/** \file MoleculeListClass.cpp * * Function implementations for the class MoleculeListClass. * */ #include "atom.hpp" #include "bond.hpp" #include "boundary.hpp" #include "config.hpp" #include "element.hpp" #include "helpers.hpp" #include "linkedcell.hpp" #include "lists.hpp" #include "log.hpp" #include "molecule.hpp" #include "memoryallocator.hpp" #include "periodentafel.hpp" /*********************************** Functions for class MoleculeListClass *************************/ /** Constructor for MoleculeListClass. */ MoleculeListClass::MoleculeListClass() { // empty lists ListOfMolecules.clear(); MaxIndex = 1; }; /** Destructor for MoleculeListClass. */ MoleculeListClass::~MoleculeListClass() { Log() << Verbose(3) << this << ": Freeing ListOfMolcules." << endl; for (MoleculeList::iterator ListRunner = ListOfMolecules.begin(); ListRunner != ListOfMolecules.end(); ListRunner++) { Log() << Verbose(4) << "ListOfMolecules: Freeing " << *ListRunner << "." << endl; delete (*ListRunner); } Log() << Verbose(4) << "Freeing ListOfMolecules." << endl; ListOfMolecules.clear(); // empty list }; /** Insert a new molecule into the list and set its number. * \param *mol molecule to add to list. * \return true - add successful */ void MoleculeListClass::insert(molecule *mol) { mol->IndexNr = MaxIndex++; ListOfMolecules.push_back(mol); }; /** Compare whether two molecules are equal. * \param *a molecule one * \param *n molecule two * \return lexical value (-1, 0, +1) */ int MolCompare(const void *a, const void *b) { int *aList = NULL, *bList = NULL; int Count, Counter, aCounter, bCounter; int flag; atom *aWalker = NULL; atom *bWalker = NULL; // sort each atom list and put the numbers into a list, then go through //Log() << Verbose(0) << "Comparing fragment no. " << *(molecule **)a << " to " << *(molecule **)b << "." << endl; if ((**(molecule **) a).AtomCount < (**(molecule **) b).AtomCount) { return -1; } else { if ((**(molecule **) a).AtomCount > (**(molecule **) b).AtomCount) return +1; else { Count = (**(molecule **) a).AtomCount; aList = new int[Count]; bList = new int[Count]; // fill the lists aWalker = (**(molecule **) a).start; bWalker = (**(molecule **) b).start; Counter = 0; aCounter = 0; bCounter = 0; while ((aWalker->next != (**(molecule **) a).end) && (bWalker->next != (**(molecule **) b).end)) { aWalker = aWalker->next; bWalker = bWalker->next; if (aWalker->GetTrueFather() == NULL) aList[Counter] = Count + (aCounter++); else aList[Counter] = aWalker->GetTrueFather()->nr; if (bWalker->GetTrueFather() == NULL) bList[Counter] = Count + (bCounter++); else bList[Counter] = bWalker->GetTrueFather()->nr; Counter++; } // check if AtomCount was for real flag = 0; if ((aWalker->next == (**(molecule **) a).end) && (bWalker->next != (**(molecule **) b).end)) { flag = -1; } else { if ((aWalker->next != (**(molecule **) a).end) && (bWalker->next == (**(molecule **) b).end)) flag = 1; } if (flag == 0) { // sort the lists gsl_heapsort(aList, Count, sizeof(int), CompareDoubles); gsl_heapsort(bList, Count, sizeof(int), CompareDoubles); // compare the lists flag = 0; for (int i = 0; i < Count; i++) { if (aList[i] < bList[i]) { flag = -1; } else { if (aList[i] > bList[i]) flag = 1; } if (flag != 0) break; } } delete[] (aList); delete[] (bList); return flag; } } return -1; }; /** Output of a list of all molecules. * \param *out output stream */ void MoleculeListClass::Enumerate(ofstream *out) { element* Elemental = NULL; atom *Walker = NULL; int Counts[MAX_ELEMENTS]; double size=0; Vector Origin; // header (*out) << "Index\tName\t\tAtoms\tFormula\tCenter\tSize" << endl; (*out) << "-----------------------------------------------" << endl; if (ListOfMolecules.size() == 0) (*out) << "\tNone" << endl; else { Origin.Zero(); for (MoleculeList::iterator ListRunner = ListOfMolecules.begin(); ListRunner != ListOfMolecules.end(); ListRunner++) { // reset element counts for (int j = 0; jstart; while (Walker->next != (*ListRunner)->end) { Walker = Walker->next; Counts[Walker->type->Z]++; if (Walker->x.DistanceSquared(&Origin) > size) size = Walker->x.DistanceSquared(&Origin); } // output Index, Name, number of atoms, chemical formula (*out) << ((*ListRunner)->ActiveFlag ? "*" : " ") << (*ListRunner)->IndexNr << "\t" << (*ListRunner)->name << "\t\t" << (*ListRunner)->AtomCount << "\t"; Elemental = (*ListRunner)->elemente->end; while(Elemental->previous != (*ListRunner)->elemente->start) { Elemental = Elemental->previous; if (Counts[Elemental->Z] != 0) (*out) << Elemental->symbol << Counts[Elemental->Z]; } // Center and size (*out) << "\t" << (*ListRunner)->Center << "\t" << sqrt(size) << endl; } } }; /** Returns the molecule with the given index \a index. * \param index index of the desired molecule * \return pointer to molecule structure, NULL if not found */ molecule * MoleculeListClass::ReturnIndex(int index) { for(MoleculeList::iterator ListRunner = ListOfMolecules.begin(); ListRunner != ListOfMolecules.end(); ListRunner++) if ((*ListRunner)->IndexNr == index) return (*ListRunner); return NULL; }; /** Simple merge of two molecules into one. * \param *mol destination molecule * \param *srcmol source molecule * \return true - merge successful, false - merge failed (probably due to non-existant indices */ bool MoleculeListClass::SimpleMerge(molecule *mol, molecule *srcmol) { if (srcmol == NULL) return false; // put all molecules of src into mol atom *Walker = srcmol->start; atom *NextAtom = Walker->next; while (NextAtom != srcmol->end) { Walker = NextAtom; NextAtom = Walker->next; srcmol->UnlinkAtom(Walker); mol->AddAtom(Walker); } // remove src ListOfMolecules.remove(srcmol); delete(srcmol); return true; }; /** Simple add of one molecules into another. * \param *mol destination molecule * \param *srcmol source molecule * \return true - merge successful, false - merge failed (probably due to non-existant indices */ bool MoleculeListClass::SimpleAdd(molecule *mol, molecule *srcmol) { if (srcmol == NULL) return false; // put all molecules of src into mol atom *Walker = srcmol->start; atom *NextAtom = Walker->next; while (NextAtom != srcmol->end) { Walker = NextAtom; NextAtom = Walker->next; Walker = mol->AddCopyAtom(Walker); Walker->father = Walker; } return true; }; /** Simple merge of a given set of molecules into one. * \param *mol destination molecule * \param *src index of set of source molecule * \param N number of source molecules * \return true - merge successful, false - some merges failed (probably due to non-existant indices) */ bool MoleculeListClass::SimpleMultiMerge(molecule *mol, int *src, int N) { bool status = true; // check presence of all source molecules for (int i=0;iCenter.Zero(); srcmol->Translate(&srcmol->Center); } // perform a simple multi merge SimpleMultiMerge(mol, src, N); return true; }; /** Embedding merge of a given set of molecules into one. * Embedding merge inserts one molecule into the other. * \param *mol destination molecule (fixed one) * \param *srcmol source molecule (variable one, where atoms are taken from) * \return true - merge successful, false - merge failed (probably due to non-existant indices) * \TODO linked cell dimensions for boundary points has to be as big as inner diameter! */ bool MoleculeListClass::EmbedMerge(molecule *mol, molecule *srcmol) { LinkedCell *LCList = NULL; Tesselation *TesselStruct = NULL; if ((srcmol == NULL) || (mol == NULL)) { eLog() << Verbose(1) << "Either fixed or variable molecule is given as NULL." << endl; return false; } // calculate envelope for *mol LCList = new LinkedCell(mol, 8.); FindNonConvexBorder(mol, TesselStruct, (const LinkedCell *&)LCList, 4., NULL); if (TesselStruct == NULL) { eLog() << Verbose(1) << "Could not tesselate the fixed molecule." << endl; return false; } delete(LCList); LCList = new LinkedCell(TesselStruct, 8.); // re-create with boundary points only! // prepare index list for bonds srcmol->CountAtoms(); atom ** CopyAtoms = new atom*[srcmol->AtomCount]; for(int i=0;iAtomCount;i++) CopyAtoms[i] = NULL; // for each of the source atoms check whether we are in- or outside and add copy atom atom *Walker = srcmol->start; int nr=0; while (Walker->next != srcmol->end) { Walker = Walker->next; Log() << Verbose(2) << "INFO: Current Walker is " << *Walker << "." << endl; if (!TesselStruct->IsInnerPoint(Walker->x, LCList)) { CopyAtoms[Walker->nr] = new atom(Walker); mol->AddAtom(CopyAtoms[Walker->nr]); nr++; } else { // do nothing } } Log() << Verbose(1) << nr << " of " << srcmol->AtomCount << " atoms have been merged."; // go through all bonds and add as well bond *Binder = srcmol->first; while(Binder->next != srcmol->last) { Binder = Binder->next; Log() << Verbose(3) << "Adding Bond between " << *CopyAtoms[Binder->leftatom->nr] << " and " << *CopyAtoms[Binder->rightatom->nr]<< "." << endl; mol->AddBond(CopyAtoms[Binder->leftatom->nr], CopyAtoms[Binder->rightatom->nr], Binder->BondDegree); } delete(LCList); return true; }; /** Simple output of the pointers in ListOfMolecules. * \param *out output stream */ void MoleculeListClass::Output(ofstream *out) { Log() << Verbose(1) << "MoleculeList: "; for (MoleculeList::iterator ListRunner = ListOfMolecules.begin(); ListRunner != ListOfMolecules.end(); ListRunner++) Log() << Verbose(0) << *ListRunner << "\t"; Log() << Verbose(0) << endl; }; /** Calculates necessary hydrogen correction due to unwanted interaction between saturated ones. * If for a pair of two hydrogen atoms a and b, at least is a saturated one, and a and b are not * bonded to the same atom, then we add for this pair a correction term constructed from a Morse * potential function fit to QM calculations with respecting to the interatomic hydrogen distance. * \param *out output stream for debugging * \param *path path to file */ bool MoleculeListClass::AddHydrogenCorrection(char *path) { atom *Walker = NULL; atom *Runner = NULL; bond *Binder = NULL; double ***FitConstant = NULL, **correction = NULL; int a, b; ofstream output; ifstream input; string line; stringstream zeile; double distance; char ParsedLine[1023]; double tmp; char *FragmentNumber = NULL; Log() << Verbose(1) << "Saving hydrogen saturation correction ... "; // 0. parse in fit constant files that should have the same dimension as the final energy files // 0a. find dimension of matrices with constants line = path; line.append("/"); line += FRAGMENTPREFIX; line += "1"; line += FITCONSTANTSUFFIX; input.open(line.c_str()); if (input == NULL) { eLog() << Verbose(0) << endl << "Unable to open " << line << ", is the directory correct?" << endl; performCriticalExit(); return false; } a = 0; b = -1; // we overcount by one while (!input.eof()) { input.getline(ParsedLine, 1023); zeile.str(ParsedLine); int i = 0; while (!zeile.eof()) { zeile >> distance; i++; } if (i > a) a = i; b++; } Log() << Verbose(0) << "I recognized " << a << " columns and " << b << " rows, "; input.close(); // 0b. allocate memory for constants FitConstant = Calloc(3, "MoleculeListClass::AddHydrogenCorrection: ***FitConstant"); for (int k = 0; k < 3; k++) { FitConstant[k] = Calloc(a, "MoleculeListClass::AddHydrogenCorrection: **FitConstant[]"); for (int i = a; i--;) { FitConstant[k][i] = Calloc(b, "MoleculeListClass::AddHydrogenCorrection: *FitConstant[][]"); } } // 0c. parse in constants for (int i = 0; i < 3; i++) { line = path; line.append("/"); line += FRAGMENTPREFIX; sprintf(ParsedLine, "%d", i + 1); line += ParsedLine; line += FITCONSTANTSUFFIX; input.open(line.c_str()); if (input == NULL) { eLog() << Verbose(0) << endl << "Unable to open " << line << ", is the directory correct?" << endl; performCriticalExit(); return false; } int k = 0, l; while ((!input.eof()) && (k < b)) { input.getline(ParsedLine, 1023); //Log() << Verbose(0) << "Current Line: " << ParsedLine << endl; zeile.str(ParsedLine); zeile.clear(); l = 0; while ((!zeile.eof()) && (l < a)) { zeile >> FitConstant[i][l][k]; //Log() << Verbose(0) << FitConstant[i][l][k] << "\t"; l++; } //Log() << Verbose(0) << endl; k++; } input.close(); } for (int k = 0; k < 3; k++) { Log() << Verbose(0) << "Constants " << k << ":" << endl; for (int j = 0; j < b; j++) { for (int i = 0; i < a; i++) { Log() << Verbose(0) << FitConstant[k][i][j] << "\t"; } Log() << Verbose(0) << endl; } Log() << Verbose(0) << endl; } // 0d. allocate final correction matrix correction = Calloc(a, "MoleculeListClass::AddHydrogenCorrection: **correction"); for (int i = a; i--;) correction[i] = Calloc(b, "MoleculeListClass::AddHydrogenCorrection: *correction[]"); // 1a. go through every molecule in the list for (MoleculeList::iterator ListRunner = ListOfMolecules.begin(); ListRunner != ListOfMolecules.end(); ListRunner++) { // 1b. zero final correction matrix for (int k = a; k--;) for (int j = b; j--;) correction[k][j] = 0.; // 2. take every hydrogen that is a saturated one Walker = (*ListRunner)->start; while (Walker->next != (*ListRunner)->end) { Walker = Walker->next; //Log() << Verbose(1) << "Walker: " << *Walker << " with first bond " << *(Walker->ListOfBonds.begin()) << "." << endl; if ((Walker->type->Z == 1) && ((Walker->father == NULL) || (Walker->father->type->Z != 1))) { // if it's a hydrogen Runner = (*ListRunner)->start; while (Runner->next != (*ListRunner)->end) { Runner = Runner->next; //Log() << Verbose(2) << "Runner: " << *Runner << " with first bond " << *(Walker->ListOfBonds.begin()) << "." << endl; // 3. take every other hydrogen that is the not the first and not bound to same bonding partner Binder = *(Runner->ListOfBonds.begin()); if ((Runner->type->Z == 1) && (Runner->nr > Walker->nr) && (Binder->GetOtherAtom(Runner) != Binder->GetOtherAtom(Walker))) { // (hydrogens have only one bonding partner!) // 4. evaluate the morse potential for each matrix component and add up distance = Runner->x.Distance(&Walker->x); //Log() << Verbose(0) << "Fragment " << (*ListRunner)->name << ": " << *Runner << "<= " << distance << "=>" << *Walker << ":" << endl; for (int k = 0; k < a; k++) { for (int j = 0; j < b; j++) { switch (k) { case 1: case 7: case 11: tmp = pow(FitConstant[0][k][j] * (1. - exp(-FitConstant[1][k][j] * (distance - FitConstant[2][k][j]))), 2); break; default: tmp = FitConstant[0][k][j] * pow(distance, FitConstant[1][k][j]) + FitConstant[2][k][j]; }; correction[k][j] -= tmp; // ground state is actually lower (disturbed by additional interaction) //Log() << Verbose(0) << tmp << "\t"; } //Log() << Verbose(0) << endl; } //Log() << Verbose(0) << endl; } } } } // 5. write final matrix to file line = path; line.append("/"); line += FRAGMENTPREFIX; FragmentNumber = FixedDigitNumber(ListOfMolecules.size(), (*ListRunner)->IndexNr); line += FragmentNumber; delete (FragmentNumber); line += HCORRECTIONSUFFIX; output.open(line.c_str()); output << "Time\t\tTotal\t\tKinetic\t\tNonLocal\tCorrelation\tExchange\tPseudo\t\tHartree\t\t-Gauss\t\tEwald\t\tIonKin\t\tETotal" << endl; for (int j = 0; j < b; j++) { for (int i = 0; i < a; i++) output << correction[i][j] << "\t"; output << endl; } output.close(); } line = path; line.append("/"); line += HCORRECTIONSUFFIX; output.open(line.c_str()); output << "Time\t\tTotal\t\tKinetic\t\tNonLocal\tCorrelation\tExchange\tPseudo\t\tHartree\t\t-Gauss\t\tEwald\t\tIonKin\t\tETotal" << endl; for (int j = 0; j < b; j++) { for (int i = 0; i < a; i++) output << 0 << "\t"; output << endl; } output.close(); // 6. free memory of parsed matrices for (int k = 0; k < 3; k++) { for (int i = a; i--;) { Free(&FitConstant[k][i]); } Free(&FitConstant[k]); } Free(&FitConstant); Log() << Verbose(0) << "done." << endl; return true; }; /** Store force indices, i.e. the connection between the nuclear index in the total molecule config and the respective atom in fragment config. * \param *out output stream for debugging * \param *path path to file * \param *SortIndex Index to map from the BFS labeling to the sequence how of Ion_Type in the config * \return true - file written successfully, false - writing failed */ bool MoleculeListClass::StoreForcesFile(char *path, int *SortIndex) { bool status = true; ofstream ForcesFile; stringstream line; atom *Walker = NULL; element *runner = NULL; // open file for the force factors Log() << Verbose(1) << "Saving force factors ... "; line << path << "/" << FRAGMENTPREFIX << FORCESFILE; ForcesFile.open(line.str().c_str(), ios::out); if (ForcesFile != NULL) { //Log() << Verbose(1) << "Final AtomicForcesList: "; //output << prefix << "Forces" << endl; for (MoleculeList::iterator ListRunner = ListOfMolecules.begin(); ListRunner != ListOfMolecules.end(); ListRunner++) { runner = (*ListRunner)->elemente->start; while (runner->next != (*ListRunner)->elemente->end) { // go through every element runner = runner->next; if ((*ListRunner)->ElementsInMolecule[runner->Z]) { // if this element got atoms Walker = (*ListRunner)->start; while (Walker->next != (*ListRunner)->end) { // go through every atom of this element Walker = Walker->next; if (Walker->type->Z == runner->Z) { if ((Walker->GetTrueFather() != NULL) && (Walker->GetTrueFather() != Walker)) {// if there is a rea //Log() << Verbose(0) << "Walker is " << *Walker << " with true father " << *( Walker->GetTrueFather()) << ", it ForcesFile << SortIndex[Walker->GetTrueFather()->nr] << "\t"; } else // otherwise a -1 to indicate an added saturation hydrogen ForcesFile << "-1\t"; } } } } ForcesFile << endl; } ForcesFile.close(); Log() << Verbose(1) << "done." << endl; } else { status = false; Log() << Verbose(1) << "failed to open file " << line.str() << "." << endl; } ForcesFile.close(); return status; }; /** Writes a config file for each molecule in the given \a **FragmentList. * \param *out output stream for debugging * \param *configuration standard configuration to attach atoms in fragment molecule to. * \param *SortIndex Index to map from the BFS labeling to the sequence how of Ion_Type in the config * \param DoPeriodic true - call ScanForPeriodicCorrection, false - don't * \param DoCentering true - call molecule::CenterEdge(), false - don't * \return true - success (each file was written), false - something went wrong. */ bool MoleculeListClass::OutputConfigForListOfFragments(config *configuration, int *SortIndex) { ofstream outputFragment; char FragmentName[MAXSTRINGSIZE]; char PathBackup[MAXSTRINGSIZE]; bool result = true; bool intermediateResult = true; atom *Walker = NULL; Vector BoxDimension; char *FragmentNumber = NULL; char *path = NULL; int FragmentCounter = 0; ofstream output; // store the fragments as config and as xyz for (MoleculeList::iterator ListRunner = ListOfMolecules.begin(); ListRunner != ListOfMolecules.end(); ListRunner++) { // save default path as it is changed for each fragment path = configuration->GetDefaultPath(); if (path != NULL) strcpy(PathBackup, path); else { eLog() << Verbose(0) << "OutputConfigForListOfFragments: NULL default path obtained from config!" << endl; performCriticalExit(); } // correct periodic (*ListRunner)->ScanForPeriodicCorrection(); // output xyz file FragmentNumber = FixedDigitNumber(ListOfMolecules.size(), FragmentCounter++); sprintf(FragmentName, "%s/%s%s.conf.xyz", configuration->configpath, FRAGMENTPREFIX, FragmentNumber); outputFragment.open(FragmentName, ios::out); Log() << Verbose(2) << "Saving bond fragment No. " << FragmentNumber << "/" << FragmentCounter - 1 << " as XYZ ..."; if ((intermediateResult = (*ListRunner)->OutputXYZ(&outputFragment))) Log() << Verbose(0) << " done." << endl; else Log() << Verbose(0) << " failed." << endl; result = result && intermediateResult; outputFragment.close(); outputFragment.clear(); // list atoms in fragment for debugging Log() << Verbose(2) << "Contained atoms: "; Walker = (*ListRunner)->start; while (Walker->next != (*ListRunner)->end) { Walker = Walker->next; Log() << Verbose(0) << Walker->Name << " "; } Log() << Verbose(0) << endl; // center on edge (*ListRunner)->CenterEdge(&BoxDimension); (*ListRunner)->SetBoxDimension(&BoxDimension); // update Box of atoms by boundary int j = -1; for (int k = 0; k < NDIM; k++) { j += k + 1; BoxDimension.x[k] = 2.5 * (configuration->GetIsAngstroem() ? 1. : 1. / AtomicLengthToAngstroem); (*ListRunner)->cell_size[j] += BoxDimension.x[k] * 2.; } (*ListRunner)->Translate(&BoxDimension); // also calculate necessary orbitals (*ListRunner)->CountElements(); // this is a bugfix, atoms should shoulds actually be added correctly to this fragment (*ListRunner)->CalculateOrbitals(*configuration); // change path in config //strcpy(PathBackup, configuration->configpath); sprintf(FragmentName, "%s/%s%s/", PathBackup, FRAGMENTPREFIX, FragmentNumber); configuration->SetDefaultPath(FragmentName); // and save as config sprintf(FragmentName, "%s/%s%s.conf", configuration->configpath, FRAGMENTPREFIX, FragmentNumber); Log() << Verbose(2) << "Saving bond fragment No. " << FragmentNumber << "/" << FragmentCounter - 1 << " as config ..."; if ((intermediateResult = configuration->Save(FragmentName, (*ListRunner)->elemente, (*ListRunner)))) Log() << Verbose(0) << " done." << endl; else Log() << Verbose(0) << " failed." << endl; result = result && intermediateResult; // restore old config configuration->SetDefaultPath(PathBackup); // and save as mpqc input file sprintf(FragmentName, "%s/%s%s.conf", configuration->configpath, FRAGMENTPREFIX, FragmentNumber); Log() << Verbose(2) << "Saving bond fragment No. " << FragmentNumber << "/" << FragmentCounter - 1 << " as mpqc input ..."; if ((intermediateResult = configuration->SaveMPQC(FragmentName, (*ListRunner)))) Log() << Verbose(2) << " done." << endl; else Log() << Verbose(0) << " failed." << endl; result = result && intermediateResult; //outputFragment.close(); //outputFragment.clear(); Free(&FragmentNumber); } Log() << Verbose(0) << " done." << endl; // printing final number Log() << Verbose(2) << "Final number of fragments: " << FragmentCounter << "." << endl; return result; }; /** Counts the number of molecules with the molecule::ActiveFlag set. * \return number of molecules with ActiveFlag set to true. */ int MoleculeListClass::NumberOfActiveMolecules() { int count = 0; for (MoleculeList::iterator ListRunner = ListOfMolecules.begin(); ListRunner != ListOfMolecules.end(); ListRunner++) count += ((*ListRunner)->ActiveFlag ? 1 : 0); return count; }; /** Dissects given \a *mol into connected subgraphs and inserts them as new molecules but with old atoms into \a this. * \param *out output stream for debugging * \param *mol molecule with atoms to dissect * \param *configuration config with BondGraph */ void MoleculeListClass::DissectMoleculeIntoConnectedSubgraphs(molecule * const mol, config * const configuration) { // 1. dissect the molecule into connected subgraphs configuration->BG->ConstructBondGraph(mol); // 2. scan for connected subgraphs MoleculeLeafClass *Subgraphs = NULL; // list of subgraphs from DFS analysis class StackClass *BackEdgeStack = NULL; Subgraphs = mol->DepthFirstSearchAnalysis(BackEdgeStack); delete(BackEdgeStack); // 3. dissect (the following construct is needed to have the atoms not in the order of the DFS, but in // the original one as parsed in) // TODO: Optimize this, when molecules just contain pointer list of global atoms! // 4a. create array of molecules to fill const int MolCount = Subgraphs->next->Count(); molecule **molecules = Malloc(MolCount, "config::Load() - **molecules"); for (int i=0;ielemente); molecules[i]->ActiveFlag = true; insert(molecules[i]); } // 4b. create and fill map of which atom is associated to which connected molecule (note, counting starts at 1) int FragmentCounter = 0; int *MolMap = Calloc(mol->AtomCount, "config::Load() - *MolMap"); MoleculeLeafClass *MolecularWalker = Subgraphs; atom *Walker = NULL; while (MolecularWalker->next != NULL) { MolecularWalker = MolecularWalker->next; Walker = MolecularWalker->Leaf->start; while (Walker->next != MolecularWalker->Leaf->end) { Walker = Walker->next; MolMap[Walker->GetTrueFather()->nr] = FragmentCounter+1; } FragmentCounter++; } // 4c. relocate atoms to new molecules and remove from Leafs Walker = NULL; while (mol->start->next != mol->end) { Walker = mol->start->next; if ((Walker->nr <0) || (Walker->nr >= mol->AtomCount)) { eLog() << Verbose(0) << "Index of atom " << *Walker << " is invalid!" << endl; performCriticalExit(); } FragmentCounter = MolMap[Walker->nr]; if (FragmentCounter != 0) { Log() << Verbose(3) << "Re-linking " << *Walker << "..." << endl; unlink(Walker); molecules[FragmentCounter-1]->AddAtom(Walker); // counting starts at 1 } else { eLog() << Verbose(0) << "Atom " << *Walker << " not associated to molecule!" << endl; performCriticalExit(); } } // 4d. we don't need to redo bonds, as they are connected subgraphs and still maintained their ListOfBonds, but we have to remove them from first..last list bond *Binder = mol->first; while (mol->first->next != mol->last) { Binder = mol->first->next; Walker = Binder->leftatom; unlink(Binder); link(Binder,molecules[MolMap[Walker->nr]-1]->last); // counting starts at 1 } // 4e. free Leafs MolecularWalker = Subgraphs; while (MolecularWalker->next != NULL) { MolecularWalker = MolecularWalker->next; delete(MolecularWalker->previous); } delete(MolecularWalker); Free(&MolMap); Free(&molecules); Log() << Verbose(1) << "I scanned " << FragmentCounter << " molecules." << endl; }; /** Count all atoms in each molecule. * \return number of atoms in the MoleculeListClass. * TODO: the inner loop should be done by some (double molecule::CountAtom()) function */ int MoleculeListClass::CountAllAtoms() const { atom *Walker = NULL; int AtomNo = 0; for (MoleculeList::const_iterator MolWalker = ListOfMolecules.begin(); MolWalker != ListOfMolecules.end(); MolWalker++) { Walker = (*MolWalker)->start; while (Walker->next != (*MolWalker)->end) { Walker = Walker->next; AtomNo++; } } return AtomNo; } /******************************************* Class MoleculeLeafClass ************************************************/ /** Constructor for MoleculeLeafClass root leaf. * \param *Up Leaf on upper level * \param *PreviousLeaf NULL - We are the first leaf on this level, otherwise points to previous in list */ //MoleculeLeafClass::MoleculeLeafClass(MoleculeLeafClass *Up = NULL, MoleculeLeafClass *Previous = NULL) MoleculeLeafClass::MoleculeLeafClass(MoleculeLeafClass *PreviousLeaf = NULL) { // if (Up != NULL) // if (Up->DownLeaf == NULL) // are we the first down leaf for the upper leaf? // Up->DownLeaf = this; // UpLeaf = Up; // DownLeaf = NULL; Leaf = NULL; previous = PreviousLeaf; if (previous != NULL) { MoleculeLeafClass *Walker = previous->next; previous->next = this; next = Walker; } else { next = NULL; } }; /** Destructor for MoleculeLeafClass. */ MoleculeLeafClass::~MoleculeLeafClass() { // if (DownLeaf != NULL) {// drop leaves further down // MoleculeLeafClass *Walker = DownLeaf; // MoleculeLeafClass *Next; // do { // Next = Walker->NextLeaf; // delete(Walker); // Walker = Next; // } while (Walker != NULL); // // Last Walker sets DownLeaf automatically to NULL // } // remove the leaf itself if (Leaf != NULL) { delete (Leaf); Leaf = NULL; } // remove this Leaf from level list if (previous != NULL) previous->next = next; // } else { // we are first in list (connects to UpLeaf->DownLeaf) // if ((NextLeaf != NULL) && (NextLeaf->UpLeaf == NULL)) // NextLeaf->UpLeaf = UpLeaf; // either null as we are top level or the upleaf of the first node // if (UpLeaf != NULL) // UpLeaf->DownLeaf = NextLeaf; // either null as we are only leaf or NextLeaf if we are just the first // } // UpLeaf = NULL; if (next != NULL) // are we last in list next->previous = previous; next = NULL; previous = NULL; }; /** Adds \a molecule leaf to the tree. * \param *ptr ptr to molecule to be added * \param *Previous previous MoleculeLeafClass referencing level and which on the level * \return true - success, false - something went wrong */ bool MoleculeLeafClass::AddLeaf(molecule *ptr, MoleculeLeafClass *Previous) { return false; }; /** Fills the bond structure of this chain list subgraphs that are derived from a complete \a *reference molecule. * Calls this routine in each MoleculeLeafClass::next subgraph if it's not NULL. * \param *out output stream for debugging * \param *reference reference molecule with the bond structure to be copied * \param &FragmentCounter Counter needed to address \a **ListOfLocalAtoms * \param ***ListOfLocalAtoms Lookup table for each subgraph and index of each atom in \a *reference, may be NULL on start, then it is filled * \param FreeList true - ***ListOfLocalAtoms is free'd before return, false - it is not * \return true - success, false - faoilure */ bool MoleculeLeafClass::FillBondStructureFromReference(const molecule * const reference, int &FragmentCounter, atom ***&ListOfLocalAtoms, bool FreeList) { atom *Walker = NULL; atom *OtherWalker = NULL; atom *Father = NULL; bool status = true; int AtomNo; Log() << Verbose(1) << "Begin of FillBondStructureFromReference." << endl; // fill ListOfLocalAtoms if NULL was given if (!FillListOfLocalAtoms(ListOfLocalAtoms, FragmentCounter, reference->AtomCount, FreeList)) { Log() << Verbose(1) << "Filling of ListOfLocalAtoms failed." << endl; return false; } if (status) { Log() << Verbose(1) << "Creating adjacency list for subgraph " << Leaf << "." << endl; // remove every bond from the list bond *Binder = NULL; while (Leaf->last->previous != Leaf->first) { Binder = Leaf->last->previous; Binder->leftatom->UnregisterBond(Binder); Binder->rightatom->UnregisterBond(Binder); removewithoutcheck(Binder); } Walker = Leaf->start; while (Walker->next != Leaf->end) { Walker = Walker->next; Father = Walker->GetTrueFather(); AtomNo = Father->nr; // global id of the current walker for (BondList::const_iterator Runner = Father->ListOfBonds.begin(); Runner != Father->ListOfBonds.end(); (++Runner)) { OtherWalker = ListOfLocalAtoms[FragmentCounter][(*Runner)->GetOtherAtom(Walker->GetTrueFather())->nr]; // local copy of current bond partner of walker if (OtherWalker != NULL) { if (OtherWalker->nr > Walker->nr) Leaf->AddBond(Walker, OtherWalker, (*Runner)->BondDegree); } else { Log() << Verbose(1) << "OtherWalker = ListOfLocalAtoms[" << FragmentCounter << "][" << (*Runner)->GetOtherAtom(Walker->GetTrueFather())->nr << "] is NULL!" << endl; status = false; } } } } if ((FreeList) && (ListOfLocalAtoms != NULL)) { // free the index lookup list Free(&ListOfLocalAtoms[FragmentCounter]); if (FragmentCounter == 0) // first fragments frees the initial pointer to list Free(&ListOfLocalAtoms); } Log() << Verbose(1) << "End of FillBondStructureFromReference." << endl; return status; }; /** Fills the root stack for sites to be used as root in fragmentation depending on order or adaptivity criteria * Again, as in \sa FillBondStructureFromReference steps recursively through each Leaf in this chain list of molecule's. * \param *out output stream for debugging * \param *&RootStack stack to be filled * \param *AtomMask defines true/false per global Atom::nr to mask in/out each nuclear site * \param &FragmentCounter counts through the fragments in this MoleculeLeafClass * \return true - stack is non-empty, fragmentation necessary, false - stack is empty, no more sites to update */ bool MoleculeLeafClass::FillRootStackForSubgraphs(KeyStack *&RootStack, bool *AtomMask, int &FragmentCounter) { atom *Walker = NULL, *Father = NULL; if (RootStack != NULL) { // find first root candidates if (&(RootStack[FragmentCounter]) != NULL) { RootStack[FragmentCounter].clear(); Walker = Leaf->start; while (Walker->next != Leaf->end) { // go through all (non-hydrogen) atoms Walker = Walker->next; Father = Walker->GetTrueFather(); if (AtomMask[Father->nr]) // apply mask #ifdef ADDHYDROGEN if (Walker->type->Z != 1) // skip hydrogen #endif RootStack[FragmentCounter].push_front(Walker->nr); } if (next != NULL) next->FillRootStackForSubgraphs(RootStack, AtomMask, ++FragmentCounter); } else { Log() << Verbose(1) << "Rootstack[" << FragmentCounter << "] is NULL." << endl; return false; } FragmentCounter--; return true; } else { Log() << Verbose(1) << "Rootstack is NULL." << endl; return false; } }; /** Fills a lookup list of father's Atom::nr -> atom for each subgraph. * \param *out output stream from debugging * \param ***ListOfLocalAtoms Lookup table for each subgraph and index of each atom in global molecule, may be NULL on start, then it is filled * \param FragmentCounter counts the fragments as we move along the list * \param GlobalAtomCount number of atoms in the complete molecule * \param &FreeList true - ***ListOfLocalAtoms is free'd before return, false - it is not * \return true - success, false - failure */ bool MoleculeLeafClass::FillListOfLocalAtoms(atom ***&ListOfLocalAtoms, const int FragmentCounter, const int GlobalAtomCount, bool &FreeList) { bool status = true; if (ListOfLocalAtoms == NULL) { // allocated initial pointer // allocate and set each field to NULL const int Counter = Count(); ListOfLocalAtoms = Calloc(Counter, "MoleculeLeafClass::FillListOfLocalAtoms - ***ListOfLocalAtoms"); if (ListOfLocalAtoms == NULL) { FreeList = FreeList && false; status = false; } } if ((ListOfLocalAtoms != NULL) && (ListOfLocalAtoms[FragmentCounter] == NULL)) { // allocate and fill list of this fragment/subgraph status = status && CreateFatherLookupTable(Leaf->start, Leaf->end, ListOfLocalAtoms[FragmentCounter], GlobalAtomCount); FreeList = FreeList && true; } return status; }; /** The indices per keyset are compared to the respective father's Atom::nr in each subgraph and thus put into \a **&FragmentList. * \param *out output stream fro debugging * \param *reference reference molecule with the bond structure to be copied * \param *KeySetList list with all keysets * \param ***ListOfLocalAtoms Lookup table for each subgraph and index of each atom in global molecule, may be NULL on start, then it is filled * \param **&FragmentList list to be allocated and returned * \param &FragmentCounter counts the fragments as we move along the list * \param FreeList true - ***ListOfLocalAtoms is free'd before return, false - it is not * \retuen true - success, false - failure */ bool MoleculeLeafClass::AssignKeySetsToFragment(molecule *reference, Graph *KeySetList, atom ***&ListOfLocalAtoms, Graph **&FragmentList, int &FragmentCounter, bool FreeList) { bool status = true; int KeySetCounter = 0; Log() << Verbose(1) << "Begin of AssignKeySetsToFragment." << endl; // fill ListOfLocalAtoms if NULL was given if (!FillListOfLocalAtoms(ListOfLocalAtoms, FragmentCounter, reference->AtomCount, FreeList)) { Log() << Verbose(1) << "Filling of ListOfLocalAtoms failed." << endl; return false; } // allocate fragment list if (FragmentList == NULL) { KeySetCounter = Count(); FragmentList = Calloc(KeySetCounter, "MoleculeLeafClass::AssignKeySetsToFragment - **FragmentList"); KeySetCounter = 0; } if ((KeySetList != NULL) && (KeySetList->size() != 0)) { // if there are some scanned keysets at all // assign scanned keysets if (FragmentList[FragmentCounter] == NULL) FragmentList[FragmentCounter] = new Graph; KeySet *TempSet = new KeySet; for (Graph::iterator runner = KeySetList->begin(); runner != KeySetList->end(); runner++) { // key sets contain global numbers! if (ListOfLocalAtoms[FragmentCounter][reference->FindAtom(*((*runner).first.begin()))->nr] != NULL) {// as we may assume that that bond structure is unchanged, we only test the first key in each set // translate keyset to local numbers for (KeySet::iterator sprinter = (*runner).first.begin(); sprinter != (*runner).first.end(); sprinter++) TempSet->insert(ListOfLocalAtoms[FragmentCounter][reference->FindAtom(*sprinter)->nr]->nr); // insert into FragmentList FragmentList[FragmentCounter]->insert(GraphPair(*TempSet, pair (KeySetCounter++, (*runner).second.second))); } TempSet->clear(); } delete (TempSet); if (KeySetCounter == 0) {// if there are no keysets, delete the list Log() << Verbose(1) << "KeySetCounter is zero, deleting FragmentList." << endl; delete (FragmentList[FragmentCounter]); } else Log() << Verbose(1) << KeySetCounter << " keysets were assigned to subgraph " << FragmentCounter << "." << endl; FragmentCounter++; if (next != NULL) next->AssignKeySetsToFragment(reference, KeySetList, ListOfLocalAtoms, FragmentList, FragmentCounter, FreeList); FragmentCounter--; } else Log() << Verbose(1) << "KeySetList is NULL or empty." << endl; if ((FreeList) && (ListOfLocalAtoms != NULL)) { // free the index lookup list Free(&ListOfLocalAtoms[FragmentCounter]); if (FragmentCounter == 0) // first fragments frees the initial pointer to list Free(&ListOfLocalAtoms); } Log() << Verbose(1) << "End of AssignKeySetsToFragment." << endl; return status; }; /** Translate list into global numbers (i.e. ones that are valid in "this" molecule, not in MolecularWalker->Leaf) * \param *out output stream for debugging * \param **FragmentList Graph with local numbers per fragment * \param &FragmentCounter counts the fragments as we move along the list * \param &TotalNumberOfKeySets global key set counter * \param &TotalGraph Graph to be filled with global numbers */ void MoleculeLeafClass::TranslateIndicesToGlobalIDs(Graph **FragmentList, int &FragmentCounter, int &TotalNumberOfKeySets, Graph &TotalGraph) { Log() << Verbose(1) << "Begin of TranslateIndicesToGlobalIDs." << endl; KeySet *TempSet = new KeySet; if (FragmentList[FragmentCounter] != NULL) { for (Graph::iterator runner = FragmentList[FragmentCounter]->begin(); runner != FragmentList[FragmentCounter]->end(); runner++) { for (KeySet::iterator sprinter = (*runner).first.begin(); sprinter != (*runner).first.end(); sprinter++) TempSet->insert((Leaf->FindAtom(*sprinter))->GetTrueFather()->nr); TotalGraph.insert(GraphPair(*TempSet, pair (TotalNumberOfKeySets++, (*runner).second.second))); TempSet->clear(); } delete (TempSet); } else { Log() << Verbose(1) << "FragmentList is NULL." << endl; } if (next != NULL) next->TranslateIndicesToGlobalIDs(FragmentList, ++FragmentCounter, TotalNumberOfKeySets, TotalGraph); FragmentCounter--; Log() << Verbose(1) << "End of TranslateIndicesToGlobalIDs." << endl; }; /** Simply counts the number of items in the list, from given MoleculeLeafClass. * \return number of items */ int MoleculeLeafClass::Count() const { if (next != NULL) return next->Count() + 1; else return 1; };