source: src/molecule_graph.cpp@ 920c70

Action_Thermostats Add_AtomRandomPerturbation Add_FitFragmentPartialChargesAction Add_RotateAroundBondAction Add_SelectAtomByNameAction Added_ParseSaveFragmentResults AddingActions_SaveParseParticleParameters Adding_Graph_to_ChangeBondActions Adding_MD_integration_tests Adding_ParticleName_to_Atom Adding_StructOpt_integration_tests AtomFragments Automaking_mpqc_open AutomationFragmentation_failures Candidate_v1.5.4 Candidate_v1.6.0 Candidate_v1.6.1 ChangeBugEmailaddress ChangingTestPorts ChemicalSpaceEvaluator CombiningParticlePotentialParsing Combining_Subpackages Debian_Package_split Debian_package_split_molecuildergui_only Disabling_MemDebug Docu_Python_wait EmpiricalPotential_contain_HomologyGraph EmpiricalPotential_contain_HomologyGraph_documentation Enable_parallel_make_install Enhance_userguide Enhanced_StructuralOptimization Enhanced_StructuralOptimization_continued Example_ManyWaysToTranslateAtom Exclude_Hydrogens_annealWithBondGraph FitPartialCharges_GlobalError Fix_BoundInBox_CenterInBox_MoleculeActions Fix_ChargeSampling_PBC Fix_ChronosMutex Fix_FitPartialCharges Fix_FitPotential_needs_atomicnumbers Fix_ForceAnnealing Fix_IndependentFragmentGrids Fix_ParseParticles Fix_ParseParticles_split_forward_backward_Actions Fix_PopActions Fix_QtFragmentList_sorted_selection Fix_Restrictedkeyset_FragmentMolecule Fix_StatusMsg Fix_StepWorldTime_single_argument Fix_Verbose_Codepatterns Fix_fitting_potentials Fixes ForceAnnealing_goodresults ForceAnnealing_oldresults ForceAnnealing_tocheck ForceAnnealing_with_BondGraph ForceAnnealing_with_BondGraph_continued ForceAnnealing_with_BondGraph_continued_betteresults ForceAnnealing_with_BondGraph_contraction-expansion FragmentAction_writes_AtomFragments FragmentMolecule_checks_bonddegrees GeometryObjects Gui_Fixes Gui_displays_atomic_force_velocity ImplicitCharges IndependentFragmentGrids IndependentFragmentGrids_IndividualZeroInstances IndependentFragmentGrids_IntegrationTest IndependentFragmentGrids_Sole_NN_Calculation JobMarket_RobustOnKillsSegFaults JobMarket_StableWorkerPool JobMarket_unresolvable_hostname_fix MoreRobust_FragmentAutomation ODR_violation_mpqc_open PartialCharges_OrthogonalSummation PdbParser_setsAtomName PythonUI_with_named_parameters QtGui_reactivate_TimeChanged_changes Recreated_GuiChecks Rewrite_FitPartialCharges RotateToPrincipalAxisSystem_UndoRedo SaturateAtoms_findBestMatching SaturateAtoms_singleDegree StoppableMakroAction Subpackage_CodePatterns Subpackage_JobMarket Subpackage_LinearAlgebra Subpackage_levmar Subpackage_mpqc_open Subpackage_vmg Switchable_LogView ThirdParty_MPQC_rebuilt_buildsystem TrajectoryDependenant_MaxOrder TremoloParser_IncreasedPrecision TremoloParser_MultipleTimesteps TremoloParser_setsAtomName Ubuntu_1604_changes stable
Last change on this file since 920c70 was 920c70, checked in by Frederik Heber <heber@…>, 15 years ago

Removed all Malloc/Calloc/ReAlloc (&Free) and replaced by new and delete/delete[].

Due to the new MemDebug framework there is no need (or even unnecessary/unwanted competition between it and) for the MemoryAllocator and ..UsageObserver anymore.
They can however still be used with c codes such as pcp and alikes.

In Molecuilder lots of glibc corruptions arose and the C-like syntax make it generally harder to get allocation and deallocation straight.

Signed-off-by: Frederik Heber <heber@…>

  • Property mode set to 100644
File size: 62.9 KB
Line 
1/*
2 * molecule_graph.cpp
3 *
4 * Created on: Oct 5, 2009
5 * Author: heber
6 */
7
8#include "atom.hpp"
9#include "bond.hpp"
10#include "bondgraph.hpp"
11#include "config.hpp"
12#include "element.hpp"
13#include "helpers.hpp"
14#include "info.hpp"
15#include "linkedcell.hpp"
16#include "lists.hpp"
17#include "log.hpp"
18#include "memoryallocator.hpp"
19#include "molecule.hpp"
20#include "World.hpp"
21#include "Helpers/fast_functions.hpp"
22
23struct BFSAccounting
24{
25 atom **PredecessorList;
26 int *ShortestPathList;
27 enum Shading *ColorList;
28 class StackClass<atom *> *BFSStack;
29 class StackClass<atom *> *TouchedStack;
30 int AtomCount;
31 int BondOrder;
32 atom *Root;
33 bool BackStepping;
34 int CurrentGraphNr;
35 int ComponentNr;
36};
37
38/** Accounting data for Depth First Search.
39 */
40struct DFSAccounting
41{
42 class StackClass<atom *> *AtomStack;
43 class StackClass<bond *> *BackEdgeStack;
44 int CurrentGraphNr;
45 int ComponentNumber;
46 atom *Root;
47 bool BackStepping;
48};
49
50/************************************* Functions for class molecule *********************************/
51
52/** Creates an adjacency list of the molecule.
53 * We obtain an outside file with the indices of atoms which are bondmembers.
54 */
55void molecule::CreateAdjacencyListFromDbondFile(ifstream *input)
56{
57 Info FunctionInfo(__func__);
58 // 1 We will parse bonds out of the dbond file created by tremolo.
59 int atom1, atom2;
60 atom *Walker, *OtherWalker;
61 char line[MAXSTRINGSIZE];
62
63 if (input->fail()) {
64 DoeLog(0) && (eLog() << Verbose(0) << "Opening of bond file failed \n");
65 performCriticalExit();
66 };
67
68 // skip header
69 input->getline(line,MAXSTRINGSIZE);
70 DoLog(1) && (Log() << Verbose(1) << "Scanning file ... \n");
71 while (!input->eof()) // Check whether we read everything already
72 {
73 input->getline(line,MAXSTRINGSIZE);
74 stringstream zeile(line);
75 zeile >> atom1;
76 zeile >> atom2;
77
78 DoLog(2) && (Log() << Verbose(2) << "Looking for atoms " << atom1 << " and " << atom2 << "." << endl);
79 if (atom2 < atom1) //Sort indices of atoms in order
80 flip(atom1, atom2);
81 Walker = FindAtom(atom1);
82 OtherWalker = FindAtom(atom2);
83 AddBond(Walker, OtherWalker); //Add the bond between the two atoms with respective indices.
84 }
85}
86;
87
88/** Creates an adjacency list of the molecule.
89 * Generally, we use the CSD approach to bond recognition, that is the the distance
90 * between two atoms A and B must be within [Rcov(A)+Rcov(B)-t,Rcov(A)+Rcov(B)+t] with
91 * a threshold t = 0.4 Angstroem.
92 * To make it O(N log N) the function uses the linked-cell technique as follows:
93 * The procedure is step-wise:
94 * -# Remove every bond in list
95 * -# Count the atoms in the molecule with CountAtoms()
96 * -# partition cell into smaller linked cells of size \a bonddistance
97 * -# put each atom into its corresponding cell
98 * -# go through every cell, check the atoms therein against all possible bond partners in the 27 adjacent cells, add bond if true
99 * -# correct the bond degree iteratively (single->double->triple bond)
100 * -# finally print the bond list to \a *out if desired
101 * \param *out out stream for printing the matrix, NULL if no output
102 * \param bonddistance length of linked cells (i.e. maximum minimal length checked)
103 * \param IsAngstroem whether coordinate system is gauged to Angstroem or Bohr radii
104 * \param *minmaxdistance function to give upper and lower bound on whether particle is bonded to some other
105 * \param *BG BondGraph with the member function above or NULL, if just standard covalent should be used.
106 */
107void molecule::CreateAdjacencyList(double bonddistance, bool IsAngstroem, void (BondGraph::*minmaxdistance)(BondedParticle * const , BondedParticle * const , double &, double &, bool), BondGraph *BG)
108{
109 atom *Walker = NULL;
110 atom *OtherWalker = NULL;
111 atom **AtomMap = NULL;
112 int n[NDIM];
113 double MinDistance, MaxDistance;
114 LinkedCell *LC = NULL;
115 bool free_BG = false;
116 double * const cell_size = World::getInstance().getDomain();
117
118 if (BG == NULL) {
119 BG = new BondGraph(IsAngstroem);
120 free_BG = true;
121 }
122
123 BondDistance = bonddistance; // * ((IsAngstroem) ? 1. : 1./AtomicLengthToAngstroem);
124 DoLog(0) && (Log() << Verbose(0) << "Begin of CreateAdjacencyList." << endl);
125 // remove every bond from the list
126 bond *Binder = NULL;
127 while (last->previous != first) {
128 Binder = last->previous;
129 Binder->leftatom->UnregisterBond(Binder);
130 Binder->rightatom->UnregisterBond(Binder);
131 removewithoutcheck(Binder);
132 }
133 BondCount = 0;
134
135 // count atoms in molecule = dimension of matrix (also give each unique name and continuous numbering)
136 CountAtoms();
137 DoLog(1) && (Log() << Verbose(1) << "AtomCount " << AtomCount << " and bonddistance is " << bonddistance << "." << endl);
138
139 if ((AtomCount > 1) && (bonddistance > 1.)) {
140 DoLog(2) && (Log() << Verbose(2) << "Creating Linked Cell structure ... " << endl);
141 LC = new LinkedCell(this, bonddistance);
142
143 // create a list to map Tesselpoint::nr to atom *
144 DoLog(2) && (Log() << Verbose(2) << "Creating TesselPoint to atom map ... " << endl);
145 AtomMap = new atom *[AtomCount];
146 for (int i=0;i<AtomCount;i++)
147 AtomMap[i] = NULL;
148 Walker = start;
149 while (Walker->next != end) {
150 Walker = Walker->next;
151 AtomMap[Walker->nr] = Walker;
152 }
153
154 // 3a. go through every cell
155 DoLog(2) && (Log() << Verbose(2) << "Celling ... " << endl);
156 for (LC->n[0] = 0; LC->n[0] < LC->N[0]; LC->n[0]++)
157 for (LC->n[1] = 0; LC->n[1] < LC->N[1]; LC->n[1]++)
158 for (LC->n[2] = 0; LC->n[2] < LC->N[2]; LC->n[2]++) {
159 const LinkedCell::LinkedNodes *List = LC->GetCurrentCell();
160// Log() << Verbose(2) << "Current cell is " << LC->n[0] << ", " << LC->n[1] << ", " << LC->n[2] << " with No. " << LC->index << " containing " << List->size() << " points." << endl;
161 if (List != NULL) {
162 for (LinkedCell::LinkedNodes::const_iterator Runner = List->begin(); Runner != List->end(); Runner++) {
163 Walker = AtomMap[(*Runner)->nr];
164// Log() << Verbose(0) << "Current Atom is " << *Walker << "." << endl;
165 // 3c. check for possible bond between each atom in this and every one in the 27 cells
166 for (n[0] = -1; n[0] <= 1; n[0]++)
167 for (n[1] = -1; n[1] <= 1; n[1]++)
168 for (n[2] = -1; n[2] <= 1; n[2]++) {
169 const LinkedCell::LinkedNodes *OtherList = LC->GetRelativeToCurrentCell(n);
170// Log() << Verbose(2) << "Current relative cell is " << LC->n[0] << ", " << LC->n[1] << ", " << LC->n[2] << " with No. " << LC->index << " containing " << List->size() << " points." << endl;
171 if (OtherList != NULL) {
172 for (LinkedCell::LinkedNodes::const_iterator OtherRunner = OtherList->begin(); OtherRunner != OtherList->end(); OtherRunner++) {
173 if ((*OtherRunner)->nr > Walker->nr) {
174 OtherWalker = AtomMap[(*OtherRunner)->nr];
175// Log() << Verbose(0) << "Current other Atom is " << *OtherWalker << "." << endl;
176 const double distance = OtherWalker->x.PeriodicDistanceSquared(Walker->x, cell_size);
177// Log() << Verbose(1) << "Checking distance " << distance << " against typical bond length of " << bonddistance*bonddistance << "." << endl;
178 (BG->*minmaxdistance)(Walker, OtherWalker, MinDistance, MaxDistance, IsAngstroem);
179 const bool status = (distance <= MaxDistance * MaxDistance) && (distance >= MinDistance * MinDistance);
180// Log() << Verbose(1) << "MinDistance is " << MinDistance << " and MaxDistance is " << MaxDistance << "." << endl;
181 if (OtherWalker->father->nr > Walker->father->nr) {
182 if (status) { // create bond if distance is smaller
183// Log() << Verbose(1) << "Adding Bond between " << *Walker << " and " << *OtherWalker << " in distance " << sqrt(distance) << "." << endl;
184 AddBond(Walker->father, OtherWalker->father, 1); // also increases molecule::BondCount
185 } else {
186// Log() << Verbose(1) << "Not Adding: distance too great." << endl;
187 }
188 } else {
189// Log() << Verbose(1) << "Not Adding: Wrong order of labels." << endl;
190 }
191 }
192 }
193 }
194 }
195 }
196 }
197 }
198 delete[](AtomMap);
199 delete (LC);
200 DoLog(1) && (Log() << Verbose(1) << "I detected " << BondCount << " bonds in the molecule with distance " << BondDistance << "." << endl);
201
202 // correct bond degree by comparing valence and bond degree
203 DoLog(2) && (Log() << Verbose(2) << "Correcting bond degree ... " << endl);
204 CorrectBondDegree();
205
206 // output bonds for debugging (if bond chain list was correctly installed)
207 ActOnAllAtoms( &atom::OutputBondOfAtom );
208 } else
209 DoLog(1) && (Log() << Verbose(1) << "AtomCount is " << AtomCount << ", thus no bonds, no connections!." << endl);
210 DoLog(0) && (Log() << Verbose(0) << "End of CreateAdjacencyList." << endl);
211 if (free_BG)
212 delete(BG);
213}
214;
215
216/** Prints a list of all bonds to \a *out.
217 * \param output stream
218 */
219void molecule::OutputBondsList() const
220{
221 DoLog(1) && (Log() << Verbose(1) << endl << "From contents of bond chain list:");
222 bond *Binder = first;
223 while (Binder->next != last) {
224 Binder = Binder->next;
225 DoLog(0) && (Log() << Verbose(0) << *Binder << "\t" << endl);
226 }
227 DoLog(0) && (Log() << Verbose(0) << endl);
228}
229;
230
231/** correct bond degree by comparing valence and bond degree.
232 * correct Bond degree of each bond by checking both bond partners for a mismatch between valence and current sum of bond degrees,
233 * iteratively increase the one first where the other bond partner has the fewest number of bonds (i.e. in general bonds oxygene
234 * preferred over carbon bonds). Beforehand, we had picked the first mismatching partner, which lead to oxygenes with single instead of
235 * double bonds as was expected.
236 * \param *out output stream for debugging
237 * \return number of bonds that could not be corrected
238 */
239int molecule::CorrectBondDegree() const
240{
241 int No = 0, OldNo = -1;
242
243 if (BondCount != 0) {
244 DoLog(1) && (Log() << Verbose(1) << "Correcting Bond degree of each bond ... " << endl);
245 do {
246 OldNo = No;
247 No = SumPerAtom( &atom::CorrectBondDegree );
248 } while (OldNo != No);
249 DoLog(0) && (Log() << Verbose(0) << " done." << endl);
250 } else {
251 DoLog(1) && (Log() << Verbose(1) << "BondCount is " << BondCount << ", no bonds between any of the " << AtomCount << " atoms." << endl);
252 }
253 DoLog(0) && (Log() << Verbose(0) << No << " bonds could not be corrected." << endl);
254
255 return (No);
256}
257;
258
259/** Counts all cyclic bonds and returns their number.
260 * \note Hydrogen bonds can never by cyclic, thus no check for that
261 * \param *out output stream for debugging
262 * \return number opf cyclic bonds
263 */
264int molecule::CountCyclicBonds()
265{
266 NoCyclicBonds = 0;
267 int *MinimumRingSize = NULL;
268 MoleculeLeafClass *Subgraphs = NULL;
269 class StackClass<bond *> *BackEdgeStack = NULL;
270 bond *Binder = first;
271 if ((Binder->next != last) && (Binder->next->Type == Undetermined)) {
272 DoLog(0) && (Log() << Verbose(0) << "No Depth-First-Search analysis performed so far, calling ..." << endl);
273 Subgraphs = DepthFirstSearchAnalysis(BackEdgeStack);
274 while (Subgraphs->next != NULL) {
275 Subgraphs = Subgraphs->next;
276 delete (Subgraphs->previous);
277 }
278 delete (Subgraphs);
279 delete[] (MinimumRingSize);
280 }
281 while (Binder->next != last) {
282 Binder = Binder->next;
283 if (Binder->Cyclic)
284 NoCyclicBonds++;
285 }
286 delete (BackEdgeStack);
287 return NoCyclicBonds;
288}
289;
290
291/** Returns Shading as a char string.
292 * \param color the Shading
293 * \return string of the flag
294 */
295string molecule::GetColor(enum Shading color) const
296{
297 switch (color) {
298 case white:
299 return "white";
300 break;
301 case lightgray:
302 return "lightgray";
303 break;
304 case darkgray:
305 return "darkgray";
306 break;
307 case black:
308 return "black";
309 break;
310 default:
311 return "uncolored";
312 break;
313 };
314}
315;
316
317/** Sets atom::GraphNr and atom::LowpointNr to BFSAccounting::CurrentGraphNr.
318 * \param *out output stream for debugging
319 * \param *Walker current node
320 * \param &BFS structure with accounting data for BFS
321 */
322void DepthFirstSearchAnalysis_SetWalkersGraphNr(atom *&Walker, struct DFSAccounting &DFS)
323{
324 if (!DFS.BackStepping) { // if we don't just return from (8)
325 Walker->GraphNr = DFS.CurrentGraphNr;
326 Walker->LowpointNr = DFS.CurrentGraphNr;
327 DoLog(1) && (Log() << Verbose(1) << "Setting Walker[" << Walker->getName() << "]'s number to " << Walker->GraphNr << " with Lowpoint " << Walker->LowpointNr << "." << endl);
328 DFS.AtomStack->Push(Walker);
329 DFS.CurrentGraphNr++;
330 }
331}
332;
333
334/** During DFS goes along unvisited bond and touches other atom.
335 * Sets bond::type, if
336 * -# BackEdge: set atom::LowpointNr and push on \a BackEdgeStack
337 * -# TreeEgde: set atom::Ancestor and continue with Walker along this edge
338 * Continue until molecule::FindNextUnused() finds no more unused bonds.
339 * \param *out output stream for debugging
340 * \param *mol molecule with atoms and finding unused bonds
341 * \param *&Binder current edge
342 * \param &DFS DFS accounting data
343 */
344void DepthFirstSearchAnalysis_ProbeAlongUnusedBond(const molecule * const mol, atom *&Walker, bond *&Binder, struct DFSAccounting &DFS)
345{
346 atom *OtherAtom = NULL;
347
348 do { // (3) if Walker has no unused egdes, go to (5)
349 DFS.BackStepping = false; // reset backstepping flag for (8)
350 if (Binder == NULL) // if we don't just return from (11), Binder is already set to next unused
351 Binder = mol->FindNextUnused(Walker);
352 if (Binder == NULL)
353 break;
354 DoLog(2) && (Log() << Verbose(2) << "Current Unused Bond is " << *Binder << "." << endl);
355 // (4) Mark Binder used, ...
356 Binder->MarkUsed(black);
357 OtherAtom = Binder->GetOtherAtom(Walker);
358 DoLog(2) && (Log() << Verbose(2) << "(4) OtherAtom is " << OtherAtom->getName() << "." << endl);
359 if (OtherAtom->GraphNr != -1) {
360 // (4a) ... if "other" atom has been visited (GraphNr != 0), set lowpoint to minimum of both, go to (3)
361 Binder->Type = BackEdge;
362 DFS.BackEdgeStack->Push(Binder);
363 Walker->LowpointNr = (Walker->LowpointNr < OtherAtom->GraphNr) ? Walker->LowpointNr : OtherAtom->GraphNr;
364 DoLog(3) && (Log() << Verbose(3) << "(4a) Visited: Setting Lowpoint of Walker[" << Walker->getName() << "] to " << Walker->LowpointNr << "." << endl);
365 } else {
366 // (4b) ... otherwise set OtherAtom as Ancestor of Walker and Walker as OtherAtom, go to (2)
367 Binder->Type = TreeEdge;
368 OtherAtom->Ancestor = Walker;
369 Walker = OtherAtom;
370 DoLog(3) && (Log() << Verbose(3) << "(4b) Not Visited: OtherAtom[" << OtherAtom->getName() << "]'s Ancestor is now " << OtherAtom->Ancestor->getName() << ", Walker is OtherAtom " << OtherAtom->getName() << "." << endl);
371 break;
372 }
373 Binder = NULL;
374 } while (1); // (3)
375}
376;
377
378/** Checks whether we have a new component.
379 * if atom::LowpointNr of \a *&Walker is greater than atom::GraphNr of its atom::Ancestor, we have a new component.
380 * Meaning that if we touch upon a node who suddenly has a smaller atom::LowpointNr than its ancestor, then we
381 * have a found a new branch in the graph tree.
382 * \param *out output stream for debugging
383 * \param *mol molecule with atoms and finding unused bonds
384 * \param *&Walker current node
385 * \param &DFS DFS accounting data
386 */
387void DepthFirstSearchAnalysis_CheckForaNewComponent(const molecule * const mol, atom *&Walker, struct DFSAccounting &DFS, MoleculeLeafClass *&LeafWalker)
388{
389 atom *OtherAtom = NULL;
390
391 // (5) if Ancestor of Walker is ...
392 DoLog(1) && (Log() << Verbose(1) << "(5) Number of Walker[" << Walker->getName() << "]'s Ancestor[" << Walker->Ancestor->getName() << "] is " << Walker->Ancestor->GraphNr << "." << endl);
393
394 if (Walker->Ancestor->GraphNr != DFS.Root->GraphNr) {
395 // (6) (Ancestor of Walker is not Root)
396 if (Walker->LowpointNr < Walker->Ancestor->GraphNr) {
397 // (6a) set Ancestor's Lowpoint number to minimum of of its Ancestor and itself, go to Step(8)
398 Walker->Ancestor->LowpointNr = (Walker->Ancestor->LowpointNr < Walker->LowpointNr) ? Walker->Ancestor->LowpointNr : Walker->LowpointNr;
399 DoLog(2) && (Log() << Verbose(2) << "(6) Setting Walker[" << Walker->getName() << "]'s Ancestor[" << Walker->Ancestor->getName() << "]'s Lowpoint to " << Walker->Ancestor->LowpointNr << "." << endl);
400 } else {
401 // (7) (Ancestor of Walker is a separating vertex, remove all from stack till Walker (including), these and Ancestor form a component
402 Walker->Ancestor->SeparationVertex = true;
403 DoLog(2) && (Log() << Verbose(2) << "(7) Walker[" << Walker->getName() << "]'s Ancestor[" << Walker->Ancestor->getName() << "]'s is a separating vertex, creating component." << endl);
404 mol->SetNextComponentNumber(Walker->Ancestor, DFS.ComponentNumber);
405 DoLog(3) && (Log() << Verbose(3) << "(7) Walker[" << Walker->getName() << "]'s Ancestor's Compont is " << DFS.ComponentNumber << "." << endl);
406 mol->SetNextComponentNumber(Walker, DFS.ComponentNumber);
407 DoLog(3) && (Log() << Verbose(3) << "(7) Walker[" << Walker->getName() << "]'s Compont is " << DFS.ComponentNumber << "." << endl);
408 do {
409 OtherAtom = DFS.AtomStack->PopLast();
410 LeafWalker->Leaf->AddCopyAtom(OtherAtom);
411 mol->SetNextComponentNumber(OtherAtom, DFS.ComponentNumber);
412 DoLog(3) && (Log() << Verbose(3) << "(7) Other[" << OtherAtom->getName() << "]'s Compont is " << DFS.ComponentNumber << "." << endl);
413 } while (OtherAtom != Walker);
414 DFS.ComponentNumber++;
415 }
416 // (8) Walker becomes its Ancestor, go to (3)
417 DoLog(2) && (Log() << Verbose(2) << "(8) Walker[" << Walker->getName() << "] is now its Ancestor " << Walker->Ancestor->getName() << ", backstepping. " << endl);
418 Walker = Walker->Ancestor;
419 DFS.BackStepping = true;
420 }
421}
422;
423
424/** Cleans the root stack when we have found a component.
425 * If we are not DFSAccounting::BackStepping, then we clear the root stack by putting everything into a
426 * component down till we meet DFSAccounting::Root.
427 * \param *out output stream for debugging
428 * \param *mol molecule with atoms and finding unused bonds
429 * \param *&Walker current node
430 * \param *&Binder current edge
431 * \param &DFS DFS accounting data
432 */
433void DepthFirstSearchAnalysis_CleanRootStackDownTillWalker(const molecule * const mol, atom *&Walker, bond *&Binder, struct DFSAccounting &DFS, MoleculeLeafClass *&LeafWalker)
434{
435 atom *OtherAtom = NULL;
436
437 if (!DFS.BackStepping) { // coming from (8) want to go to (3)
438 // (9) remove all from stack till Walker (including), these and Root form a component
439 //DFS.AtomStack->Output(out);
440 mol->SetNextComponentNumber(DFS.Root, DFS.ComponentNumber);
441 DoLog(3) && (Log() << Verbose(3) << "(9) Root[" << DFS.Root->getName() << "]'s Component is " << DFS.ComponentNumber << "." << endl);
442 mol->SetNextComponentNumber(Walker, DFS.ComponentNumber);
443 DoLog(3) && (Log() << Verbose(3) << "(9) Walker[" << Walker->getName() << "]'s Component is " << DFS.ComponentNumber << "." << endl);
444 do {
445 OtherAtom = DFS.AtomStack->PopLast();
446 LeafWalker->Leaf->AddCopyAtom(OtherAtom);
447 mol->SetNextComponentNumber(OtherAtom, DFS.ComponentNumber);
448 DoLog(3) && (Log() << Verbose(3) << "(7) Other[" << OtherAtom->getName() << "]'s Compont is " << DFS.ComponentNumber << "." << endl);
449 } while (OtherAtom != Walker);
450 DFS.ComponentNumber++;
451
452 // (11) Root is separation vertex, set Walker to Root and go to (4)
453 Walker = DFS.Root;
454 Binder = mol->FindNextUnused(Walker);
455 DoLog(1) && (Log() << Verbose(1) << "(10) Walker is Root[" << DFS.Root->getName() << "], next Unused Bond is " << Binder << "." << endl);
456 if (Binder != NULL) { // Root is separation vertex
457 DoLog(1) && (Log() << Verbose(1) << "(11) Root is a separation vertex." << endl);
458 Walker->SeparationVertex = true;
459 }
460 }
461}
462;
463
464/** Initializes DFSAccounting structure.
465 * \param *out output stream for debugging
466 * \param &DFS accounting structure to allocate
467 * \param *mol molecule with AtomCount, BondCount and all atoms
468 */
469void DepthFirstSearchAnalysis_Init(struct DFSAccounting &DFS, const molecule * const mol)
470{
471 DFS.AtomStack = new StackClass<atom *> (mol->AtomCount);
472 DFS.CurrentGraphNr = 0;
473 DFS.ComponentNumber = 0;
474 DFS.BackStepping = false;
475 mol->ResetAllBondsToUnused();
476 mol->SetAtomValueToValue(-1, &atom::GraphNr);
477 mol->ActOnAllAtoms(&atom::InitComponentNr);
478 DFS.BackEdgeStack->ClearStack();
479}
480;
481
482/** Free's DFSAccounting structure.
483 * \param *out output stream for debugging
484 * \param &DFS accounting structure to free
485 */
486void DepthFirstSearchAnalysis_Finalize(struct DFSAccounting &DFS)
487{
488 delete (DFS.AtomStack);
489 // delete (DFS.BackEdgeStack); // DON'T free, see DepthFirstSearchAnalysis(), is returned as allocated
490}
491;
492
493/** Performs a Depth-First search on this molecule.
494 * Marks bonds in molecule as cyclic, bridge, ... and atoms as
495 * articulations points, ...
496 * We use the algorithm from [Even, Graph Algorithms, p.62].
497 * \param *out output stream for debugging
498 * \param *&BackEdgeStack NULL pointer to StackClass with all the found back edges, allocated and filled on return
499 * \return list of each disconnected subgraph as an individual molecule class structure
500 */
501MoleculeLeafClass * molecule::DepthFirstSearchAnalysis(class StackClass<bond *> *&BackEdgeStack) const
502{
503 struct DFSAccounting DFS;
504 BackEdgeStack = new StackClass<bond *> (BondCount);
505 DFS.BackEdgeStack = BackEdgeStack;
506 MoleculeLeafClass *SubGraphs = new MoleculeLeafClass(NULL);
507 MoleculeLeafClass *LeafWalker = SubGraphs;
508 int OldGraphNr = 0;
509 atom *Walker = NULL;
510 bond *Binder = NULL;
511
512 if (AtomCount == 0)
513 return SubGraphs;
514 DoLog(0) && (Log() << Verbose(0) << "Begin of DepthFirstSearchAnalysis" << endl);
515 DepthFirstSearchAnalysis_Init(DFS, this);
516
517 DFS.Root = start->next;
518 while (DFS.Root != end) { // if there any atoms at all
519 // (1) mark all edges unused, empty stack, set atom->GraphNr = -1 for all
520 DFS.AtomStack->ClearStack();
521
522 // put into new subgraph molecule and add this to list of subgraphs
523 LeafWalker = new MoleculeLeafClass(LeafWalker);
524 LeafWalker->Leaf = World::getInstance().createMolecule();
525 LeafWalker->Leaf->AddCopyAtom(DFS.Root);
526
527 OldGraphNr = DFS.CurrentGraphNr;
528 Walker = DFS.Root;
529 do { // (10)
530 do { // (2) set number and Lowpoint of Atom to i, increase i, push current atom
531 DepthFirstSearchAnalysis_SetWalkersGraphNr(Walker, DFS);
532
533 DepthFirstSearchAnalysis_ProbeAlongUnusedBond(this, Walker, Binder, DFS);
534
535 if (Binder == NULL) {
536 DoLog(2) && (Log() << Verbose(2) << "No more Unused Bonds." << endl);
537 break;
538 } else
539 Binder = NULL;
540 } while (1); // (2)
541
542 // if we came from backstepping, yet there were no more unused bonds, we end up here with no Ancestor, because Walker is Root! Then we are finished!
543 if ((Walker == DFS.Root) && (Binder == NULL))
544 break;
545
546 DepthFirstSearchAnalysis_CheckForaNewComponent(this, Walker, DFS, LeafWalker);
547
548 DepthFirstSearchAnalysis_CleanRootStackDownTillWalker(this, Walker, Binder, DFS, LeafWalker);
549
550 } while ((DFS.BackStepping) || (Binder != NULL)); // (10) halt only if Root has no unused edges
551
552 // From OldGraphNr to CurrentGraphNr ranges an disconnected subgraph
553 DoLog(0) && (Log() << Verbose(0) << "Disconnected subgraph ranges from " << OldGraphNr << " to " << DFS.CurrentGraphNr << "." << endl);
554 LeafWalker->Leaf->Output((ofstream *)&cout);
555 DoLog(0) && (Log() << Verbose(0) << endl);
556
557 // step on to next root
558 while ((DFS.Root != end) && (DFS.Root->GraphNr != -1)) {
559 //Log() << Verbose(1) << "Current next subgraph root candidate is " << Root->Name << "." << endl;
560 if (DFS.Root->GraphNr != -1) // if already discovered, step on
561 DFS.Root = DFS.Root->next;
562 }
563 }
564 // set cyclic bond criterium on "same LP" basis
565 CyclicBondAnalysis();
566
567 OutputGraphInfoPerAtom();
568
569 OutputGraphInfoPerBond();
570
571 // free all and exit
572 DepthFirstSearchAnalysis_Finalize(DFS);
573 DoLog(0) && (Log() << Verbose(0) << "End of DepthFirstSearchAnalysis" << endl);
574 return SubGraphs;
575}
576;
577
578/** Scans through all bonds and set bond::Cyclic to true where atom::LowpointNr of both ends is equal: LP criterion.
579 */
580void molecule::CyclicBondAnalysis() const
581{
582 NoCyclicBonds = 0;
583 bond *Binder = first;
584 while (Binder->next != last) {
585 Binder = Binder->next;
586 if (Binder->rightatom->LowpointNr == Binder->leftatom->LowpointNr) { // cyclic ??
587 Binder->Cyclic = true;
588 NoCyclicBonds++;
589 }
590 }
591}
592;
593
594/** Output graph information per atom.
595 * \param *out output stream
596 */
597void molecule::OutputGraphInfoPerAtom() const
598{
599 DoLog(1) && (Log() << Verbose(1) << "Final graph info for each atom is:" << endl);
600 ActOnAllAtoms( &atom::OutputGraphInfo );
601}
602;
603
604/** Output graph information per bond.
605 * \param *out output stream
606 */
607void molecule::OutputGraphInfoPerBond() const
608{
609 DoLog(1) && (Log() << Verbose(1) << "Final graph info for each bond is:" << endl);
610 bond *Binder = first;
611 while (Binder->next != last) {
612 Binder = Binder->next;
613 DoLog(2) && (Log() << Verbose(2) << ((Binder->Type == TreeEdge) ? "TreeEdge " : "BackEdge ") << *Binder << ": <");
614 DoLog(0) && (Log() << Verbose(0) << ((Binder->leftatom->SeparationVertex) ? "SP," : "") << "L" << Binder->leftatom->LowpointNr << " G" << Binder->leftatom->GraphNr << " Comp.");
615 Binder->leftatom->OutputComponentNumber();
616 DoLog(0) && (Log() << Verbose(0) << " === ");
617 DoLog(0) && (Log() << Verbose(0) << ((Binder->rightatom->SeparationVertex) ? "SP," : "") << "L" << Binder->rightatom->LowpointNr << " G" << Binder->rightatom->GraphNr << " Comp.");
618 Binder->rightatom->OutputComponentNumber();
619 DoLog(0) && (Log() << Verbose(0) << ">." << endl);
620 if (Binder->Cyclic) // cyclic ??
621 DoLog(3) && (Log() << Verbose(3) << "Lowpoint at each side are equal: CYCLIC!" << endl);
622 }
623}
624;
625
626/** Initialise each vertex as white with no predecessor, empty queue, color Root lightgray.
627 * \param *out output stream for debugging
628 * \param &BFS accounting structure
629 * \param AtomCount number of entries in the array to allocate
630 */
631void InitializeBFSAccounting(struct BFSAccounting &BFS, int AtomCount)
632{
633 BFS.AtomCount = AtomCount;
634 BFS.PredecessorList = new atom*[AtomCount];
635 BFS.ShortestPathList = new int[AtomCount];
636 BFS.ColorList = new enum Shading[AtomCount];
637 BFS.BFSStack = new StackClass<atom *> (AtomCount);
638
639 for (int i = AtomCount; i--;) {
640 BFS.ShortestPathList[i] = -1;
641 BFS.PredecessorList[i] = 0;
642 }
643};
644
645/** Free's accounting structure.
646 * \param *out output stream for debugging
647 * \param &BFS accounting structure
648 */
649void FinalizeBFSAccounting(struct BFSAccounting &BFS)
650{
651 delete[](BFS.PredecessorList);
652 delete[](BFS.ShortestPathList);
653 delete[](BFS.ColorList);
654 delete (BFS.BFSStack);
655 BFS.AtomCount = 0;
656};
657
658/** Clean the accounting structure.
659 * \param *out output stream for debugging
660 * \param &BFS accounting structure
661 */
662void CleanBFSAccounting(struct BFSAccounting &BFS)
663{
664 atom *Walker = NULL;
665 while (!BFS.TouchedStack->IsEmpty()) {
666 Walker = BFS.TouchedStack->PopFirst();
667 BFS.PredecessorList[Walker->nr] = NULL;
668 BFS.ShortestPathList[Walker->nr] = -1;
669 BFS.ColorList[Walker->nr] = white;
670 }
671};
672
673/** Resets shortest path list and BFSStack.
674 * \param *out output stream for debugging
675 * \param *&Walker current node, pushed onto BFSAccounting::BFSStack and BFSAccounting::TouchedStack
676 * \param &BFS accounting structure
677 */
678void ResetBFSAccounting(atom *&Walker, struct BFSAccounting &BFS)
679{
680 BFS.ShortestPathList[Walker->nr] = 0;
681 BFS.BFSStack->ClearStack(); // start with empty BFS stack
682 BFS.BFSStack->Push(Walker);
683 BFS.TouchedStack->Push(Walker);
684};
685
686/** Performs a BFS from \a *Root, trying to find the same node and hence a cycle.
687 * \param *out output stream for debugging
688 * \param *&BackEdge the edge from root that we don't want to move along
689 * \param &BFS accounting structure
690 */
691void CyclicStructureAnalysis_CyclicBFSFromRootToRoot(bond *&BackEdge, struct BFSAccounting &BFS)
692{
693 atom *Walker = NULL;
694 atom *OtherAtom = NULL;
695 do { // look for Root
696 Walker = BFS.BFSStack->PopFirst();
697 DoLog(2) && (Log() << Verbose(2) << "Current Walker is " << *Walker << ", we look for SP to Root " << *BFS.Root << "." << endl);
698 for (BondList::const_iterator Runner = Walker->ListOfBonds.begin(); Runner != Walker->ListOfBonds.end(); (++Runner)) {
699 if ((*Runner) != BackEdge) { // only walk along DFS spanning tree (otherwise we always find SP of one being backedge Binder)
700 OtherAtom = (*Runner)->GetOtherAtom(Walker);
701#ifdef ADDHYDROGEN
702 if (OtherAtom->type->Z != 1) {
703#endif
704 DoLog(2) && (Log() << Verbose(2) << "Current OtherAtom is: " << OtherAtom->getName() << " for bond " << *(*Runner) << "." << endl);
705 if (BFS.ColorList[OtherAtom->nr] == white) {
706 BFS.TouchedStack->Push(OtherAtom);
707 BFS.ColorList[OtherAtom->nr] = lightgray;
708 BFS.PredecessorList[OtherAtom->nr] = Walker; // Walker is the predecessor
709 BFS.ShortestPathList[OtherAtom->nr] = BFS.ShortestPathList[Walker->nr] + 1;
710 DoLog(2) && (Log() << Verbose(2) << "Coloring OtherAtom " << OtherAtom->getName() << " lightgray, its predecessor is " << Walker->getName() << " and its Shortest Path is " << BFS.ShortestPathList[OtherAtom->nr] << " egde(s) long." << endl);
711 //if (BFS.ShortestPathList[OtherAtom->nr] < MinimumRingSize[Walker->GetTrueFather()->nr]) { // Check for maximum distance
712 DoLog(3) && (Log() << Verbose(3) << "Putting OtherAtom into queue." << endl);
713 BFS.BFSStack->Push(OtherAtom);
714 //}
715 } else {
716 DoLog(3) && (Log() << Verbose(3) << "Not Adding, has already been visited." << endl);
717 }
718 if (OtherAtom == BFS.Root)
719 break;
720#ifdef ADDHYDROGEN
721 } else {
722 DoLog(2) && (Log() << Verbose(2) << "Skipping hydrogen atom " << *OtherAtom << "." << endl);
723 BFS.ColorList[OtherAtom->nr] = black;
724 }
725#endif
726 } else {
727 DoLog(2) && (Log() << Verbose(2) << "Bond " << *(*Runner) << " not Visiting, is the back edge." << endl);
728 }
729 }
730 BFS.ColorList[Walker->nr] = black;
731 DoLog(1) && (Log() << Verbose(1) << "Coloring Walker " << Walker->getName() << " black." << endl);
732 if (OtherAtom == BFS.Root) { // if we have found the root, check whether this cycle wasn't already found beforehand
733 // step through predecessor list
734 while (OtherAtom != BackEdge->rightatom) {
735 if (!OtherAtom->GetTrueFather()->IsCyclic) // if one bond in the loop is not marked as cyclic, we haven't found this cycle yet
736 break;
737 else
738 OtherAtom = BFS.PredecessorList[OtherAtom->nr];
739 }
740 if (OtherAtom == BackEdge->rightatom) { // if each atom in found cycle is cyclic, loop's been found before already
741 DoLog(3) && (Log() << Verbose(3) << "This cycle was already found before, skipping and removing seeker from search." << endl);
742 do {
743 OtherAtom = BFS.TouchedStack->PopLast();
744 if (BFS.PredecessorList[OtherAtom->nr] == Walker) {
745 DoLog(4) && (Log() << Verbose(4) << "Removing " << *OtherAtom << " from lists and stacks." << endl);
746 BFS.PredecessorList[OtherAtom->nr] = NULL;
747 BFS.ShortestPathList[OtherAtom->nr] = -1;
748 BFS.ColorList[OtherAtom->nr] = white;
749 BFS.BFSStack->RemoveItem(OtherAtom);
750 }
751 } while ((!BFS.TouchedStack->IsEmpty()) && (BFS.PredecessorList[OtherAtom->nr] == NULL));
752 BFS.TouchedStack->Push(OtherAtom); // last was wrongly popped
753 OtherAtom = BackEdge->rightatom; // set to not Root
754 } else
755 OtherAtom = BFS.Root;
756 }
757 } while ((!BFS.BFSStack->IsEmpty()) && (OtherAtom != BFS.Root) && (OtherAtom != NULL)); // || (ShortestPathList[OtherAtom->nr] < MinimumRingSize[Walker->GetTrueFather()->nr])));
758};
759
760/** Climb back the BFSAccounting::PredecessorList and find cycle members.
761 * \param *out output stream for debugging
762 * \param *&OtherAtom
763 * \param *&BackEdge denotes the edge we did not want to travel along when doing CyclicBFSFromRootToRoot()
764 * \param &BFS accounting structure
765 * \param *&MinimumRingSize minimum distance from this node possible without encountering oneself, set on return for each atom
766 * \param &MinRingSize global minimum distance from one node without encountering oneself, set on return
767 */
768void CyclicStructureAnalysis_RetrieveCycleMembers(atom *&OtherAtom, bond *&BackEdge, struct BFSAccounting &BFS, int *&MinimumRingSize, int &MinRingSize)
769{
770 atom *Walker = NULL;
771 int NumCycles = 0;
772 int RingSize = -1;
773
774 if (OtherAtom == BFS.Root) {
775 // now climb back the predecessor list and thus find the cycle members
776 NumCycles++;
777 RingSize = 1;
778 BFS.Root->GetTrueFather()->IsCyclic = true;
779 DoLog(1) && (Log() << Verbose(1) << "Found ring contains: ");
780 Walker = BFS.Root;
781 while (Walker != BackEdge->rightatom) {
782 DoLog(0) && (Log() << Verbose(0) << Walker->getName() << " <-> ");
783 Walker = BFS.PredecessorList[Walker->nr];
784 Walker->GetTrueFather()->IsCyclic = true;
785 RingSize++;
786 }
787 DoLog(0) && (Log() << Verbose(0) << Walker->getName() << " with a length of " << RingSize << "." << endl << endl);
788 // walk through all and set MinimumRingSize
789 Walker = BFS.Root;
790 MinimumRingSize[Walker->GetTrueFather()->nr] = RingSize;
791 while (Walker != BackEdge->rightatom) {
792 Walker = BFS.PredecessorList[Walker->nr];
793 if (RingSize < MinimumRingSize[Walker->GetTrueFather()->nr])
794 MinimumRingSize[Walker->GetTrueFather()->nr] = RingSize;
795 }
796 if ((RingSize < MinRingSize) || (MinRingSize == -1))
797 MinRingSize = RingSize;
798 } else {
799 DoLog(1) && (Log() << Verbose(1) << "No ring containing " << *BFS.Root << " with length equal to or smaller than " << MinimumRingSize[Walker->GetTrueFather()->nr] << " found." << endl);
800 }
801};
802
803/** From a given node performs a BFS to touch the next cycle, for whose nodes \a *&MinimumRingSize is set and set it accordingly.
804 * \param *out output stream for debugging
805 * \param *&Root node to look for closest cycle from, i.e. \a *&MinimumRingSize is set for this node
806 * \param *&MinimumRingSize minimum distance from this node possible without encountering oneself, set on return for each atom
807 * \param AtomCount number of nodes in graph
808 */
809void CyclicStructureAnalysis_BFSToNextCycle(atom *&Root, atom *&Walker, int *&MinimumRingSize, int AtomCount)
810{
811 struct BFSAccounting BFS;
812 atom *OtherAtom = Walker;
813
814 InitializeBFSAccounting(BFS, AtomCount);
815
816 ResetBFSAccounting(Walker, BFS);
817 while (OtherAtom != NULL) { // look for Root
818 Walker = BFS.BFSStack->PopFirst();
819 //Log() << Verbose(2) << "Current Walker is " << *Walker << ", we look for SP to Root " << *Root << "." << endl;
820 for (BondList::const_iterator Runner = Walker->ListOfBonds.begin(); Runner != Walker->ListOfBonds.end(); (++Runner)) {
821 // "removed (*Runner) != BackEdge) || " from next if, is u
822 if ((Walker->ListOfBonds.size() == 1)) { // only walk along DFS spanning tree (otherwise we always find SP of 1 being backedge Binder), but terminal hydrogens may be connected via backedge, hence extra check
823 OtherAtom = (*Runner)->GetOtherAtom(Walker);
824 //Log() << Verbose(2) << "Current OtherAtom is: " << OtherAtom->Name << " for bond " << *Binder << "." << endl;
825 if (BFS.ColorList[OtherAtom->nr] == white) {
826 BFS.TouchedStack->Push(OtherAtom);
827 BFS.ColorList[OtherAtom->nr] = lightgray;
828 BFS.PredecessorList[OtherAtom->nr] = Walker; // Walker is the predecessor
829 BFS.ShortestPathList[OtherAtom->nr] = BFS.ShortestPathList[Walker->nr] + 1;
830 //Log() << Verbose(2) << "Coloring OtherAtom " << OtherAtom->Name << " lightgray, its predecessor is " << Walker->Name << " and its Shortest Path is " << ShortestPathList[OtherAtom->nr] << " egde(s) long." << endl;
831 if (OtherAtom->GetTrueFather()->IsCyclic) { // if the other atom is connected to a ring
832 MinimumRingSize[Root->GetTrueFather()->nr] = BFS.ShortestPathList[OtherAtom->nr] + MinimumRingSize[OtherAtom->GetTrueFather()->nr];
833 OtherAtom = NULL; //break;
834 break;
835 } else
836 BFS.BFSStack->Push(OtherAtom);
837 } else {
838 //Log() << Verbose(3) << "Not Adding, has already been visited." << endl;
839 }
840 } else {
841 //Log() << Verbose(3) << "Not Visiting, is a back edge." << endl;
842 }
843 }
844 BFS.ColorList[Walker->nr] = black;
845 //Log() << Verbose(1) << "Coloring Walker " << Walker->Name << " black." << endl;
846 }
847 //CleanAccountingLists(TouchedStack, PredecessorList, ShortestPathList, ColorList);
848
849 FinalizeBFSAccounting(BFS);
850}
851;
852
853/** All nodes that are not in cycles get assigned a \a *&MinimumRingSizeby BFS to next cycle.
854 * \param *out output stream for debugging
855 * \param *&MinimumRingSize array with minimum distance without encountering onself for each atom
856 * \param &MinRingSize global minium distance
857 * \param &NumCyles number of cycles in graph
858 * \param *mol molecule with atoms
859 */
860void CyclicStructureAnalysis_AssignRingSizetoNonCycleMembers(int *&MinimumRingSize, int &MinRingSize, int &NumCycles, const molecule * const mol)
861{
862 atom *Root = NULL;
863 atom *Walker = NULL;
864 if (MinRingSize != -1) { // if rings are present
865 // go over all atoms
866 Root = mol->start;
867 while (Root->next != mol->end) {
868 Root = Root->next;
869
870 if (MinimumRingSize[Root->GetTrueFather()->nr] == mol->AtomCount) { // check whether MinimumRingSize is set, if not BFS to next where it is
871 Walker = Root;
872
873 //Log() << Verbose(1) << "---------------------------------------------------------------------------------------------------------" << endl;
874 CyclicStructureAnalysis_BFSToNextCycle(Root, Walker, MinimumRingSize, mol->AtomCount);
875
876 }
877 DoLog(1) && (Log() << Verbose(1) << "Minimum ring size of " << *Root << " is " << MinimumRingSize[Root->GetTrueFather()->nr] << "." << endl);
878 }
879 DoLog(1) && (Log() << Verbose(1) << "Minimum ring size is " << MinRingSize << ", over " << NumCycles << " cycles total." << endl);
880 } else
881 DoLog(1) && (Log() << Verbose(1) << "No rings were detected in the molecular structure." << endl);
882}
883;
884
885/** Analyses the cycles found and returns minimum of all cycle lengths.
886 * We begin with a list of Back edges found during DepthFirstSearchAnalysis(). We go through this list - one end is the Root,
887 * the other our initial Walker - and do a Breadth First Search for the Root. We mark down each Predecessor and as soon as
888 * we have found the Root via BFS, we may climb back the closed cycle via the Predecessors. Thereby we mark atoms and bonds
889 * as cyclic and print out the cycles.
890 * \param *out output stream for debugging
891 * \param *BackEdgeStack stack with all back edges found during DFS scan. Beware: This stack contains the bonds from the total molecule, not from the subgraph!
892 * \param *&MinimumRingSize contains smallest ring size in molecular structure on return or -1 if no rings were found, if set is maximum search distance
893 * \todo BFS from the not-same-LP to find back to starting point of tributary cycle over more than one bond
894 */
895void molecule::CyclicStructureAnalysis(class StackClass<bond *> * BackEdgeStack, int *&MinimumRingSize) const
896{
897 struct BFSAccounting BFS;
898 atom *Walker = NULL;
899 atom *OtherAtom = NULL;
900 bond *BackEdge = NULL;
901 int NumCycles = 0;
902 int MinRingSize = -1;
903
904 InitializeBFSAccounting(BFS, AtomCount);
905
906 //Log() << Verbose(1) << "Back edge list - ";
907 //BackEdgeStack->Output(out);
908
909 DoLog(1) && (Log() << Verbose(1) << "Analysing cycles ... " << endl);
910 NumCycles = 0;
911 while (!BackEdgeStack->IsEmpty()) {
912 BackEdge = BackEdgeStack->PopFirst();
913 // this is the target
914 BFS.Root = BackEdge->leftatom;
915 // this is the source point
916 Walker = BackEdge->rightatom;
917
918 ResetBFSAccounting(Walker, BFS);
919
920 DoLog(1) && (Log() << Verbose(1) << "---------------------------------------------------------------------------------------------------------" << endl);
921 OtherAtom = NULL;
922 CyclicStructureAnalysis_CyclicBFSFromRootToRoot(BackEdge, BFS);
923
924 CyclicStructureAnalysis_RetrieveCycleMembers(OtherAtom, BackEdge, BFS, MinimumRingSize, MinRingSize);
925
926 CleanBFSAccounting(BFS);
927 }
928 FinalizeBFSAccounting(BFS);
929
930 CyclicStructureAnalysis_AssignRingSizetoNonCycleMembers(MinimumRingSize, MinRingSize, NumCycles, this);
931};
932
933/** Sets the next component number.
934 * This is O(N) as the number of bonds per atom is bound.
935 * \param *vertex atom whose next atom::*ComponentNr is to be set
936 * \param nr number to use
937 */
938void molecule::SetNextComponentNumber(atom *vertex, int nr) const
939{
940 size_t i = 0;
941 if (vertex != NULL) {
942 for (; i < vertex->ListOfBonds.size(); i++) {
943 if (vertex->ComponentNr[i] == -1) { // check if not yet used
944 vertex->ComponentNr[i] = nr;
945 break;
946 } else if (vertex->ComponentNr[i] == nr) // if number is already present, don't add another time
947 break; // breaking here will not cause error!
948 }
949 if (i == vertex->ListOfBonds.size()) {
950 DoeLog(0) && (eLog()<< Verbose(0) << "Error: All Component entries are already occupied!" << endl);
951 performCriticalExit();
952 }
953 } else {
954 DoeLog(0) && (eLog()<< Verbose(0) << "Error: Given vertex is NULL!" << endl);
955 performCriticalExit();
956 }
957}
958;
959
960/** Returns next unused bond for this atom \a *vertex or NULL of none exists.
961 * \param *vertex atom to regard
962 * \return bond class or NULL
963 */
964bond * molecule::FindNextUnused(atom *vertex) const
965{
966 for (BondList::const_iterator Runner = vertex->ListOfBonds.begin(); Runner != vertex->ListOfBonds.end(); (++Runner))
967 if ((*Runner)->IsUsed() == white)
968 return ((*Runner));
969 return NULL;
970}
971;
972
973/** Resets bond::Used flag of all bonds in this molecule.
974 * \return true - success, false - -failure
975 */
976void molecule::ResetAllBondsToUnused() const
977{
978 bond *Binder = first;
979 while (Binder->next != last) {
980 Binder = Binder->next;
981 Binder->ResetUsed();
982 }
983}
984;
985
986/** Output a list of flags, stating whether the bond was visited or not.
987 * \param *out output stream for debugging
988 * \param *list
989 */
990void OutputAlreadyVisited(int *list)
991{
992 DoLog(4) && (Log() << Verbose(4) << "Already Visited Bonds:\t");
993 for (int i = 1; i <= list[0]; i++)
994 DoLog(0) && (Log() << Verbose(0) << list[i] << " ");
995 DoLog(0) && (Log() << Verbose(0) << endl);
996}
997;
998
999/** Storing the bond structure of a molecule to file.
1000 * Simply stores Atom::nr and then the Atom::nr of all bond partners per line.
1001 * \param *path path to file
1002 * \param *filename name of file
1003 * \return true - file written successfully, false - writing failed
1004 */
1005bool molecule::StoreAdjacencyToFile(char *path, char *filename)
1006{
1007 ofstream AdjacencyFile;
1008 stringstream line;
1009 bool status = true;
1010
1011 if (path != NULL)
1012 line << path << "/" << filename;
1013 else
1014 line << filename;
1015 AdjacencyFile.open(line.str().c_str(), ios::out);
1016 DoLog(1) && (Log() << Verbose(1) << "Saving adjacency list ... ");
1017 if (AdjacencyFile != NULL) {
1018 AdjacencyFile << "m\tn" << endl;
1019 ActOnAllAtoms(&atom::OutputAdjacency, &AdjacencyFile);
1020 AdjacencyFile.close();
1021 DoLog(1) && (Log() << Verbose(1) << "done." << endl);
1022 } else {
1023 DoLog(1) && (Log() << Verbose(1) << "failed to open file " << line.str() << "." << endl);
1024 status = false;
1025 }
1026
1027 return status;
1028}
1029;
1030
1031/** Storing the bond structure of a molecule to file.
1032 * Simply stores Atom::nr and then the Atom::nr of all bond partners, one per line.
1033 * \param *path path to file
1034 * \param *filename name of file
1035 * \return true - file written successfully, false - writing failed
1036 */
1037bool molecule::StoreBondsToFile(char *path, char *filename)
1038{
1039 ofstream BondFile;
1040 stringstream line;
1041 bool status = true;
1042
1043 if (path != NULL)
1044 line << path << "/" << filename;
1045 else
1046 line << filename;
1047 BondFile.open(line.str().c_str(), ios::out);
1048 DoLog(1) && (Log() << Verbose(1) << "Saving adjacency list ... ");
1049 if (BondFile != NULL) {
1050 BondFile << "m\tn" << endl;
1051 ActOnAllAtoms(&atom::OutputBonds, &BondFile);
1052 BondFile.close();
1053 DoLog(1) && (Log() << Verbose(1) << "done." << endl);
1054 } else {
1055 DoLog(1) && (Log() << Verbose(1) << "failed to open file " << line.str() << "." << endl);
1056 status = false;
1057 }
1058
1059 return status;
1060}
1061;
1062
1063bool CheckAdjacencyFileAgainstMolecule_Init(char *path, ifstream &File, int *&CurrentBonds)
1064{
1065 stringstream filename;
1066 filename << path << "/" << FRAGMENTPREFIX << ADJACENCYFILE;
1067 File.open(filename.str().c_str(), ios::out);
1068 DoLog(1) && (Log() << Verbose(1) << "Looking at bond structure stored in adjacency file and comparing to present one ... ");
1069 if (File == NULL)
1070 return false;
1071
1072 // allocate storage structure
1073 CurrentBonds = new int[8]; // contains parsed bonds of current atom
1074 for(int i=0;i<8;i++)
1075 CurrentBonds[i] = 0;
1076 return true;
1077}
1078;
1079
1080void CheckAdjacencyFileAgainstMolecule_Finalize(ifstream &File, int *&CurrentBonds)
1081{
1082 File.close();
1083 File.clear();
1084 delete[](CurrentBonds);
1085}
1086;
1087
1088void CheckAdjacencyFileAgainstMolecule_CompareBonds(bool &status, int &NonMatchNumber, atom *&Walker, size_t &CurrentBondsOfAtom, int AtomNr, int *&CurrentBonds, atom **ListOfAtoms)
1089{
1090 size_t j = 0;
1091 int id = -1;
1092
1093 //Log() << Verbose(2) << "Walker is " << *Walker << ", bond partners: ";
1094 if (CurrentBondsOfAtom == Walker->ListOfBonds.size()) {
1095 for (BondList::const_iterator Runner = Walker->ListOfBonds.begin(); Runner != Walker->ListOfBonds.end(); (++Runner)) {
1096 id = (*Runner)->GetOtherAtom(Walker)->nr;
1097 j = 0;
1098 for (; (j < CurrentBondsOfAtom) && (CurrentBonds[j++] != id);)
1099 ; // check against all parsed bonds
1100 if (CurrentBonds[j - 1] != id) { // no match ? Then mark in ListOfAtoms
1101 ListOfAtoms[AtomNr] = NULL;
1102 NonMatchNumber++;
1103 status = false;
1104 //Log() << Verbose(0) << "[" << id << "]\t";
1105 } else {
1106 //Log() << Verbose(0) << id << "\t";
1107 }
1108 }
1109 //Log() << Verbose(0) << endl;
1110 } else {
1111 DoLog(0) && (Log() << Verbose(0) << "Number of bonds for Atom " << *Walker << " does not match, parsed " << CurrentBondsOfAtom << " against " << Walker->ListOfBonds.size() << "." << endl);
1112 status = false;
1113 }
1114}
1115;
1116
1117/** Checks contents of adjacency file against bond structure in structure molecule.
1118 * \param *out output stream for debugging
1119 * \param *path path to file
1120 * \param **ListOfAtoms allocated (molecule::AtomCount) and filled lookup table for ids (Atom::nr) to *Atom
1121 * \return true - structure is equal, false - not equivalence
1122 */
1123bool molecule::CheckAdjacencyFileAgainstMolecule(char *path, atom **ListOfAtoms)
1124{
1125 ifstream File;
1126 bool status = true;
1127 atom *Walker = NULL;
1128 int *CurrentBonds = NULL;
1129 int NonMatchNumber = 0; // will number of atoms with differing bond structure
1130 size_t CurrentBondsOfAtom = -1;
1131
1132 if (!CheckAdjacencyFileAgainstMolecule_Init(path, File, CurrentBonds)) {
1133 DoLog(1) && (Log() << Verbose(1) << "Adjacency file not found." << endl);
1134 return true;
1135 }
1136
1137 char buffer[MAXSTRINGSIZE];
1138 // Parse the file line by line and count the bonds
1139 while (!File.eof()) {
1140 File.getline(buffer, MAXSTRINGSIZE);
1141 stringstream line;
1142 line.str(buffer);
1143 int AtomNr = -1;
1144 line >> AtomNr;
1145 CurrentBondsOfAtom = -1; // we count one too far due to line end
1146 // parse into structure
1147 if ((AtomNr >= 0) && (AtomNr < AtomCount)) {
1148 Walker = ListOfAtoms[AtomNr];
1149 while (!line.eof())
1150 line >> CurrentBonds[++CurrentBondsOfAtom];
1151 // compare against present bonds
1152 CheckAdjacencyFileAgainstMolecule_CompareBonds(status, NonMatchNumber, Walker, CurrentBondsOfAtom, AtomNr, CurrentBonds, ListOfAtoms);
1153 }
1154 }
1155 CheckAdjacencyFileAgainstMolecule_Finalize(File, CurrentBonds);
1156
1157 if (status) { // if equal we parse the KeySetFile
1158 DoLog(1) && (Log() << Verbose(1) << "done: Equal." << endl);
1159 } else
1160 DoLog(1) && (Log() << Verbose(1) << "done: Not equal by " << NonMatchNumber << " atoms." << endl);
1161 return status;
1162}
1163;
1164
1165/** Picks from a global stack with all back edges the ones in the fragment.
1166 * \param *out output stream for debugging
1167 * \param **ListOfLocalAtoms array of father atom::nr to local atom::nr (reverse of atom::father)
1168 * \param *ReferenceStack stack with all the back egdes
1169 * \param *LocalStack stack to be filled
1170 * \return true - everything ok, false - ReferenceStack was empty
1171 */
1172bool molecule::PickLocalBackEdges(atom **ListOfLocalAtoms, class StackClass<bond *> *&ReferenceStack, class StackClass<bond *> *&LocalStack) const
1173{
1174 bool status = true;
1175 if (ReferenceStack->IsEmpty()) {
1176 DoLog(1) && (Log() << Verbose(1) << "ReferenceStack is empty!" << endl);
1177 return false;
1178 }
1179 bond *Binder = ReferenceStack->PopFirst();
1180 bond *FirstBond = Binder; // mark the first bond, so that we don't loop through the stack indefinitely
1181 atom *Walker = NULL, *OtherAtom = NULL;
1182 ReferenceStack->Push(Binder);
1183
1184 do { // go through all bonds and push local ones
1185 Walker = ListOfLocalAtoms[Binder->leftatom->nr]; // get one atom in the reference molecule
1186 if (Walker != NULL) // if this Walker exists in the subgraph ...
1187 for (BondList::const_iterator Runner = Walker->ListOfBonds.begin(); Runner != Walker->ListOfBonds.end(); (++Runner)) {
1188 OtherAtom = (*Runner)->GetOtherAtom(Walker);
1189 if (OtherAtom == ListOfLocalAtoms[(*Runner)->rightatom->nr]) { // found the bond
1190 LocalStack->Push((*Runner));
1191 DoLog(3) && (Log() << Verbose(3) << "Found local edge " << *(*Runner) << "." << endl);
1192 break;
1193 }
1194 }
1195 Binder = ReferenceStack->PopFirst(); // loop the stack for next item
1196 DoLog(3) && (Log() << Verbose(3) << "Current candidate edge " << Binder << "." << endl);
1197 ReferenceStack->Push(Binder);
1198 } while (FirstBond != Binder);
1199
1200 return status;
1201}
1202;
1203
1204void BreadthFirstSearchAdd_Init(struct BFSAccounting &BFS, atom *&Root, int AtomCount, int BondOrder, atom **AddedAtomList = NULL)
1205{
1206 BFS.AtomCount = AtomCount;
1207 BFS.BondOrder = BondOrder;
1208 BFS.PredecessorList = new atom*[AtomCount];
1209 BFS.ShortestPathList = new int[AtomCount];
1210 BFS.ColorList = new enum Shading[AtomCount];
1211 BFS.BFSStack = new StackClass<atom *> (AtomCount);
1212
1213 BFS.Root = Root;
1214 BFS.BFSStack->ClearStack();
1215 BFS.BFSStack->Push(Root);
1216
1217 // initialise each vertex as white with no predecessor, empty queue, color Root lightgray
1218 for (int i = AtomCount; i--;) {
1219 BFS.PredecessorList[i] = NULL;
1220 BFS.ShortestPathList[i] = -1;
1221 if ((AddedAtomList != NULL) && (AddedAtomList[i] != NULL)) // mark already present atoms (i.e. Root and maybe others) as visited
1222 BFS.ColorList[i] = lightgray;
1223 else
1224 BFS.ColorList[i] = white;
1225 }
1226 //BFS.ShortestPathList[Root->nr] = 0; // done by Calloc
1227}
1228;
1229
1230void BreadthFirstSearchAdd_Free(struct BFSAccounting &BFS)
1231{
1232 delete[](BFS.PredecessorList);
1233 delete[](BFS.ShortestPathList);
1234 delete[](BFS.ColorList);
1235 delete (BFS.BFSStack);
1236 BFS.AtomCount = 0;
1237}
1238;
1239
1240void BreadthFirstSearchAdd_UnvisitedNode(molecule *Mol, struct BFSAccounting &BFS, atom *&Walker, atom *&OtherAtom, bond *&Binder, bond *&Bond, atom **&AddedAtomList, bond **&AddedBondList, bool IsAngstroem)
1241{
1242 if (Binder != Bond) // let other atom white if it's via Root bond. In case it's cyclic it has to be reached again (yet Root is from OtherAtom already black, thus no problem)
1243 BFS.ColorList[OtherAtom->nr] = lightgray;
1244 BFS.PredecessorList[OtherAtom->nr] = Walker; // Walker is the predecessor
1245 BFS.ShortestPathList[OtherAtom->nr] = BFS.ShortestPathList[Walker->nr] + 1;
1246 DoLog(2) && (Log() << Verbose(2) << "Coloring OtherAtom " << OtherAtom->getName() << " " << ((BFS.ColorList[OtherAtom->nr] == white) ? "white" : "lightgray") << ", its predecessor is " << Walker->getName() << " and its Shortest Path is " << BFS.ShortestPathList[OtherAtom->nr] << " egde(s) long." << endl);
1247 if ((((BFS.ShortestPathList[OtherAtom->nr] < BFS.BondOrder) && (Binder != Bond)))) { // Check for maximum distance
1248 DoLog(3) && (Log() << Verbose(3));
1249 if (AddedAtomList[OtherAtom->nr] == NULL) { // add if it's not been so far
1250 AddedAtomList[OtherAtom->nr] = Mol->AddCopyAtom(OtherAtom);
1251 DoLog(0) && (Log() << Verbose(0) << "Added OtherAtom " << OtherAtom->getName());
1252 AddedBondList[Binder->nr] = Mol->CopyBond(AddedAtomList[Walker->nr], AddedAtomList[OtherAtom->nr], Binder);
1253 DoLog(0) && (Log() << Verbose(0) << " and bond " << *(AddedBondList[Binder->nr]) << ", ");
1254 } else { // this code should actually never come into play (all white atoms are not yet present in BondMolecule, that's why they are white in the first place)
1255 DoLog(0) && (Log() << Verbose(0) << "Not adding OtherAtom " << OtherAtom->getName());
1256 if (AddedBondList[Binder->nr] == NULL) {
1257 AddedBondList[Binder->nr] = Mol->CopyBond(AddedAtomList[Walker->nr], AddedAtomList[OtherAtom->nr], Binder);
1258 DoLog(0) && (Log() << Verbose(0) << ", added Bond " << *(AddedBondList[Binder->nr]));
1259 } else
1260 DoLog(0) && (Log() << Verbose(0) << ", not added Bond ");
1261 }
1262 DoLog(0) && (Log() << Verbose(0) << ", putting OtherAtom into queue." << endl);
1263 BFS.BFSStack->Push(OtherAtom);
1264 } else { // out of bond order, then replace
1265 if ((AddedAtomList[OtherAtom->nr] == NULL) && (Binder->Cyclic))
1266 BFS.ColorList[OtherAtom->nr] = white; // unmark if it has not been queued/added, to make it available via its other bonds (cyclic)
1267 if (Binder == Bond)
1268 DoLog(3) && (Log() << Verbose(3) << "Not Queueing, is the Root bond");
1269 else if (BFS.ShortestPathList[OtherAtom->nr] >= BFS.BondOrder)
1270 DoLog(3) && (Log() << Verbose(3) << "Not Queueing, is out of Bond Count of " << BFS.BondOrder);
1271 if (!Binder->Cyclic)
1272 DoLog(0) && (Log() << Verbose(0) << ", is not part of a cyclic bond, saturating bond with Hydrogen." << endl);
1273 if (AddedBondList[Binder->nr] == NULL) {
1274 if ((AddedAtomList[OtherAtom->nr] != NULL)) { // .. whether we add or saturate
1275 AddedBondList[Binder->nr] = Mol->CopyBond(AddedAtomList[Walker->nr], AddedAtomList[OtherAtom->nr], Binder);
1276 } else {
1277#ifdef ADDHYDROGEN
1278 if (!Mol->AddHydrogenReplacementAtom(Binder, AddedAtomList[Walker->nr], Walker, OtherAtom, IsAngstroem))
1279 exit(1);
1280#endif
1281 }
1282 }
1283 }
1284}
1285;
1286
1287void BreadthFirstSearchAdd_VisitedNode(molecule *Mol, struct BFSAccounting &BFS, atom *&Walker, atom *&OtherAtom, bond *&Binder, bond *&Bond, atom **&AddedAtomList, bond **&AddedBondList, bool IsAngstroem)
1288{
1289 DoLog(3) && (Log() << Verbose(3) << "Not Adding, has already been visited." << endl);
1290 // This has to be a cyclic bond, check whether it's present ...
1291 if (AddedBondList[Binder->nr] == NULL) {
1292 if ((Binder != Bond) && (Binder->Cyclic) && (((BFS.ShortestPathList[Walker->nr] + 1) < BFS.BondOrder))) {
1293 AddedBondList[Binder->nr] = Mol->CopyBond(AddedAtomList[Walker->nr], AddedAtomList[OtherAtom->nr], Binder);
1294 } else { // if it's root bond it has to broken (otherwise we would not create the fragments)
1295#ifdef ADDHYDROGEN
1296 if(!Mol->AddHydrogenReplacementAtom(Binder, AddedAtomList[Walker->nr], Walker, OtherAtom, IsAngstroem))
1297 exit(1);
1298#endif
1299 }
1300 }
1301}
1302;
1303
1304/** Adds atoms up to \a BondCount distance from \a *Root and notes them down in \a **AddedAtomList.
1305 * Gray vertices are always enqueued in an StackClass<atom *> FIFO queue, the rest is usual BFS with adding vertices found was
1306 * white and putting into queue.
1307 * \param *out output stream for debugging
1308 * \param *Mol Molecule class to add atoms to
1309 * \param **AddedAtomList list with added atom pointers, index is atom father's number
1310 * \param **AddedBondList list with added bond pointers, index is bond father's number
1311 * \param *Root root vertex for BFS
1312 * \param *Bond bond not to look beyond
1313 * \param BondOrder maximum distance for vertices to add
1314 * \param IsAngstroem lengths are in angstroem or bohrradii
1315 */
1316void molecule::BreadthFirstSearchAdd(molecule *Mol, atom **&AddedAtomList, bond **&AddedBondList, atom *Root, bond *Bond, int BondOrder, bool IsAngstroem)
1317{
1318 struct BFSAccounting BFS;
1319 atom *Walker = NULL, *OtherAtom = NULL;
1320 bond *Binder = NULL;
1321
1322 // add Root if not done yet
1323 if (AddedAtomList[Root->nr] == NULL) // add Root if not yet present
1324 AddedAtomList[Root->nr] = Mol->AddCopyAtom(Root);
1325
1326 BreadthFirstSearchAdd_Init(BFS, Root, BondOrder, AtomCount, AddedAtomList);
1327
1328 // and go on ... Queue always contains all lightgray vertices
1329 while (!BFS.BFSStack->IsEmpty()) {
1330 // we have to pop the oldest atom from stack. This keeps the atoms on the stack always of the same ShortestPath distance.
1331 // e.g. if current atom is 2, push to end of stack are of length 3, but first all of length 2 would be popped. They again
1332 // append length of 3 (their neighbours). Thus on stack we have always atoms of a certain length n at bottom of stack and
1333 // followed by n+1 till top of stack.
1334 Walker = BFS.BFSStack->PopFirst(); // pop oldest added
1335 DoLog(1) && (Log() << Verbose(1) << "Current Walker is: " << Walker->getName() << ", and has " << Walker->ListOfBonds.size() << " bonds." << endl);
1336 for (BondList::const_iterator Runner = Walker->ListOfBonds.begin(); Runner != Walker->ListOfBonds.end(); (++Runner)) {
1337 if ((*Runner) != NULL) { // don't look at bond equal NULL
1338 Binder = (*Runner);
1339 OtherAtom = (*Runner)->GetOtherAtom(Walker);
1340 DoLog(2) && (Log() << Verbose(2) << "Current OtherAtom is: " << OtherAtom->getName() << " for bond " << *(*Runner) << "." << endl);
1341 if (BFS.ColorList[OtherAtom->nr] == white) {
1342 BreadthFirstSearchAdd_UnvisitedNode(Mol, BFS, Walker, OtherAtom, Binder, Bond, AddedAtomList, AddedBondList, IsAngstroem);
1343 } else {
1344 BreadthFirstSearchAdd_VisitedNode(Mol, BFS, Walker, OtherAtom, Binder, Bond, AddedAtomList, AddedBondList, IsAngstroem);
1345 }
1346 }
1347 }
1348 BFS.ColorList[Walker->nr] = black;
1349 DoLog(1) && (Log() << Verbose(1) << "Coloring Walker " << Walker->getName() << " black." << endl);
1350 }
1351 BreadthFirstSearchAdd_Free(BFS);
1352}
1353;
1354
1355/** Adds a bond as a copy to a given one
1356 * \param *left leftatom of new bond
1357 * \param *right rightatom of new bond
1358 * \param *CopyBond rest of fields in bond are copied from this
1359 * \return pointer to new bond
1360 */
1361bond * molecule::CopyBond(atom *left, atom *right, bond *CopyBond)
1362{
1363 bond *Binder = AddBond(left, right, CopyBond->BondDegree);
1364 Binder->Cyclic = CopyBond->Cyclic;
1365 Binder->Type = CopyBond->Type;
1366 return Binder;
1367}
1368;
1369
1370void BuildInducedSubgraph_Init(atom **&ParentList, int AtomCount)
1371{
1372 // reset parent list
1373 ParentList = new atom*[AtomCount];
1374 for (int i=0;i<AtomCount;i++)
1375 ParentList[i] = NULL;
1376 DoLog(3) && (Log() << Verbose(3) << "Resetting ParentList." << endl);
1377}
1378;
1379
1380void BuildInducedSubgraph_FillParentList(const molecule *mol, const molecule *Father, atom **&ParentList)
1381{
1382 // fill parent list with sons
1383 DoLog(3) && (Log() << Verbose(3) << "Filling Parent List." << endl);
1384 atom *Walker = mol->start;
1385 while (Walker->next != mol->end) {
1386 Walker = Walker->next;
1387 ParentList[Walker->father->nr] = Walker;
1388 // Outputting List for debugging
1389 DoLog(4) && (Log() << Verbose(4) << "Son[" << Walker->father->nr << "] of " << Walker->father << " is " << ParentList[Walker->father->nr] << "." << endl);
1390 }
1391
1392}
1393;
1394
1395void BuildInducedSubgraph_Finalize(atom **&ParentList)
1396{
1397 delete[](ParentList);
1398}
1399;
1400
1401bool BuildInducedSubgraph_CreateBondsFromParent(molecule *mol, const molecule *Father, atom **&ParentList)
1402{
1403 bool status = true;
1404 atom *Walker = NULL;
1405 atom *OtherAtom = NULL;
1406 // check each entry of parent list and if ok (one-to-and-onto matching) create bonds
1407 DoLog(3) && (Log() << Verbose(3) << "Creating bonds." << endl);
1408 Walker = Father->start;
1409 while (Walker->next != Father->end) {
1410 Walker = Walker->next;
1411 if (ParentList[Walker->nr] != NULL) {
1412 if (ParentList[Walker->nr]->father != Walker) {
1413 status = false;
1414 } else {
1415 for (BondList::const_iterator Runner = Walker->ListOfBonds.begin(); Runner != Walker->ListOfBonds.end(); (++Runner)) {
1416 OtherAtom = (*Runner)->GetOtherAtom(Walker);
1417 if (ParentList[OtherAtom->nr] != NULL) { // if otheratom is also a father of an atom on this molecule, create the bond
1418 DoLog(4) && (Log() << Verbose(4) << "Endpoints of Bond " << (*Runner) << " are both present: " << ParentList[Walker->nr]->getName() << " and " << ParentList[OtherAtom->nr]->getName() << "." << endl);
1419 mol->AddBond(ParentList[Walker->nr], ParentList[OtherAtom->nr], (*Runner)->BondDegree);
1420 }
1421 }
1422 }
1423 }
1424 }
1425 return status;
1426}
1427;
1428
1429/** Adds bond structure to this molecule from \a Father molecule.
1430 * This basically causes this molecule to become an induced subgraph of the \a Father, i.e. for every bond in Father
1431 * with end points present in this molecule, bond is created in this molecule.
1432 * Special care was taken to ensure that this is of complexity O(N), where N is the \a Father's molecule::AtomCount.
1433 * \param *out output stream for debugging
1434 * \param *Father father molecule
1435 * \return true - is induced subgraph, false - there are atoms with fathers not in \a Father
1436 * \todo not checked, not fully working probably
1437 */
1438bool molecule::BuildInducedSubgraph(const molecule *Father)
1439{
1440 bool status = true;
1441 atom **ParentList = NULL;
1442
1443 DoLog(2) && (Log() << Verbose(2) << "Begin of BuildInducedSubgraph." << endl);
1444 BuildInducedSubgraph_Init(ParentList, Father->AtomCount);
1445 BuildInducedSubgraph_FillParentList(this, Father, ParentList);
1446 status = BuildInducedSubgraph_CreateBondsFromParent(this, Father, ParentList);
1447 BuildInducedSubgraph_Finalize(ParentList);
1448 DoLog(2) && (Log() << Verbose(2) << "End of BuildInducedSubgraph." << endl);
1449 return status;
1450}
1451;
1452
1453/** For a given keyset \a *Fragment, checks whether it is connected in the current molecule.
1454 * \param *out output stream for debugging
1455 * \param *Fragment Keyset of fragment's vertices
1456 * \return true - connected, false - disconnected
1457 * \note this is O(n^2) for it's just a bug checker not meant for permanent use!
1458 */
1459bool molecule::CheckForConnectedSubgraph(KeySet *Fragment)
1460{
1461 atom *Walker = NULL, *Walker2 = NULL;
1462 bool BondStatus = false;
1463 int size;
1464
1465 DoLog(1) && (Log() << Verbose(1) << "Begin of CheckForConnectedSubgraph" << endl);
1466 DoLog(2) && (Log() << Verbose(2) << "Disconnected atom: ");
1467
1468 // count number of atoms in graph
1469 size = 0;
1470 for (KeySet::iterator runner = Fragment->begin(); runner != Fragment->end(); runner++)
1471 size++;
1472 if (size > 1)
1473 for (KeySet::iterator runner = Fragment->begin(); runner != Fragment->end(); runner++) {
1474 Walker = FindAtom(*runner);
1475 BondStatus = false;
1476 for (KeySet::iterator runners = Fragment->begin(); runners != Fragment->end(); runners++) {
1477 Walker2 = FindAtom(*runners);
1478 for (BondList::const_iterator Runner = Walker->ListOfBonds.begin(); Runner != Walker->ListOfBonds.end(); (++Runner)) {
1479 if ((*Runner)->GetOtherAtom(Walker) == Walker2) {
1480 BondStatus = true;
1481 break;
1482 }
1483 if (BondStatus)
1484 break;
1485 }
1486 }
1487 if (!BondStatus) {
1488 DoLog(0) && (Log() << Verbose(0) << (*Walker) << endl);
1489 return false;
1490 }
1491 }
1492 else {
1493 DoLog(0) && (Log() << Verbose(0) << "none." << endl);
1494 return true;
1495 }
1496 DoLog(0) && (Log() << Verbose(0) << "none." << endl);
1497
1498 DoLog(1) && (Log() << Verbose(1) << "End of CheckForConnectedSubgraph" << endl);
1499
1500 return true;
1501}
Note: See TracBrowser for help on using the repository browser.