * as the coordination of all three atoms in the coordinate system of these three vectors:
161 * \f$\pmatrix{d & f & 0}\f$, \f$\pmatrix{d & -0.5 \cdot f & g}\f$ and \f$\pmatrix{d & -0.5 \cdot f & -g}\f$.
162 *
163 * \param *out output stream for debugging
164 * \param *Bond pointer to bond between \a *origin and \a *replacement
165 * \param *TopOrigin son of \a *origin of upper level molecule (the atom added to this molecule as a copy of \a *origin)
166 * \param *origin pointer to atom which acts as the origin for scaling the added hydrogen to correct bond length
167 * \param *replacement pointer to the atom which shall be copied as a hydrogen atom in this molecule
168 * \param **BondList list of bonds \a *replacement has (necessary to determine plane for double and triple bonds)
169 * \param NumBond number of bonds in \a **BondList
170 * \param isAngstroem whether the coordination of the given atoms is in AtomicLength (false) or Angstrom(true)
171 * \return number of atoms added, if < bond::BondDegree then something went wrong
172 * \todo double and triple bonds splitting (always use the tetraeder angle!)
173 */
174bool molecule::AddHydrogenReplacementAtom(ofstream *out, bond *TopBond, atom *BottomOrigin, atom *TopOrigin, atom *TopReplacement, bond **BondList, int NumBond, bool IsAngstroem)
175{
176 double bondlength; // bond length of the bond to be replaced/cut
177 double bondangle; // bond angle of the bond to be replaced/cut
178 double BondRescale; // rescale value for the hydrogen bond length
179 bool AllWentWell = true; // flag gathering the boolean return value of molecule::AddAtom and other functions, as return value on exit
180 bond *FirstBond = NULL, *SecondBond = NULL; // Other bonds in double bond case to determine "other" plane
181 atom *FirstOtherAtom = NULL, *SecondOtherAtom = NULL, *ThirdOtherAtom = NULL; // pointer to hydrogen atoms to be added
182 double b,l,d,f,g, alpha, factors[NDIM]; // hold temporary values in triple bond case for coordination determination
183 Vector Orthovector1, Orthovector2; // temporary vectors in coordination construction
184 Vector InBondvector; // vector in direction of *Bond
185 bond *Binder = NULL;
186 double *matrix;
187
188// *out << Verbose(3) << "Begin of AddHydrogenReplacementAtom." << endl;
189 // create vector in direction of bond
190 InBondvector.CopyVector(&TopReplacement->x);
191 InBondvector.SubtractVector(&TopOrigin->x);
192 bondlength = InBondvector.Norm();
193
194 // is greater than typical bond distance? Then we have to correct periodically
195 // the problem is not the H being out of the box, but InBondvector have the wrong direction
196 // due to TopReplacement or Origin being on the wrong side!
197 if (bondlength > BondDistance) {
198// *out << Verbose(4) << "InBondvector is: ";
199// InBondvector.Output(out);
200// *out << endl;
201 Orthovector1.Zero();
202 for (int i=NDIM;i--;) {
203 l = TopReplacement->x.x[i] - TopOrigin->x.x[i];
204 if (fabs(l) > BondDistance) { // is component greater than bond distance
205 Orthovector1.x[i] = (l < 0) ? -1. : +1.;
206 } // (signs are correct, was tested!)
207 }
208 matrix = ReturnFullMatrixforSymmetric(cell_size);
209 Orthovector1.MatrixMultiplication(matrix);
210 InBondvector.SubtractVector(&Orthovector1); // subtract just the additional translation
211 Free((void **)&matrix, "molecule::AddHydrogenReplacementAtom: *matrix");
212 bondlength = InBondvector.Norm();
213// *out << Verbose(4) << "Corrected InBondvector is now: ";
214// InBondvector.Output(out);
215// *out << endl;
216 } // periodic correction finished
217
218 InBondvector.Normalize();
219 // get typical bond length and store as scale factor for later
220 BondRescale = TopOrigin->type->HBondDistance[TopBond->BondDegree-1];
221 if (BondRescale == -1) {
222 cerr << Verbose(3) << "ERROR: There is no typical hydrogen bond distance in replacing bond (" << TopOrigin->Name << "<->" << TopReplacement->Name << ") of degree " << TopBond->BondDegree << "!" << endl;
223 return false;
224 BondRescale = bondlength;
225 } else {
226 if (!IsAngstroem)
227 BondRescale /= (1.*AtomicLengthToAngstroem);
228 }
229
230 // discern single, double and triple bonds
231 switch(TopBond->BondDegree) {
232 case 1:
233 FirstOtherAtom = new atom(); // new atom
234 FirstOtherAtom->type = elemente->FindElement(1); // element is Hydrogen
235 FirstOtherAtom->v.CopyVector(&TopReplacement->v); // copy velocity
236 FirstOtherAtom->FixedIon = TopReplacement->FixedIon;
237 if (TopReplacement->type->Z == 1) { // neither rescale nor replace if it's already hydrogen
238 FirstOtherAtom->father = TopReplacement;
239 BondRescale = bondlength;
240 } else {
241 FirstOtherAtom->father = NULL; // if we replace hydrogen, we mark it as our father, otherwise we are just an added hydrogen with no father
242 }
243 InBondvector.Scale(&BondRescale); // rescale the distance vector to Hydrogen bond length
244 FirstOtherAtom->x.CopyVector(&TopOrigin->x); // set coordination to origin ...
245 FirstOtherAtom->x.AddVector(&InBondvector); // ... and add distance vector to replacement atom
246 AllWentWell = AllWentWell && AddAtom(FirstOtherAtom);
247// *out << Verbose(4) << "Added " << *FirstOtherAtom << " at: ";
248// FirstOtherAtom->x.Output(out);
249// *out << endl;
250 Binder = AddBond(BottomOrigin, FirstOtherAtom, 1);
251 Binder->Cyclic = false;
252 Binder->Type = TreeEdge;
253 break;
254 case 2:
255 // determine two other bonds (warning if there are more than two other) plus valence sanity check
256 for (int i=0;i<NumBond;i++) {
257 if (BondList[i] != TopBond) {
258 if (FirstBond == NULL) {
259 FirstBond = BondList[i];
260 FirstOtherAtom = BondList[i]->GetOtherAtom(TopOrigin);
261 } else if (SecondBond == NULL) {
262 SecondBond = BondList[i];
263 SecondOtherAtom = BondList[i]->GetOtherAtom(TopOrigin);
264 } else {
265 *out << Verbose(3) << "WARNING: Detected more than four bonds for atom " << TopOrigin->Name;
266 }
267 }
268 }
269 if (SecondOtherAtom == NULL) { // then we have an atom with valence four, but only 3 bonds: one to replace and one which is TopBond (third is FirstBond)
270 SecondBond = TopBond;
271 SecondOtherAtom = TopReplacement;
272 }
273 if (FirstOtherAtom != NULL) { // then we just have this double bond and the plane does not matter at all
274// *out << Verbose(3) << "Regarding the double bond (" << TopOrigin->Name << "<->" << TopReplacement->Name << ") to be constructed: Taking " << FirstOtherAtom->Name << " and " << SecondOtherAtom->Name << " along with " << TopOrigin->Name << " to determine orthogonal plane." << endl;
275
276 // determine the plane of these two with the *origin
277 AllWentWell = AllWentWell && Orthovector1.MakeNormalVector(&TopOrigin->x, &FirstOtherAtom->x, &SecondOtherAtom->x);
278 } else {
279 Orthovector1.GetOneNormalVector(&InBondvector);
280 }
281 //*out << Verbose(3)<< "Orthovector1: ";
282 //Orthovector1.Output(out);
283 //*out << endl;
284 // orthogonal vector and bond vector between origin and replacement form the new plane
285 Orthovector1.MakeNormalVector(&InBondvector);
286 Orthovector1.Normalize();
287 //*out << Verbose(3) << "ReScaleCheck: " << Orthovector1.Norm() << " and " << InBondvector.Norm() << "." << endl;
288
289 // create the two Hydrogens ...
290 FirstOtherAtom = new atom();
291 SecondOtherAtom = new atom();
292 FirstOtherAtom->type = elemente->FindElement(1);
293 SecondOtherAtom->type = elemente->FindElement(1);
294 FirstOtherAtom->v.CopyVector(&TopReplacement->v); // copy velocity
295 FirstOtherAtom->FixedIon = TopReplacement->FixedIon;
296 SecondOtherAtom->v.CopyVector(&TopReplacement->v); // copy velocity
297 SecondOtherAtom->FixedIon = TopReplacement->FixedIon;
298 FirstOtherAtom->father = NULL; // we are just an added hydrogen with no father
299 SecondOtherAtom->father = NULL; // we are just an added hydrogen with no father
300 bondangle = TopOrigin->type->HBondAngle[1];
301 if (bondangle == -1) {
302 *out << Verbose(3) << "ERROR: There is no typical hydrogen bond angle in replacing bond (" << TopOrigin->Name << "<->" << TopReplacement->Name << ") of degree " << TopBond->BondDegree << "!" << endl;
303 return false;
304 bondangle = 0;
305 }
306 bondangle *= M_PI/180./2.;
307// *out << Verbose(3) << "ReScaleCheck: InBondvector ";
308// InBondvector.Output(out);
309// *out << endl;
310// *out << Verbose(3) << "ReScaleCheck: Orthovector ";
311// Orthovector1.Output(out);
312// *out << endl;
313// *out << Verbose(3) << "Half the bond angle is " << bondangle << ", sin and cos of it: " << sin(bondangle) << ", " << cos(bondangle) << endl;
314 FirstOtherAtom->x.Zero();
315 SecondOtherAtom->x.Zero();
316 for(int i=NDIM;i--;) { // rotate by half the bond angle in both directions (InBondvector is bondangle = 0 direction)
317 FirstOtherAtom->x.x[i] = InBondvector.x[i] * cos(bondangle) + Orthovector1.x[i] * (sin(bondangle));
318 SecondOtherAtom->x.x[i] = InBondvector.x[i] * cos(bondangle) + Orthovector1.x[i] * (-sin(bondangle));
319 }
320 FirstOtherAtom->x.Scale(&BondRescale); // rescale by correct BondDistance
321 SecondOtherAtom->x.Scale(&BondRescale);
322 //*out << Verbose(3) << "ReScaleCheck: " << FirstOtherAtom->x.Norm() << " and " << SecondOtherAtom->x.Norm() << "." << endl;
323 for(int i=NDIM;i--;) { // and make relative to origin atom
324 FirstOtherAtom->x.x[i] += TopOrigin->x.x[i];
325 SecondOtherAtom->x.x[i] += TopOrigin->x.x[i];
326 }
327 // ... and add to molecule
328 AllWentWell = AllWentWell && AddAtom(FirstOtherAtom);
329 AllWentWell = AllWentWell && AddAtom(SecondOtherAtom);
330// *out << Verbose(4) << "Added " << *FirstOtherAtom << " at: ";
331// FirstOtherAtom->x.Output(out);
332// *out << endl;
333// *out << Verbose(4) << "Added " << *SecondOtherAtom << " at: ";
334// SecondOtherAtom->x.Output(out);
335// *out << endl;
336 Binder = AddBond(BottomOrigin, FirstOtherAtom, 1);
337 Binder->Cyclic = false;
338 Binder->Type = TreeEdge;
339 Binder = AddBond(BottomOrigin, SecondOtherAtom, 1);
340 Binder->Cyclic = false;
341 Binder->Type = TreeEdge;
342 break;
343 case 3:
344 // take the "usual" tetraoidal angle and add the three Hydrogen in direction of the bond (height of the tetraoid)
345 FirstOtherAtom = new atom();
346 SecondOtherAtom = new atom();
347 ThirdOtherAtom = new atom();
348 FirstOtherAtom->type = elemente->FindElement(1);
349 SecondOtherAtom->type = elemente->FindElement(1);
350 ThirdOtherAtom->type = elemente->FindElement(1);
351 FirstOtherAtom->v.CopyVector(&TopReplacement->v); // copy velocity
352 FirstOtherAtom->FixedIon = TopReplacement->FixedIon;
353 SecondOtherAtom->v.CopyVector(&TopReplacement->v); // copy velocity
354 SecondOtherAtom->FixedIon = TopReplacement->FixedIon;
355 ThirdOtherAtom->v.CopyVector(&TopReplacement->v); // copy velocity
356 ThirdOtherAtom->FixedIon = TopReplacement->FixedIon;
357 FirstOtherAtom->father = NULL; // we are just an added hydrogen with no father
358 SecondOtherAtom->father = NULL; // we are just an added hydrogen with no father
359 ThirdOtherAtom->father = NULL; // we are just an added hydrogen with no father
360
361 // we need to vectors orthonormal the InBondvector
362 AllWentWell = AllWentWell && Orthovector1.GetOneNormalVector(&InBondvector);
363// *out << Verbose(3) << "Orthovector1: ";
364// Orthovector1.Output(out);
365// *out << endl;
366 AllWentWell = AllWentWell && Orthovector2.MakeNormalVector(&InBondvector, &Orthovector1);
367// *out << Verbose(3) << "Orthovector2: ";
368// Orthovector2.Output(out);
369// *out << endl;
370
371 // create correct coordination for the three atoms
372 alpha = (TopOrigin->type->HBondAngle[2])/180.*M_PI/2.; // retrieve triple bond angle from database
373 l = BondRescale; // desired bond length
374 b = 2.*l*sin(alpha); // base length of isosceles triangle
375 d = l*sqrt(cos(alpha)*cos(alpha) - sin(alpha)*sin(alpha)/3.); // length for InBondvector
376 f = b/sqrt(3.); // length for Orthvector1
377 g = b/2.; // length for Orthvector2
378// *out << Verbose(3) << "Bond length and half-angle: " << l << ", " << alpha << "\t (b,d,f,g) = " << b << ", " << d << ", " << f << ", " << g << ", " << endl;
379// *out << Verbose(3) << "The three Bond lengths: " << sqrt(d*d+f*f) << ", " << sqrt(d*d+(-0.5*f)*(-0.5*f)+g*g) << ", " << sqrt(d*d+(-0.5*f)*(-0.5*f)+g*g) << endl;
380 factors[0] = d;
381 factors[1] = f;
382 factors[2] = 0.;
383 FirstOtherAtom->x.LinearCombinationOfVectors(&InBondvector, &Orthovector1, &Orthovector2, factors);
384 factors[1] = -0.5*f;
385 factors[2] = g;
386 SecondOtherAtom->x.LinearCombinationOfVectors(&InBondvector, &Orthovector1, &Orthovector2, factors);
387 factors[2] = -g;
388 ThirdOtherAtom->x.LinearCombinationOfVectors(&InBondvector, &Orthovector1, &Orthovector2, factors);
389
390 // rescale each to correct BondDistance
391// FirstOtherAtom->x.Scale(&BondRescale);
392// SecondOtherAtom->x.Scale(&BondRescale);
393// ThirdOtherAtom->x.Scale(&BondRescale);
394
395 // and relative to *origin atom
396 FirstOtherAtom->x.AddVector(&TopOrigin->x);
397 SecondOtherAtom->x.AddVector(&TopOrigin->x);
398 ThirdOtherAtom->x.AddVector(&TopOrigin->x);
399
400 // ... and add to molecule
401 AllWentWell = AllWentWell && AddAtom(FirstOtherAtom);
402 AllWentWell = AllWentWell && AddAtom(SecondOtherAtom);
403 AllWentWell = AllWentWell && AddAtom(ThirdOtherAtom);
404// *out << Verbose(4) << "Added " << *FirstOtherAtom << " at: ";
405// FirstOtherAtom->x.Output(out);
406// *out << endl;
407// *out << Verbose(4) << "Added " << *SecondOtherAtom << " at: ";
408// SecondOtherAtom->x.Output(out);
409// *out << endl;
410// *out << Verbose(4) << "Added " << *ThirdOtherAtom << " at: ";
411// ThirdOtherAtom->x.Output(out);
412// *out << endl;
413 Binder = AddBond(BottomOrigin, FirstOtherAtom, 1);
414 Binder->Cyclic = false;
415 Binder->Type = TreeEdge;
416 Binder = AddBond(BottomOrigin, SecondOtherAtom, 1);
417 Binder->Cyclic = false;
418 Binder->Type = TreeEdge;
419 Binder = AddBond(BottomOrigin, ThirdOtherAtom, 1);
420 Binder->Cyclic = false;
421 Binder->Type = TreeEdge;
422 break;
423 default:
424 cerr << "ERROR: BondDegree does not state single, double or triple bond!" << endl;
425 AllWentWell = false;
426 break;
427 }
428
429// *out << Verbose(3) << "End of AddHydrogenReplacementAtom." << endl;
430 return AllWentWell;
431};
432
433/** Adds given atom \a *pointer from molecule list.
434 * Increases molecule::last_atom and gives last number to added atom.
435 * \param filename name and path of xyz file
436 * \return true - succeeded, false - file not found
437 */
438bool molecule::AddXYZFile(string filename)
439{
440 istringstream *input = NULL;
441 int NumberOfAtoms = 0; // atom number in xyz read
442 int i, j; // loop variables
443 atom *Walker = NULL; // pointer to added atom
444 char shorthand[3]; // shorthand for atom name
445 ifstream xyzfile; // xyz file
446 string line; // currently parsed line
447 double x[3]; // atom coordinates
448
449 xyzfile.open(filename.c_str());
450 if (!xyzfile)
451 return false;
452
453 getline(xyzfile,line,'\n'); // Read numer of atoms in file
454 input = new istringstream(line);
455 *input >> NumberOfAtoms;
456 cout << Verbose(0) << "Parsing " << NumberOfAtoms << " atoms in file." << endl;
457 getline(xyzfile,line,'\n'); // Read comment
458 cout << Verbose(1) << "Comment: " << line << endl;
459
460 if (MDSteps == 0) // no atoms yet present
461 MDSteps++;
462 for(i=0;i<NumberOfAtoms;i++){
463 Walker = new atom;
464 getline(xyzfile,line,'\n');
465 istringstream *item = new istringstream(line);
466 //istringstream input(line);
467 //cout << Verbose(1) << "Reading: " << line << endl;
468 *item >> shorthand;
469 *item >> x[0];
470 *item >> x[1];
471 *item >> x[2];
472 Walker->type = elemente->FindElement(shorthand);
473 if (Walker->type == NULL) {
474 cerr << "Could not parse the element at line: '" << line << "', setting to H.";
475 Walker->type = elemente->FindElement(1);
476 }
477 if (Trajectories[Walker].R.size() <= (unsigned int)MDSteps) {
478 Trajectories[Walker].R.resize(MDSteps+10);
479 Trajectories[Walker].U.resize(MDSteps+10);
480 Trajectories[Walker].F.resize(MDSteps+10);
481 }
482 for(j=NDIM;j--;) {
483 Walker->x.x[j] = x[j];
484 Trajectories[Walker].R.at(MDSteps-1).x[j] = x[j];
485 Trajectories[Walker].U.at(MDSteps-1).x[j] = 0;
486 Trajectories[Walker].F.at(MDSteps-1).x[j] = 0;
487 }
488 AddAtom(Walker); // add to molecule
489 delete(item);
490 }
491 xyzfile.close();
492 delete(input);
493 return true;
494};
495
496/** Creates a copy of this molecule.
497 * \return copy of molecule
498 */
499molecule *molecule::CopyMolecule()
500{
501 molecule *copy = new molecule(elemente);
502 atom *CurrentAtom = NULL;
503 atom *LeftAtom = NULL, *RightAtom = NULL;
504 atom *Walker = NULL;
505
506 // copy all atoms
507 Walker = start;
508 while(Walker->next != end) {
509 Walker = Walker->next;
510 CurrentAtom = copy->AddCopyAtom(Walker);
511 }
512
513 // copy all bonds
514 bond *Binder = first;
515 bond *NewBond = NULL;
516 while(Binder->next != last) {
517 Binder = Binder->next;
518 // get the pendant atoms of current bond in the copy molecule
519 LeftAtom = copy->start;
520 while (LeftAtom->next != copy->end) {
521 LeftAtom = LeftAtom->next;
522 if (LeftAtom->father == Binder->leftatom)
523 break;
524 }
525 RightAtom = copy->start;
526 while (RightAtom->next != copy->end) {
527 RightAtom = RightAtom->next;
528 if (RightAtom->father == Binder->rightatom)
529 break;
530 }
531 NewBond = copy->AddBond(LeftAtom, RightAtom, Binder->BondDegree);
532 NewBond->Cyclic = Binder->Cyclic;
533 if (Binder->Cyclic)
534 copy->NoCyclicBonds++;
535 NewBond->Type = Binder->Type;
536 }
537 // correct fathers
538 Walker = copy->start;
539 while(Walker->next != copy->end) {
540 Walker = Walker->next;
541 if (Walker->father->father == Walker->father) // same atom in copy's father points to itself
542 Walker->father = Walker; // set father to itself (copy of a whole molecule)
543 else
544 Walker->father = Walker->father->father; // set father to original's father
545 }
546 // copy values
547 copy->CountAtoms((ofstream *)&cout);
548 copy->CountElements();
549 if (first->next != last) { // if adjaceny list is present
550 copy->BondDistance = BondDistance;
551 copy->CreateListOfBondsPerAtom((ofstream *)&cout);
552 }
553
554 return copy;
555};
556
557/** Adds a bond to a the molecule specified by two atoms, \a *first and \a *second.
558 * Also updates molecule::BondCount and molecule::NoNonBonds.
559 * \param *first first atom in bond
560 * \param *second atom in bond
561 * \return pointer to bond or NULL on failure
562 */
563bond * molecule::AddBond(atom *atom1, atom *atom2, int degree=1)
564{
565 bond *Binder = NULL;
566 if ((atom1 != NULL) && (FindAtom(atom1->nr) != NULL) && (atom2 != NULL) && (FindAtom(atom2->nr) != NULL)) {
567 Binder = new bond(atom1, atom2, degree, BondCount++);
568 if ((atom1->type != NULL) && (atom1->type->Z != 1) && (atom2->type != NULL) && (atom2->type->Z != 1))
569 NoNonBonds++;
570 add(Binder, last);
571 } else {
572 cerr << Verbose(1) << "ERROR: Could not add bond between " << atom1->Name << " and " << atom2->Name << " as one or both are not present in the molecule." << endl;
573 }
574 return Binder;
575};
576
577/** Remove bond from bond chain list.
578 * \todo Function not implemented yet
579 * \param *pointer bond pointer
580 * \return true - bound found and removed, false - bond not found/removed
581 */
582bool molecule::RemoveBond(bond *pointer)
583{
584 //cerr << Verbose(1) << "molecule::RemoveBond: Function not implemented yet." << endl;
585 removewithoutcheck(pointer);
586 return true;
587};
588
589/** Remove every bond from bond chain list that atom \a *BondPartner is a constituent of.
590 * \todo Function not implemented yet
591 * \param *BondPartner atom to be removed
592 * \return true - bounds found and removed, false - bonds not found/removed
593 */
594bool molecule::RemoveBonds(atom *BondPartner)
595{
596 cerr << Verbose(1) << "molecule::RemoveBond: Function not implemented yet." << endl;
597 return false;
598};
599
600/** Sets the molecule::cell_size to the components of \a *dim (rectangular box)
601 * \param *dim vector class
602 */
603void molecule::SetBoxDimension(Vector *dim)
604{
605 cell_size[0] = dim->x[0];
606 cell_size[1] = 0.;
607 cell_size[2] = dim->x[1];
608 cell_size[3] = 0.;
609 cell_size[4] = 0.;
610 cell_size[5] = dim->x[2];
611};
612
613/** Centers the molecule in the box whose lengths are defined by vector \a *BoxLengths.
614 * \param *out output stream for debugging
615 * \param *BoxLengths box lengths
616 */
617bool molecule::CenterInBox(ofstream *out, Vector *BoxLengths)
618{
619 bool status = true;
620 atom *ptr = NULL;
621 Vector *min = new Vector;
622 Vector *max = new Vector;
623
624 // gather min and max for each axis
625 ptr = start->next; // start at first in list
626 if (ptr != end) { //list not empty?
627 for (int i=NDIM;i--;) {
628 max->x[i] = ptr->x.x[i];
629 min->x[i] = ptr->x.x[i];
630 }
631 while (ptr->next != end) { // continue with second if present
632 ptr = ptr->next;
633 //ptr->Output(1,1,out);
634 for (int i=NDIM;i--;) {
635 max->x[i] = (max->x[i] < ptr->x.x[i]) ? ptr->x.x[i] : max->x[i];
636 min->x[i] = (min->x[i] > ptr->x.x[i]) ? ptr->x.x[i] : min->x[i];
637 }
638 }
639 }
640 // sanity check
641 for(int i=NDIM;i--;) {
642 if (max->x[i] - min->x[i] > BoxLengths->x[i])
643 status = false;
644 }
645 // warn if check failed
646 if (!status)
647 *out << "WARNING: molecule is bigger than defined box!" << endl;
648 else { // else center in box
649 max->AddVector(min);
650 max->Scale(-1.);
651 max->AddVector(BoxLengths);
652 max->Scale(0.5);
653 Translate(max);
654 }
655
656 // free and exit
657 delete(min);
658 delete(max);
659 return status;
660};
661
662/** Centers the edge of the atoms at (0,0,0).
663 * \param *out output stream for debugging
664 * \param *max coordinates of other edge, specifying box dimensions.
665 */
666void molecule::CenterEdge(ofstream *out, Vector *max)
667{
668 Vector *min = new Vector;
669
670// *out << Verbose(3) << "Begin of CenterEdge." << endl;
671 atom *ptr = start->next; // start at first in list
672 if (ptr != end) { //list not empty?
673 for (int i=NDIM;i--;) {
674 max->x[i] = ptr->x.x[i];
675 min->x[i] = ptr->x.x[i];
676 }
677 while (ptr->next != end) { // continue with second if present
678 ptr = ptr->next;
679 //ptr->Output(1,1,out);
680 for (int i=NDIM;i--;) {
681 max->x[i] = (max->x[i] < ptr->x.x[i]) ? ptr->x.x[i] : max->x[i];
682 min->x[i] = (min->x[i] > ptr->x.x[i]) ? ptr->x.x[i] : min->x[i];
683 }
684 }
685// *out << Verbose(4) << "Maximum is ";
686// max->Output(out);
687// *out << ", Minimum is ";
688// min->Output(out);
689// *out << endl;
690 min->Scale(-1.);
691 max->AddVector(min);
692 Translate(min);
693 }
694 delete(min);
695// *out << Verbose(3) << "End of CenterEdge." << endl;
696};
697
698/** Centers the center of the atoms at (0,0,0).
699 * \param *out output stream for debugging
700 * \param *center return vector for translation vector
701 */
702void molecule::CenterOrigin(ofstream *out, Vector *center)
703{
704 int Num = 0;
705 atom *ptr = start->next; // start at first in list
706
707 for(int i=NDIM;i--;) // zero center vector
708 center->x[i] = 0.;
709
710 if (ptr != end) { //list not empty?
711 while (ptr->next != end) { // continue with second if present
712 ptr = ptr->next;
713 Num++;
714 center->AddVector(&ptr->x);
715 }
716 center->Scale(-1./Num); // divide through total number (and sign for direction)
717 Translate(center);
718 }
719};
720
721/** Returns vector pointing to center of gravity.
722 * \param *out output stream for debugging
723 * \return pointer to center of gravity vector
724 */
725Vector * molecule::DetermineCenterOfAll(ofstream *out)
726{
727 atom *ptr = start->next; // start at first in list
728 Vector *a = new Vector();
729 Vector tmp;
730 double Num = 0;
731
732 a->Zero();
733
734 if (ptr != end) { //list not empty?
735 while (ptr->next != end) { // continue with second if present
736 ptr = ptr->next;
737 Num += 1.;
738 tmp.CopyVector(&ptr->x);
739 a->AddVector(&tmp);
740 }
741 a->Scale(-1./Num); // divide through total mass (and sign for direction)
742 }
743 //cout << Verbose(1) << "Resulting center of gravity: ";
744 //a->Output(out);
745 //cout << endl;
746 return a;
747};
748
749/** Returns vector pointing to center of gravity.
750 * \param *out output stream for debugging
751 * \return pointer to center of gravity vector
752 */
753Vector * molecule::DetermineCenterOfGravity(ofstream *out)
754{
755 atom *ptr = start->next; // start at first in list
756 Vector *a = new Vector();
757 Vector tmp;
758 double Num = 0;
759
760 a->Zero();
761
762 if (ptr != end) { //list not empty?
763 while (ptr->next != end) { // continue with second if present
764 ptr = ptr->next;
765 Num += ptr->type->mass;
766 tmp.CopyVector(&ptr->x);
767 tmp.Scale(ptr->type->mass); // scale by mass
768 a->AddVector(&tmp);
769 }
770 a->Scale(-1./Num); // divide through total mass (and sign for direction)
771 }
772// *out << Verbose(1) << "Resulting center of gravity: ";
773// a->Output(out);
774// *out << endl;
775 return a;
776};
777
778/** Centers the center of gravity of the atoms at (0,0,0).
779 * \param *out output stream for debugging
780 * \param *center return vector for translation vector
781 */
782void molecule::CenterGravity(ofstream *out, Vector *center)
783{
784 if (center == NULL) {
785 DetermineCenter(*center);
786 Translate(center);
787 delete(center);
788 } else {
789 Translate(center);
790 }
791};
792
793/** Scales all atoms by \a *factor.
794 * \param *factor pointer to scaling factor
795 */
796void molecule::Scale(double **factor)
797{
798 atom *ptr = start;
799
800 while (ptr->next != end) {
801 ptr = ptr->next;
802 for (int j=0;j<MDSteps;j++)
803 Trajectories[ptr].R.at(j).Scale(factor);
804 ptr->x.Scale(factor);
805 }
806};
807
808/** Translate all atoms by given vector.
809 * \param trans[] translation vector.
810 */
811void molecule::Translate(const Vector *trans)
812{
813 atom *ptr = start;
814
815 while (ptr->next != end) {
816 ptr = ptr->next;
817 for (int j=0;j<MDSteps;j++)
818 Trajectories[ptr].R.at(j).Translate(trans);
819 ptr->x.Translate(trans);
820 }
821};
822
823/** Mirrors all atoms against a given plane.
824 * \param n[] normal vector of mirror plane.
825 */
826void molecule::Mirror(const Vector *n)
827{
828 atom *ptr = start;
829
830 while (ptr->next != end) {
831 ptr = ptr->next;
832 for (int j=0;j<MDSteps;j++)
833 Trajectories[ptr].R.at(j).Mirror(n);
834 ptr->x.Mirror(n);
835 }
836};
837
838/** Determines center of molecule (yet not considering atom masses).
839 * \param Center reference to return vector
840 */
841void molecule::DetermineCenter(Vector &Center)
842{
843 atom *Walker = start;
844 bond *Binder = NULL;
845 double *matrix = ReturnFullMatrixforSymmetric(cell_size);
846 double tmp;
847 bool flag;
848 Vector Testvector, Translationvector;
849
850 do {
851 Center.Zero();
852 flag = true;
853 while (Walker->next != end) {
854 Walker = Walker->next;
855#ifdef ADDHYDROGEN
856 if (Walker->type->Z != 1) {
857#endif
858 Testvector.CopyVector(&Walker->x);
859 Testvector.InverseMatrixMultiplication(matrix);
860 Translationvector.Zero();
861 for (int i=0;i<NumberOfBondsPerAtom[Walker->nr]; i++) {
862 Binder = ListOfBondsPerAtom[Walker->nr][i];
863 if (Walker->nr < Binder->GetOtherAtom(Walker)->nr) // otherwise we shift one to, the other fro and gain nothing
864 for (int j=0;j<NDIM;j++) {
865 tmp = Walker->x.x[j] - Binder->GetOtherAtom(Walker)->x.x[j];
866 if ((fabs(tmp)) > BondDistance) {
867 flag = false;
868 cout << Verbose(0) << "Hit: atom " << Walker->Name << " in bond " << *Binder << " has to be shifted due to " << tmp << "." << endl;
869 if (tmp > 0)
870 Translationvector.x[j] -= 1.;
871 else
872 Translationvector.x[j] += 1.;
873 }
874 }
875 }
876 Testvector.AddVector(&Translationvector);
877 Testvector.MatrixMultiplication(matrix);
878 Center.AddVector(&Testvector);
879 cout << Verbose(1) << "vector is: ";
880 Testvector.Output((ofstream *)&cout);
881 cout << endl;
882#ifdef ADDHYDROGEN
883 // now also change all hydrogens
884 for (int i=0;i<NumberOfBondsPerAtom[Walker->nr]; i++) {
885 Binder = ListOfBondsPerAtom[Walker->nr][i];
886 if (Binder->GetOtherAtom(Walker)->type->Z == 1) {
887 Testvector.CopyVector(&Binder->GetOtherAtom(Walker)->x);
888 Testvector.InverseMatrixMultiplication(matrix);
889 Testvector.AddVector(&Translationvector);
890 Testvector.MatrixMultiplication(matrix);
891 Center.AddVector(&Testvector);
892 cout << Verbose(1) << "Hydrogen vector is: ";
893 Testvector.Output((ofstream *)&cout);
894 cout << endl;
895 }
896 }
897 }
898#endif
899 }
900 } while (!flag);
901 Free((void **)&matrix, "molecule::DetermineCenter: *matrix");
902 Center.Scale(1./(double)AtomCount);
903};
904
905/** Transforms/Rotates the given molecule into its principal axis system.
906 * \param *out output stream for debugging
907 * \param DoRotate whether to rotate (true) or only to determine the PAS.
908 */
909void molecule::PrincipalAxisSystem(ofstream *out, bool DoRotate)
910{
911 atom *ptr = start; // start at first in list
912 double InertiaTensor[NDIM*NDIM];
913 Vector *CenterOfGravity = DetermineCenterOfGravity(out);
914
915 CenterGravity(out, CenterOfGravity);
916
917 // reset inertia tensor
918 for(int i=0;i<NDIM*NDIM;i++)
919 InertiaTensor[i] = 0.;
920
921 // sum up inertia tensor
922 while (ptr->next != end) {
923 ptr = ptr->next;
924 Vector x;
925 x.CopyVector(&ptr->x);
926 //x.SubtractVector(CenterOfGravity);
927 InertiaTensor[0] += ptr->type->mass*(x.x[1]*x.x[1] + x.x[2]*x.x[2]);
928 InertiaTensor[1] += ptr->type->mass*(-x.x[0]*x.x[1]);
929 InertiaTensor[2] += ptr->type->mass*(-x.x[0]*x.x[2]);
930 InertiaTensor[3] += ptr->type->mass*(-x.x[1]*x.x[0]);
931 InertiaTensor[4] += ptr->type->mass*(x.x[0]*x.x[0] + x.x[2]*x.x[2]);
932 InertiaTensor[5] += ptr->type->mass*(-x.x[1]*x.x[2]);
933 InertiaTensor[6] += ptr->type->mass*(-x.x[2]*x.x[0]);
934 InertiaTensor[7] += ptr->type->mass*(-x.x[2]*x.x[1]);
935 InertiaTensor[8] += ptr->type->mass*(x.x[0]*x.x[0] + x.x[1]*x.x[1]);
936 }
937 // print InertiaTensor for debugging
938 *out << "The inertia tensor is:" << endl;
939 for(int i=0;i<NDIM;i++) {
940 for(int j=0;j<NDIM;j++)
941 *out << InertiaTensor[i*NDIM+j] << " ";
942 *out << endl;
943 }
944 *out << endl;
945
946 // diagonalize to determine principal axis system
947 gsl_eigen_symmv_workspace *T = gsl_eigen_symmv_alloc(NDIM);
948 gsl_matrix_view m = gsl_matrix_view_array(InertiaTensor, NDIM, NDIM);
949 gsl_vector *eval = gsl_vector_alloc(NDIM);
950 gsl_matrix *evec = gsl_matrix_alloc(NDIM, NDIM);
951 gsl_eigen_symmv(&m.matrix, eval, evec, T);
952 gsl_eigen_symmv_free(T);
953 gsl_eigen_symmv_sort(eval, evec, GSL_EIGEN_SORT_ABS_DESC);
954
955 for(int i=0;i<NDIM;i++) {
956 *out << Verbose(1) << "eigenvalue = " << gsl_vector_get(eval, i);
957 *out << ", eigenvector = (" << evec->data[i * evec->tda + 0] << "," << evec->data[i * evec->tda + 1] << "," << evec->data[i * evec->tda + 2] << ")" << endl;
958 }
959
960 // check whether we rotate or not
961 if (DoRotate) {
962 *out << Verbose(1) << "Transforming molecule into PAS ... ";
963 // the eigenvectors specify the transformation matrix
964 ptr = start;
965 while (ptr->next != end) {
966 ptr = ptr->next;
967 for (int j=0;j<MDSteps;j++)
968 Trajectories[ptr].R.at(j).MatrixMultiplication(evec->data);
969 ptr->x.MatrixMultiplication(evec->data);
970 }
971 *out << "done." << endl;
972
973 // summing anew for debugging (resulting matrix has to be diagonal!)
974 // reset inertia tensor
975 for(int i=0;i<NDIM*NDIM;i++)
976 InertiaTensor[i] = 0.;
977
978 // sum up inertia tensor
979 ptr = start;
980 while (ptr->next != end) {
981 ptr = ptr->next;
982 Vector x;
983 x.CopyVector(&ptr->x);
984 //x.SubtractVector(CenterOfGravity);
985 InertiaTensor[0] += ptr->type->mass*(x.x[1]*x.x[1] + x.x[2]*x.x[2]);
986 InertiaTensor[1] += ptr->type->mass*(-x.x[0]*x.x[1]);
987 InertiaTensor[2] += ptr->type->mass*(-x.x[0]*x.x[2]);
988 InertiaTensor[3] += ptr->type->mass*(-x.x[1]*x.x[0]);
989 InertiaTensor[4] += ptr->type->mass*(x.x[0]*x.x[0] + x.x[2]*x.x[2]);
990 InertiaTensor[5] += ptr->type->mass*(-x.x[1]*x.x[2]);
991 InertiaTensor[6] += ptr->type->mass*(-x.x[2]*x.x[0]);
992 InertiaTensor[7] += ptr->type->mass*(-x.x[2]*x.x[1]);
993 InertiaTensor[8] += ptr->type->mass*(x.x[0]*x.x[0] + x.x[1]*x.x[1]);
994 }
995 // print InertiaTensor for debugging
996 *out << "The inertia tensor is:" << endl;
997 for(int i=0;i<NDIM;i++) {
998 for(int j=0;j<NDIM;j++)
999 *out << InertiaTensor[i*NDIM+j] << " ";
1000 *out << endl;
1001 }
1002 *out << endl;
1003 }
1004
1005 // free everything
1006 delete(CenterOfGravity);
1007 gsl_vector_free(eval);
1008 gsl_matrix_free(evec);
1009};
1010
1011/** Parses nuclear forces from file and performs Verlet integration.
1012 * Note that we assume the parsed forces to be in atomic units (hence, if coordinates are in angstroem, we
1013 * have to transform them).
1014 * This adds a new MD step to the config file.
1015 * \param *file filename
1016 * \param delta_t time step width in atomic units
1017 * \param IsAngstroem whether coordinates are in angstroem (true) or bohrradius (false)
1018 * \return true - file found and parsed, false - file not found or imparsable
1019 */
1020bool molecule::VerletForceIntegration(char *file, double delta_t, bool IsAngstroem)
1021{
1022 element *runner = elemente->start;
1023 atom *walker = NULL;
1024 int AtomNo;
1025 ifstream input(file);
1026 string token;
1027 stringstream item;
1028 double a, IonMass;
1029 ForceMatrix Force;
1030 Vector tmpvector;
1031
1032 CountElements(); // make sure ElementsInMolecule is up to date
1033
1034 // check file
1035 if (input == NULL) {
1036 return false;
1037 } else {
1038 // parse file into ForceMatrix
1039 if (!Force.ParseMatrix(file, 0,0,0)) {
1040 cerr << "Could not parse Force Matrix file " << file << "." << endl;
1041 return false;
1042 }
1043 if (Force.RowCounter[0] != AtomCount) {
1044 cerr << "Mismatch between number of atoms in file " << Force.RowCounter[0] << " and in molecule " << AtomCount << "." << endl;
1045 return false;
1046 }
1047 // correct Forces
1048// for(int d=0;d<NDIM;d++)
1049// tmpvector.x[d] = 0.;
1050// for(int i=0;i<AtomCount;i++)
1051// for(int d=0;d<NDIM;d++) {
1052// tmpvector.x[d] += Force.Matrix[0][i][d+5];
1053// }
1054// for(int i=0;i<AtomCount;i++)
1055// for(int d=0;d<NDIM;d++) {
1056// Force.Matrix[0][i][d+5] -= tmpvector.x[d]/(double)AtomCount;
1057// }
1058 // and perform Verlet integration for each atom with position, velocity and force vector
1059 runner = elemente->start;
1060 while (runner->next != elemente->end) { // go through every element
1061 runner = runner->next;
1062 IonMass = runner->mass;
1063 a = delta_t*0.5/IonMass; // (F+F_old)/2m = a and thus: v = (F+F_old)/2m * t = (F + F_old) * a
1064 if (ElementsInMolecule[runner->Z]) { // if this element got atoms
1065 AtomNo = 0;
1066 walker = start;
1067 while (walker->next != end) { // go through every atom of this element
1068 walker = walker->next;
1069 if (walker->type == runner) { // if this atom fits to element
1070 // check size of vectors
1071 if (Trajectories[walker].R.size() <= (unsigned int)(MDSteps)) {
1072 //cout << "Increasing size for trajectory array of " << *walker << " to " << (size+10) << "." << endl;
1073 Trajectories[walker].R.resize(MDSteps+10);
1074 Trajectories[walker].U.resize(MDSteps+10);
1075 Trajectories[walker].F.resize(MDSteps+10);
1076 }
1077 // 1. calculate x(t+\delta t)
1078 for (int d=0; d<NDIM; d++) {
1079 Trajectories[walker].F.at(MDSteps).x[d] = -Force.Matrix[0][AtomNo][d+5];
1080 Trajectories[walker].R.at(MDSteps).x[d] = Trajectories[walker].R.at(MDSteps-1).x[d];
1081 Trajectories[walker].R.at(MDSteps).x[d] += delta_t*(Trajectories[walker].U.at(MDSteps-1).x[d]);
1082 Trajectories[walker].R.at(MDSteps).x[d] += 0.5*delta_t*delta_t*(Trajectories[walker].F.at(MDSteps-1).x[d])/IonMass; // F = m * a and s = 0.5 * F/m * t^2 = F * a * t
1083 }
1084 // 2. Calculate v(t+\delta t)
1085 for (int d=0; d<NDIM; d++) {
1086 Trajectories[walker].U.at(MDSteps).x[d] = Trajectories[walker].U.at(MDSteps-1).x[d];
1087 Trajectories[walker].U.at(MDSteps).x[d] += 0.5*delta_t*(Trajectories[walker].F.at(MDSteps-1).x[d]+Trajectories[walker].F.at(MDSteps).x[d])/IonMass;
1088 }
1089// cout << "Integrated position&velocity of step " << (MDSteps) << ": (";
1090// for (int d=0;d<NDIM;d++)
1091// cout << Trajectories[walker].R.at(MDSteps).x[d] << " "; // next step
1092// cout << ")\t(";
1093// for (int d=0;d<NDIM;d++)
1094// cout << Trajectories[walker].U.at(MDSteps).x[d] << " "; // next step
1095// cout << ")" << endl;
1096 // next atom
1097 AtomNo++;
1098 }
1099 }
1100 }
1101 }
1102 }
1103// // correct velocities (rather momenta) so that center of mass remains motionless
1104// tmpvector.zero()
1105// IonMass = 0.;
1106// walker = start;
1107// while (walker->next != end) { // go through every atom
1108// walker = walker->next;
1109// IonMass += walker->type->mass; // sum up total mass
1110// for(int d=0;d<NDIM;d++) {
1111// tmpvector.x[d] += Trajectories[walker].U.at(MDSteps).x[d]*walker->type->mass;
1112// }
1113// }
1114// walker = start;
1115// while (walker->next != end) { // go through every atom of this element
1116// walker = walker->next;
1117// for(int d=0;d<NDIM;d++) {
1118// Trajectories[walker].U.at(MDSteps).x[d] -= tmpvector.x[d]*walker->type->mass/IonMass;
1119// }
1120// }
1121 MDSteps++;
1122
1123
1124 // exit
1125 return true;
1126};
1127
1128/** Align all atoms in such a manner that given vector \a *n is along z axis.
1129 * \param n[] alignment vector.
1130 */
1131void molecule::Align(Vector *n)
1132{
1133 atom *ptr = start;
1134 double alpha, tmp;
1135 Vector z_axis;
1136 z_axis.x[0] = 0.;
1137 z_axis.x[1] = 0.;
1138 z_axis.x[2] = 1.;
1139
1140 // rotate on z-x plane
1141 cout << Verbose(0) << "Begin of Aligning all atoms." << endl;
1142 alpha = atan(-n->x[0]/n->x[2]);
1143 cout << Verbose(1) << "Z-X-angle: " << alpha << " ... ";
1144 while (ptr->next != end) {
1145 ptr = ptr->next;
1146 tmp = ptr->x.x[0];
1147 ptr->x.x[0] = cos(alpha) * tmp + sin(alpha) * ptr->x.x[2];
1148 ptr->x.x[2] = -sin(alpha) * tmp + cos(alpha) * ptr->x.x[2];
1149 for (int j=0;j<MDSteps;j++) {
1150 tmp = Trajectories[ptr].R.at(j).x[0];
1151 Trajectories[ptr].R.at(j).x[0] = cos(alpha) * tmp + sin(alpha) * Trajectories[ptr].R.at(j).x[2];
1152 Trajectories[ptr].R.at(j).x[2] = -sin(alpha) * tmp + cos(alpha) * Trajectories[ptr].R.at(j).x[2];
1153 }
1154 }
1155 // rotate n vector
1156 tmp = n->x[0];
1157 n->x[0] = cos(alpha) * tmp + sin(alpha) * n->x[2];
1158 n->x[2] = -sin(alpha) * tmp + cos(alpha) * n->x[2];
1159 cout << Verbose(1) << "alignment vector after first rotation: ";
1160 n->Output((ofstream *)&cout);
1161 cout << endl;
1162
1163 // rotate on z-y plane
1164 ptr = start;
1165 alpha = atan(-n->x[1]/n->x[2]);
1166 cout << Verbose(1) << "Z-Y-angle: " << alpha << " ... ";
1167 while (ptr->next != end) {
1168 ptr = ptr->next;
1169 tmp = ptr->x.x[1];
1170 ptr->x.x[1] = cos(alpha) * tmp + sin(alpha) * ptr->x.x[2];
1171 ptr->x.x[2] = -sin(alpha) * tmp + cos(alpha) * ptr->x.x[2];
1172 for (int j=0;j<MDSteps;j++) {
1173 tmp = Trajectories[ptr].R.at(j).x[1];
1174 Trajectories[ptr].R.at(j).x[1] = cos(alpha) * tmp + sin(alpha) * Trajectories[ptr].R.at(j).x[2];
1175 Trajectories[ptr].R.at(j).x[2] = -sin(alpha) * tmp + cos(alpha) * Trajectories[ptr].R.at(j).x[2];
1176 }
1177 }
1178 // rotate n vector (for consistency check)
1179 tmp = n->x[1];
1180 n->x[1] = cos(alpha) * tmp + sin(alpha) * n->x[2];
1181 n->x[2] = -sin(alpha) * tmp + cos(alpha) * n->x[2];
1182
1183 cout << Verbose(1) << "alignment vector after second rotation: ";
1184 n->Output((ofstream *)&cout);
1185 cout << Verbose(1) << endl;
1186 cout << Verbose(0) << "End of Aligning all atoms." << endl;
1187};
1188
1189/** Removes atom from molecule list.
1190 * \param *pointer atom to be removed
1191 * \return true - succeeded, false - atom not found in list
1192 */
1193bool molecule::RemoveAtom(atom *pointer)
1194{
1195 if (ElementsInMolecule[pointer->type->Z] != 0) // this would indicate an error
1196 ElementsInMolecule[pointer->type->Z]--; // decrease number of atom of this element
1197 else
1198 cerr << "ERROR: Atom " << pointer->Name << " is of element " << pointer->type->Z << " but the entry in the table of the molecule is 0!" << endl;
1199 if (ElementsInMolecule[pointer->type->Z] == 0) // was last atom of this element?
1200 ElementCount--;
1201 Trajectories.erase(pointer);
1202 return remove(pointer, start, end);
1203};
1204
1205/** Removes every atom from molecule list.
1206 * \return true - succeeded, false - atom not found in list
1207 */
1208bool molecule::CleanupMolecule()
1209{
1210 return (cleanup(start,end) && cleanup(first,last));
1211};
1212
1213/** Finds an atom specified by its continuous number.
1214 * \param Nr number of atom withim molecule
1215 * \return pointer to atom or NULL
1216 */
1217atom * molecule::FindAtom(int Nr) const{
1218 atom * walker = find(&Nr, start,end);
1219 if (walker != NULL) {
1220 //cout << Verbose(0) << "Found Atom Nr. " << walker->nr << endl;
1221 return walker;
1222 } else {
1223 cout << Verbose(0) << "Atom not found in list." << endl;
1224 return NULL;
1225 }
1226};
1227
1228/** Asks for atom number, and checks whether in list.
1229 * \param *text question before entering
1230 */
1231atom * molecule::AskAtom(string text)
1232{
1233 int No;
1234 atom *ion = NULL;
1235 do {
1236 //cout << Verbose(0) << "============Atom list==========================" << endl;
1237 //mol->Output((ofstream *)&cout);
1238 //cout << Verbose(0) << "===============================================" << endl;
1239 cout << Verbose(0) << text;
1240 cin >> No;
1241 ion = this->FindAtom(No);
1242 } while (ion == NULL);
1243 return ion;
1244};
1245
1246/** Checks if given coordinates are within cell volume.
1247 * \param *x array of coordinates
1248 * \return true - is within, false - out of cell
1249 */
1250bool molecule::CheckBounds(const Vector *x) const
1251{
1252 bool result = true;
1253 int j =-1;
1254 for (int i=0;i<NDIM;i++) {
1255 j += i+1;
1256 result = result && ((x->x[i] >= 0) && (x->x[i] < cell_size[j]));
1257 }
1258 //return result;
1259 return true; /// probably not gonna use the check no more
1260};
1261
1262/** Calculates sum over least square distance to line hidden in \a *x.
1263 * \param *x offset and direction vector
1264 * \param *params pointer to lsq_params structure
1265 * \return \f$ sum_i^N | y_i - (a + t_i b)|^2\f$
1266 */
1267double LeastSquareDistance (const gsl_vector * x, void * params)
1268{
1269 double res = 0, t;
1270 Vector a,b,c,d;
1271 struct lsq_params *par = (struct lsq_params *)params;
1272 atom *ptr = par->mol->start;
1273
1274 // initialize vectors
1275 a.x[0] = gsl_vector_get(x,0);
1276 a.x[1] = gsl_vector_get(x,1);
1277 a.x[2] = gsl_vector_get(x,2);
1278 b.x[0] = gsl_vector_get(x,3);
1279 b.x[1] = gsl_vector_get(x,4);
1280 b.x[2] = gsl_vector_get(x,5);
1281 // go through all atoms
1282 while (ptr != par->mol->end) {
1283 ptr = ptr->next;
1284 if (ptr->type == ((struct lsq_params *)params)->type) { // for specific type
1285 c.CopyVector(&ptr->x); // copy vector to temporary one
1286 c.SubtractVector(&a); // subtract offset vector
1287 t = c.ScalarProduct(&b); // get direction parameter
1288 d.CopyVector(&b); // and create vector
1289 d.Scale(&t);
1290 c.SubtractVector(&d); // ... yielding distance vector
1291 res += d.ScalarProduct((const Vector *)&d); // add squared distance
1292 }
1293 }
1294 return res;
1295};
1296
1297/** By minimizing the least square distance gains alignment vector.
1298 * \bug this is not yet working properly it seems
1299 */
1300void molecule::GetAlignvector(struct lsq_params * par) const
1301{
1302 int np = 6;
1303
1304 const gsl_multimin_fminimizer_type *T =
1305 gsl_multimin_fminimizer_nmsimplex;
1306 gsl_multimin_fminimizer *s = NULL;
1307 gsl_vector *ss;
1308 gsl_multimin_function minex_func;
1309
1310 size_t iter = 0, i;
1311 int status;
1312 double size;
1313
1314 /* Initial vertex size vector */
1315 ss = gsl_vector_alloc (np);
1316
1317 /* Set all step sizes to 1 */
1318 gsl_vector_set_all (ss, 1.0);
1319
1320 /* Starting point */
1321 par->x = gsl_vector_alloc (np);
1322 par->mol = this;
1323
1324 gsl_vector_set (par->x, 0, 0.0); // offset
1325 gsl_vector_set (par->x, 1, 0.0);
1326 gsl_vector_set (par->x, 2, 0.0);
1327 gsl_vector_set (par->x, 3, 0.0); // direction
1328 gsl_vector_set (par->x, 4, 0.0);
1329 gsl_vector_set (par->x, 5, 1.0);
1330
1331 /* Initialize method and iterate */
1332 minex_func.f = &LeastSquareDistance;
1333 minex_func.n = np;
1334 minex_func.params = (void *)par;
1335
1336 s = gsl_multimin_fminimizer_alloc (T, np);
1337 gsl_multimin_fminimizer_set (s, &minex_func, par->x, ss);
1338
1339 do
1340 {
1341 iter++;
1342 status = gsl_multimin_fminimizer_iterate(s);
1343
1344 if (status)
1345 break;
1346
1347 size = gsl_multimin_fminimizer_size (s);
1348 status = gsl_multimin_test_size (size, 1e-2);
1349
1350 if (status == GSL_SUCCESS)
1351 {
1352 printf ("converged to minimum at\n");
1353 }
1354
1355 printf ("%5d ", (int)iter);
1356 for (i = 0; i < (size_t)np; i++)
1357 {
1358 printf ("%10.3e ", gsl_vector_get (s->x, i));
1359 }
1360 printf ("f() = %7.3f size = %.3f\n", s->fval, size);
1361 }
1362 while (status == GSL_CONTINUE && iter < 100);
1363
1364 for (i=0;i<(size_t)np;i++)
1365 gsl_vector_set(par->x, i, gsl_vector_get(s->x, i));
1366 //gsl_vector_free(par->x);
1367 gsl_vector_free(ss);
1368 gsl_multimin_fminimizer_free (s);
1369};
1370
1371/** Prints molecule to *out.
1372 * \param *out output stream
1373 */
1374bool molecule::Output(ofstream *out)
1375{
1376 element *runner;
1377 atom *walker = NULL;
1378 int ElementNo, AtomNo;
1379 CountElements();
1380
1381 if (out == NULL) {
1382 return false;
1383 } else {
1384 *out << "#Ion_TypeNr._Nr.R[0] R[1] R[2] MoveType (0 MoveIon, 1 FixedIon)" << endl;
1385 ElementNo = 0;
1386 runner = elemente->start;
1387 while (runner->next != elemente->end) { // go through every element
1388 runner = runner->next;
1389 if (ElementsInMolecule[runner->Z]) { // if this element got atoms
1390 ElementNo++;
1391 AtomNo = 0;
1392 walker = start;
1393 while (walker->next != end) { // go through every atom of this element
1394 walker = walker->next;
1395 if (walker->type == runner) { // if this atom fits to element
1396 AtomNo++;
1397 walker->Output(ElementNo, AtomNo, out); // removed due to trajectories
1398 }
1399 }
1400 }
1401 }
1402 return true;
1403 }
1404};
1405
1406/** Prints molecule with all atomic trajectory positions to *out.
1407 * \param *out output stream
1408 */
1409bool molecule::OutputTrajectories(ofstream *out)
1410{
1411 element *runner = NULL;
1412 atom *walker = NULL;
1413 int ElementNo, AtomNo;
1414 CountElements();
1415
1416 if (out == NULL) {
1417 return false;
1418 } else {
1419 for (int step = 0; step < MDSteps; step++) {
1420 if (step == 0) {
1421 *out << "#Ion_TypeNr._Nr.R[0] R[1] R[2] MoveType (0 MoveIon, 1 FixedIon)" << endl;
1422 } else {
1423 *out << "# ====== MD step " << step << " =========" << endl;
1424 }
1425 ElementNo = 0;
1426 runner = elemente->start;
1427 while (runner->next != elemente->end) { // go through every element
1428 runner = runner->next;
1429 if (ElementsInMolecule[runner->Z]) { // if this element got atoms
1430 ElementNo++;
1431 AtomNo = 0;
1432 walker = start;
1433 while (walker->next != end) { // go through every atom of this element
1434 walker = walker->next;
1435 if (walker->type == runner) { // if this atom fits to element
1436 AtomNo++;
1437 *out << "Ion_Type" << ElementNo << "_" << AtomNo << "\t" << fixed << setprecision(9) << showpoint;
1438 *out << Trajectories[walker].R.at(step).x[0] << "\t" << Trajectories[walker].R.at(step).x[1] << "\t" << Trajectories[walker].R.at(step).x[2];
1439 *out << "\t" << walker->FixedIon;
1440 if (Trajectories[walker].U.at(step).Norm() > MYEPSILON)
1441 *out << "\t" << scientific << setprecision(6) << Trajectories[walker].U.at(step).x[0] << "\t" << Trajectories[walker].U.at(step).x[1] << "\t" << Trajectories[walker].U.at(step).x[2] << "\t";
1442 if (Trajectories[walker].F.at(step).Norm() > MYEPSILON)
1443 *out << "\t" << scientific << setprecision(6) << Trajectories[walker].F.at(step).x[0] << "\t" << Trajectories[walker].F.at(step).x[1] << "\t" << Trajectories[walker].F.at(step).x[2] << "\t";
1444 *out << "\t# Number in molecule " << walker->nr << endl;
1445 }
1446 }
1447 }
1448 }
1449 }
1450 return true;
1451 }
1452};
1453
1454/** Outputs contents of molecule::ListOfBondsPerAtom.
1455 * \param *out output stream
1456 */
1457void molecule::OutputListOfBonds(ofstream *out) const
1458{
1459 *out << Verbose(2) << endl << "From Contents of ListOfBondsPerAtom, all non-hydrogen atoms:" << endl;
1460 atom *Walker = start;
1461 while (Walker->next != end) {
1462 Walker = Walker->next;
1463#ifdef ADDHYDROGEN
1464 if (Walker->type->Z != 1) { // regard only non-hydrogen
1465#endif
1466 *out << Verbose(2) << "Atom " << Walker->Name << " has Bonds: "<<endl;
1467 for(int j=0;j<NumberOfBondsPerAtom[Walker->nr];j++) {
1468 *out << Verbose(3) << *(ListOfBondsPerAtom)[Walker->nr][j] << endl;
1469 }
1470#ifdef ADDHYDROGEN
1471 }
1472#endif
1473 }
1474 *out << endl;
1475};
1476
1477/** Output of element before the actual coordination list.
1478 * \param *out stream pointer
1479 */
1480bool molecule::Checkout(ofstream *out) const
1481{
1482 return elemente->Checkout(out, ElementsInMolecule);
1483};
1484
1485/** Prints molecule with all its trajectories to *out as xyz file.
1486 * \param *out output stream
1487 */
1488bool molecule::OutputTrajectoriesXYZ(ofstream *out)
1489{
1490 atom *walker = NULL;
1491 int No = 0;
1492 time_t now;
1493
1494 now = time((time_t *)NULL); // Get the system time and put it into 'now' as 'calender time'
1495 walker = start;
1496 while (walker->next != end) { // go through every atom and count
1497 walker = walker->next;
1498 No++;
1499 }
1500 if (out != NULL) {
1501 for (int step=0;step<MDSteps;step++) {
1502 *out << No << "\n\tCreated by molecuilder, step " << step << ", on " << ctime(&now);
1503 walker = start;
1504 while (walker->next != end) { // go through every atom of this element
1505 walker = walker->next;
1506 *out << walker->type->symbol << "\t" << Trajectories[walker].R.at(step).x[0] << "\t" << Trajectories[walker].R.at(step).x[1] << "\t" << Trajectories[walker].R.at(step).x[2] << endl;
1507 }
1508 }
1509 return true;
1510 } else
1511 return false;
1512};
1513
1514/** Prints molecule to *out as xyz file.
1515* \param *out output stream
1516 */
1517bool molecule::OutputXYZ(ofstream *out) const
1518{
1519 atom *walker = NULL;
1520 int No = 0;
1521 time_t now;
1522
1523 now = time((time_t *)NULL); // Get the system time and put it into 'now' as 'calender time'
1524 walker = start;
1525 while (walker->next != end) { // go through every atom and count
1526 walker = walker->next;
1527 No++;
1528 }
1529 if (out != NULL) {
1530 *out << No << "\n\tCreated by molecuilder on " << ctime(&now);
1531 walker = start;
1532 while (walker->next != end) { // go through every atom of this element
1533 walker = walker->next;
1534 walker->OutputXYZLine(out);
1535 }
1536 return true;
1537 } else
1538 return false;
1539};
1540
1541/** Brings molecule::AtomCount and atom::*Name up-to-date.
1542 * \param *out output stream for debugging
1543 */
1544void molecule::CountAtoms(ofstream *out)
1545{
1546 int i = 0;
1547 atom *Walker = start;
1548 while (Walker->next != end) {
1549 Walker = Walker->next;
1550 i++;
1551 }
1552 if ((AtomCount == 0) || (i != AtomCount)) {
1553 *out << Verbose(3) << "Mismatch in AtomCount " << AtomCount << " and recounted number " << i << ", renaming all." << endl;
1554 AtomCount = i;
1555
1556 // count NonHydrogen atoms and give each atom a unique name
1557 if (AtomCount != 0) {
1558 i=0;
1559 NoNonHydrogen = 0;
1560 Walker = start;
1561 while (Walker->next != end) {
1562 Walker = Walker->next;
1563 Walker->nr = i; // update number in molecule (for easier referencing in FragmentMolecule lateron)
1564 if (Walker->type->Z != 1) // count non-hydrogen atoms whilst at it
1565 NoNonHydrogen++;
1566 Free((void **)&Walker->Name, "molecule::CountAtoms: *walker->Name");
1567 Walker->Name = (char *) Malloc(sizeof(char)*6, "molecule::CountAtoms: *walker->Name");
1568 sprintf(Walker->Name, "%2s%02d", Walker->type->symbol, Walker->nr+1);
1569 *out << "Naming atom nr. " << Walker->nr << " " << Walker->Name << "." << endl;
1570 i++;
1571 }
1572 } else
1573 *out << Verbose(3) << "AtomCount is still " << AtomCount << ", thus counting nothing." << endl;
1574 }
1575};
1576
1577/** Brings molecule::ElementCount and molecule::ElementsInMolecule up-to-date.
1578 */
1579void molecule::CountElements()
1580{
1581 int i = 0;
1582 for(i=MAX_ELEMENTS;i--;)
1583 ElementsInMolecule[i] = 0;
1584 ElementCount = 0;
1585
1586 atom *walker = start;
1587 while (walker->next != end) {
1588 walker = walker->next;
1589 ElementsInMolecule[walker->type->Z]++;
1590 i++;
1591 }
1592 for(i=MAX_ELEMENTS;i--;)
1593 ElementCount += (ElementsInMolecule[i] != 0 ? 1 : 0);
1594};
1595
1596/** Counts all cyclic bonds and returns their number.
1597 * \note Hydrogen bonds can never by cyclic, thus no check for that
1598 * \param *out output stream for debugging
1599 * \return number opf cyclic bonds
1600 */
1601int molecule::CountCyclicBonds(ofstream *out)
1602{
1603 int No = 0;
1604 int *MinimumRingSize = NULL;
1605 MoleculeLeafClass *Subgraphs = NULL;
1606 class StackClass<bond *> *BackEdgeStack = NULL;
1607 bond *Binder = first;
1608 if ((Binder->next != last) && (Binder->next->Type == Undetermined)) {
1609 *out << Verbose(0) << "No Depth-First-Search analysis performed so far, calling ..." << endl;
1610 Subgraphs = DepthFirstSearchAnalysis(out, BackEdgeStack);
1611 while (Subgraphs->next != NULL) {
1612 Subgraphs = Subgraphs->next;
1613 delete(Subgraphs->previous);
1614 }
1615 delete(Subgraphs);
1616 delete[](MinimumRingSize);
1617 }
1618 while(Binder->next != last) {
1619 Binder = Binder->next;
1620 if (Binder->Cyclic)
1621 No++;
1622 }
1623 delete(BackEdgeStack);
1624 return No;
1625};
1626/** Returns Shading as a char string.
1627 * \param color the Shading
1628 * \return string of the flag
1629 */
1630string molecule::GetColor(enum Shading color)
1631{
1632 switch(color) {
1633 case white:
1634 return "white";
1635 break;
1636 case lightgray:
1637 return "lightgray";
1638 break;
1639 case darkgray:
1640 return "darkgray";
1641 break;
1642 case black:
1643 return "black";
1644 break;
1645 default:
1646 return "uncolored";
1647 break;
1648 };
1649};
1650
1651
1652/** Counts necessary number of valence electrons and returns number and SpinType.
1653 * \param configuration containing everything
1654 */
1655void molecule::CalculateOrbitals(class config &configuration)
1656{
1657 configuration.MaxPsiDouble = configuration.PsiMaxNoDown = configuration.PsiMaxNoUp = configuration.PsiType = 0;
1658 for(int i=MAX_ELEMENTS;i--;) {
1659 if (ElementsInMolecule[i] != 0) {
1660 //cout << "CalculateOrbitals: " << elemente->FindElement(i)->name << " has a valence of " << (int)elemente->FindElement(i)->Valence << " and there are " << ElementsInMolecule[i] << " of it." << endl;
1661 configuration.MaxPsiDouble += ElementsInMolecule[i]*((int)elemente->FindElement(i)->Valence);
1662 }
1663 }
1664 configuration.PsiMaxNoDown = configuration.MaxPsiDouble/2 + (configuration.MaxPsiDouble % 2);
1665 configuration.PsiMaxNoUp = configuration.MaxPsiDouble/2;
1666 configuration.MaxPsiDouble /= 2;
1667 configuration.PsiType = (configuration.PsiMaxNoDown == configuration.PsiMaxNoUp) ? 0 : 1;
1668 if ((configuration.PsiType == 1) && (configuration.ProcPEPsi < 2)) {
1669 configuration.ProcPEGamma /= 2;
1670 configuration.ProcPEPsi *= 2;
1671 } else {
1672 configuration.ProcPEGamma *= configuration.ProcPEPsi;
1673 configuration.ProcPEPsi = 1;
1674 }
1675 configuration.InitMaxMinStopStep = configuration.MaxMinStopStep = configuration.MaxPsiDouble;
1676};
1677
1678/** Creates an adjacency list of the molecule.
1679 * Generally, we use the CSD approach to bond recognition, that is the the distance
1680 * between two atoms A and B must be within [Rcov(A)+Rcov(B)-t,Rcov(A)+Rcov(B)+t] with
1681 * a threshold t = 0.4 Angstroem.
1682 * To make it O(N log N) the function uses the linked-cell technique as follows:
1683 * The procedure is step-wise:
1684 * -# Remove every bond in list
1685 * -# Count the atoms in the molecule with CountAtoms()
1686 * -# partition cell into smaller linked cells of size \a bonddistance
1687 * -# put each atom into its corresponding cell
1688 * -# go through every cell, check the atoms therein against all possible bond partners in the 27 adjacent cells, add bond if true
1689 * -# create the list of bonds via CreateListOfBondsPerAtom()
1690 * -# correct the bond degree iteratively (single->double->triple bond)
1691 * -# finally print the bond list to \a *out if desired
1692 * \param *out out stream for printing the matrix, NULL if no output
1693 * \param bonddistance length of linked cells (i.e. maximum minimal length checked)
1694 * \param IsAngstroem whether coordinate system is gauged to Angstroem or Bohr radii
1695 */
1696void molecule::CreateAdjacencyList(ofstream *out, double bonddistance, bool IsAngstroem)
1697{
1698 atom *Walker = NULL, *OtherWalker = NULL, *Candidate = NULL;
1699 int No, NoBonds, CandidateBondNo;
1700 int NumberCells, divisor[NDIM], n[NDIM], N[NDIM], index, Index, j;
1701 molecule **CellList;
1702 double distance, MinDistance, MaxDistance;
1703 double *matrix = ReturnFullMatrixforSymmetric(cell_size);
1704 Vector x;
1705 int FalseBondDegree = 0;
1706
1707 BondDistance = bonddistance; // * ((IsAngstroem) ? 1. : 1./AtomicLengthToAngstroem);
1708 *out << Verbose(0) << "Begin of CreateAdjacencyList." << endl;
1709 // remove every bond from the list
1710 if ((first->next != last) && (last->previous != first)) { // there are bonds present
1711 cleanup(first,last);
1712 }
1713
1714 // count atoms in molecule = dimension of matrix (also give each unique name and continuous numbering)
1715 CountAtoms(out);
1716 *out << Verbose(1) << "AtomCount " << AtomCount << "." << endl;
1717
1718 if (AtomCount != 0) {
1719 // 1. find divisor for each axis, such that a sphere with radius of at least bonddistance can be placed into each cell
1720 j=-1;
1721 for (int i=0;i<NDIM;i++) {
1722 j += i+1;
1723 divisor[i] = (int)floor(cell_size[j]/bonddistance); // take smaller value such that size of linked cell is at least bonddistance
1724 //*out << Verbose(1) << "divisor[" << i << "] = " << divisor[i] << "." << endl;
1725 }
1726 // 2a. allocate memory for the cell list
1727 NumberCells = divisor[0]*divisor[1]*divisor[2];
1728 *out << Verbose(1) << "Allocating " << NumberCells << " cells." << endl;
1729 CellList = (molecule **) Malloc(sizeof(molecule *)*NumberCells, "molecule::CreateAdjacencyList - ** CellList");
1730 for (int i=NumberCells;i--;)
1731 CellList[i] = NULL;
1732
1733 // 2b. put all atoms into its corresponding list
1734 Walker = start;
1735 while(Walker->next != end) {
1736 Walker = Walker->next;
1737 //*out << Verbose(1) << "Current atom is " << *Walker << " with coordinates ";
1738 //Walker->x.Output(out);
1739 //*out << "." << endl;
1740 // compute the cell by the atom's coordinates
1741 j=-1;
1742 for (int i=0;i<NDIM;i++) {
1743 j += i+1;
1744 x.CopyVector(&(Walker->x));
1745 x.KeepPeriodic(out, matrix);
1746 n[i] = (int)floor(x.x[i]/cell_size[j]*(double)divisor[i]);
1747 }
1748 index = n[2] + (n[1] + n[0] * divisor[1]) * divisor[2];
1749 //*out << Verbose(1) << "Atom " << *Walker << " goes into cell number [" << n[0] << "," << n[1] << "," << n[2] << "] = " << index << "." << endl;
1750 // add copy atom to this cell
1751 if (CellList[index] == NULL) // allocate molecule if not done
1752 CellList[index] = new molecule(elemente);
1753 OtherWalker = CellList[index]->AddCopyAtom(Walker); // add a copy of walker to this atom, father will be walker for later reference
1754 //*out << Verbose(1) << "Copy Atom is " << *OtherWalker << "." << endl;
1755 }
1756 //for (int i=0;i<NumberCells;i++)
1757 //*out << Verbose(1) << "Cell number " << i << ": " << CellList[i] << "." << endl;
1758
1759 // 3a. go through every cell
1760 for (N[0]=divisor[0];N[0]--;)
1761 for (N[1]=divisor[1];N[1]--;)
1762 for (N[2]=divisor[2];N[2]--;) {
1763 Index = N[2] + (N[1] + N[0] * divisor[1]) * divisor[2];
1764 if (CellList[Index] != NULL) { // if there atoms in this cell
1765 //*out << Verbose(1) << "Current cell is " << Index << "." << endl;
1766 // 3b. for every atom therein
1767 Walker = CellList[Index]->start;
1768 while (Walker->next != CellList[Index]->end) { // go through every atom
1769 Walker = Walker->next;
1770 //*out << Verbose(0) << "Current Atom is " << *Walker << "." << endl;
1771 // 3c. check for possible bond between each atom in this and every one in the 27 cells
1772 for (n[0]=-1;n[0]<=1;n[0]++)
1773 for (n[1]=-1;n[1]<=1;n[1]++)
1774 for (n[2]=-1;n[2]<=1;n[2]++) {
1775 // compute the index of this comparison cell and make it periodic
1776 index = ((N[2]+n[2]+divisor[2])%divisor[2]) + (((N[1]+n[1]+divisor[1])%divisor[1]) + ((N[0]+n[0]+divisor[0])%divisor[0]) * divisor[1]) * divisor[2];
1777 //*out << Verbose(1) << "Number of comparison cell is " << index << "." << endl;
1778 if (CellList[index] != NULL) { // if there are any atoms in this cell
1779 OtherWalker = CellList[index]->start;
1780 while(OtherWalker->next != CellList[index]->end) { // go through every atom in this cell
1781 OtherWalker = OtherWalker->next;
1782 //*out << Verbose(0) << "Current comparison atom is " << *OtherWalker << "." << endl;
1783 /// \todo periodic check is missing here!
1784 //*out << Verbose(1) << "Checking distance " << OtherWalker->x.PeriodicDistance(&(Walker->x), cell_size) << " against typical bond length of " << bonddistance*bonddistance << "." << endl;
1785 MinDistance = OtherWalker->type->CovalentRadius + Walker->type->CovalentRadius;
1786 MinDistance *= (IsAngstroem) ? 1. : 1./AtomicLengthToAngstroem;
1787 MaxDistance = MinDistance + BONDTHRESHOLD;
1788 MinDistance -= BONDTHRESHOLD;
1789 distance = OtherWalker->x.PeriodicDistance(&(Walker->x), cell_size);
1790 if ((OtherWalker->father->nr > Walker->father->nr) && (distance <= MaxDistance*MaxDistance) && (distance >= MinDistance*MinDistance)) { // create bond if distance is smaller
1791 //*out << Verbose(0) << "Adding Bond between " << *Walker << " and " << *OtherWalker << "." << endl;
1792 AddBond(Walker->father, OtherWalker->father, 1); // also increases molecule::BondCount
1793 BondCount++;
1794 } else {
1795 //*out << Verbose(1) << "Not Adding: Wrong label order or distance too great." << endl;
1796 }
1797 }
1798 }
1799 }
1800 }
1801 }
1802 }
1803 // 4. free the cell again
1804 for (int i=NumberCells;i--;)
1805 if (CellList[i] != NULL) {
1806 delete(CellList[i]);
1807 }
1808 Free((void **)&CellList, "molecule::CreateAdjacencyList - ** CellList");
1809
1810 // create the adjacency list per atom
1811 CreateListOfBondsPerAtom(out);
1812
1813 // correct Bond degree of each bond by checking both bond partners for a mismatch between valence and current sum of bond degrees,
1814 // iteratively increase the one first where the other bond partner has the fewest number of bonds (i.e. in general bonds oxygene
1815 // preferred over carbon bonds). Beforehand, we had picked the first mismatching partner, which lead to oxygenes with single instead of
1816 // double bonds as was expected.
1817 if (BondCount != 0) {
1818 NoCyclicBonds = 0;
1819 *out << Verbose(1) << "Correcting Bond degree of each bond ... ";
1820 do {
1821 No = 0; // No acts as breakup flag (if 1 we still continue)
1822 Walker = start;
1823 while (Walker->next != end) { // go through every atom
1824 Walker = Walker->next;
1825 // count valence of first partner
1826 NoBonds = 0;
1827 for(j=0;j<NumberOfBondsPerAtom[Walker->nr];j++)
1828 NoBonds += ListOfBondsPerAtom[Walker->nr][j]->BondDegree;
1829 *out << Verbose(3) << "Walker " << *Walker << ": " << (int)Walker->type->NoValenceOrbitals << " > " << NoBonds << "?" << endl;
1830 if ((int)(Walker->type->NoValenceOrbitals) > NoBonds) { // we have a mismatch, check all bonding partners for mismatch
1831 Candidate = NULL;
1832 CandidateBondNo = -1;
1833 for(int i=0;i<NumberOfBondsPerAtom[Walker->nr];i++) { // go through each of its bond partners
1834 OtherWalker = ListOfBondsPerAtom[Walker->nr][i]->GetOtherAtom(Walker);
1835 // count valence of second partner
1836 NoBonds = 0;
1837 for(j=0;j<NumberOfBondsPerAtom[OtherWalker->nr];j++)
1838 NoBonds += ListOfBondsPerAtom[OtherWalker->nr][j]->BondDegree;
1839 *out << Verbose(3) << "OtherWalker " << *OtherWalker << ": " << (int)OtherWalker->type->NoValenceOrbitals << " > " << NoBonds << "?" << endl;
1840 if ((int)(OtherWalker->type->NoValenceOrbitals) > NoBonds) { // check if possible candidate
1841 if ((Candidate == NULL) || (NumberOfBondsPerAtom[Candidate->nr] > NumberOfBondsPerAtom[OtherWalker->nr])) { // pick the one with fewer number of bonds first
1842 Candidate = OtherWalker;
1843 CandidateBondNo = i;
1844 *out << Verbose(3) << "New candidate is " << *Candidate << "." << endl;
1845 }
1846 }
1847 }
1848 if ((Candidate != NULL) && (CandidateBondNo != -1)) {
1849 ListOfBondsPerAtom[Walker->nr][CandidateBondNo]->BondDegree++;
1850 *out << Verbose(2) << "Increased bond degree for bond " << *ListOfBondsPerAtom[Walker->nr][CandidateBondNo] << "." << endl;
1851 } else
1852 *out << Verbose(2) << "Could not find correct degree for atom " << *Walker << "." << endl;
1853 FalseBondDegree++;
1854 }
1855 }
1856 } while (No);
1857 *out << " done." << endl;
1858 } else
1859 *out << Verbose(1) << "BondCount is " << BondCount << ", no bonds between any of the " << AtomCount << " atoms." << endl;
1860 *out << Verbose(1) << "I detected " << BondCount << " bonds in the molecule with distance " << bonddistance << ", " << FalseBondDegree << " bonds could not be corrected." << endl;
1861
1862 // output bonds for debugging (if bond chain list was correctly installed)
1863 *out << Verbose(1) << endl << "From contents of bond chain list:";
1864 bond *Binder = first;
1865 while(Binder->next != last) {
1866 Binder = Binder->next;
1867 *out << *Binder << "\t" << endl;
1868 }
1869 *out << endl;
1870 } else
1871 *out << Verbose(1) << "AtomCount is " << AtomCount << ", thus no bonds, no connections!." << endl;
1872 *out << Verbose(0) << "End of CreateAdjacencyList." << endl;
1873 Free((void **)&matrix, "molecule::CreateAdjacencyList: *matrix");
1874};
1875
1876/** Performs a Depth-First search on this molecule.
1877 * Marks bonds in molecule as cyclic, bridge, ... and atoms as
1878 * articulations points, ...
1879 * We use the algorithm from [Even, Graph Algorithms, p.62].
1880 * \param *out output stream for debugging
1881 * \param *&BackEdgeStack NULL pointer to StackClass with all the found back edges, allocated and filled on return
1882 * \return list of each disconnected subgraph as an individual molecule class structure
1883 */
1884MoleculeLeafClass * molecule::DepthFirstSearchAnalysis(ofstream *out, class StackClass<bond *> *&BackEdgeStack)
1885{
1886 class StackClass<atom *> *AtomStack = new StackClass<atom *>(AtomCount);
1887 BackEdgeStack = new StackClass<bond *> (BondCount);
1888 MoleculeLeafClass *SubGraphs = new MoleculeLeafClass(NULL);
1889 MoleculeLeafClass *LeafWalker = SubGraphs;
1890 int CurrentGraphNr = 0, OldGraphNr;
1891 int ComponentNumber = 0;
1892 atom *Walker = NULL, *OtherAtom = NULL, *Root = start->next;
1893 bond *Binder = NULL;
1894 bool BackStepping = false;
1895
1896 *out << Verbose(0) << "Begin of DepthFirstSearchAnalysis" << endl;
1897
1898 ResetAllBondsToUnused();
1899 ResetAllAtomNumbers();
1900 InitComponentNumbers();
1901 BackEdgeStack->ClearStack();
1902 while (Root != end) { // if there any atoms at all
1903 // (1) mark all edges unused, empty stack, set atom->GraphNr = 0 for all
1904 AtomStack->ClearStack();
1905
1906 // put into new subgraph molecule and add this to list of subgraphs
1907 LeafWalker = new MoleculeLeafClass(LeafWalker);
1908 LeafWalker->Leaf = new molecule(elemente);
1909 LeafWalker->Leaf->AddCopyAtom(Root);
1910
1911 OldGraphNr = CurrentGraphNr;
1912 Walker = Root;
1913 do { // (10)
1914 do { // (2) set number and Lowpoint of Atom to i, increase i, push current atom
1915 if (!BackStepping) { // if we don't just return from (8)
1916 Walker->GraphNr = CurrentGraphNr;
1917 Walker->LowpointNr = CurrentGraphNr;
1918 *out << Verbose(1) << "Setting Walker[" << Walker->Name << "]'s number to " << Walker->GraphNr << " with Lowpoint " << Walker->LowpointNr << "." << endl;
1919 AtomStack->Push(Walker);
1920 CurrentGraphNr++;
1921 }
1922 do { // (3) if Walker has no unused egdes, go to (5)
1923 BackStepping = false; // reset backstepping flag for (8)
1924 if (Binder == NULL) // if we don't just return from (11), Binder is already set to next unused
1925 Binder = FindNextUnused(Walker);
1926 if (Binder == NULL)
1927 break;
1928 *out << Verbose(2) << "Current Unused Bond is " << *Binder << "." << endl;
1929 // (4) Mark Binder used, ...
1930 Binder->MarkUsed(black);
1931 OtherAtom = Binder->GetOtherAtom(Walker);
1932 *out << Verbose(2) << "(4) OtherAtom is " << OtherAtom->Name << "." << endl;
1933 if (OtherAtom->GraphNr != -1) {
1934 // (4a) ... if "other" atom has been visited (GraphNr != 0), set lowpoint to minimum of both, go to (3)
1935 Binder->Type = BackEdge;
1936 BackEdgeStack->Push(Binder);
1937 Walker->LowpointNr = ( Walker->LowpointNr < OtherAtom->GraphNr ) ? Walker->LowpointNr : OtherAtom->GraphNr;
1938 *out << Verbose(3) << "(4a) Visited: Setting Lowpoint of Walker[" << Walker->Name << "] to " << Walker->LowpointNr << "." << endl;
1939 } else {
1940 // (4b) ... otherwise set OtherAtom as Ancestor of Walker and Walker as OtherAtom, go to (2)
1941 Binder->Type = TreeEdge;
1942 OtherAtom->Ancestor = Walker;
1943 Walker = OtherAtom;
1944 *out << Verbose(3) << "(4b) Not Visited: OtherAtom[" << OtherAtom->Name << "]'s Ancestor is now " << OtherAtom->Ancestor->Name << ", Walker is OtherAtom " << OtherAtom->Name << "." << endl;
1945 break;
1946 }
1947 Binder = NULL;
1948 } while (1); // (3)
1949 if (Binder == NULL) {
1950 *out << Verbose(2) << "No more Unused Bonds." << endl;
1951 break;
1952 } else
1953 Binder = NULL;
1954 } while (1); // (2)
1955
1956 // if we came from backstepping, yet there were no more unused bonds, we end up here with no Ancestor, because Walker is Root! Then we are finished!
1957 if ((Walker == Root) && (Binder == NULL))
1958 break;
1959
1960 // (5) if Ancestor of Walker is ...
1961 *out << Verbose(1) << "(5) Number of Walker[" << Walker->Name << "]'s Ancestor[" << Walker->Ancestor->Name << "] is " << Walker->Ancestor->GraphNr << "." << endl;
1962 if (Walker->Ancestor->GraphNr != Root->GraphNr) {
1963 // (6) (Ancestor of Walker is not Root)
1964 if (Walker->LowpointNr < Walker->Ancestor->GraphNr) {
1965 // (6a) set Ancestor's Lowpoint number to minimum of of its Ancestor and itself, go to Step(8)
1966 Walker->Ancestor->LowpointNr = (Walker->Ancestor->LowpointNr < Walker->LowpointNr) ? Walker->Ancestor->LowpointNr : Walker->LowpointNr;
1967 *out << Verbose(2) << "(6) Setting Walker[" << Walker->Name << "]'s Ancestor[" << Walker->Ancestor->Name << "]'s Lowpoint to " << Walker->Ancestor->LowpointNr << "." << endl;
1968 } else {
1969 // (7) (Ancestor of Walker is a separating vertex, remove all from stack till Walker (including), these and Ancestor form a component
1970 Walker->Ancestor->SeparationVertex = true;
1971 *out << Verbose(2) << "(7) Walker[" << Walker->Name << "]'s Ancestor[" << Walker->Ancestor->Name << "]'s is a separating vertex, creating component." << endl;
1972 SetNextComponentNumber(Walker->Ancestor, ComponentNumber);
1973 *out << Verbose(3) << "(7) Walker[" << Walker->Name << "]'s Ancestor's Compont is " << ComponentNumber << "." << endl;
1974 SetNextComponentNumber(Walker, ComponentNumber);
1975 *out << Verbose(3) << "(7) Walker[" << Walker->Name << "]'s Compont is " << ComponentNumber << "." << endl;
1976 do {
1977 OtherAtom = AtomStack->PopLast();
1978 LeafWalker->Leaf->AddCopyAtom(OtherAtom);
1979 SetNextComponentNumber(OtherAtom, ComponentNumber);
1980 *out << Verbose(3) << "(7) Other[" << OtherAtom->Name << "]'s Compont is " << ComponentNumber << "." << endl;
1981 } while (OtherAtom != Walker);
1982 ComponentNumber++;
1983 }
1984 // (8) Walker becomes its Ancestor, go to (3)
1985 *out << Verbose(2) << "(8) Walker[" << Walker->Name << "] is now its Ancestor " << Walker->Ancestor->Name << ", backstepping. " << endl;
1986 Walker = Walker->Ancestor;
1987 BackStepping = true;
1988 }
1989 if (!BackStepping) { // coming from (8) want to go to (3)
1990 // (9) remove all from stack till Walker (including), these and Root form a component
1991 AtomStack->Output(out);
1992 SetNextComponentNumber(Root, ComponentNumber);
1993 *out << Verbose(3) << "(9) Root[" << Root->Name << "]'s Component is " << ComponentNumber << "." << endl;
1994 SetNextComponentNumber(Walker, ComponentNumber);
1995 *out << Verbose(3) << "(9) Walker[" << Walker->Name << "]'s Component is " << ComponentNumber << "." << endl;
1996 do {
1997 OtherAtom = AtomStack->PopLast();
1998 LeafWalker->Leaf->AddCopyAtom(OtherAtom);
1999 SetNextComponentNumber(OtherAtom, ComponentNumber);
2000 *out << Verbose(3) << "(7) Other[" << OtherAtom->Name << "]'s Compont is " << ComponentNumber << "." << endl;
2001 } while (OtherAtom != Walker);
2002 ComponentNumber++;
2003
2004 // (11) Root is separation vertex, set Walker to Root and go to (4)
2005 Walker = Root;
2006 Binder = FindNextUnused(Walker);
2007 *out << Verbose(1) << "(10) Walker is Root[" << Root->Name << "], next Unused Bond is " << Binder << "." << endl;
2008 if (Binder != NULL) { // Root is separation vertex
2009 *out << Verbose(1) << "(11) Root is a separation vertex." << endl;
2010 Walker->SeparationVertex = true;
2011 }
2012 }
2013 } while ((BackStepping) || (Binder != NULL)); // (10) halt only if Root has no unused edges
2014
2015 // From OldGraphNr to CurrentGraphNr ranges an disconnected subgraph
2016 *out << Verbose(0) << "Disconnected subgraph ranges from " << OldGraphNr << " to " << CurrentGraphNr << "." << endl;
2017 LeafWalker->Leaf->Output(out);
2018 *out << endl;
2019
2020 // step on to next root
2021 while ((Root != end) && (Root->GraphNr != -1)) {
2022 //*out << Verbose(1) << "Current next subgraph root candidate is " << Root->Name << "." << endl;
2023 if (Root->GraphNr != -1) // if already discovered, step on
2024 Root = Root->next;
2025 }
2026 }
2027 // set cyclic bond criterium on "same LP" basis
2028 Binder = first;
2029 while(Binder->next != last) {
2030 Binder = Binder->next;
2031 if (Binder->rightatom->LowpointNr == Binder->leftatom->LowpointNr) { // cyclic ??
2032 Binder->Cyclic = true;
2033 NoCyclicBonds++;
2034 }
2035 }
2036
2037
2038 *out << Verbose(1) << "Final graph info for each atom is:" << endl;
2039 Walker = start;
2040 while (Walker->next != end) {
2041 Walker = Walker->next;
2042 *out << Verbose(2) << "Atom " << Walker->Name << " is " << ((Walker->SeparationVertex) ? "a" : "not a") << " separation vertex, components are ";
2043 OutputComponentNumber(out, Walker);
2044 *out << " with Lowpoint " << Walker->LowpointNr << " and Graph Nr. " << Walker->GraphNr << "." << endl;
2045 }
2046
2047 *out << Verbose(1) << "Final graph info for each bond is:" << endl;
2048 Binder = first;
2049 while(Binder->next != last) {
2050 Binder = Binder->next;
2051 *out << Verbose(2) << ((Binder->Type == TreeEdge) ? "TreeEdge " : "BackEdge ") << *Binder << ": <";
2052 *out << ((Binder->leftatom->SeparationVertex) ? "SP," : "") << "L" << Binder->leftatom->LowpointNr << " G" << Binder->leftatom->GraphNr << " Comp.";
2053 OutputComponentNumber(out, Binder->leftatom);
2054 *out << " === ";
2055 *out << ((Binder->rightatom->SeparationVertex) ? "SP," : "") << "L" << Binder->rightatom->LowpointNr << " G" << Binder->rightatom->GraphNr << " Comp.";
2056 OutputComponentNumber(out, Binder->rightatom);
2057 *out << ">." << endl;
2058 if (Binder->Cyclic) // cyclic ??
2059 *out << Verbose(3) << "Lowpoint at each side are equal: CYCLIC!" << endl;
2060 }
2061
2062 // free all and exit
2063 delete(AtomStack);
2064 *out << Verbose(0) << "End of DepthFirstSearchAnalysis" << endl;
2065 return SubGraphs;
2066};
2067
2068/** Analyses the cycles found and returns minimum of all cycle lengths.
2069 * We begin with a list of Back edges found during DepthFirstSearchAnalysis(). We go through this list - one end is the Root,
2070 * the other our initial Walker - and do a Breadth First Search for the Root. We mark down each Predecessor and as soon as
2071 * we have found the Root via BFS, we may climb back the closed cycle via the Predecessors. Thereby we mark atoms and bonds
2072 * as cyclic and print out the cycles.
2073 * \param *out output stream for debugging
2074 * \param *BackEdgeStack stack with all back edges found during DFS scan. Beware: This stack contains the bonds from the total molecule, not from the subgraph!
2075 * \param *&MinimumRingSize contains smallest ring size in molecular structure on return or -1 if no rings were found, if set is maximum search distance
2076 * \todo BFS from the not-same-LP to find back to starting point of tributary cycle over more than one bond
2077 */
2078void molecule::CyclicStructureAnalysis(ofstream *out, class StackClass<bond *> * BackEdgeStack, int *&MinimumRingSize)
2079{
2080 atom **PredecessorList = (atom **) Malloc(sizeof(atom *)*AtomCount, "molecule::CyclicStructureAnalysis: **PredecessorList");
2081 int *ShortestPathList = (int *) Malloc(sizeof(int)*AtomCount, "molecule::CyclicStructureAnalysis: *ShortestPathList");
2082 enum Shading *ColorList = (enum Shading *) Malloc(sizeof(enum Shading)*AtomCount, "molecule::CyclicStructureAnalysis: *ColorList");
2083 class StackClass<atom *> *BFSStack = new StackClass<atom *> (AtomCount); // will hold the current ring
2084 class StackClass<atom *> *TouchedStack = new StackClass<atom *> (AtomCount); // contains all "touched" atoms (that need to be reset after BFS loop)
2085 atom *Walker = NULL, *OtherAtom = NULL, *Root = NULL;
2086 bond *Binder = NULL, *BackEdge = NULL;
2087 int RingSize, NumCycles, MinRingSize = -1;
2088
2089 // initialise each vertex as white with no predecessor, empty queue, color Root lightgray
2090 for (int i=AtomCount;i--;) {
2091 PredecessorList[i] = NULL;
2092 ShortestPathList[i] = -1;
2093 ColorList[i] = white;
2094 }
2095
2096 *out << Verbose(1) << "Back edge list - ";
2097 BackEdgeStack->Output(out);
2098
2099 *out << Verbose(1) << "Analysing cycles ... " << endl;
2100 NumCycles = 0;
2101 while (!BackEdgeStack->IsEmpty()) {
2102 BackEdge = BackEdgeStack->PopFirst();
2103 // this is the target
2104 Root = BackEdge->leftatom;
2105 // this is the source point
2106 Walker = BackEdge->rightatom;
2107 ShortestPathList[Walker->nr] = 0;
2108 BFSStack->ClearStack(); // start with empty BFS stack
2109 BFSStack->Push(Walker);
2110 TouchedStack->Push(Walker);
2111 *out << Verbose(1) << "---------------------------------------------------------------------------------------------------------" << endl;
2112 OtherAtom = NULL;
2113 do { // look for Root
2114 Walker = BFSStack->PopFirst();
2115 *out << Verbose(2) << "Current Walker is " << *Walker << ", we look for SP to Root " << *Root << "." << endl;
2116 for(int i=0;i<NumberOfBondsPerAtom[Walker->nr];i++) {
2117 Binder = ListOfBondsPerAtom[Walker->nr][i];
2118 if (Binder != BackEdge) { // only walk along DFS spanning tree (otherwise we always find SP of one being backedge Binder)
2119 OtherAtom = Binder->GetOtherAtom(Walker);
2120#ifdef ADDHYDROGEN
2121 if (OtherAtom->type->Z != 1) {
2122#endif
2123 *out << Verbose(2) << "Current OtherAtom is: " << OtherAtom->Name << " for bond " << *Binder << "." << endl;
2124 if (ColorList[OtherAtom->nr] == white) {
2125 TouchedStack->Push(OtherAtom);
2126 ColorList[OtherAtom->nr] = lightgray;
2127 PredecessorList[OtherAtom->nr] = Walker; // Walker is the predecessor
2128 ShortestPathList[OtherAtom->nr] = ShortestPathList[Walker->nr]+1;
2129 *out << Verbose(2) << "Coloring OtherAtom " << OtherAtom->Name << " lightgray, its predecessor is " << Walker->Name << " and its Shortest Path is " << ShortestPathList[OtherAtom->nr] << " egde(s) long." << endl;
2130 //if (ShortestPathList[OtherAtom->nr] < MinimumRingSize[Walker->GetTrueFather()->nr]) { // Check for maximum distance
2131 *out << Verbose(3) << "Putting OtherAtom into queue." << endl;
2132 BFSStack->Push(OtherAtom);
2133 //}
2134 } else {
2135 *out << Verbose(3) << "Not Adding, has already been visited." << endl;
2136 }
2137 if (OtherAtom == Root)
2138 break;
2139#ifdef ADDHYDROGEN
2140 } else {
2141 *out << Verbose(2) << "Skipping hydrogen atom " << *OtherAtom << "." << endl;
2142 ColorList[OtherAtom->nr] = black;
2143 }
2144#endif
2145 } else {
2146 *out << Verbose(2) << "Bond " << *Binder << " not Visiting, is the back edge." << endl;
2147 }
2148 }
2149 ColorList[Walker->nr] = black;
2150 *out << Verbose(1) << "Coloring Walker " << Walker->Name << " black." << endl;
2151 if (OtherAtom == Root) { // if we have found the root, check whether this cycle wasn't already found beforehand
2152 // step through predecessor list
2153 while (OtherAtom != BackEdge->rightatom) {
2154 if (!OtherAtom->GetTrueFather()->IsCyclic) // if one bond in the loop is not marked as cyclic, we haven't found this cycle yet
2155 break;
2156 else
2157 OtherAtom = PredecessorList[OtherAtom->nr];
2158 }
2159 if (OtherAtom == BackEdge->rightatom) { // if each atom in found cycle is cyclic, loop's been found before already
2160 *out << Verbose(3) << "This cycle was already found before, skipping and removing seeker from search." << endl;\
2161 do {
2162 OtherAtom = TouchedStack->PopLast();
2163 if (PredecessorList[OtherAtom->nr] == Walker) {
2164 *out << Verbose(4) << "Removing " << *OtherAtom << " from lists and stacks." << endl;
2165 PredecessorList[OtherAtom->nr] = NULL;
2166 ShortestPathList[OtherAtom->nr] = -1;
2167 ColorList[OtherAtom->nr] = white;
2168 BFSStack->RemoveItem(OtherAtom);
2169 }
2170 } while ((!TouchedStack->IsEmpty()) && (PredecessorList[OtherAtom->nr] == NULL));
2171 TouchedStack->Push(OtherAtom); // last was wrongly popped
2172 OtherAtom = BackEdge->rightatom; // set to not Root
2173 } else
2174 OtherAtom = Root;
2175 }
2176 } while ((!BFSStack->IsEmpty()) && (OtherAtom != Root) && (OtherAtom != NULL)); // || (ShortestPathList[OtherAtom->nr] < MinimumRingSize[Walker->GetTrueFather()->nr])));
2177
2178 if (OtherAtom == Root) {
2179 // now climb back the predecessor list and thus find the cycle members
2180 NumCycles++;
2181 RingSize = 1;
2182 Root->GetTrueFather()->IsCyclic = true;
2183 *out << Verbose(1) << "Found ring contains: ";
2184 Walker = Root;
2185 while (Walker != BackEdge->rightatom) {
2186 *out << Walker->Name << " <-> ";
2187 Walker = PredecessorList[Walker->nr];
2188 Walker->GetTrueFather()->IsCyclic = true;
2189 RingSize++;
2190 }
2191 *out << Walker->Name << " with a length of " << RingSize << "." << endl << endl;
2192 // walk through all and set MinimumRingSize
2193 Walker = Root;
2194 MinimumRingSize[Walker->GetTrueFather()->nr] = RingSize;
2195 while (Walker != BackEdge->rightatom) {
2196 Walker = PredecessorList[Walker->nr];
2197 if (RingSize < MinimumRingSize[Walker->GetTrueFather()->nr])
2198 MinimumRingSize[Walker->GetTrueFather()->nr] = RingSize;
2199 }
2200 if ((RingSize < MinRingSize) || (MinRingSize == -1))
2201 MinRingSize = RingSize;
2202 } else {
2203 *out << Verbose(1) << "No ring containing " << *Root << " with length equal to or smaller than " << MinimumRingSize[Walker->GetTrueFather()->nr] << " found." << endl;
2204 }
2205
2206 // now clean the lists
2207 while (!TouchedStack->IsEmpty()){
2208 Walker = TouchedStack->PopFirst();
2209 PredecessorList[Walker->nr] = NULL;
2210 ShortestPathList[Walker->nr] = -1;
2211 ColorList[Walker->nr] = white;
2212 }
2213 }
2214 if (MinRingSize != -1) {
2215 // go over all atoms
2216 Root = start;
2217 while(Root->next != end) {
2218 Root = Root->next;
2219
2220 if (MinimumRingSize[Root->GetTrueFather()->nr] == AtomCount) { // check whether MinimumRingSize is set, if not BFS to next where it is
2221 Walker = Root;
2222 ShortestPathList[Walker->nr] = 0;
2223 BFSStack->ClearStack(); // start with empty BFS stack
2224 BFSStack->Push(Walker);
2225 TouchedStack->Push(Walker);
2226 //*out << Verbose(1) << "---------------------------------------------------------------------------------------------------------" << endl;
2227 OtherAtom = Walker;
2228 while (OtherAtom != NULL) { // look for Root
2229 Walker = BFSStack->PopFirst();
2230 //*out << Verbose(2) << "Current Walker is " << *Walker << ", we look for SP to Root " << *Root << "." << endl;
2231 for(int i=0;i<NumberOfBondsPerAtom[Walker->nr];i++) {
2232 Binder = ListOfBondsPerAtom[Walker->nr][i];
2233 if ((Binder != BackEdge) || (NumberOfBondsPerAtom[Walker->nr] == 1)) { // only walk along DFS spanning tree (otherwise we always find SP of 1 being backedge Binder), but terminal hydrogens may be connected via backedge, hence extra check
2234 OtherAtom = Binder->GetOtherAtom(Walker);
2235 //*out << Verbose(2) << "Current OtherAtom is: " << OtherAtom->Name << " for bond " << *Binder << "." << endl;
2236 if (ColorList[OtherAtom->nr] == white) {
2237 TouchedStack->Push(OtherAtom);
2238 ColorList[OtherAtom->nr] = lightgray;
2239 PredecessorList[OtherAtom->nr] = Walker; // Walker is the predecessor
2240 ShortestPathList[OtherAtom->nr] = ShortestPathList[Walker->nr]+1;
2241 //*out << Verbose(2) << "Coloring OtherAtom " << OtherAtom->Name << " lightgray, its predecessor is " << Walker->Name << " and its Shortest Path is " << ShortestPathList[OtherAtom->nr] << " egde(s) long." << endl;
2242 if (OtherAtom->GetTrueFather()->IsCyclic) { // if the other atom is connected to a ring
2243 MinimumRingSize[Root->GetTrueFather()->nr] = ShortestPathList[OtherAtom->nr]+MinimumRingSize[OtherAtom->GetTrueFather()->nr];
2244 OtherAtom = NULL; //break;
2245 break;
2246 } else
2247 BFSStack->Push(OtherAtom);
2248 } else {
2249 //*out << Verbose(3) << "Not Adding, has already been visited." << endl;
2250 }
2251 } else {
2252 //*out << Verbose(3) << "Not Visiting, is a back edge." << endl;
2253 }
2254 }
2255 ColorList[Walker->nr] = black;
2256 //*out << Verbose(1) << "Coloring Walker " << Walker->Name << " black." << endl;
2257 }
2258
2259 // now clean the lists
2260 while (!TouchedStack->IsEmpty()){
2261 Walker = TouchedStack->PopFirst();
2262 PredecessorList[Walker->nr] = NULL;
2263 ShortestPathList[Walker->nr] = -1;
2264 ColorList[Walker->nr] = white;
2265 }
2266 }
2267 *out << Verbose(1) << "Minimum ring size of " << *Root << " is " << MinimumRingSize[Root->GetTrueFather()->nr] << "." << endl;
2268 }
2269 *out << Verbose(1) << "Minimum ring size is " << MinRingSize << ", over " << NumCycles << " cycles total." << endl;
2270 } else
2271 *out << Verbose(1) << "No rings were detected in the molecular structure." << endl;
2272
2273 Free((void **)&PredecessorList, "molecule::CyclicStructureAnalysis: **PredecessorList");
2274 Free((void **)&ShortestPathList, "molecule::CyclicStructureAnalysis: **ShortestPathList");
2275 Free((void **)&ColorList, "molecule::CyclicStructureAnalysis: **ColorList");
2276 delete(BFSStack);
2277};
2278
2279/** Sets the next component number.
2280 * This is O(N) as the number of bonds per atom is bound.
2281 * \param *vertex atom whose next atom::*ComponentNr is to be set
2282 * \param nr number to use
2283 */
2284void molecule::SetNextComponentNumber(atom *vertex, int nr)
2285{
2286 int i=0;
2287 if (vertex != NULL) {
2288 for(;i<NumberOfBondsPerAtom[vertex->nr];i++) {
2289 if (vertex->ComponentNr[i] == -1) { // check if not yet used
2290 vertex->ComponentNr[i] = nr;
2291 break;
2292 }
2293 else if (vertex->ComponentNr[i] == nr) // if number is already present, don't add another time
2294 break; // breaking here will not cause error!
2295 }
2296 if (i == NumberOfBondsPerAtom[vertex->nr])
2297 cerr << "Error: All Component entries are already occupied!" << endl;
2298 } else
2299 cerr << "Error: Given vertex is NULL!" << endl;
2300};
2301
2302/** Output a list of flags, stating whether the bond was visited or not.
2303 * \param *out output stream for debugging
2304 */
2305void molecule::OutputComponentNumber(ofstream *out, atom *vertex)
2306{
2307 for(int i=0;i<NumberOfBondsPerAtom[vertex->nr];i++)
2308 *out << vertex->ComponentNr[i] << " ";
2309};
2310
2311/** Allocates memory for all atom::*ComponentNr in this molecule and sets each entry to -1.
2312 */
2313void molecule::InitComponentNumbers()
2314{
2315 atom *Walker = start;
2316 while(Walker->next != end) {
2317 Walker = Walker->next;
2318 if (Walker->ComponentNr != NULL)
2319 Free((void **)&Walker->ComponentNr, "molecule::InitComponentNumbers: **Walker->ComponentNr");
2320 Walker->ComponentNr = (int *) Malloc(sizeof(int)*NumberOfBondsPerAtom[Walker->nr], "molecule::InitComponentNumbers: *Walker->ComponentNr");
2321 for (int i=NumberOfBondsPerAtom[Walker->nr];i--;)
2322 Walker->ComponentNr[i] = -1;
2323 }
2324};
2325
2326/** Returns next unused bond for this atom \a *vertex or NULL of none exists.
2327 * \param *vertex atom to regard
2328 * \return bond class or NULL
2329 */
2330bond * molecule::FindNextUnused(atom *vertex)
2331{
2332 for(int i=0;i<NumberOfBondsPerAtom[vertex->nr];i++)
2333 if (ListOfBondsPerAtom[vertex->nr][i]->IsUsed() == white)
2334 return(ListOfBondsPerAtom[vertex->nr][i]);
2335 return NULL;
2336};
2337
2338/** Resets bond::Used flag of all bonds in this molecule.
2339 * \return true - success, false - -failure
2340 */
2341void molecule::ResetAllBondsToUnused()
2342{
2343 bond *Binder = first;
2344 while (Binder->next != last) {
2345 Binder = Binder->next;
2346 Binder->ResetUsed();
2347 }
2348};
2349
2350/** Resets atom::nr to -1 of all atoms in this molecule.
2351 */
2352void molecule::ResetAllAtomNumbers()
2353{
2354 atom *Walker = start;
2355 while (Walker->next != end) {
2356 Walker = Walker->next;
2357 Walker->GraphNr = -1;
2358 }
2359};
2360
2361/** Output a list of flags, stating whether the bond was visited or not.
2362 * \param *out output stream for debugging
2363 * \param *list
2364 */
2365void OutputAlreadyVisited(ofstream *out, int *list)
2366{
2367 *out << Verbose(4) << "Already Visited Bonds:\t";
2368 for(int i=1;i<=list[0];i++) *out << Verbose(0) << list[i] << " ";
2369 *out << endl;
2370};
2371
2372/** Estimates by educated guessing (using upper limit) the expected number of fragments.
2373 * The upper limit is
2374 * \f[
2375 * n = N \cdot C^k
2376 * \f]
2377 * where \f$C=2^c\f$ and c is the maximum bond degree over N number of atoms.
2378 * \param *out output stream for debugging
2379 * \param order bond order k
2380 * \return number n of fragments
2381 */
2382int molecule::GuesstimateFragmentCount(ofstream *out, int order)
2383{
2384 int c = 0;
2385 int FragmentCount;
2386 // get maximum bond degree
2387 atom *Walker = start;
2388 while (Walker->next != end) {
2389 Walker = Walker->next;
2390 c = (NumberOfBondsPerAtom[Walker->nr] > c) ? NumberOfBondsPerAtom[Walker->nr] : c;
2391 }
2392 FragmentCount = NoNonHydrogen*(1 << (c*order));
2393 *out << Verbose(1) << "Upper limit for this subgraph is " << FragmentCount << " for " << NoNonHydrogen << " non-H atoms with maximum bond degree of " << c << "." << endl;
2394 return FragmentCount;
2395};
2396
2397/** Scans a single line for number and puts them into \a KeySet.
2398 * \param *out output stream for debugging
2399 * \param *buffer buffer to scan
2400 * \param &CurrentSet filled KeySet on return
2401 * \return true - at least one valid atom id parsed, false - CurrentSet is empty
2402 */
2403bool molecule::ScanBufferIntoKeySet(ofstream *out, char *buffer, KeySet &CurrentSet)
2404{
2405 stringstream line;
2406 int AtomNr;
2407 int status = 0;
2408
2409 line.str(buffer);
2410 while (!line.eof()) {
2411 line >> AtomNr;
2412 if ((AtomNr >= 0) && (AtomNr < AtomCount)) {
2413 CurrentSet.insert(AtomNr); // insert at end, hence in same order as in file!
2414 status++;
2415 } // else it's "-1" or else and thus must not be added
2416 }
2417 *out << Verbose(1) << "The scanned KeySet is ";
2418 for(KeySet::iterator runner = CurrentSet.begin(); runner != CurrentSet.end(); runner++) {
2419 *out << (*runner) << "\t";
2420 }
2421 *out << endl;
2422 return (status != 0);
2423};
2424
2425/** Parses the KeySet file and fills \a *FragmentList from the known molecule structure.
2426 * Does two-pass scanning:
2427 * -# Scans the keyset file and initialises a temporary graph
2428 * -# Scans TEFactors file and sets the TEFactor of each key set in the temporary graph accordingly
2429 * Finally, the temporary graph is inserted into the given \a FragmentList for return.
2430 * \param *out output stream for debugging
2431 * \param *path path to file
2432 * \param *FragmentList empty, filled on return
2433 * \return true - parsing successfully, false - failure on parsing (FragmentList will be NULL)
2434 */
2435bool molecule::ParseKeySetFile(ofstream *out, char *path, Graph *&FragmentList)
2436{
2437 bool status = true;
2438 ifstream InputFile;
2439 stringstream line;
2440 GraphTestPair testGraphInsert;
2441 int NumberOfFragments = 0;
2442 double TEFactor;
2443 char *filename = (char *) Malloc(sizeof(char)*MAXSTRINGSIZE, "molecule::ParseKeySetFile - filename");
2444
2445 if (FragmentList == NULL) { // check list pointer
2446 FragmentList = new Graph;
2447 }
2448
2449 // 1st pass: open file and read
2450 *out << Verbose(1) << "Parsing the KeySet file ... " << endl;
2451 sprintf(filename, "%s/%s%s", path, FRAGMENTPREFIX, KEYSETFILE);
2452 InputFile.open(filename);
2453 if (InputFile != NULL) {
2454 // each line represents a new fragment
2455 char *buffer = (char *) Malloc(sizeof(char)*MAXSTRINGSIZE, "molecule::ParseKeySetFile - *buffer");
2456 // 1. parse keysets and insert into temp. graph
2457 while (!InputFile.eof()) {
2458 InputFile.getline(buffer, MAXSTRINGSIZE);
2459 KeySet CurrentSet;
2460 if ((strlen(buffer) > 0) && (ScanBufferIntoKeySet(out, buffer, CurrentSet))) { // if at least one valid atom was added, write config
2461 testGraphInsert = FragmentList->insert(GraphPair (CurrentSet,pair<int,double>(NumberOfFragments++,1))); // store fragment number and current factor
2462 if (!testGraphInsert.second) {
2463 cerr << "KeySet file must be corrupt as there are two equal key sets therein!" << endl;
2464 }
2465 //FragmentList->ListOfMolecules[NumberOfFragments++] = StoreFragmentFromKeySet(out, CurrentSet, IsAngstroem);
2466 }
2467 }
2468 // 2. Free and done
2469 InputFile.close();
2470 InputFile.clear();
2471 Free((void **)&buffer, "molecule::ParseKeySetFile - *buffer");
2472 *out << Verbose(1) << "done." << endl;
2473 } else {
2474 *out << Verbose(1) << "File " << filename << " not found." << endl;
2475 status = false;
2476 }
2477
2478 // 2nd pass: open TEFactors file and read
2479 *out << Verbose(1) << "Parsing the TEFactors file ... " << endl;
2480 sprintf(filename, "%s/%s%s", path, FRAGMENTPREFIX, TEFACTORSFILE);
2481 InputFile.open(filename);
2482 if (InputFile != NULL) {
2483 // 3. add found TEFactors to each keyset
2484 NumberOfFragments = 0;
2485 for(Graph::iterator runner = FragmentList->begin();runner != FragmentList->end(); runner++) {
2486 if (!InputFile.eof()) {
2487 InputFile >> TEFactor;
2488 (*runner).second.second = TEFactor;
2489 *out << Verbose(2) << "Setting " << ++NumberOfFragments << " fragment's TEFactor to " << (*runner).second.second << "." << endl;
2490 } else {
2491 status = false;
2492 break;
2493 }
2494 }
2495 // 4. Free and done
2496 InputFile.close();
2497 *out << Verbose(1) << "done." << endl;
2498 } else {
2499 *out << Verbose(1) << "File " << filename << " not found." << endl;
2500 status = false;
2501 }
2502
2503 // free memory
2504 Free((void **)&filename, "molecule::ParseKeySetFile - filename");
2505
2506 return status;
2507};
2508
2509/** Stores keysets and TEFactors to file.
2510 * \param *out output stream for debugging
2511 * \param KeySetList Graph with Keysets and factors
2512 * \param *path path to file
2513 * \return true - file written successfully, false - writing failed
2514 */
2515bool molecule::StoreKeySetFile(ofstream *out, Graph &KeySetList, char *path)
2516{
2517 ofstream output;
2518 bool status = true;
2519 string line;
2520
2521 // open KeySet file
2522 line = path;
2523 line.append("/");
2524 line += FRAGMENTPREFIX;
2525 line += KEYSETFILE;
2526 output.open(line.c_str(), ios::out);
2527 *out << Verbose(1) << "Saving key sets of the total graph ... ";
2528 if(output != NULL) {
2529 for(Graph::iterator runner = KeySetList.begin(); runner != KeySetList.end(); runner++) {
2530 for (KeySet::iterator sprinter = (*runner).first.begin();sprinter != (*runner).first.end(); sprinter++) {
2531 if (sprinter != (*runner).first.begin())
2532 output << "\t";
2533 output << *sprinter;
2534 }
2535 output << endl;
2536 }
2537 *out << "done." << endl;
2538 } else {
2539 cerr << "Unable to open " << line << " for writing keysets!" << endl;
2540 status = false;
2541 }
2542 output.close();
2543 output.clear();
2544
2545 // open TEFactors file
2546 line = path;
2547 line.append("/");
2548 line += FRAGMENTPREFIX;
2549 line += TEFACTORSFILE;
2550 output.open(line.c_str(), ios::out);
2551 *out << Verbose(1) << "Saving TEFactors of the total graph ... ";
2552 if(output != NULL) {
2553 for(Graph::iterator runner = KeySetList.begin(); runner != KeySetList.end(); runner++)
2554 output << (*runner).second.second << endl;
2555 *out << Verbose(1) << "done." << endl;
2556 } else {
2557 *out << Verbose(1) << "failed to open " << line << "." << endl;
2558 status = false;
2559 }
2560 output.close();
2561
2562 return status;
2563};
2564
2565/** Storing the bond structure of a molecule to file.
2566 * Simply stores Atom::nr and then the Atom::nr of all bond partners per line.
2567 * \param *out output stream for debugging
2568 * \param *path path to file
2569 * \return true - file written successfully, false - writing failed
2570 */
2571bool molecule::StoreAdjacencyToFile(ofstream *out, char *path)
2572{
2573 ofstream AdjacencyFile;
2574 atom *Walker = NULL;
2575 stringstream line;
2576 bool status = true;
2577
2578 line << path << "/" << FRAGMENTPREFIX << ADJACENCYFILE;
2579 AdjacencyFile.open(line.str().c_str(), ios::out);
2580 *out << Verbose(1) << "Saving adjacency list ... ";
2581 if (AdjacencyFile != NULL) {
2582 Walker = start;
2583 while(Walker->next != end) {
2584 Walker = Walker->next;
2585 AdjacencyFile << Walker->nr << "\t";
2586 for (int i=0;i<NumberOfBondsPerAtom[Walker->nr];i++)
2587 AdjacencyFile << ListOfBondsPerAtom[Walker->nr][i]->GetOtherAtom(Walker)->nr << "\t";
2588 AdjacencyFile << endl;
2589 }
2590 AdjacencyFile.close();
2591 *out << Verbose(1) << "done." << endl;
2592 } else {
2593 *out << Verbose(1) << "failed to open file " << line.str() << "." << endl;
2594 status = false;
2595 }
2596
2597 return status;
2598};
2599
2600/** Checks contents of adjacency file against bond structure in structure molecule.
2601 * \param *out output stream for debugging
2602 * \param *path path to file
2603 * \param **ListOfAtoms allocated (molecule::AtomCount) and filled lookup table for ids (Atom::nr) to *Atom
2604 * \return true - structure is equal, false - not equivalence
2605 */
2606bool molecule::CheckAdjacencyFileAgainstMolecule(ofstream *out, char *path, atom **ListOfAtoms)
2607{
2608 ifstream File;
2609 stringstream filename;
2610 bool status = true;
2611 char *buffer = (char *) Malloc(sizeof(char)*MAXSTRINGSIZE, "molecule::CheckAdjacencyFileAgainstMolecule: *buffer");
2612
2613 filename << path << "/" << FRAGMENTPREFIX << ADJACENCYFILE;
2614 File.open(filename.str().c_str(), ios::out);
2615 *out << Verbose(1) << "Looking at bond structure stored in adjacency file and comparing to present one ... ";
2616 if (File != NULL) {
2617 // allocate storage structure
2618 int NonMatchNumber = 0; // will number of atoms with differing bond structure
2619 int *CurrentBonds = (int *) Malloc(sizeof(int)*8, "molecule::CheckAdjacencyFileAgainstMolecule - CurrentBonds"); // contains parsed bonds of current atom
2620 int CurrentBondsOfAtom;
2621
2622 // Parse the file line by line and count the bonds
2623 while (!File.eof()) {
2624 File.getline(buffer, MAXSTRINGSIZE);
2625 stringstream line;
2626 line.str(buffer);
2627 int AtomNr = -1;
2628 line >> AtomNr;
2629 CurrentBondsOfAtom = -1; // we count one too far due to line end
2630 // parse into structure
2631 if ((AtomNr >= 0) && (AtomNr < AtomCount)) {
2632 while (!line.eof())
2633 line >> CurrentBonds[ ++CurrentBondsOfAtom ];
2634 // compare against present bonds
2635 //cout << Verbose(2) << "Walker is " << *Walker << ", bond partners: ";
2636 if (CurrentBondsOfAtom == NumberOfBondsPerAtom[AtomNr]) {
2637 for(int i=0;i<NumberOfBondsPerAtom[AtomNr];i++) {
2638 int id = ListOfBondsPerAtom[AtomNr][i]->GetOtherAtom(ListOfAtoms[AtomNr])->nr;
2639 int j = 0;
2640 for (;(j<CurrentBondsOfAtom) && (CurrentBonds[j++] != id);); // check against all parsed bonds
2641 if (CurrentBonds[j-1] != id) { // no match ? Then mark in ListOfAtoms
2642 ListOfAtoms[AtomNr] = NULL;
2643 NonMatchNumber++;
2644 status = false;
2645 //out << "[" << id << "]\t";
2646 } else {
2647 //out << id << "\t";
2648 }
2649 }
2650 //out << endl;
2651 } else {
2652 *out << "Number of bonds for Atom " << *ListOfAtoms[AtomNr] << " does not match, parsed " << CurrentBondsOfAtom << " against " << NumberOfBondsPerAtom[AtomNr] << "." << endl;
2653 status = false;
2654 }
2655 }
2656 }
2657 File.close();
2658 File.clear();
2659 if (status) { // if equal we parse the KeySetFile
2660 *out << Verbose(1) << "done: Equal." << endl;
2661 status = true;
2662 } else
2663 *out << Verbose(1) << "done: Not equal by " << NonMatchNumber << " atoms." << endl;
2664 Free((void **)&CurrentBonds, "molecule::CheckAdjacencyFileAgainstMolecule - **CurrentBonds");
2665 } else {
2666 *out << Verbose(1) << "Adjacency file not found." << endl;
2667 status = false;
2668 }
2669 *out << endl;
2670 Free((void **)&buffer, "molecule::CheckAdjacencyFileAgainstMolecule: *buffer");
2671
2672 return status;
2673};
2674
2675/** Checks whether the OrderAtSite is still below \a Order at some site.
2676 * \param *out output stream for debugging
2677 * \param *AtomMask defines true/false per global Atom::nr to mask in/out each nuclear site, used to activate given number of site to increment order adaptively
2678 * \param *GlobalKeySetList list of keysets with global ids (valid in "this" molecule) needed for adaptive increase
2679 * \param Order desired Order if positive, desired exponent in threshold criteria if negative (0 is single-step)
2680 * \param *MinimumRingSize array of max. possible order to avoid loops
2681 * \param *path path to ENERGYPERFRAGMENT file (may be NULL if Order is non-negative)
2682 * \return true - needs further fragmentation, false - does not need fragmentation
2683 */
2684bool molecule::CheckOrderAtSite(ofstream *out, bool *AtomMask, Graph *GlobalKeySetList, int Order, int *MinimumRingSize, char *path)
2685{
2686 atom *Walker = start;
2687 bool status = false;
2688 ifstream InputFile;
2689
2690 // initialize mask list
2691 for(int i=AtomCount;i--;)
2692 AtomMask[i] = false;
2693
2694 if (Order < 0) { // adaptive increase of BondOrder per site
2695 if (AtomMask[AtomCount] == true) // break after one step
2696 return false;
2697 // parse the EnergyPerFragment file
2698 char *buffer = (char *) Malloc(sizeof(char)*MAXSTRINGSIZE, "molecule::CheckOrderAtSite: *buffer");
2699 sprintf(buffer, "%s/%s%s.dat", path, FRAGMENTPREFIX, ENERGYPERFRAGMENT);
2700 InputFile.open(buffer, ios::in);
2701 if ((InputFile != NULL) && (GlobalKeySetList != NULL)) {
2702 // transmorph graph keyset list into indexed KeySetList
2703 map<int,KeySet> IndexKeySetList;
2704 for(Graph::iterator runner = GlobalKeySetList->begin(); runner != GlobalKeySetList->end(); runner++) {
2705 IndexKeySetList.insert( pair<int,KeySet>(runner->second.first,runner->first) );
2706 }
2707 int lines = 0;
2708 // count the number of lines, i.e. the number of fragments
2709 InputFile.getline(buffer, MAXSTRINGSIZE); // skip comment lines
2710 InputFile.getline(buffer, MAXSTRINGSIZE);
2711 while(!InputFile.eof()) {
2712 InputFile.getline(buffer, MAXSTRINGSIZE);
2713 lines++;
2714 }
2715 //*out << Verbose(2) << "Scanned " << lines-1 << " lines." << endl; // one endline too much
2716 InputFile.clear();
2717 InputFile.seekg(ios::beg);
2718 map<int, pair<double,int> > AdaptiveCriteriaList; // (Root No., (Value, Order)) !
2719 int No, FragOrder;
2720 double Value;
2721 // each line represents a fragment root (Atom::nr) id and its energy contribution
2722 InputFile.getline(buffer, MAXSTRINGSIZE); // skip comment lines
2723 InputFile.getline(buffer, MAXSTRINGSIZE);
2724 while(!InputFile.eof()) {
2725 InputFile.getline(buffer, MAXSTRINGSIZE);
2726 if (strlen(buffer) > 2) {
2727 //*out << Verbose(2) << "Scanning: " << buffer << endl;
2728 stringstream line(buffer);
2729 line >> FragOrder;
2730 line >> ws >> No;
2731 line >> ws >> Value; // skip time entry
2732 line >> ws >> Value;
2733 No -= 1; // indices start at 1 in file, not 0
2734 //*out << Verbose(2) << " - yields (" << No << "," << Value << ", " << FragOrder << ")" << endl;
2735
2736 // clean the list of those entries that have been superceded by higher order terms already
2737 map<int,KeySet>::iterator marker = IndexKeySetList.find(No); // find keyset to Frag No.
2738 if (marker != IndexKeySetList.end()) { // if found
2739 Value *= 1 + MYEPSILON*(*((*marker).second.begin())); // in case of equal energies this makes em not equal without changing anything actually
2740 // as the smallest number in each set has always been the root (we use global id to keep the doubles away), seek smallest and insert into AtomMask
2741 pair <map<int, pair<double,int> >::iterator, bool> InsertedElement = AdaptiveCriteriaList.insert( make_pair(*((*marker).second.begin()), pair<double,int>( fabs(Value), FragOrder) ));
2742 map<int, pair<double,int> >::iterator PresentItem = InsertedElement.first;
2743 if (!InsertedElement.second) { // this root is already present
2744 if ((*PresentItem).second.second < FragOrder) // if order there is lower, update entry with higher-order term
2745 //if ((*PresentItem).second.first < (*runner).first) // as higher-order terms are not always better, we skip this part (which would always include this site into adaptive increase)
2746 { // if value is smaller, update value and order
2747 (*PresentItem).second.first = fabs(Value);
2748 (*PresentItem).second.second = FragOrder;
2749 *out << Verbose(2) << "Updated element (" << (*PresentItem).first << ",[" << (*PresentItem).second.first << "," << (*PresentItem).second.second << "])." << endl;
2750 } else {
2751 *out << Verbose(2) << "Did not update element " << (*PresentItem).first << " as " << FragOrder << " is less than or equal to " << (*PresentItem).second.second << "." << endl;
2752 }
2753 } else {
2754 *out << Verbose(2) << "Inserted element (" << (*PresentItem).first << ",[" << (*PresentItem).second.first << "," << (*PresentItem).second.second << "])." << endl;
2755 }
2756 } else {
2757 *out << Verbose(1) << "No Fragment under No. " << No << "found." << endl;
2758 }
2759 }
2760 }
2761 // then map back onto (Value, (Root Nr., Order)) (i.e. sorted by value to pick the highest ones)
2762 map<double, pair<int,int> > FinalRootCandidates;
2763 *out << Verbose(1) << "Root candidate list is: " << endl;
2764 for(map<int, pair<double,int> >::iterator runner = AdaptiveCriteriaList.begin(); runner != AdaptiveCriteriaList.end(); runner++) {
2765 Walker = FindAtom((*runner).first);
2766 if (Walker != NULL) {
2767 //if ((*runner).second.second >= Walker->AdaptiveOrder) { // only insert if this is an "active" root site for the current order
2768 if (!Walker->MaxOrder) {
2769 *out << Verbose(2) << "(" << (*runner).first << ",[" << (*runner).second.first << "," << (*runner).second.second << "])" << endl;
2770 FinalRootCandidates.insert( make_pair( (*runner).second.first, pair<int,int>((*runner).first, (*runner).second.second) ) );
2771 } else {
2772 *out << Verbose(2) << "Excluding (" << *Walker << ", " << (*runner).first << ",[" << (*runner).second.first << "," << (*runner).second.second << "]), as it has reached its maximum order." << endl;
2773 }
2774 } else {
2775 cerr << "Atom No. " << (*runner).second.first << " was not found in this molecule." << endl;
2776 }
2777 }
2778 // pick the ones still below threshold and mark as to be adaptively updated
2779 for(map<double, pair<int,int> >::iterator runner = FinalRootCandidates.upper_bound(pow(10.,Order)); runner != FinalRootCandidates.end(); runner++) {
2780 No = (*runner).second.first;
2781 Walker = FindAtom(No);
2782 //if (Walker->AdaptiveOrder < MinimumRingSize[Walker->nr]) {
2783 *out << Verbose(2) << "Root " << No << " is still above threshold (10^{" << Order <<"}: " << runner->first << ", setting entry " << No << " of Atom mask to true." << endl;
2784 AtomMask[No] = true;
2785 status = true;
2786 //} else
2787 //*out << Verbose(2) << "Root " << No << " is still above threshold (10^{" << Order <<"}: " << runner->first << ", however MinimumRingSize of " << MinimumRingSize[Walker->nr] << " does not allow further adaptive increase." << endl;
2788 }
2789 // close and done
2790 InputFile.close();
2791 InputFile.clear();
2792 } else {
2793 cerr << "Unable to parse " << buffer << " file, incrementing all." << endl;
2794 while (Walker->next != end) {
2795 Walker = Walker->next;
2796 #ifdef ADDHYDROGEN
2797 if (Walker->type->Z != 1) // skip hydrogen
2798 #endif
2799 {
2800 AtomMask[Walker->nr] = true; // include all (non-hydrogen) atoms
2801 status = true;
2802 }
2803 }
2804 }
2805 Free((void **)&buffer, "molecule::CheckOrderAtSite: *buffer");
2806 // pick a given number of highest values and set AtomMask
2807 } else { // global increase of Bond Order
2808 while (Walker->next != end) {
2809 Walker = Walker->next;
2810 #ifdef ADDHYDROGEN
2811 if (Walker->type->Z != 1) // skip hydrogen
2812 #endif
2813 {
2814 AtomMask[Walker->nr] = true; // include all (non-hydrogen) atoms
2815 if ((Order != 0) && (Walker->AdaptiveOrder < Order)) // && (Walker->AdaptiveOrder < MinimumRingSize[Walker->nr]))
2816 status = true;
2817 }
2818 }
2819 if ((Order == 0) && (AtomMask[AtomCount] == false)) // single stepping, just check
2820 status = true;
2821
2822 if (!status) {
2823 if (Order == 0)
2824 *out << Verbose(1) << "Single stepping done." << endl;
2825 else
2826 *out << Verbose(1) << "Order at every site is already equal or above desired order " << Order << "." << endl;
2827 }
2828 }
2829
2830 // print atom mask for debugging
2831 *out << " ";
2832 for(int i=0;i<AtomCount;i++)
2833 *out << (i % 10);
2834 *out << endl << "Atom mask is: ";
2835 for(int i=0;i<AtomCount;i++)
2836 *out << (AtomMask[i] ? "t" : "f");
2837 *out << endl;
2838
2839 return status;
2840};
2841
2842/** Create a SortIndex to map from atomic labels to the sequence in which the atoms are given in the config file.
2843 * \param *out output stream for debugging
2844 * \param *&SortIndex Mapping array of size molecule::AtomCount
2845 * \return true - success, false - failure of SortIndex alloc
2846 */
2847bool molecule::CreateMappingLabelsToConfigSequence(ofstream *out, int *&SortIndex)
2848{
2849 element *runner = elemente->start;
2850 int AtomNo = 0;
2851 atom *Walker = NULL;
2852
2853 if (SortIndex != NULL) {
2854 *out << Verbose(1) << "SortIndex is " << SortIndex << " and not NULL as expected." << endl;
2855 return false;
2856 }
2857 SortIndex = (int *) Malloc(sizeof(int)*AtomCount, "molecule::FragmentMolecule: *SortIndex");
2858 for(int i=AtomCount;i--;)
2859 SortIndex[i] = -1;
2860 while (runner->next != elemente->end) { // go through every element
2861 runner = runner->next;
2862 if (ElementsInMolecule[runner->Z]) { // if this element got atoms
2863 Walker = start;
2864 while (Walker->next != end) { // go through every atom of this element
2865 Walker = Walker->next;
2866 if (Walker->type->Z == runner->Z) // if this atom fits to element
2867 SortIndex[Walker->nr] = AtomNo++;
2868 }
2869 }
2870 }
2871 return true;
2872};
2873
2874/** Performs a many-body bond order analysis for a given bond order.
2875 * -# parses adjacency, keysets and orderatsite files
2876 * -# performs DFS to find connected subgraphs (to leave this in was a design decision: might be useful later)
2877 * -# RootStack is created for every subgraph (here, later we implement the "update 10 sites with highest energ
2878y contribution", and that's why this consciously not done in the following loop)
2879 * -# in a loop over all subgraphs
2880 * -# calls FragmentBOSSANOVA with this RootStack and within the subgraph molecule structure
2881 * -# creates molecule (fragment)s from the returned keysets (StoreFragmentFromKeySet)
2882 * -# combines the generated molecule lists from all subgraphs
2883 * -# saves to disk: fragment configs, adjacency, orderatsite, keyset files
2884 * Note that as we split "this" molecule up into a list of subgraphs, i.e. a MoleculeListClass, we have two sets
2885 * of vertex indices: Global always means the index in "this" molecule, whereas local refers to the molecule or
2886 * subgraph in the MoleculeListClass.
2887 * \param *out output stream for debugging
2888 * \param Order up to how many neighbouring bonds a fragment contains in BondOrderScheme::BottumUp scheme
2889 * \param *configuration configuration for writing config files for each fragment
2890 * \return 1 - continue, 2 - stop (no fragmentation occured)
2891 */
2892int molecule::FragmentMolecule(ofstream *out, int Order, config *configuration)
2893{
2894 MoleculeListClass *BondFragments = NULL;
2895 int *SortIndex = NULL;
2896 int *MinimumRingSize = new int[AtomCount];
2897 int FragmentCounter;
2898 MoleculeLeafClass *MolecularWalker = NULL;
2899 MoleculeLeafClass *Subgraphs = NULL; // list of subgraphs from DFS analysis
2900 fstream File;
2901 bool FragmentationToDo = true;
2902 class StackClass<bond *> *BackEdgeStack = NULL, *LocalBackEdgeStack = NULL;
2903 bool CheckOrder = false;
2904 Graph **FragmentList = NULL;
2905 Graph *ParsedFragmentList = NULL;
2906 Graph TotalGraph; // graph with all keysets however local numbers
2907 int TotalNumberOfKeySets = 0;
2908 atom **ListOfAtoms = NULL;
2909 atom ***ListOfLocalAtoms = NULL;
2910 bool *AtomMask = NULL;
2911
2912 *out << endl;
2913#ifdef ADDHYDROGEN
2914 *out << Verbose(0) << "I will treat hydrogen special and saturate dangling bonds with it." << endl;
2915#else
2916 *out << Verbose(0) << "Hydrogen is treated just like the rest of the lot." << endl;
2917#endif
2918
2919 // ++++++++++++++++++++++++++++ INITIAL STUFF: Bond structure analysis, file parsing, ... ++++++++++++++++++++++++++++++++++++++++++
2920
2921 // ===== 1. Check whether bond structure is same as stored in files ====
2922
2923 // fill the adjacency list
2924 CreateListOfBondsPerAtom(out);
2925
2926 // create lookup table for Atom::nr
2927 FragmentationToDo = FragmentationToDo && CreateFatherLookupTable(out, start, end, ListOfAtoms, AtomCount);
2928
2929 // === compare it with adjacency file ===
2930 FragmentationToDo = FragmentationToDo && CheckAdjacencyFileAgainstMolecule(out, configuration->configpath, ListOfAtoms);
2931 Free((void **)&ListOfAtoms, "molecule::FragmentMolecule - **ListOfAtoms");
2932
2933 // ===== 2. perform a DFS analysis to gather info on cyclic structure and a list of disconnected subgraphs =====
2934 Subgraphs = DepthFirstSearchAnalysis(out, BackEdgeStack);
2935 // fill the bond structure of the individually stored subgraphs
2936 Subgraphs->next->FillBondStructureFromReference(out, this, (FragmentCounter = 0), ListOfLocalAtoms, false); // we want to keep the created ListOfLocalAtoms
2937 // analysis of the cycles (print rings, get minimum cycle length) for each subgraph
2938 for(int i=AtomCount;i--;)
2939 MinimumRingSize[i] = AtomCount;
2940 MolecularWalker = Subgraphs;
2941 FragmentCounter = 0;
2942 while (MolecularWalker->next != NULL) {
2943 MolecularWalker = MolecularWalker->next;
2944 LocalBackEdgeStack = new StackClass<bond *> (MolecularWalker->Leaf->BondCount);
2945// // check the list of local atoms for debugging
2946// *out << Verbose(0) << "ListOfLocalAtoms for this subgraph is:" << endl;
2947// for (int i=0;i<AtomCount;i++)
2948// if (ListOfLocalAtoms[FragmentCounter][i] == NULL)
2949// *out << "\tNULL";
2950// else
2951// *out << "\t" << ListOfLocalAtoms[FragmentCounter][i]->Name;
2952 *out << Verbose(0) << "Gathering local back edges for subgraph " << MolecularWalker->Leaf << " with nr. " << FragmentCounter << "." << endl;
2953 MolecularWalker->Leaf->PickLocalBackEdges(out, ListOfLocalAtoms[FragmentCounter++], BackEdgeStack, LocalBackEdgeStack);
2954 *out << Verbose(0) << "Analysing the cycles of subgraph " << MolecularWalker->Leaf << " with nr. " << FragmentCounter << "." << endl;
2955 MolecularWalker->Leaf->CyclicStructureAnalysis(out, LocalBackEdgeStack, MinimumRingSize);
2956 *out << Verbose(0) << "Done with Analysing the cycles of subgraph " << MolecularWalker->Leaf << " with nr. " << FragmentCounter << "." << endl;
2957 delete(LocalBackEdgeStack);
2958 }
2959
2960 // ===== 3. if structure still valid, parse key set file and others =====
2961 FragmentationToDo = FragmentationToDo && ParseKeySetFile(out, configuration->configpath, ParsedFragmentList);
2962
2963 // ===== 4. check globally whether there's something to do actually (first adaptivity check)
2964 FragmentationToDo = FragmentationToDo && ParseOrderAtSiteFromFile(out, configuration->configpath);
2965
2966 // =================================== Begin of FRAGMENTATION ===============================
2967 // ===== 6a. assign each keyset to its respective subgraph =====
2968 Subgraphs->next->AssignKeySetsToFragment(out, this, ParsedFragmentList, ListOfLocalAtoms, FragmentList, (FragmentCounter = 0), true);
2969
2970 // ===== 6b. prepare and go into the adaptive (Order<0), single-step (Order==0) or incremental (Order>0) cycle
2971 KeyStack *RootStack = new KeyStack[Subgraphs->next->Count()];
2972 AtomMask = new bool[AtomCount+1];
2973 AtomMask[AtomCount] = false;
2974 FragmentationToDo = false; // if CheckOrderAtSite just ones recommends fragmentation, we will save fragments afterwards
2975 while ((CheckOrder = CheckOrderAtSite(out, AtomMask, ParsedFragmentList, Order, MinimumRingSize, configuration->configpath))) {
2976 FragmentationToDo = FragmentationToDo || CheckOrder;
2977 AtomMask[AtomCount] = true; // last plus one entry is used as marker that we have been through this loop once already in CheckOrderAtSite()
2978 // ===== 6b. fill RootStack for each subgraph (second adaptivity check) =====
2979 Subgraphs->next->FillRootStackForSubgraphs(out, RootStack, AtomMask, (FragmentCounter = 0));
2980
2981 // ===== 7. fill the bond fragment list =====
2982 FragmentCounter = 0;
2983 MolecularWalker = Subgraphs;
2984 while (MolecularWalker->next != NULL) {
2985 MolecularWalker = MolecularWalker->next;
2986 *out << Verbose(1) << "Fragmenting subgraph " << MolecularWalker << "." << endl;
2987 //MolecularWalker->Leaf->OutputListOfBonds(out); // output ListOfBondsPerAtom for debugging
2988 if (MolecularWalker->Leaf->first->next != MolecularWalker->Leaf->last) {
2989 // call BOSSANOVA method
2990 *out << Verbose(0) << endl << " ========== BOND ENERGY of subgraph " << FragmentCounter << " ========================= " << endl;
2991 MolecularWalker->Leaf->FragmentBOSSANOVA(out, FragmentList[FragmentCounter], RootStack[FragmentCounter], MinimumRingSize);
2992 } else {
2993 cerr << "Subgraph " << MolecularWalker << " has no atoms!" << endl;
2994 }
2995 FragmentCounter++; // next fragment list
2996 }
2997 }
2998 delete[](RootStack);
2999 delete[](AtomMask);
3000 delete(ParsedFragmentList);
3001 delete[](MinimumRingSize);
3002
3003
3004 // ==================================== End of FRAGMENTATION ============================================
3005
3006 // ===== 8a. translate list into global numbers (i.e. ones that are valid in "this" molecule, not in MolecularWalker->Leaf)
3007 Subgraphs->next->TranslateIndicesToGlobalIDs(out, FragmentList, (FragmentCounter = 0), TotalNumberOfKeySets, TotalGraph);
3008
3009 // free subgraph memory again
3010 FragmentCounter = 0;
3011 if (Subgraphs != NULL) {
3012 while (Subgraphs->next != NULL) {
3013 Subgraphs = Subgraphs->next;
3014 delete(FragmentList[FragmentCounter++]);
3015 delete(Subgraphs->previous);
3016 }
3017 delete(Subgraphs);
3018 }
3019 Free((void **)&FragmentList, "molecule::FragmentMolecule - **FragmentList");
3020
3021 // ===== 8b. gather keyset lists (graphs) from all subgraphs and transform into MoleculeListClass =====
3022 //if (FragmentationToDo) { // we should always store the fragments again as coordination might have changed slightly without changing bond structure
3023 // allocate memory for the pointer array and transmorph graphs into full molecular fragments
3024 BondFragments = new MoleculeListClass(TotalGraph.size(), AtomCount);
3025 int k=0;
3026 for(Graph::iterator runner = TotalGraph.begin(); runner != TotalGraph.end(); runner++) {
3027 KeySet test = (*runner).first;
3028 *out << "Fragment No." << (*runner).second.first << " with TEFactor " << (*runner).second.second << "." << endl;
3029 BondFragments->ListOfMolecules[k] = StoreFragmentFromKeySet(out, test, configuration);
3030 k++;
3031 }
3032 *out << k << "/" << BondFragments->NumberOfMolecules << " fragments generated from the keysets." << endl;
3033
3034 // ===== 9. Save fragments' configuration and keyset files et al to disk ===
3035 if (BondFragments->NumberOfMolecules != 0) {
3036 // create the SortIndex from BFS labels to order in the config file
3037 CreateMappingLabelsToConfigSequence(out, SortIndex);
3038
3039 *out << Verbose(1) << "Writing " << BondFragments->NumberOfMolecules << " possible bond fragmentation configs" << endl;
3040 if (BondFragments->OutputConfigForListOfFragments(out, configuration, SortIndex))
3041 *out << Verbose(1) << "All configs written." << endl;
3042 else
3043 *out << Verbose(1) << "Some config writing failed." << endl;
3044
3045 // store force index reference file
3046 BondFragments->StoreForcesFile(out, configuration->configpath, SortIndex);
3047
3048 // store keysets file
3049 StoreKeySetFile(out, TotalGraph, configuration->configpath);
3050
3051 // store Adjacency file
3052 StoreAdjacencyToFile(out, configuration->configpath);
3053
3054 // store Hydrogen saturation correction file
3055 BondFragments->AddHydrogenCorrection(out, configuration->configpath);
3056
3057 // store adaptive orders into file
3058 StoreOrderAtSiteFile(out, configuration->configpath);
3059
3060 // restore orbital and Stop values
3061 CalculateOrbitals(*configuration);
3062
3063 // free memory for bond part
3064 *out << Verbose(1) << "Freeing bond memory" << endl;
3065 delete(FragmentList); // remove bond molecule from memory
3066 Free((void **)&SortIndex, "molecule::FragmentMolecule: *SortIndex");
3067 } else
3068 *out << Verbose(1) << "FragmentList is zero on return, splitting failed." << endl;
3069 //} else
3070 // *out << Verbose(1) << "No fragments to store." << endl;
3071 *out << Verbose(0) << "End of bond fragmentation." << endl;
3072
3073 return ((int)(!FragmentationToDo)+1); // 1 - continue, 2 - stop (no fragmentation occured)
3074};
3075
3076
3077/** Picks from a global stack with all back edges the ones in the fragment.
3078 * \param *out output stream for debugging
3079 * \param **ListOfLocalAtoms array of father atom::nr to local atom::nr (reverse of atom::father)
3080 * \param *ReferenceStack stack with all the back egdes
3081 * \param *LocalStack stack to be filled
3082 * \return true - everything ok, false - ReferenceStack was empty
3083 */
3084bool molecule::PickLocalBackEdges(ofstream *out, atom **ListOfLocalAtoms, class StackClass<bond *> *&ReferenceStack, class StackClass<bond *> *&LocalStack)
3085{
3086 bool status = true;
3087 if (ReferenceStack->IsEmpty()) {
3088 cerr << "ReferenceStack is empty!" << endl;
3089 return false;
3090 }
3091 bond *Binder = ReferenceStack->PopFirst();
3092 bond *FirstBond = Binder; // mark the first bond, so that we don't loop through the stack indefinitely
3093 atom *Walker = NULL, *OtherAtom = NULL;
3094 ReferenceStack->Push(Binder);
3095
3096 do { // go through all bonds and push local ones
3097 Walker = ListOfLocalAtoms[Binder->leftatom->nr]; // get one atom in the reference molecule
3098 if (Walker != NULL) // if this Walker exists in the subgraph ...
3099 for(int i=0;i<NumberOfBondsPerAtom[Walker->nr];i++) { // go through the local list of bonds
3100 OtherAtom = ListOfBondsPerAtom[Walker->nr][i]->GetOtherAtom(Walker);
3101 if (OtherAtom == ListOfLocalAtoms[Binder->rightatom->nr]) { // found the bond
3102 LocalStack->Push(ListOfBondsPerAtom[Walker->nr][i]);
3103 *out << Verbose(3) << "Found local edge " << *(ListOfBondsPerAtom[Walker->nr][i]) << "." << endl;
3104 break;
3105 }
3106 }
3107 Binder = ReferenceStack->PopFirst(); // loop the stack for next item
3108 *out << Verbose(3) << "Current candidate edge " << Binder << "." << endl;
3109 ReferenceStack->Push(Binder);
3110 } while (FirstBond != Binder);
3111
3112 return status;
3113};
3114
3115/** Stores pairs (Atom::nr, Atom::AdaptiveOrder) into file.
3116 * Atoms not present in the file get "-1".
3117 * \param *out output stream for debugging
3118 * \param *path path to file ORDERATSITEFILE
3119 * \return true - file writable, false - not writable
3120 */
3121bool molecule::StoreOrderAtSiteFile(ofstream *out, char *path)
3122{
3123 stringstream line;
3124 ofstream file;
3125
3126 line << path << "/" << FRAGMENTPREFIX << ORDERATSITEFILE;
3127 file.open(line.str().c_str());
3128 *out << Verbose(1) << "Writing OrderAtSite " << ORDERATSITEFILE << " ... " << endl;
3129 if (file != NULL) {
3130 atom *Walker = start;
3131 while (Walker->next != end) {
3132 Walker = Walker->next;
3133 file << Walker->nr << "\t" << (int)Walker->AdaptiveOrder << "\t" << (int)Walker->MaxOrder << endl;
3134 *out << Verbose(2) << "Storing: " << Walker->nr << "\t" << (int)Walker->AdaptiveOrder << "\t" << (int)Walker->MaxOrder << "." << endl;
3135 }
3136 file.close();
3137 *out << Verbose(1) << "done." << endl;
3138 return true;
3139 } else {
3140 *out << Verbose(1) << "failed to open file " << line.str() << "." << endl;
3141 return false;
3142 }
3143};
3144
3145/** Parses pairs(Atom::nr, Atom::AdaptiveOrder) from file and stores in molecule's Atom's.
3146 * Atoms not present in the file get "0".
3147 * \param *out output stream for debugging
3148 * \param *path path to file ORDERATSITEFILEe
3149 * \return true - file found and scanned, false - file not found
3150 * \sa ParseKeySetFile() and CheckAdjacencyFileAgainstMolecule() as this is meant to be used in conjunction with the two
3151 */
3152bool molecule::ParseOrderAtSiteFromFile(ofstream *out, char *path)
3153{
3154 unsigned char *OrderArray = (unsigned char *) Malloc(sizeof(unsigned char)*AtomCount, "molecule::ParseOrderAtSiteFromFile - *OrderArray");
3155 bool *MaxArray = (bool *) Malloc(sizeof(bool)*AtomCount, "molecule::ParseOrderAtSiteFromFile - *MaxArray");
3156 bool status;
3157 int AtomNr, value;
3158 stringstream line;
3159 ifstream file;
3160
3161 *out << Verbose(1) << "Begin of ParseOrderAtSiteFromFile" << endl;
3162 for(int i=AtomCount;i--;)
3163 OrderArray[i] = 0;
3164 line << path << "/" << FRAGMENTPREFIX << ORDERATSITEFILE;
3165 file.open(line.str().c_str());
3166 if (file != NULL) {
3167 for (int i=AtomCount;i--;) { // initialise with 0
3168 OrderArray[i] = 0;
3169 MaxArray[i] = 0;
3170 }
3171 while (!file.eof()) { // parse from file
3172 AtomNr = -1;
3173 file >> AtomNr;
3174 if (AtomNr != -1) { // test whether we really parsed something (this is necessary, otherwise last atom is set twice and to 0 on second time)
3175 file >> value;
3176 OrderArray[AtomNr] = value;
3177 file >> value;
3178 MaxArray[AtomNr] = value;
3179 //*out << Verbose(2) << "AtomNr " << AtomNr << " with order " << (int)OrderArray[AtomNr] << " and max order set to " << (int)MaxArray[AtomNr] << "." << endl;
3180 }
3181 }
3182 atom *Walker = start;
3183 while (Walker->next != end) { // fill into atom classes
3184 Walker = Walker->next;
3185 Walker->AdaptiveOrder = OrderArray[Walker->nr];
3186 Walker->MaxOrder = MaxArray[Walker->nr];
3187 *out << Verbose(2) << *Walker << " gets order " << (int)Walker->AdaptiveOrder << " and is " << (!Walker->MaxOrder ? "not " : " ") << "maxed." << endl;
3188 }
3189 file.close();
3190 *out << Verbose(1) << "done." << endl;
3191 status = true;
3192 } else {
3193 *out << Verbose(1) << "failed to open file " << line.str() << "." << endl;
3194 status = false;
3195 }
3196 Free((void **)&OrderArray, "molecule::ParseOrderAtSiteFromFile - *OrderArray");
3197 Free((void **)&MaxArray, "molecule::ParseOrderAtSiteFromFile - *MaxArray");
3198
3199 *out << Verbose(1) << "End of ParseOrderAtSiteFromFile" << endl;
3200 return status;
3201};
3202
3203/** Creates an 2d array of pointer with an entry for each atom and each bond it has.
3204 * Updates molecule::ListOfBondsPerAtom, molecule::NumberOfBondsPerAtom by parsing through
3205 * bond chain list, using molecule::AtomCount and molecule::BondCount.
3206 * Allocates memory, fills the array and exits
3207 * \param *out output stream for debugging
3208 */
3209void molecule::CreateListOfBondsPerAtom(ofstream *out)
3210{
3211 bond *Binder = NULL;
3212 atom *Walker = NULL;
3213 int TotalDegree;
3214 *out << Verbose(1) << "Begin of Creating ListOfBondsPerAtom: AtomCount = " << AtomCount << "\tBondCount = " << BondCount << "\tNoNonBonds = " << NoNonBonds << "." << endl;
3215
3216 // re-allocate memory
3217 *out << Verbose(2) << "(Re-)Allocating memory." << endl;
3218 if (ListOfBondsPerAtom != NULL) {
3219 for(int i=AtomCount;i--;)
3220 Free((void **)&ListOfBondsPerAtom[i], "molecule::CreateListOfBondsPerAtom: ListOfBondsPerAtom[i]");
3221 Free((void **)&ListOfBondsPerAtom, "molecule::CreateListOfBondsPerAtom: ListOfBondsPerAtom");
3222 }
3223 if (NumberOfBondsPerAtom != NULL)
3224 Free((void **)&NumberOfBondsPerAtom, "molecule::CreateListOfBondsPerAtom: NumberOfBondsPerAtom");
3225 ListOfBondsPerAtom = (bond ***) Malloc(sizeof(bond **)*AtomCount, "molecule::CreateListOfBondsPerAtom: ***ListOfBondsPerAtom");
3226 NumberOfBondsPerAtom = (int *) Malloc(sizeof(int)*AtomCount, "molecule::CreateListOfBondsPerAtom: *NumberOfBondsPerAtom");
3227
3228 // reset bond counts per atom
3229 for(int i=AtomCount;i--;)
3230 NumberOfBondsPerAtom[i] = 0;
3231 // count bonds per atom
3232 Binder = first;
3233 while (Binder->next != last) {
3234 Binder = Binder->next;
3235 NumberOfBondsPerAtom[Binder->leftatom->nr]++;
3236 NumberOfBondsPerAtom[Binder->rightatom->nr]++;
3237 }
3238 for(int i=AtomCount;i--;) {
3239 // allocate list of bonds per atom
3240 ListOfBondsPerAtom[i] = (bond **) Malloc(sizeof(bond *)*NumberOfBondsPerAtom[i], "molecule::CreateListOfBondsPerAtom: **ListOfBondsPerAtom[]");
3241 // clear the list again, now each NumberOfBondsPerAtom marks current free field
3242 NumberOfBondsPerAtom[i] = 0;
3243 }
3244 // fill the list
3245 Binder = first;
3246 while (Binder->next != last) {
3247 Binder = Binder->next;
3248 ListOfBondsPerAtom[Binder->leftatom->nr][NumberOfBondsPerAtom[Binder->leftatom->nr]++] = Binder;
3249 ListOfBondsPerAtom[Binder->rightatom->nr][NumberOfBondsPerAtom[Binder->rightatom->nr]++] = Binder;
3250 }
3251
3252 // output list for debugging
3253 *out << Verbose(3) << "ListOfBondsPerAtom for each atom:" << endl;
3254 Walker = start;
3255 while (Walker->next != end) {
3256 Walker = Walker->next;
3257 *out << Verbose(4) << "Atom " << Walker->Name << "/" << Walker->nr << " with " << NumberOfBondsPerAtom[Walker->nr] << " bonds: ";
3258 TotalDegree = 0;
3259 for (int j=0;j<NumberOfBondsPerAtom[Walker->nr];j++) {
3260 *out << *ListOfBondsPerAtom[Walker->nr][j] << "\t";
3261 TotalDegree += ListOfBondsPerAtom[Walker->nr][j]->BondDegree;
3262 }
3263 *out << " -- TotalDegree: " << TotalDegree << endl;
3264 }
3265 *out << Verbose(1) << "End of Creating ListOfBondsPerAtom." << endl << endl;
3266};
3267
3268/** Adds atoms up to \a BondCount distance from \a *Root and notes them down in \a **AddedAtomList.
3269 * Gray vertices are always enqueued in an StackClass<atom *> FIFO queue, the rest is usual BFS with adding vertices found was
3270 * white and putting into queue.
3271 * \param *out output stream for debugging
3272 * \param *Mol Molecule class to add atoms to
3273 * \param **AddedAtomList list with added atom pointers, index is atom father's number
3274 * \param **AddedBondList list with added bond pointers, index is bond father's number
3275 * \param *Root root vertex for BFS
3276 * \param *Bond bond not to look beyond
3277 * \param BondOrder maximum distance for vertices to add
3278 * \param IsAngstroem lengths are in angstroem or bohrradii
3279 */
3280void molecule::BreadthFirstSearchAdd(ofstream *out, molecule *Mol, atom **&AddedAtomList, bond **&AddedBondList, atom *Root, bond *Bond, int BondOrder, bool IsAngstroem)
3281{
3282 atom **PredecessorList = (atom **) Malloc(sizeof(atom *)*AtomCount, "molecule::BreadthFirstSearchAdd: **PredecessorList");
3283 int *ShortestPathList = (int *) Malloc(sizeof(int)*AtomCount, "molecule::BreadthFirstSearchAdd: *ShortestPathList");
3284 enum Shading *ColorList = (enum Shading *) Malloc(sizeof(enum Shading)*AtomCount, "molecule::BreadthFirstSearchAdd: *ColorList");
3285 class StackClass<atom *> *AtomStack = new StackClass<atom *>(AtomCount);
3286 atom *Walker = NULL, *OtherAtom = NULL;
3287 bond *Binder = NULL;
3288
3289 // add Root if not done yet
3290 AtomStack->ClearStack();
3291 if (AddedAtomList[Root->nr] == NULL) // add Root if not yet present
3292 AddedAtomList[Root->nr] = Mol->AddCopyAtom(Root);
3293 AtomStack->Push(Root);
3294
3295 // initialise each vertex as white with no predecessor, empty queue, color Root lightgray
3296 for (int i=AtomCount;i--;) {
3297 PredecessorList[i] = NULL;
3298 ShortestPathList[i] = -1;
3299 if (AddedAtomList[i] != NULL) // mark already present atoms (i.e. Root and maybe others) as visited
3300 ColorList[i] = lightgray;
3301 else
3302 ColorList[i] = white;
3303 }
3304 ShortestPathList[Root->nr] = 0;
3305
3306 // and go on ... Queue always contains all lightgray vertices
3307 while (!AtomStack->IsEmpty()) {
3308 // we have to pop the oldest atom from stack. This keeps the atoms on the stack always of the same ShortestPath distance.
3309 // e.g. if current atom is 2, push to end of stack are of length 3, but first all of length 2 would be popped. They again
3310 // append length of 3 (their neighbours). Thus on stack we have always atoms of a certain length n at bottom of stack and
3311 // followed by n+1 till top of stack.
3312 Walker = AtomStack->PopFirst(); // pop oldest added
3313 *out << Verbose(1) << "Current Walker is: " << Walker->Name << ", and has " << NumberOfBondsPerAtom[Walker->nr] << " bonds." << endl;
3314 for(int i=0;i<NumberOfBondsPerAtom[Walker->nr];i++) {
3315 Binder = ListOfBondsPerAtom[Walker->nr][i];
3316 if (Binder != NULL) { // don't look at bond equal NULL
3317 OtherAtom = Binder->GetOtherAtom(Walker);
3318 *out << Verbose(2) << "Current OtherAtom is: " << OtherAtom->Name << " for bond " << *Binder << "." << endl;
3319 if (ColorList[OtherAtom->nr] == white) {
3320 if (Binder != Bond) // let other atom white if it's via Root bond. In case it's cyclic it has to be reached again (yet Root is from OtherAtom already black, thus no problem)
3321 ColorList[OtherAtom->nr] = lightgray;
3322 PredecessorList[OtherAtom->nr] = Walker; // Walker is the predecessor
3323 ShortestPathList[OtherAtom->nr] = ShortestPathList[Walker->nr]+1;
3324 *out << Verbose(2) << "Coloring OtherAtom " << OtherAtom->Name << " " << ((ColorList[OtherAtom->nr] == white) ? "white" : "lightgray") << ", its predecessor is " << Walker->Name << " and its Shortest Path is " << ShortestPathList[OtherAtom->nr] << " egde(s) long." << endl;
3325 if ((((ShortestPathList[OtherAtom->nr] < BondOrder) && (Binder != Bond))) ) { // Check for maximum distance
3326 *out << Verbose(3);
3327 if (AddedAtomList[OtherAtom->nr] == NULL) { // add if it's not been so far
3328 AddedAtomList[OtherAtom->nr] = Mol->AddCopyAtom(OtherAtom);
3329 *out << "Added OtherAtom " << OtherAtom->Name;
3330 AddedBondList[Binder->nr] = Mol->AddBond(AddedAtomList[Walker->nr], AddedAtomList[OtherAtom->nr], Binder->BondDegree);
3331 AddedBondList[Binder->nr]->Cyclic = Binder->Cyclic;
3332 AddedBondList[Binder->nr]->Type = Binder->Type;
3333 *out << " and bond " << *(AddedBondList[Binder->nr]) << ", ";
3334 } else { // this code should actually never come into play (all white atoms are not yet present in BondMolecule, that's why they are white in the first place)
3335 *out << "Not adding OtherAtom " << OtherAtom->Name;
3336 if (AddedBondList[Binder->nr] == NULL) {
3337 AddedBondList[Binder->nr] = Mol->AddBond(AddedAtomList[Walker->nr], AddedAtomList[OtherAtom->nr], Binder->BondDegree);
3338 AddedBondList[Binder->nr]->Cyclic = Binder->Cyclic;
3339 AddedBondList[Binder->nr]->Type = Binder->Type;
3340 *out << ", added Bond " << *(AddedBondList[Binder->nr]);
3341 } else
3342 *out << ", not added Bond ";
3343 }
3344 *out << ", putting OtherAtom into queue." << endl;
3345 AtomStack->Push(OtherAtom);
3346 } else { // out of bond order, then replace
3347 if ((AddedAtomList[OtherAtom->nr] == NULL) && (Binder->Cyclic))
3348 ColorList[OtherAtom->nr] = white; // unmark if it has not been queued/added, to make it available via its other bonds (cyclic)
3349 if (Binder == Bond)
3350 *out << Verbose(3) << "Not Queueing, is the Root bond";
3351 else if (ShortestPathList[OtherAtom->nr] >= BondOrder)
3352 *out << Verbose(3) << "Not Queueing, is out of Bond Count of " << BondOrder;
3353 if (!Binder->Cyclic)
3354 *out << ", is not part of a cyclic bond, saturating bond with Hydrogen." << endl;
3355 if (AddedBondList[Binder->nr] == NULL) {
3356 if ((AddedAtomList[OtherAtom->nr] != NULL)) { // .. whether we add or saturate
3357 AddedBondList[Binder->nr] = Mol->AddBond(AddedAtomList[Walker->nr], AddedAtomList[OtherAtom->nr], Binder->BondDegree);
3358 AddedBondList[Binder->nr]->Cyclic = Binder->Cyclic;
3359 AddedBondList[Binder->nr]->Type = Binder->Type;
3360 } else {
3361#ifdef ADDHYDROGEN
3362 if (!Mol->AddHydrogenReplacementAtom(out, Binder, AddedAtomList[Walker->nr], Walker, OtherAtom, ListOfBondsPerAtom[Walker->nr], NumberOfBondsPerAtom[Walker->nr], IsAngstroem))
3363 exit(1);
3364#endif
3365 }
3366 }
3367 }
3368 } else {
3369 *out << Verbose(3) << "Not Adding, has already been visited." << endl;
3370 // This has to be a cyclic bond, check whether it's present ...
3371 if (AddedBondList[Binder->nr] == NULL) {
3372 if ((Binder != Bond) && (Binder->Cyclic) && (((ShortestPathList[Walker->nr]+1) < BondOrder))) {
3373 AddedBondList[Binder->nr] = Mol->AddBond(AddedAtomList[Walker->nr], AddedAtomList[OtherAtom->nr], Binder->BondDegree);
3374 AddedBondList[Binder->nr]->Cyclic = Binder->Cyclic;
3375 AddedBondList[Binder->nr]->Type = Binder->Type;
3376 } else { // if it's root bond it has to broken (otherwise we would not create the fragments)
3377#ifdef ADDHYDROGEN
3378 if(!Mol->AddHydrogenReplacementAtom(out, Binder, AddedAtomList[Walker->nr], Walker, OtherAtom, ListOfBondsPerAtom[Walker->nr], NumberOfBondsPerAtom[Walker->nr], IsAngstroem))
3379 exit(1);
3380#endif
3381 }
3382 }
3383 }
3384 }
3385 }
3386 ColorList[Walker->nr] = black;
3387 *out << Verbose(1) << "Coloring Walker " << Walker->Name << " black." << endl;
3388 }
3389 Free((void **)&PredecessorList, "molecule::BreadthFirstSearchAdd: **PredecessorList");
3390 Free((void **)&ShortestPathList, "molecule::BreadthFirstSearchAdd: **ShortestPathList");
3391 Free((void **)&ColorList, "molecule::BreadthFirstSearchAdd: **ColorList");
3392 delete(AtomStack);
3393};
3394
3395/** Adds bond structure to this molecule from \a Father molecule.
3396 * This basically causes this molecule to become an induced subgraph of the \a Father, i.e. for every bond in Father
3397 * with end points present in this molecule, bond is created in this molecule.
3398 * Special care was taken to ensure that this is of complexity O(N), where N is the \a Father's molecule::AtomCount.
3399 * \param *out output stream for debugging
3400 * \param *Father father molecule
3401 * \return true - is induced subgraph, false - there are atoms with fathers not in \a Father
3402 * \todo not checked, not fully working probably
3403 */
3404bool molecule::BuildInducedSubgraph(ofstream *out, const molecule *Father)
3405{
3406 atom *Walker = NULL, *OtherAtom = NULL;
3407 bool status = true;
3408 atom **ParentList = (atom **) Malloc(sizeof(atom *)*Father->AtomCount, "molecule::BuildInducedSubgraph: **ParentList");
3409
3410 *out << Verbose(2) << "Begin of BuildInducedSubgraph." << endl;
3411
3412 // reset parent list
3413 *out << Verbose(3) << "Resetting ParentList." << endl;
3414 for (int i=Father->AtomCount;i--;)
3415 ParentList[i] = NULL;
3416
3417 // fill parent list with sons
3418 *out << Verbose(3) << "Filling Parent List." << endl;
3419 Walker = start;
3420 while (Walker->next != end) {
3421 Walker = Walker->next;
3422 ParentList[Walker->father->nr] = Walker;
3423 // Outputting List for debugging
3424 *out << Verbose(4) << "Son["<< Walker->father->nr <<"] of " << Walker->father << " is " << ParentList[Walker->father->nr] << "." << endl;
3425 }
3426
3427 // check each entry of parent list and if ok (one-to-and-onto matching) create bonds
3428 *out << Verbose(3) << "Creating bonds." << endl;
3429 Walker = Father->start;
3430 while (Walker->next != Father->end) {
3431 Walker = Walker->next;
3432 if (ParentList[Walker->nr] != NULL) {
3433 if (ParentList[Walker->nr]->father != Walker) {
3434 status = false;
3435 } else {
3436 for (int i=0;i<Father->NumberOfBondsPerAtom[Walker->nr];i++) {
3437 OtherAtom = Father->ListOfBondsPerAtom[Walker->nr][i]->GetOtherAtom(Walker);
3438 if (ParentList[OtherAtom->nr] != NULL) { // if otheratom is also a father of an atom on this molecule, create the bond
3439 *out << Verbose(4) << "Endpoints of Bond " << Father->ListOfBondsPerAtom[Walker->nr][i] << " are both present: " << ParentList[Walker->nr]->Name << " and " << ParentList[OtherAtom->nr]->Name << "." << endl;
3440 AddBond(ParentList[Walker->nr], ParentList[OtherAtom->nr], Father->ListOfBondsPerAtom[Walker->nr][i]->BondDegree);
3441 }
3442 }
3443 }
3444 }
3445 }
3446
3447 Free((void **)&ParentList, "molecule::BuildInducedSubgraph: **ParentList");
3448 *out << Verbose(2) << "End of BuildInducedSubgraph." << endl;
3449 return status;
3450};
3451
3452
3453/** Looks through a StackClass<atom *> and returns the likeliest removal candiate.
3454 * \param *out output stream for debugging messages
3455 * \param *&Leaf KeySet to look through
3456 * \param *&ShortestPathList list of the shortest path to decide which atom to suggest as removal candidate in the end
3457 * \param index of the atom suggested for removal
3458 */
3459int molecule::LookForRemovalCandidate(ofstream *&out, KeySet *&Leaf, int *&ShortestPathList)
3460{
3461 atom *Runner = NULL;
3462 int SP, Removal;
3463
3464 *out << Verbose(2) << "Looking for removal candidate." << endl;
3465 SP = -1; //0; // not -1, so that Root is never removed
3466 Removal = -1;
3467 for (KeySet::iterator runner = Leaf->begin(); runner != Leaf->end(); runner++) {
3468 Runner = FindAtom((*runner));
3469 if (Runner->type->Z != 1) { // skip all those added hydrogens when re-filling snake stack
3470 if (ShortestPathList[(*runner)] > SP) { // remove the oldest one with longest shortest path
3471 SP = ShortestPathList[(*runner)];
3472 Removal = (*runner);
3473 }
3474 }
3475 }
3476 return Removal;
3477};
3478
3479/** Stores a fragment from \a KeySet into \a molecule.
3480 * First creates the minimal set of atoms from the KeySet, then creates the bond structure from the complete
3481 * molecule and adds missing hydrogen where bonds were cut.
3482 * \param *out output stream for debugging messages
3483 * \param &Leaflet pointer to KeySet structure
3484 * \param IsAngstroem whether we have Ansgtroem or bohrradius
3485 * \return pointer to constructed molecule
3486 */
3487molecule * molecule::StoreFragmentFromKeySet(ofstream *out, KeySet &Leaflet, bool IsAngstroem)
3488{
3489 atom *Runner = NULL, *FatherOfRunner = NULL, *OtherFather = NULL;
3490 atom **SonList = (atom **) Malloc(sizeof(atom *)*AtomCount, "molecule::StoreFragmentFromStack: **SonList");
3491 molecule *Leaf = new molecule(elemente);
3492 bool LonelyFlag = false;
3493 int size;
3494
3495// *out << Verbose(1) << "Begin of StoreFragmentFromKeyset." << endl;
3496
3497 Leaf->BondDistance = BondDistance;
3498 for(int i=NDIM*2;i--;)
3499 Leaf->cell_size[i] = cell_size[i];
3500
3501 // initialise SonList (indicates when we need to replace a bond with hydrogen instead)
3502 for(int i=AtomCount;i--;)
3503 SonList[i] = NULL;
3504
3505 // first create the minimal set of atoms from the KeySet
3506 size = 0;
3507 for(KeySet::iterator runner = Leaflet.begin(); runner != Leaflet.end(); runner++) {
3508 FatherOfRunner = FindAtom((*runner)); // find the id
3509 SonList[FatherOfRunner->nr] = Leaf->AddCopyAtom(FatherOfRunner);
3510 size++;
3511 }
3512
3513 // create the bonds between all: Make it an induced subgraph and add hydrogen
3514// *out << Verbose(2) << "Creating bonds from father graph (i.e. induced subgraph creation)." << endl;
3515 Runner = Leaf->start;
3516 while (Runner->next != Leaf->end) {
3517 Runner = Runner->next;
3518 LonelyFlag = true;
3519 FatherOfRunner = Runner->father;
3520 if (SonList[FatherOfRunner->nr] != NULL) { // check if this, our father, is present in list
3521 // create all bonds
3522 for (int i=0;i<NumberOfBondsPerAtom[FatherOfRunner->nr];i++) { // go through every bond of father
3523 OtherFather = ListOfBondsPerAtom[FatherOfRunner->nr][i]->GetOtherAtom(FatherOfRunner);
3524// *out << Verbose(2) << "Father " << *FatherOfRunner << " of son " << *SonList[FatherOfRunner->nr] << " is bound to " << *OtherFather;
3525 if (SonList[OtherFather->nr] != NULL) {
3526// *out << ", whose son is " << *SonList[OtherFather->nr] << "." << endl;
3527 if (OtherFather->nr > FatherOfRunner->nr) { // add bond (nr check is for adding only one of both variants: ab, ba)
3528// *out << Verbose(3) << "Adding Bond: ";
3529// *out <<
3530 Leaf->AddBond(Runner, SonList[OtherFather->nr], ListOfBondsPerAtom[FatherOfRunner->nr][i]->BondDegree);
3531// *out << "." << endl;
3532 //NumBonds[Runner->nr]++;
3533 } else {
3534// *out << Verbose(3) << "Not adding bond, labels in wrong order." << endl;
3535 }
3536 LonelyFlag = false;
3537 } else {
3538// *out << ", who has no son in this fragment molecule." << endl;
3539#ifdef ADDHYDROGEN
3540 //*out << Verbose(3) << "Adding Hydrogen to " << Runner->Name << " and a bond in between." << endl;
3541 if(!Leaf->AddHydrogenReplacementAtom(out, ListOfBondsPerAtom[FatherOfRunner->nr][i], Runner, FatherOfRunner, OtherFather, ListOfBondsPerAtom[FatherOfRunner->nr],NumberOfBondsPerAtom[FatherOfRunner->nr], IsAngstroem))
3542 exit(1);
3543#endif
3544 //NumBonds[Runner->nr] += ListOfBondsPerAtom[FatherOfRunner->nr][i]->BondDegree;
3545 }
3546 }
3547 } else {
3548 *out << Verbose(0) << "ERROR: Son " << Runner->Name << " has father " << FatherOfRunner->Name << " but its entry in SonList is " << SonList[FatherOfRunner->nr] << "!" << endl;
3549 }
3550 if ((LonelyFlag) && (size > 1)) {
3551 *out << Verbose(0) << *Runner << "has got bonds only to hydrogens!" << endl;
3552 }
3553#ifdef ADDHYDROGEN
3554 while ((Runner->next != Leaf->end) && (Runner->next->type->Z == 1)) // skip added hydrogen
3555 Runner = Runner->next;
3556#endif
3557 }
3558 Leaf->CreateListOfBondsPerAtom(out);
3559 //Leaflet->Leaf->ScanForPeriodicCorrection(out);
3560 Free((void **)&SonList, "molecule::StoreFragmentFromStack: **SonList");
3561// *out << Verbose(1) << "End of StoreFragmentFromKeyset." << endl;
3562 return Leaf;
3563};
3564
3565/** Creates \a MoleculeListClass of all unique fragments of the \a molecule containing \a Order atoms or vertices.
3566 * The picture to have in mind is that of a DFS "snake" of a certain length \a Order, i.e. as in the infamous
3567 * computer game, that winds through the connected graph representing the molecule. Color (white,
3568 * lightgray, darkgray, black) indicates whether a vertex has been discovered so far or not. Labels will help in
3569 * creating only unique fragments and not additional ones with vertices simply in different sequence.
3570 * The Predecessor is always the one that came before in discovering, needed on backstepping. And
3571 * finally, the ShortestPath is needed for removing vertices from the snake stack during the back-
3572 * stepping.
3573 * \param *out output stream for debugging
3574 * \param Order number of atoms in each fragment
3575 * \param *configuration configuration for writing config files for each fragment
3576 * \return List of all unique fragments with \a Order atoms
3577 */
3578/*
3579MoleculeListClass * molecule::CreateListOfUniqueFragmentsOfOrder(ofstream *out, int Order, config *configuration)
3580{
3581 atom **PredecessorList = (atom **) Malloc(sizeof(atom *)*AtomCount, "molecule::CreateListOfUniqueFragmentsOfOrder: **PredecessorList");
3582 int *ShortestPathList = (int *) Malloc(sizeof(int)*AtomCount, "molecule::CreateListOfUniqueFragmentsOfOrder: *ShortestPathList");
3583 int *Labels = (int *) Malloc(sizeof(int)*AtomCount, "molecule::CreateListOfUniqueFragmentsOfOrder: *Labels");
3584 enum Shading *ColorVertexList = (enum Shading *) Malloc(sizeof(enum Shading)*AtomCount, "molecule::CreateListOfUniqueFragmentsOfOrder: *ColorList");
3585 enum Shading *ColorEdgeList = (enum Shading *) Malloc(sizeof(enum Shading)*BondCount, "molecule::CreateListOfUniqueFragmentsOfOrder: *ColorBondList");
3586 StackClass<atom *> *RootStack = new StackClass<atom *>(AtomCount);
3587 StackClass<atom *> *TouchedStack = new StackClass<atom *>((int)pow(4,Order)+2); // number of atoms reached from one with maximal 4 bonds plus Root itself
3588 StackClass<atom *> *SnakeStack = new StackClass<atom *>(Order+1); // equal to Order is not possible, as then the StackClass<atom *> cannot discern between full and empty stack!
3589 MoleculeLeafClass *Leaflet = NULL, *TempLeaf = NULL;
3590 MoleculeListClass *FragmentList = NULL;
3591 atom *Walker = NULL, *OtherAtom = NULL, *Root = NULL, *Removal = NULL;
3592 bond *Binder = NULL;
3593 int RunningIndex = 0, FragmentCounter = 0;
3594
3595 *out << Verbose(1) << "Begin of CreateListOfUniqueFragmentsOfOrder." << endl;
3596
3597 // reset parent list
3598 *out << Verbose(3) << "Resetting labels, parent, predecessor, color and shortest path lists." << endl;
3599 for (int i=0;i<AtomCount;i++) { // reset all atom labels
3600 // initialise each vertex as white with no predecessor, empty queue, color lightgray, not labelled, no sons
3601 Labels[i] = -1;
3602 SonList[i] = NULL;
3603 PredecessorList[i] = NULL;
3604 ColorVertexList[i] = white;
3605 ShortestPathList[i] = -1;
3606 }
3607 for (int i=0;i<BondCount;i++)
3608 ColorEdgeList[i] = white;
3609 RootStack->ClearStack(); // clearstack and push first atom if exists
3610 TouchedStack->ClearStack();
3611 Walker = start->next;
3612 while ((Walker != end)
3613#ifdef ADDHYDROGEN
3614 && (Walker->type->Z == 1)
3615#endif
3616 ) { // search for first non-hydrogen atom
3617 *out << Verbose(4) << "Current Root candidate is " << Walker->Name << "." << endl;
3618 Walker = Walker->next;
3619 }
3620 if (Walker != end)
3621 RootStack->Push(Walker);
3622 else
3623 *out << Verbose(0) << "ERROR: Could not find an appropriate Root atom!" << endl;
3624 *out << Verbose(3) << "Root " << Walker->Name << " is on AtomStack, beginning loop through all vertices ..." << endl;
3625
3626 ///// OUTER LOOP ////////////
3627 while (!RootStack->IsEmpty()) {
3628 // get new root vertex from atom stack
3629 Root = RootStack->PopFirst();
3630 ShortestPathList[Root->nr] = 0;
3631 if (Labels[Root->nr] == -1)
3632 Labels[Root->nr] = RunningIndex++; // prevent it from getting again on AtomStack
3633 PredecessorList[Root->nr] = Root;
3634 TouchedStack->Push(Root);
3635 *out << Verbose(0) << "Root for this loop is: " << Root->Name << ".\n";
3636
3637 // clear snake stack
3638 SnakeStack->ClearStack();
3639 //SnakeStack->TestImplementation(out, start->next);
3640
3641 ///// INNER LOOP ////////////
3642 // Problems:
3643 // - what about cyclic bonds?
3644 Walker = Root;
3645 do {
3646 *out << Verbose(1) << "Current Walker is: " << Walker->Name;
3647 // initial setting of the new Walker: label, color, shortest path and put on stacks
3648 if (Labels[Walker->nr] == -1) { // give atom a unique, monotonely increasing number
3649 Labels[Walker->nr] = RunningIndex++;
3650 RootStack->Push(Walker);
3651 }
3652 *out << ", has label " << Labels[Walker->nr];
3653 if ((ColorVertexList[Walker->nr] == white) || ((Binder != NULL) && (ColorEdgeList[Binder->nr] == white))) { // color it if newly discovered and push on stacks (and if within reach!)
3654 if ((Binder != NULL) && (ColorEdgeList[Binder->nr] == white)) {
3655 // Binder ought to be set still from last neighbour search
3656 *out << ", coloring bond " << *Binder << " black";
3657 ColorEdgeList[Binder->nr] = black; // mark this bond as used
3658 }
3659 if (ShortestPathList[Walker->nr] == -1) {
3660 ShortestPathList[Walker->nr] = ShortestPathList[PredecessorList[Walker->nr]->nr]+1;
3661 TouchedStack->Push(Walker); // mark every atom for lists cleanup later, whose shortest path has been changed
3662 }
3663 if ((ShortestPathList[Walker->nr] < Order) && (ColorVertexList[Walker->nr] != darkgray)) { // if not already on snake stack
3664 SnakeStack->Push(Walker);
3665 ColorVertexList[Walker->nr] = darkgray; // mark as dark gray of on snake stack
3666 }
3667 }
3668 *out << ", SP of " << ShortestPathList[Walker->nr] << " and its color is " << GetColor(ColorVertexList[Walker->nr]) << "." << endl;
3669
3670 // then check the stack for a newly stumbled upon fragment
3671 if (SnakeStack->ItemCount() == Order) { // is stack full?
3672 // store the fragment if it is one and get a removal candidate
3673 Removal = StoreFragmentFromStack(out, Root, Walker, Leaflet, SnakeStack, ShortestPathList, SonList, Labels, &FragmentCounter, configuration);
3674 // remove the candidate if one was found
3675 if (Removal != NULL) {
3676 *out << Verbose(2) << "Removing item " << Removal->Name << " with SP of " << ShortestPathList[Removal->nr] << " from snake stack." << endl;
3677 SnakeStack->RemoveItem(Removal);
3678 ColorVertexList[Removal->nr] = lightgray; // return back to not on snake stack but explored marking
3679 if (Walker == Removal) { // if the current atom is to be removed, we also have to take a step back
3680 Walker = PredecessorList[Removal->nr];
3681 *out << Verbose(2) << "Stepping back to " << Walker->Name << "." << endl;
3682 }
3683 }
3684 } else
3685 Removal = NULL;
3686
3687 // finally, look for a white neighbour as the next Walker
3688 Binder = NULL;
3689 if ((Removal == NULL) || (Walker != PredecessorList[Removal->nr])) { // don't look, if a new walker has been set above
3690 *out << Verbose(2) << "Snake has currently " << SnakeStack->ItemCount() << " item(s)." << endl;
3691 OtherAtom = NULL; // this is actually not needed, every atom has at least one neighbour
3692 if (ShortestPathList[Walker->nr] < Order) {
3693 for(int i=0;i<NumberOfBondsPerAtom[Walker->nr];i++) {
3694 Binder = ListOfBondsPerAtom[Walker->nr][i];
3695 *out << Verbose(2) << "Current bond is " << *Binder << ": ";
3696 OtherAtom = Binder->GetOtherAtom(Walker);
3697 if ((Labels[OtherAtom->nr] != -1) && (Labels[OtherAtom->nr] < Labels[Root->nr])) { // we don't step up to labels bigger than us
3698 *out << "Label " << Labels[OtherAtom->nr] << " is smaller than Root's " << Labels[Root->nr] << "." << endl;
3699 //ColorVertexList[OtherAtom->nr] = lightgray; // mark as explored
3700 } else { // otherwise check its colour and element
3701 if (
3702#ifdef ADDHYDROGEN
3703 (OtherAtom->type->Z != 1) &&
3704#endif
3705 (ColorEdgeList[Binder->nr] == white)) { // skip hydrogen, look for unexplored vertices
3706 *out << "Moving along " << GetColor(ColorEdgeList[Binder->nr]) << " bond " << Binder << " to " << ((ColorVertexList[OtherAtom->nr] == white) ? "unexplored" : "explored") << " item: " << OtherAtom->Name << "." << endl;
3707 // i find it currently rather sensible to always set the predecessor in order to find one's way back
3708 //if (PredecessorList[OtherAtom->nr] == NULL) {
3709 PredecessorList[OtherAtom->nr] = Walker;
3710 *out << Verbose(3) << "Setting Predecessor of " << OtherAtom->Name << " to " << PredecessorList[OtherAtom->nr]->Name << "." << endl;
3711 //} else {
3712 // *out << Verbose(3) << "Predecessor of " << OtherAtom->Name << " is " << PredecessorList[OtherAtom->nr]->Name << "." << endl;
3713 //}
3714 Walker = OtherAtom;
3715 break;
3716 } else {
3717 if (OtherAtom->type->Z == 1)
3718 *out << "Links to a hydrogen atom." << endl;
3719 else
3720 *out << "Bond has not white but " << GetColor(ColorEdgeList[Binder->nr]) << " color." << endl;
3721 }
3722 }
3723 }
3724 } else { // means we have stepped beyond the horizon: Return!
3725 Walker = PredecessorList[Walker->nr];
3726 OtherAtom = Walker;
3727 *out << Verbose(3) << "We have gone too far, stepping back to " << Walker->Name << "." << endl;
3728 }
3729 if (Walker != OtherAtom) { // if no white neighbours anymore, color it black
3730 *out << Verbose(2) << "Coloring " << Walker->Name << " black." << endl;
3731 ColorVertexList[Walker->nr] = black;
3732 Walker = PredecessorList[Walker->nr];
3733 }
3734 }
3735 } while ((Walker != Root) || (ColorVertexList[Root->nr] != black));
3736 *out << Verbose(2) << "Inner Looping is finished." << endl;
3737
3738 // if we reset all AtomCount atoms, we have again technically O(N^2) ...
3739 *out << Verbose(2) << "Resetting lists." << endl;
3740 Walker = NULL;
3741 Binder = NULL;
3742 while (!TouchedStack->IsEmpty()) {
3743 Walker = TouchedStack->PopLast();
3744 *out << Verbose(3) << "Re-initialising entries of " << *Walker << "." << endl;
3745 for(int i=0;i<NumberOfBondsPerAtom[Walker->nr];i++)
3746 ColorEdgeList[ListOfBondsPerAtom[Walker->nr][i]->nr] = white;
3747 PredecessorList[Walker->nr] = NULL;
3748 ColorVertexList[Walker->nr] = white;
3749 ShortestPathList[Walker->nr] = -1;
3750 }
3751 }
3752 *out << Verbose(1) << "Outer Looping over all vertices is done." << endl;
3753
3754 // copy together
3755 *out << Verbose(1) << "Copying all fragments into MoleculeList structure." << endl;
3756 FragmentList = new MoleculeListClass(FragmentCounter, AtomCount);
3757 RunningIndex = 0;
3758 while ((Leaflet != NULL) && (RunningIndex < FragmentCounter)) {
3759 FragmentList->ListOfMolecules[RunningIndex++] = Leaflet->Leaf;
3760 Leaflet->Leaf = NULL; // prevent molecule from being removed
3761 TempLeaf = Leaflet;
3762 Leaflet = Leaflet->previous;
3763 delete(TempLeaf);
3764 };
3765
3766 // free memory and exit
3767 Free((void **)&PredecessorList, "molecule::CreateListOfUniqueFragmentsOfOrder: **PredecessorList");
3768 Free((void **)&ShortestPathList, "molecule::CreateListOfUniqueFragmentsOfOrder: *ShortestPathList");
3769 Free((void **)&Labels, "molecule::CreateListOfUniqueFragmentsOfOrder: *Labels");
3770 Free((void **)&ColorVertexList, "molecule::CreateListOfUniqueFragmentsOfOrder: *ColorList");
3771 delete(RootStack);
3772 delete(TouchedStack);
3773 delete(SnakeStack);
3774
3775 *out << Verbose(1) << "End of CreateListOfUniqueFragmentsOfOrder." << endl;
3776 return FragmentList;
3777};
3778*/
3779
3780/** Structure containing all values in power set combination generation.
3781 */
3782struct UniqueFragments {
3783 config *configuration;
3784 atom *Root;
3785 Graph *Leaflet;
3786 KeySet *FragmentSet;
3787 int ANOVAOrder;
3788 int FragmentCounter;
3789 int CurrentIndex;
3790 double TEFactor;
3791 int *ShortestPathList;
3792 bool **UsedList;
3793 bond **BondsPerSPList;
3794 int *BondsPerSPCount;
3795};
3796
3797/** From a given set of Bond sorted by Shortest Path distance, create all possible fragments of size \a SetDimension.
3798 * -# loops over every possible combination (2^dimension of edge set)
3799 * -# inserts current set, if there's still space left
3800 * -# yes: calls SPFragmentGenerator with structure, created new edge list and size respective to root dist
3801ance+1
3802 * -# no: stores fragment into keyset list by calling InsertFragmentIntoGraph
3803 * -# removes all items added into the snake stack (in UniqueFragments structure) added during level (root
3804distance) and current set
3805 * \param *out output stream for debugging
3806 * \param FragmentSearch UniqueFragments structure with all values needed
3807 * \param RootDistance current shortest path level, whose set of edges is represented by **BondsSet
3808 * \param SetDimension Number of possible bonds on this level (i.e. size of the array BondsSet[])
3809 * \param SubOrder remaining number of allowed vertices to add
3810 */
3811void molecule::SPFragmentGenerator(ofstream *out, struct UniqueFragments *FragmentSearch, int RootDistance, bond **BondsSet, int SetDimension, int SubOrder)
3812{
3813 atom *OtherWalker = NULL;
3814 int verbosity = 0; //FragmentSearch->ANOVAOrder-SubOrder;
3815 int NumCombinations;
3816 bool bit;
3817 int bits, TouchedIndex, SubSetDimension, SP, Added;
3818 int Removal;
3819 int SpaceLeft;
3820 int *TouchedList = (int *) Malloc(sizeof(int)*(SubOrder+1), "molecule::SPFragmentGenerator: *TouchedList");
3821 bond *Binder = NULL;
3822 bond **BondsList = NULL;
3823 KeySetTestPair TestKeySetInsert;
3824
3825 NumCombinations = 1 << SetDimension;
3826
3827 // Hier muessen von 1 bis NumberOfBondsPerAtom[Walker->nr] alle Kombinationen
3828 // von Endstuecken (aus den Bonds) hinzugefᅵᅵgt werden und fᅵᅵr verbleibende ANOVAOrder
3829 // rekursiv GraphCrawler in der nᅵᅵchsten Ebene aufgerufen werden
3830
3831 *out << Verbose(1+verbosity) << "Begin of SPFragmentGenerator." << endl;
3832 *out << Verbose(1+verbosity) << "We are " << RootDistance << " away from Root, which is " << *FragmentSearch->Root << ", SubOrder is " << SubOrder << ", SetDimension is " << SetDimension << " and this means " << NumCombinations-1 << " combination(s)." << endl;
3833
3834 // initialised touched list (stores added atoms on this level)
3835 *out << Verbose(1+verbosity) << "Clearing touched list." << endl;
3836 for (TouchedIndex=SubOrder+1;TouchedIndex--;) // empty touched list
3837 TouchedList[TouchedIndex] = -1;
3838 TouchedIndex = 0;
3839
3840 // create every possible combination of the endpieces
3841 *out << Verbose(1+verbosity) << "Going through all combinations of the power set." << endl;
3842 for (int i=1;i<NumCombinations;i++) { // sweep through all power set combinations (skip empty set!)
3843 // count the set bit of i
3844 bits = 0;
3845 for (int j=SetDimension;j--;)
3846 bits += (i & (1 << j)) >> j;
3847
3848 *out << Verbose(1+verbosity) << "Current set is " << Binary(i | (1 << SetDimension)) << ", number of bits is " << bits << "." << endl;
3849 if (bits <= SubOrder) { // if not greater than additional atoms allowed on stack, continue
3850 // --1-- add this set of the power set of bond partners to the snake stack
3851 Added = 0;
3852 for (int j=0;j<SetDimension;j++) { // pull out every bit by shifting
3853 bit = ((i & (1 << j)) != 0); // mask the bit for the j-th bond
3854 if (bit) { // if bit is set, we add this bond partner
3855 OtherWalker = BondsSet[j]->rightatom; // rightatom is always the one more distant, i.e. the one to add
3856 //*out << Verbose(1+verbosity) << "Current Bond is " << ListOfBondsPerAtom[Walker->nr][i] << ", checking on " << *OtherWalker << "." << endl;
3857 *out << Verbose(2+verbosity) << "Adding " << *OtherWalker << " with nr " << OtherWalker->nr << "." << endl;
3858 TestKeySetInsert = FragmentSearch->FragmentSet->insert(OtherWalker->nr);
3859 if (TestKeySetInsert.second) {
3860 TouchedList[TouchedIndex++] = OtherWalker->nr; // note as added
3861 Added++;
3862 } else {
3863 *out << Verbose(2+verbosity) << "This was item was already present in the keyset." << endl;
3864 }
3865 //FragmentSearch->UsedList[OtherWalker->nr][i] = true;
3866 //}
3867 } else {
3868 *out << Verbose(2+verbosity) << "Not adding." << endl;
3869 }
3870 }
3871
3872 SpaceLeft = SubOrder - Added ;// SubOrder - bits; // due to item's maybe being already present, this does not work anymore
3873 if (SpaceLeft > 0) {
3874 *out << Verbose(1+verbosity) << "There's still some space left on stack: " << SpaceLeft << "." << endl;
3875 if (SubOrder > 1) { // Due to Added above we have to check extra whether we're not already reaching beyond the desired Order
3876 // --2-- look at all added end pieces of this combination, construct bond subsets and sweep through a power set of these by recursion
3877 SP = RootDistance+1; // this is the next level
3878 // first count the members in the subset
3879 SubSetDimension = 0;
3880 Binder = FragmentSearch->BondsPerSPList[2*SP]; // start node for this level
3881 while (Binder->next != FragmentSearch->BondsPerSPList[2*SP+1]) { // compare to end node of this level
3882 Binder = Binder->next;
3883 for (int k=TouchedIndex;k--;) {
3884 if (Binder->Contains(TouchedList[k])) // if we added this very endpiece
3885 SubSetDimension++;
3886 }
3887 }
3888 // then allocate and fill the list
3889 BondsList = (bond **) Malloc(sizeof(bond *)*SubSetDimension, "molecule::SPFragmentGenerator: **BondsList");
3890 SubSetDimension = 0;
3891 Binder = FragmentSearch->BondsPerSPList[2*SP];
3892 while (Binder->next != FragmentSearch->BondsPerSPList[2*SP+1]) {
3893 Binder = Binder->next;
3894 for (int k=0;k<TouchedIndex;k++) {
3895 if (Binder->leftatom->nr == TouchedList[k]) // leftatom is always the close one
3896 BondsList[SubSetDimension++] = Binder;
3897 }
3898 }
3899 *out << Verbose(2+verbosity) << "Calling subset generator " << SP << " away from root " << *FragmentSearch->Root << " with sub set dimension " << SubSetDimension << "." << endl;
3900 SPFragmentGenerator(out, FragmentSearch, SP, BondsList, SubSetDimension, SubOrder-bits);
3901 Free((void **)&BondsList, "molecule::SPFragmentGenerator: **BondsList");
3902 }
3903 } else {
3904 // --2-- otherwise store the complete fragment
3905 *out << Verbose(1+verbosity) << "Enough items on stack for a fragment!" << endl;
3906 // store fragment as a KeySet
3907 *out << Verbose(2) << "Found a new fragment[" << FragmentSearch->FragmentCounter << "], local nr.s are: ";
3908 for(KeySet::iterator runner = FragmentSearch->FragmentSet->begin(); runner != FragmentSearch->FragmentSet->end(); runner++)
3909 *out << (*runner) << " ";
3910 *out << endl;
3911 //if (!CheckForConnectedSubgraph(out, FragmentSearch->FragmentSet))
3912 //*out << Verbose(0) << "ERROR: The found fragment is not a connected subgraph!" << endl;
3913 InsertFragmentIntoGraph(out, FragmentSearch);
3914 //Removal = LookForRemovalCandidate(out, FragmentSearch->FragmentSet, FragmentSearch->ShortestPathList);
3915 //Removal = StoreFragmentFromStack(out, FragmentSearch->Root, FragmentSearch->Leaflet, FragmentSearch->FragmentStack, FragmentSearch->ShortestPathList, &FragmentSearch->FragmentCounter, FragmentSearch->configuration);
3916 }
3917
3918 // --3-- remove all added items in this level from snake stack
3919 *out << Verbose(1+verbosity) << "Removing all items that were added on this SP level " << RootDistance << "." << endl;
3920 for(int j=0;j<TouchedIndex;j++) {
3921 Removal = TouchedList[j];
3922 *out << Verbose(2+verbosity) << "Removing item nr. " << Removal << " from snake stack." << endl;
3923 FragmentSearch->FragmentSet->erase(Removal);
3924 TouchedList[j] = -1;
3925 }
3926 *out << Verbose(2) << "Remaining local nr.s on snake stack are: ";
3927 for(KeySet::iterator runner = FragmentSearch->FragmentSet->begin(); runner != FragmentSearch->FragmentSet->end(); runner++)
3928 *out << (*runner) << " ";
3929 *out << endl;
3930 TouchedIndex = 0; // set Index to 0 for list of atoms added on this level
3931 } else {
3932 *out << Verbose(2+verbosity) << "More atoms to add for this set (" << bits << ") than space left on stack " << SubOrder << ", skipping this set." << endl;
3933 }
3934 }
3935 Free((void **)&TouchedList, "molecule::SPFragmentGenerator: *TouchedList");
3936 *out << Verbose(1+verbosity) << "End of SPFragmentGenerator, " << RootDistance << " away from Root " << *FragmentSearch->Root << " and SubOrder is " << SubOrder << "." << endl;
3937};
3938
3939/** For a given keyset \a *Fragment, checks whether it is connected in the current molecule.
3940 * \param *out output stream for debugging
3941 * \param *Fragment Keyset of fragment's vertices
3942 * \return true - connected, false - disconnected
3943 * \note this is O(n^2) for it's just a bug checker not meant for permanent use!
3944 */
3945bool molecule::CheckForConnectedSubgraph(ofstream *out, KeySet *Fragment)
3946{
3947 atom *Walker = NULL, *Walker2 = NULL;
3948 bool BondStatus = false;
3949 int size;
3950
3951 *out << Verbose(1) << "Begin of CheckForConnectedSubgraph" << endl;
3952 *out << Verbose(2) << "Disconnected atom: ";
3953
3954 // count number of atoms in graph
3955 size = 0;
3956 for(KeySet::iterator runner = Fragment->begin(); runner != Fragment->end(); runner++)
3957 size++;
3958 if (size > 1)
3959 for(KeySet::iterator runner = Fragment->begin(); runner != Fragment->end(); runner++) {
3960 Walker = FindAtom(*runner);
3961 BondStatus = false;
3962 for(KeySet::iterator runners = Fragment->begin(); runners != Fragment->end(); runners++) {
3963 Walker2 = FindAtom(*runners);
3964 for (int i=0;i<NumberOfBondsPerAtom[Walker->nr]; i++) {
3965 if (ListOfBondsPerAtom[Walker->nr][i]->GetOtherAtom(Walker) == Walker2) {
3966 BondStatus = true;
3967 break;
3968 }
3969 if (BondStatus)
3970 break;
3971 }
3972 }
3973 if (!BondStatus) {
3974 *out << (*Walker) << endl;
3975 return false;
3976 }
3977 }
3978 else {
3979 *out << "none." << endl;
3980 return true;
3981 }
3982 *out << "none." << endl;
3983
3984 *out << Verbose(1) << "End of CheckForConnectedSubgraph" << endl;
3985
3986 return true;
3987}
3988
3989/** Creates a list of all unique fragments of certain vertex size from a given graph \a Fragment for a given root vertex in the context of \a this molecule.
3990 * -# initialises UniqueFragments structure
3991 * -# fills edge list via BFS
3992 * -# creates the fragment by calling recursive function SPFragmentGenerator with UniqueFragments structure, 0 as
3993 root distance, the edge set, its dimension and the current suborder
3994 * -# Free'ing structure
3995 * Note that we may use the fact that the atoms are SP-ordered on the atomstack. I.e. when popping always the last, we first get all
3996 * with SP of 2, then those with SP of 3, then those with SP of 4 and so on.
3997 * \param *out output stream for debugging
3998 * \param Order bond order (limits BFS exploration and "number of digits" in power set generation
3999 * \param FragmentSearch UniqueFragments structure containing TEFactor, root atom and so on
4000 * \param RestrictedKeySet Restricted vertex set to use in context of molecule
4001 * \return number of inserted fragments
4002 * \note ShortestPathList in FragmentSearch structure is probably due to NumberOfAtomsSPLevel and SP not needed anymore
4003 */
4004int molecule::PowerSetGenerator(ofstream *out, int Order, struct UniqueFragments &FragmentSearch, KeySet RestrictedKeySet)
4005{
4006 int SP, AtomKeyNr;
4007 atom *Walker = NULL, *OtherWalker = NULL, *Predecessor = NULL;
4008 bond *Binder = NULL;
4009 bond *CurrentEdge = NULL;
4010 bond **BondsList = NULL;
4011 int RootKeyNr = FragmentSearch.Root->GetTrueFather()->nr;
4012 int Counter = FragmentSearch.FragmentCounter;
4013 int RemainingWalkers;
4014
4015 *out << endl;
4016 *out << Verbose(0) << "Begin of PowerSetGenerator with order " << Order << " at Root " << *FragmentSearch.Root << "." << endl;
4017
4018 // prepare Label and SP arrays of the BFS search
4019 FragmentSearch.ShortestPathList[FragmentSearch.Root->nr] = 0;
4020
4021 // prepare root level (SP = 0) and a loop bond denoting Root
4022 for (int i=1;i<Order;i++)
4023 FragmentSearch.BondsPerSPCount[i] = 0;
4024 FragmentSearch.BondsPerSPCount[0] = 1;
4025 Binder = new bond(FragmentSearch.Root, FragmentSearch.Root);
4026 add(Binder, FragmentSearch.BondsPerSPList[1]);
4027
4028 // do a BFS search to fill the SP lists and label the found vertices
4029 // Actually, we should construct a spanning tree vom the root atom and select all edges therefrom and put them into
4030 // according shortest path lists. However, we don't. Rather we fill these lists right away, as they do form a spanning
4031 // tree already sorted into various SP levels. That's why we just do loops over the depth (CurrentSP) and breadth
4032 // (EdgeinSPLevel) of this tree ...
4033 // In another picture, the bonds always contain a direction by rightatom being the one more distant from root and hence
4034 // naturally leftatom forming its predecessor, preventing the BFS"seeker" from continuing in the wrong direction.
4035 *out << endl;
4036 *out << Verbose(0) << "Starting BFS analysis ..." << endl;
4037 for (SP = 0; SP < (Order-1); SP++) {
4038 *out << Verbose(1) << "New SP level reached: " << SP << ", creating new SP list with " << FragmentSearch.BondsPerSPCount[SP] << " item(s)";
4039 if (SP > 0) {
4040 *out << ", old level closed with " << FragmentSearch.BondsPerSPCount[SP-1] << " item(s)." << endl;
4041 FragmentSearch.BondsPerSPCount[SP] = 0;
4042 } else
4043 *out << "." << endl;
4044
4045 RemainingWalkers = FragmentSearch.BondsPerSPCount[SP];
4046 CurrentEdge = FragmentSearch.BondsPerSPList[2*SP]; /// start of this SP level's list
4047 while (CurrentEdge->next != FragmentSearch.BondsPerSPList[2*SP+1]) { /// end of this SP level's list
4048 CurrentEdge = CurrentEdge->next;
4049 RemainingWalkers--;
4050 Walker = CurrentEdge->rightatom; // rightatom is always the one more distant
4051 Predecessor = CurrentEdge->leftatom; // ... and leftatom is predecessor
4052 AtomKeyNr = Walker->nr;
4053 *out << Verbose(0) << "Current Walker is: " << *Walker << " with nr " << Walker->nr << " and SP of " << SP << ", with " << RemainingWalkers << " remaining walkers on this level." << endl;
4054 // check for new sp level
4055 // go through all its bonds
4056 *out << Verbose(1) << "Going through all bonds of Walker." << endl;
4057 for (int i=0;i<NumberOfBondsPerAtom[AtomKeyNr];i++) {
4058 Binder = ListOfBondsPerAtom[AtomKeyNr][i];
4059 OtherWalker = Binder->GetOtherAtom(Walker);
4060 if ((RestrictedKeySet.find(OtherWalker->nr) != RestrictedKeySet.end())
4061 #ifdef ADDHYDROGEN
4062 && (OtherWalker->type->Z != 1)
4063 #endif
4064 ) { // skip hydrogens and restrict to fragment
4065 *out << Verbose(2) << "Current partner is " << *OtherWalker << " with nr " << OtherWalker->nr << " in bond " << *Binder << "." << endl;
4066 // set the label if not set (and push on root stack as well)
4067 if ((OtherWalker != Predecessor) && (OtherWalker->GetTrueFather()->nr > RootKeyNr)) { // only pass through those with label bigger than Root's
4068 FragmentSearch.ShortestPathList[OtherWalker->nr] = SP+1;
4069 *out << Verbose(3) << "Set Shortest Path to " << FragmentSearch.ShortestPathList[OtherWalker->nr] << "." << endl;
4070 // add the bond in between to the SP list
4071 Binder = new bond(Walker, OtherWalker); // create a new bond in such a manner, that bond::rightatom is always the one more distant
4072 add(Binder, FragmentSearch.BondsPerSPList[2*(SP+1)+1]);
4073 FragmentSearch.BondsPerSPCount[SP+1]++;
4074 *out << Verbose(3) << "Added its bond to SP list, having now " << FragmentSearch.BondsPerSPCount[SP+1] << " item(s)." << endl;
4075 } else {
4076 if (OtherWalker != Predecessor)
4077 *out << Verbose(3) << "Not passing on, as index of " << *OtherWalker << " " << OtherWalker->GetTrueFather()->nr << " is smaller than that of Root " << RootKeyNr << "." << endl;
4078 else
4079 *out << Verbose(3) << "This is my predecessor " << *Predecessor << "." << endl;
4080 }
4081 } else *out << Verbose(2) << "Is not in the restricted keyset or skipping hydrogen " << *OtherWalker << "." << endl;
4082 }
4083 }
4084 }
4085
4086 // outputting all list for debugging
4087 *out << Verbose(0) << "Printing all found lists." << endl;
4088 for(int i=1;i<Order;i++) { // skip the root edge in the printing
4089 Binder = FragmentSearch.BondsPerSPList[2*i];
4090 *out << Verbose(1) << "Current SP level is " << i << "." << endl;
4091 while (Binder->next != FragmentSearch.BondsPerSPList[2*i+1]) {
4092 Binder = Binder->next;
4093 *out << Verbose(2) << *Binder << endl;
4094 }
4095 }
4096
4097 // creating fragments with the found edge sets (may be done in reverse order, faster)
4098 SP = -1; // the Root <-> Root edge must be subtracted!
4099 for(int i=Order;i--;) { // sum up all found edges
4100 Binder = FragmentSearch.BondsPerSPList[2*i];
4101 while (Binder->next != FragmentSearch.BondsPerSPList[2*i+1]) {
4102 Binder = Binder->next;
4103 SP ++;
4104 }
4105 }
4106 *out << Verbose(0) << "Total number of edges is " << SP << "." << endl;
4107 if (SP >= (Order-1)) {
4108 // start with root (push on fragment stack)
4109 *out << Verbose(0) << "Starting fragment generation with " << *FragmentSearch.Root << ", local nr is " << FragmentSearch.Root->nr << "." << endl;
4110 FragmentSearch.FragmentSet->clear();
4111 *out << Verbose(0) << "Preparing subset for this root and calling generator." << endl;
4112 // prepare the subset and call the generator
4113 BondsList = (bond **) Malloc(sizeof(bond *)*FragmentSearch.BondsPerSPCount[0], "molecule::PowerSetGenerator: **BondsList");
4114 BondsList[0] = FragmentSearch.BondsPerSPList[0]->next; // on SP level 0 there's only the root bond
4115
4116 SPFragmentGenerator(out, &FragmentSearch, 0, BondsList, FragmentSearch.BondsPerSPCount[0], Order);
4117
4118 Free((void **)&BondsList, "molecule::PowerSetGenerator: **BondsList");
4119 } else {
4120 *out << Verbose(0) << "Not enough total number of edges to build " << Order << "-body fragments." << endl;
4121 }
4122
4123 // as FragmentSearch structure is used only once, we don't have to clean it anymore
4124 // remove root from stack
4125 *out << Verbose(0) << "Removing root again from stack." << endl;
4126 FragmentSearch.FragmentSet->erase(FragmentSearch.Root->nr);
4127
4128 // free'ing the bonds lists
4129 *out << Verbose(0) << "Free'ing all found lists. and resetting index lists" << endl;
4130 for(int i=Order;i--;) {
4131 *out << Verbose(1) << "Current SP level is " << i << ": ";
4132 Binder = FragmentSearch.BondsPerSPList[2*i];
4133 while (Binder->next != FragmentSearch.BondsPerSPList[2*i+1]) {
4134 Binder = Binder->next;
4135 // *out << "Removing atom " << Binder->leftatom->nr << " and " << Binder->rightatom->nr << "." << endl; // make sure numbers are local
4136 FragmentSearch.ShortestPathList[Binder->leftatom->nr] = -1;
4137 FragmentSearch.ShortestPathList[Binder->rightatom->nr] = -1;
4138 }
4139 // delete added bonds
4140 cleanup(FragmentSearch.BondsPerSPList[2*i], FragmentSearch.BondsPerSPList[2*i+1]);
4141 // also start and end node
4142 *out << "cleaned." << endl;
4143 }
4144
4145 // return list
4146 *out << Verbose(0) << "End of PowerSetGenerator." << endl;
4147 return (FragmentSearch.FragmentCounter - Counter);
4148};
4149
4150/** Corrects the nuclei position if the fragment was created over the cell borders.
4151 * Scans all bonds, checks the distance, if greater than typical, we have a candidate for the correction.
4152 * We remove the bond whereafter the graph probably separates. Then, we translate the one component periodically
4153 * and re-add the bond. Looping on the distance check.
4154 * \param *out ofstream for debugging messages
4155 */
4156void molecule::ScanForPeriodicCorrection(ofstream *out)
4157{
4158 bond *Binder = NULL;
4159 bond *OtherBinder = NULL;
4160 atom *Walker = NULL;
4161 atom *OtherWalker = NULL;
4162 double *matrix = ReturnFullMatrixforSymmetric(cell_size);
4163 enum Shading *ColorList = NULL;
4164 double tmp;
4165 Vector Translationvector;
4166 //class StackClass<atom *> *CompStack = NULL;
4167 class StackClass<atom *> *AtomStack = new StackClass<atom *>(AtomCount);
4168 bool flag = true;
4169
4170 *out << Verbose(2) << "Begin of ScanForPeriodicCorrection." << endl;
4171
4172 ColorList = (enum Shading *) Malloc(sizeof(enum Shading)*AtomCount, "molecule::ScanForPeriodicCorrection: *ColorList");
4173 while (flag) {
4174 // remove bonds that are beyond bonddistance
4175 for(int i=NDIM;i--;)
4176 Translationvector.x[i] = 0.;
4177 // scan all bonds
4178 Binder = first;
4179 flag = false;
4180 while ((!flag) && (Binder->next != last)) {
4181 Binder = Binder->next;
4182 for (int i=NDIM;i--;) {
4183 tmp = fabs(Binder->leftatom->x.x[i] - Binder->rightatom->x.x[i]);
4184 //*out << Verbose(3) << "Checking " << i << "th distance of " << *Binder->leftatom << " to " << *Binder->rightatom << ": " << tmp << "." << endl;
4185 if (tmp > BondDistance) {
4186 OtherBinder = Binder->next; // note down binding partner for later re-insertion
4187 unlink(Binder); // unlink bond
4188 *out << Verbose(2) << "Correcting at bond " << *Binder << "." << endl;
4189 flag = true;
4190 break;
4191 }
4192 }
4193 }
4194 if (flag) {
4195 // create translation vector from their periodically modified distance
4196 for (int i=NDIM;i--;) {
4197 tmp = Binder->leftatom->x.x[i] - Binder->rightatom->x.x[i];
4198 if (fabs(tmp) > BondDistance)
4199 Translationvector.x[i] = (tmp < 0) ? +1. : -1.;
4200 }
4201 Translationvector.MatrixMultiplication(matrix);
4202 //*out << Verbose(3) << "Translation vector is ";
4203 Translationvector.Output(out);
4204 *out << endl;
4205 // apply to all atoms of first component via BFS
4206 for (int i=AtomCount;i--;)
4207 ColorList[i] = white;
4208 AtomStack->Push(Binder->leftatom);
4209 while (!AtomStack->IsEmpty()) {
4210 Walker = AtomStack->PopFirst();
4211 //*out << Verbose (3) << "Current Walker is: " << *Walker << "." << endl;
4212 ColorList[Walker->nr] = black; // mark as explored
4213 Walker->x.AddVector(&Translationvector); // translate
4214 for (int i=0;i<NumberOfBondsPerAtom[Walker->nr];i++) { // go through all binding partners
4215 if (ListOfBondsPerAtom[Walker->nr][i] != Binder) {
4216 OtherWalker = ListOfBondsPerAtom[Walker->nr][i]->GetOtherAtom(Walker);
4217 if (ColorList[OtherWalker->nr] == white) {
4218 AtomStack->Push(OtherWalker); // push if yet unexplored
4219 }
4220 }
4221 }
4222 }
4223 // re-add bond
4224 link(Binder, OtherBinder);
4225 } else {
4226 *out << Verbose(3) << "No corrections for this fragment." << endl;
4227 }
4228 //delete(CompStack);
4229 }
4230
4231 // free allocated space from ReturnFullMatrixforSymmetric()
4232 delete(AtomStack);
4233 Free((void **)&ColorList, "molecule::ScanForPeriodicCorrection: *ColorList");
4234 Free((void **)&matrix, "molecule::ScanForPeriodicCorrection: *matrix");
4235 *out << Verbose(2) << "End of ScanForPeriodicCorrection." << endl;
4236};
4237
4238/** Blows the 6-dimensional \a cell_size array up to a full NDIM by NDIM matrix.
4239 * \param *symm 6-dim array of unique symmetric matrix components
4240 * \return allocated NDIM*NDIM array with the symmetric matrix
4241 */
4242double * molecule::ReturnFullMatrixforSymmetric(double *symm)
4243{
4244 double *matrix = (double *) Malloc(sizeof(double)*NDIM*NDIM, "molecule::ReturnFullMatrixforSymmetric: *matrix");
4245 matrix[0] = symm[0];
4246 matrix[1] = symm[1];
4247 matrix[2] = symm[3];
4248 matrix[3] = symm[1];
4249 matrix[4] = symm[2];
4250 matrix[5] = symm[4];
4251 matrix[6] = symm[3];
4252 matrix[7] = symm[4];
4253 matrix[8] = symm[5];
4254 return matrix;
4255};
4256
4257bool KeyCompare::operator() (const KeySet SubgraphA, const KeySet SubgraphB) const
4258{
4259 //cout << "my check is used." << endl;
4260 if (SubgraphA.size() < SubgraphB.size()) {
4261 return true;
4262 } else {
4263 if (SubgraphA.size() > SubgraphB.size()) {
4264 return false;
4265 } else {
4266 KeySet::iterator IteratorA = SubgraphA.begin();
4267 KeySet::iterator IteratorB = SubgraphB.begin();
4268 while ((IteratorA != SubgraphA.end()) && (IteratorB != SubgraphB.end())) {
4269 if ((*IteratorA) < (*IteratorB))
4270 return true;
4271 else if ((*IteratorA) > (*IteratorB)) {
4272 return false;
4273 } // else, go on to next index
4274 IteratorA++;
4275 IteratorB++;
4276 } // end of while loop
4277 }// end of check in case of equal sizes
4278 }
4279 return false; // if we reach this point, they are equal
4280};
4281
4282//bool operator < (KeySet SubgraphA, KeySet SubgraphB)
4283//{
4284// return KeyCompare(SubgraphA, SubgraphB);
4285//};
4286
4287/** Checking whether KeySet is not already present in Graph, if so just adds factor.
4288 * \param *out output stream for debugging
4289 * \param &set KeySet to insert
4290 * \param &graph Graph to insert into
4291 * \param *counter pointer to unique fragment count
4292 * \param factor energy factor for the fragment
4293 */
4294inline void InsertFragmentIntoGraph(ofstream *out, struct UniqueFragments *Fragment)
4295{
4296 GraphTestPair testGraphInsert;
4297
4298 testGraphInsert = Fragment->Leaflet->insert(GraphPair (*Fragment->FragmentSet,pair<int,double>(Fragment->FragmentCounter,Fragment->TEFactor))); // store fragment number and current factor
4299 if (testGraphInsert.second) {
4300 *out << Verbose(2) << "KeySet " << Fragment->FragmentCounter << " successfully inserted." << endl;
4301 Fragment->FragmentCounter++;
4302 } else {
4303 *out << Verbose(2) << "KeySet " << Fragment->FragmentCounter << " failed to insert, present fragment is " << ((*(testGraphInsert.first)).second).first << endl;
4304 ((*(testGraphInsert.first)).second).second += Fragment->TEFactor; // increase the "created" counter
4305 *out << Verbose(2) << "New factor is " << ((*(testGraphInsert.first)).second).second << "." << endl;
4306 }
4307};
4308//void inline InsertIntoGraph(ofstream *out, KeyStack &stack, Graph &graph, int *counter, double factor)
4309//{
4310// // copy stack contents to set and call overloaded function again
4311// KeySet set;
4312// for(KeyStack::iterator runner = stack.begin(); runner != stack.begin(); runner++)
4313// set.insert((*runner));
4314// InsertIntoGraph(out, set, graph, counter, factor);
4315//};
4316
4317/** Inserts each KeySet in \a graph2 into \a graph1.
4318 * \param *out output stream for debugging
4319 * \param graph1 first (dest) graph
4320 * \param graph2 second (source) graph
4321 * \param *counter keyset counter that gets increased
4322 */
4323inline void InsertGraphIntoGraph(ofstream *out, Graph &graph1, Graph &graph2, int *counter)
4324{
4325 GraphTestPair testGraphInsert;
4326
4327 for(Graph::iterator runner = graph2.begin(); runner != graph2.end(); runner++) {
4328 testGraphInsert = graph1.insert(GraphPair ((*runner).first,pair<int,double>((*counter)++,((*runner).second).second))); // store fragment number and current factor
4329 if (testGraphInsert.second) {
4330 *out << Verbose(2) << "KeySet " << (*counter)-1 << " successfully inserted." << endl;
4331 } else {
4332 *out << Verbose(2) << "KeySet " << (*counter)-1 << " failed to insert, present fragment is " << ((*(testGraphInsert.first)).second).first << endl;
4333 ((*(testGraphInsert.first)).second).second += (*runner).second.second;
4334 *out << Verbose(2) << "New factor is " << (*(testGraphInsert.first)).second.second << "." << endl;
4335 }
4336 }
4337};
4338
4339
4340/** Performs BOSSANOVA decomposition at selected sites, increasing the cutoff by one at these sites.
4341 * -# constructs a complete keyset of the molecule
4342 * -# In a loop over all possible roots from the given rootstack
4343 * -# increases order of root site
4344 * -# calls PowerSetGenerator with this order, the complete keyset and the rootkeynr
4345 * -# for all consecutive lower levels PowerSetGenerator is called with the suborder, the higher order keyset
4346as the restricted one and each site in the set as the root)
4347 * -# these are merged into a fragment list of keysets
4348 * -# All fragment lists (for all orders, i.e. from all destination fields) are merged into one list for return
4349 * Important only is that we create all fragments, it is not important if we create them more than once
4350 * as these copies are filtered out via use of the hash table (KeySet).
4351 * \param *out output stream for debugging
4352 * \param Fragment&*List list of already present keystacks (adaptive scheme) or empty list
4353 * \param &RootStack stack with all root candidates (unequal to each atom in complete molecule if adaptive scheme is applied)
4354 * \param *MinimumRingSize minimum ring size for each atom (molecule::Atomcount)
4355 * \return pointer to Graph list
4356 */
4357void molecule::FragmentBOSSANOVA(ofstream *out, Graph *&FragmentList, KeyStack &RootStack, int *MinimumRingSize)
4358{
4359 Graph ***FragmentLowerOrdersList = NULL;
4360 int NumLevels, NumMolecules, TotalNumMolecules = 0, *NumMoleculesOfOrder = NULL;
4361 int counter = 0, Order;
4362 int UpgradeCount = RootStack.size();
4363 KeyStack FragmentRootStack;
4364 int RootKeyNr, RootNr;
4365 struct UniqueFragments FragmentSearch;
4366
4367 *out << Verbose(0) << "Begin of FragmentBOSSANOVA." << endl;
4368
4369 // FragmentLowerOrdersList is a 2D-array of pointer to MoleculeListClass objects, one dimension represents the ANOVA expansion of a single order (i.e. 5)
4370 // with all needed lower orders that are subtracted, the other dimension is the BondOrder (i.e. from 1 to 5)
4371 NumMoleculesOfOrder = (int *) Malloc(sizeof(int)*UpgradeCount, "molecule::FragmentBOSSANOVA: *NumMoleculesOfOrder");
4372 FragmentLowerOrdersList = (Graph ***) Malloc(sizeof(Graph **)*UpgradeCount, "molecule::FragmentBOSSANOVA: ***FragmentLowerOrdersList");
4373
4374 // initialise the fragments structure
4375 FragmentSearch.ShortestPathList = (int *) Malloc(sizeof(int)*AtomCount, "molecule::PowerSetGenerator: *ShortestPathList");
4376 FragmentSearch.FragmentCounter = 0;
4377 FragmentSearch.FragmentSet = new KeySet;
4378 FragmentSearch.Root = FindAtom(RootKeyNr);
4379 for (int i=AtomCount;i--;) {
4380 FragmentSearch.ShortestPathList[i] = -1;
4381 }
4382
4383 // Construct the complete KeySet which we need for topmost level only (but for all Roots)
4384 atom *Walker = start;
4385 KeySet CompleteMolecule;
4386 while (Walker->next != end) {
4387 Walker = Walker->next;
4388 CompleteMolecule.insert(Walker->GetTrueFather()->nr);
4389 }
4390
4391 // this can easily be seen: if Order is 5, then the number of levels for each lower order is the total sum of the number of levels above, as
4392 // each has to be split up. E.g. for the second level we have one from 5th, one from 4th, two from 3th (which in turn is one from 5th, one from 4th),
4393 // hence we have overall four 2th order levels for splitting. This also allows for putting all into a single array (FragmentLowerOrdersList[])
4394 // with the order along the cells as this: 5433222211111111 for BondOrder 5 needing 16=pow(2,5-1) cells (only we use bit-shifting which is faster)
4395 RootNr = 0; // counts through the roots in RootStack
4396 while ((RootNr < UpgradeCount) && (!RootStack.empty())) {
4397 RootKeyNr = RootStack.front();
4398 RootStack.pop_front();
4399 Walker = FindAtom(RootKeyNr);
4400 // check cyclic lengths
4401 //if ((MinimumRingSize[Walker->GetTrueFather()->nr] != -1) && (Walker->GetTrueFather()->AdaptiveOrder+1 > MinimumRingSize[Walker->GetTrueFather()->nr])) {
4402 // *out << Verbose(0) << "Bond order " << Walker->GetTrueFather()->AdaptiveOrder << " of Root " << *Walker << " greater than or equal to Minimum Ring size of " << MinimumRingSize << " found is not allowed." << endl;
4403 //} else
4404 {
4405 // increase adaptive order by one
4406 Walker->GetTrueFather()->AdaptiveOrder++;
4407 Order = Walker->AdaptiveOrder = Walker->GetTrueFather()->AdaptiveOrder;
4408
4409 // initialise Order-dependent entries of UniqueFragments structure
4410 FragmentSearch.BondsPerSPList = (bond **) Malloc(sizeof(bond *)*Order*2, "molecule::PowerSetGenerator: ***BondsPerSPList");
4411 FragmentSearch.BondsPerSPCount = (int *) Malloc(sizeof(int)*Order, "molecule::PowerSetGenerator: *BondsPerSPCount");
4412 for (int i=Order;i--;) {
4413 FragmentSearch.BondsPerSPList[2*i] = new bond(); // start node
4414 FragmentSearch.BondsPerSPList[2*i+1] = new bond(); // end node
4415 FragmentSearch.BondsPerSPList[2*i]->next = FragmentSearch.BondsPerSPList[2*i+1]; // intertwine these two
4416 FragmentSearch.BondsPerSPList[2*i+1]->previous = FragmentSearch.BondsPerSPList[2*i];
4417 FragmentSearch.BondsPerSPCount[i] = 0;
4418 }
4419
4420 // allocate memory for all lower level orders in this 1D-array of ptrs
4421 NumLevels = 1 << (Order-1); // (int)pow(2,Order);
4422 FragmentLowerOrdersList[RootNr] = (Graph **) Malloc(sizeof(Graph *)*NumLevels, "molecule::FragmentBOSSANOVA: **FragmentLowerOrdersList[]");
4423 for (int i=0;i<NumLevels;i++)
4424 FragmentLowerOrdersList[RootNr][i] = NULL;
4425
4426 // create top order where nothing is reduced
4427 *out << Verbose(0) << "==============================================================================================================" << endl;
4428 *out << Verbose(0) << "Creating KeySets of Bond Order " << Order << " for " << *Walker << ", " << (RootStack.size()-RootNr) << " Roots remaining." << endl; // , NumLevels is " << NumLevels << "
4429
4430 // Create list of Graphs of current Bond Order (i.e. F_{ij})
4431 FragmentLowerOrdersList[RootNr][0] = new Graph;
4432 FragmentSearch.TEFactor = 1.;
4433 FragmentSearch.Leaflet = FragmentLowerOrdersList[RootNr][0]; // set to insertion graph
4434 FragmentSearch.Root = Walker;
4435 NumMoleculesOfOrder[RootNr] = PowerSetGenerator(out, Walker->AdaptiveOrder, FragmentSearch, CompleteMolecule);
4436 *out << Verbose(1) << "Number of resulting KeySets is: " << NumMoleculesOfOrder[RootNr] << "." << endl;
4437 if (NumMoleculesOfOrder[RootNr] != 0) {
4438 NumMolecules = 0;
4439
4440 // we don't have to dive into suborders! These keysets are all already created on lower orders!
4441 // this was all ancient stuff, when we still depended on the TEFactors (and for those the suborders were needed)
4442
4443// if ((NumLevels >> 1) > 0) {
4444// // create lower order fragments
4445// *out << Verbose(0) << "Creating list of unique fragments of lower Bond Order terms to be subtracted." << endl;
4446// Order = Walker->AdaptiveOrder;
4447// for (int source=0;source<(NumLevels >> 1);source++) { // 1-terms don't need any more splitting, that's why only half is gone through (shift again)
4448// // step down to next order at (virtual) boundary of powers of 2 in array
4449// while (source >= (1 << (Walker->AdaptiveOrder-Order))) // (int)pow(2,Walker->AdaptiveOrder-Order))
4450// Order--;
4451// *out << Verbose(0) << "Current Order is: " << Order << "." << endl;
4452// for (int SubOrder=Order-1;SubOrder>0;SubOrder--) {
4453// int dest = source + (1 << (Walker->AdaptiveOrder-(SubOrder+1)));
4454// *out << Verbose(0) << "--------------------------------------------------------------------------------------------------------------" << endl;
4455// *out << Verbose(0) << "Current SubOrder is: " << SubOrder << " with source " << source << " to destination " << dest << "." << endl;
4456//
4457// // every molecule is split into a list of again (Order - 1) molecules, while counting all molecules
4458// //*out << Verbose(1) << "Splitting the " << (*FragmentLowerOrdersList[RootNr][source]).size() << " molecules of the " << source << "th cell in the array." << endl;
4459// //NumMolecules = 0;
4460// FragmentLowerOrdersList[RootNr][dest] = new Graph;
4461// for(Graph::iterator runner = (*FragmentLowerOrdersList[RootNr][source]).begin();runner != (*FragmentLowerOrdersList[RootNr][source]).end(); runner++) {
4462// for (KeySet::iterator sprinter = (*runner).first.begin();sprinter != (*runner).first.end(); sprinter++) {
4463// Graph TempFragmentList;
4464// FragmentSearch.TEFactor = -(*runner).second.second;
4465// FragmentSearch.Leaflet = &TempFragmentList; // set to insertion graph
4466// FragmentSearch.Root = FindAtom(*sprinter);
4467// NumMoleculesOfOrder[RootNr] += PowerSetGenerator(out, SubOrder, FragmentSearch, (*runner).first);
4468// // insert new keysets FragmentList into FragmentLowerOrdersList[Walker->AdaptiveOrder-1][dest]
4469// *out << Verbose(1) << "Merging resulting key sets with those present in destination " << dest << "." << endl;
4470// InsertGraphIntoGraph(out, *FragmentLowerOrdersList[RootNr][dest], TempFragmentList, &NumMolecules);
4471// }
4472// }
4473// *out << Verbose(1) << "Number of resulting molecules for SubOrder " << SubOrder << " is: " << NumMolecules << "." << endl;
4474// }
4475// }
4476// }
4477 } else {
4478 Walker->GetTrueFather()->MaxOrder = true;
4479// *out << Verbose(1) << "Hence, we don't dive into SubOrders ... " << endl;
4480 }
4481 // now, we have completely filled each cell of FragmentLowerOrdersList[] for the current Walker->AdaptiveOrder
4482 //NumMoleculesOfOrder[Walker->AdaptiveOrder-1] = NumMolecules;
4483 TotalNumMolecules += NumMoleculesOfOrder[RootNr];
4484// *out << Verbose(1) << "Number of resulting molecules for Order " << (int)Walker->GetTrueFather()->AdaptiveOrder << " is: " << NumMoleculesOfOrder[RootNr] << "." << endl;
4485 RootStack.push_back(RootKeyNr); // put back on stack
4486 RootNr++;
4487
4488 // free Order-dependent entries of UniqueFragments structure for next loop cycle
4489 Free((void **)&FragmentSearch.BondsPerSPCount, "molecule::PowerSetGenerator: *BondsPerSPCount");
4490 for (int i=Order;i--;) {
4491 delete(FragmentSearch.BondsPerSPList[2*i]);
4492 delete(FragmentSearch.BondsPerSPList[2*i+1]);
4493 }
4494 Free((void **)&FragmentSearch.BondsPerSPList, "molecule::PowerSetGenerator: ***BondsPerSPList");
4495 }
4496 }
4497 *out << Verbose(0) << "==============================================================================================================" << endl;
4498 *out << Verbose(1) << "Total number of resulting molecules is: " << TotalNumMolecules << "." << endl;
4499 *out << Verbose(0) << "==============================================================================================================" << endl;
4500
4501 // cleanup FragmentSearch structure
4502 Free((void **)&FragmentSearch.ShortestPathList, "molecule::PowerSetGenerator: *ShortestPathList");
4503 delete(FragmentSearch.FragmentSet);
4504
4505 // now, FragmentLowerOrdersList is complete, it looks - for BondOrder 5 - as this (number is the ANOVA Order of the terms therein)
4506 // 5433222211111111
4507 // 43221111
4508 // 3211
4509 // 21
4510 // 1
4511
4512 // Subsequently, we combine all into a single list (FragmentList)
4513
4514 *out << Verbose(0) << "Combining the lists of all orders per order and finally into a single one." << endl;
4515 if (FragmentList == NULL) {
4516 FragmentList = new Graph;
4517 counter = 0;
4518 } else {
4519 counter = FragmentList->size();
4520 }
4521 RootNr = 0;
4522 while (!RootStack.empty()) {
4523 RootKeyNr = RootStack.front();
4524 RootStack.pop_front();
4525 Walker = FindAtom(RootKeyNr);
4526 NumLevels = 1 << (Walker->AdaptiveOrder - 1);
4527 for(int i=0;i<NumLevels;i++) {
4528 if (FragmentLowerOrdersList[RootNr][i] != NULL) {
4529 InsertGraphIntoGraph(out, *FragmentList, (*FragmentLowerOrdersList[RootNr][i]), &counter);
4530 delete(FragmentLowerOrdersList[RootNr][i]);
4531 }
4532 }
4533 Free((void **)&FragmentLowerOrdersList[RootNr], "molecule::FragmentBOSSANOVA: **FragmentLowerOrdersList[]");
4534 RootNr++;
4535 }
4536 Free((void **)&FragmentLowerOrdersList, "molecule::FragmentBOSSANOVA: ***FragmentLowerOrdersList");
4537 Free((void **)&NumMoleculesOfOrder, "molecule::FragmentBOSSANOVA: *NumMoleculesOfOrder");
4538
4539 *out << Verbose(0) << "End of FragmentBOSSANOVA." << endl;
4540};
4541
4542/** Comparison function for GSL heapsort on distances in two molecules.
4543 * \param *a
4544 * \param *b
4545 * \return <0, \a *a less than \a *b, ==0 if equal, >0 \a *a greater than \a *b
4546 */
4547inline int CompareDoubles (const void * a, const void * b)
4548{
4549 if (*(double *)a > *(double *)b)
4550 return -1;
4551 else if (*(double *)a < *(double *)b)
4552 return 1;
4553 else
4554 return 0;
4555};
4556
4557/** Determines whether two molecules actually contain the same atoms and coordination.
4558 * \param *out output stream for debugging
4559 * \param *OtherMolecule the molecule to compare this one to
4560 * \param threshold upper limit of difference when comparing the coordination.
4561 * \return NULL - not equal, otherwise an allocated (molecule::AtomCount) permutation map of the atom numbers (which corresponds to which)
4562 */
4563int * molecule::IsEqualToWithinThreshold(ofstream *out, molecule *OtherMolecule, double threshold)
4564{
4565 int flag;
4566 double *Distances = NULL, *OtherDistances = NULL;
4567 Vector CenterOfGravity, OtherCenterOfGravity;
4568 size_t *PermMap = NULL, *OtherPermMap = NULL;
4569 int *PermutationMap = NULL;
4570 atom *Walker = NULL;
4571 bool result = true; // status of comparison
4572
4573 *out << Verbose(3) << "Begin of IsEqualToWithinThreshold." << endl;
4574 /// first count both their atoms and elements and update lists thereby ...
4575 //*out << Verbose(0) << "Counting atoms, updating list" << endl;
4576 CountAtoms(out);
4577 OtherMolecule->CountAtoms(out);
4578 CountElements();
4579 OtherMolecule->CountElements();
4580
4581 /// ... and compare:
4582 /// -# AtomCount
4583 if (result) {
4584 if (AtomCount != OtherMolecule->AtomCount) {
4585 *out << Verbose(4) << "AtomCounts don't match: " << AtomCount << " == " << OtherMolecule->AtomCount << endl;
4586 result = false;
4587 } else *out << Verbose(4) << "AtomCounts match: " << AtomCount << " == " << OtherMolecule->AtomCount << endl;
4588 }
4589 /// -# ElementCount
4590 if (result) {
4591 if (ElementCount != OtherMolecule->ElementCount) {
4592 *out << Verbose(4) << "ElementCount don't match: " << ElementCount << " == " << OtherMolecule->ElementCount << endl;
4593 result = false;
4594 } else *out << Verbose(4) << "ElementCount match: " << ElementCount << " == " << OtherMolecule->ElementCount << endl;
4595 }
4596 /// -# ElementsInMolecule
4597 if (result) {
4598 for (flag=MAX_ELEMENTS;flag--;) {
4599 //*out << Verbose(5) << "Element " << flag << ": " << ElementsInMolecule[flag] << " <-> " << OtherMolecule->ElementsInMolecule[flag] << "." << endl;
4600 if (ElementsInMolecule[flag] != OtherMolecule->ElementsInMolecule[flag])
4601 break;
4602 }
4603 if (flag < MAX_ELEMENTS) {
4604 *out << Verbose(4) << "ElementsInMolecule don't match." << endl;
4605 result = false;
4606 } else *out << Verbose(4) << "ElementsInMolecule match." << endl;
4607 }
4608 /// then determine and compare center of gravity for each molecule ...
4609 if (result) {
4610 *out << Verbose(5) << "Calculating Centers of Gravity" << endl;
4611 DetermineCenter(CenterOfGravity);
4612 OtherMolecule->DetermineCenter(OtherCenterOfGravity);
4613 *out << Verbose(5) << "Center of Gravity: ";
4614 CenterOfGravity.Output(out);
4615 *out << endl << Verbose(5) << "Other Center of Gravity: ";
4616 OtherCenterOfGravity.Output(out);
4617 *out << endl;
4618 if (CenterOfGravity.Distance(&OtherCenterOfGravity) > threshold) {
4619 *out << Verbose(4) << "Centers of gravity don't match." << endl;
4620 result = false;
4621 }
4622 }
4623
4624 /// ... then make a list with the euclidian distance to this center for each atom of both molecules
4625 if (result) {
4626 *out << Verbose(5) << "Calculating distances" << endl;
4627 Distances = (double *) Malloc(sizeof(double)*AtomCount, "molecule::IsEqualToWithinThreshold: Distances");
4628 OtherDistances = (double *) Malloc(sizeof(double)*AtomCount, "molecule::IsEqualToWithinThreshold: OtherDistances");
4629 Walker = start;
4630 while (Walker->next != end) {
4631 Walker = Walker->next;
4632 Distances[Walker->nr] = CenterOfGravity.Distance(&Walker->x);
4633 }
4634 Walker = OtherMolecule->start;
4635 while (Walker->next != OtherMolecule->end) {
4636 Walker = Walker->next;
4637 OtherDistances[Walker->nr] = OtherCenterOfGravity.Distance(&Walker->x);
4638 }
4639
4640 /// ... sort each list (using heapsort (o(N log N)) from GSL)
4641 *out << Verbose(5) << "Sorting distances" << endl;
4642 PermMap = (size_t *) Malloc(sizeof(size_t)*AtomCount, "molecule::IsEqualToWithinThreshold: *PermMap");
4643 OtherPermMap = (size_t *) Malloc(sizeof(size_t)*AtomCount, "molecule::IsEqualToWithinThreshold: *OtherPermMap");
4644 gsl_heapsort_index (PermMap, Distances, AtomCount, sizeof(double), CompareDoubles);
4645 gsl_heapsort_index (OtherPermMap, OtherDistances, AtomCount, sizeof(double), CompareDoubles);
4646 PermutationMap = (int *) Malloc(sizeof(int)*AtomCount, "molecule::IsEqualToWithinThreshold: *PermutationMap");
4647 *out << Verbose(5) << "Combining Permutation Maps" << endl;
4648 for(int i=AtomCount;i--;)
4649 PermutationMap[PermMap[i]] = (int) OtherPermMap[i];
4650
4651 /// ... and compare them step by step, whether the difference is individiually(!) below \a threshold for all
4652 *out << Verbose(4) << "Comparing distances" << endl;
4653 flag = 0;
4654 for (int i=0;i<AtomCount;i++) {
4655 *out << Verbose(5) << "Distances: |" << Distances[PermMap[i]] << " - " << OtherDistances[OtherPermMap[i]] << "| = " << fabs(Distances[PermMap[i]] - OtherDistances[OtherPermMap[i]]) << " ?<? " << threshold << endl;
4656 if (fabs(Distances[PermMap[i]] - OtherDistances[OtherPermMap[i]]) > threshold)
4657 flag = 1;
4658 }
4659 Free((void **)&PermMap, "molecule::IsEqualToWithinThreshold: *PermMap");
4660 Free((void **)&OtherPermMap, "molecule::IsEqualToWithinThreshold: *OtherPermMap");
4661
4662 /// free memory
4663 Free((void **)&Distances, "molecule::IsEqualToWithinThreshold: Distances");
4664 Free((void **)&OtherDistances, "molecule::IsEqualToWithinThreshold: OtherDistances");
4665 if (flag) { // if not equal
4666 Free((void **)&PermutationMap, "molecule::IsEqualToWithinThreshold: *PermutationMap");
4667 result = false;
4668 }
4669 }
4670 /// return pointer to map if all distances were below \a threshold
4671 *out << Verbose(3) << "End of IsEqualToWithinThreshold." << endl;
4672 if (result) {
4673 *out << Verbose(3) << "Result: Equal." << endl;
4674 return PermutationMap;
4675 } else {
4676 *out << Verbose(3) << "Result: Not equal." << endl;
4677 return NULL;
4678 }
4679};
4680
4681/** Returns an index map for two father-son-molecules.
4682 * The map tells which atom in this molecule corresponds to which one in the other molecul with their fathers.
4683 * \param *out output stream for debugging
4684 * \param *OtherMolecule corresponding molecule with fathers
4685 * \return allocated map of size molecule::AtomCount with map
4686 * \todo make this with a good sort O(n), not O(n^2)
4687 */
4688int * molecule::GetFatherSonAtomicMap(ofstream *out, molecule *OtherMolecule)
4689{
4690 atom *Walker = NULL, *OtherWalker = NULL;
4691 *out << Verbose(3) << "Begin of GetFatherAtomicMap." << endl;
4692 int *AtomicMap = (int *) Malloc(sizeof(int)*AtomCount, "molecule::GetAtomicMap: *AtomicMap"); //Calloc
4693 for (int i=AtomCount;i--;)
4694 AtomicMap[i] = -1;
4695 if (OtherMolecule == this) { // same molecule
4696 for (int i=AtomCount;i--;) // no need as -1 means already that there is trivial correspondence
4697 AtomicMap[i] = i;
4698 *out << Verbose(4) << "Map is trivial." << endl;
4699 } else {
4700 *out << Verbose(4) << "Map is ";
4701 Walker = start;
4702 while (Walker->next != end) {
4703 Walker = Walker->next;
4704 if (Walker->father == NULL) {
4705 AtomicMap[Walker->nr] = -2;
4706 } else {
4707 OtherWalker = OtherMolecule->start;
4708 while (OtherWalker->next != OtherMolecule->end) {
4709 OtherWalker = OtherWalker->next;
4710 //for (int i=0;i<AtomCount;i++) { // search atom
4711 //for (int j=0;j<OtherMolecule->AtomCount;j++) {
4712 //*out << Verbose(4) << "Comparing father " << Walker->father << " with the other one " << OtherWalker->father << "." << endl;
4713 if (Walker->father == OtherWalker)
4714 AtomicMap[Walker->nr] = OtherWalker->nr;
4715 }
4716 }
4717 *out << AtomicMap[Walker->nr] << "\t";
4718 }
4719 *out << endl;
4720 }
4721 *out << Verbose(3) << "End of GetFatherAtomicMap." << endl;
4722 return AtomicMap;
4723};
4724
4725/** Stores the temperature evaluated from velocities in molecule::Trajectories.
4726 * We simply use the formula equivaleting temperature and kinetic energy:
4727 * \f$k_B T = \sum_i m_i v_i^2\f$
4728 * \param *out output stream for debugging
4729 * \param startstep first MD step in molecule::Trajectories
4730 * \param endstep last plus one MD step in molecule::Trajectories
4731 * \param *output output stream of temperature file
4732 * \return file written (true), failure on writing file (false)
4733 */
4734bool molecule::OutputTemperatureFromTrajectories(ofstream *out, int startstep, int endstep, ofstream *output)
4735{
4736 double temperature;
4737 atom *Walker = NULL;
4738 // test stream
4739 if (output == NULL)
4740 return false;
4741 else
4742 *output << "# Step Temperature [K] Temperature [a.u.]" << endl;
4743 for (int step=startstep;step < endstep; step++) { // loop over all time steps
4744 temperature = 0.;
4745 Walker = start;
4746 while (Walker->next != end) {
4747 Walker = Walker->next;
4748 for (int i=NDIM;i--;)
4749 temperature += Walker->type->mass * Trajectories[Walker].U.at(step).x[i]* Trajectories[Walker].U.at(step).x[i];
4750 }
4751 *output << step << "\t" << temperature*AtomicEnergyToKelvin << "\t" << temperature << endl;
4752 }
4753 return true;
4754};
Note: See TracBrowser for help on using the repository browser.