source: src/molecule_graph.cpp@ 80c63d

Action_Thermostats Add_AtomRandomPerturbation Add_FitFragmentPartialChargesAction Add_RotateAroundBondAction Add_SelectAtomByNameAction Added_ParseSaveFragmentResults AddingActions_SaveParseParticleParameters Adding_Graph_to_ChangeBondActions Adding_MD_integration_tests Adding_ParticleName_to_Atom Adding_StructOpt_integration_tests AtomFragments Automaking_mpqc_open AutomationFragmentation_failures Candidate_v1.5.4 Candidate_v1.6.0 Candidate_v1.6.1 ChangeBugEmailaddress ChangingTestPorts ChemicalSpaceEvaluator CombiningParticlePotentialParsing Combining_Subpackages Debian_Package_split Debian_package_split_molecuildergui_only Disabling_MemDebug Docu_Python_wait EmpiricalPotential_contain_HomologyGraph EmpiricalPotential_contain_HomologyGraph_documentation Enable_parallel_make_install Enhance_userguide Enhanced_StructuralOptimization Enhanced_StructuralOptimization_continued Example_ManyWaysToTranslateAtom Exclude_Hydrogens_annealWithBondGraph FitPartialCharges_GlobalError Fix_BoundInBox_CenterInBox_MoleculeActions Fix_ChargeSampling_PBC Fix_ChronosMutex Fix_FitPartialCharges Fix_FitPotential_needs_atomicnumbers Fix_ForceAnnealing Fix_IndependentFragmentGrids Fix_ParseParticles Fix_ParseParticles_split_forward_backward_Actions Fix_PopActions Fix_QtFragmentList_sorted_selection Fix_Restrictedkeyset_FragmentMolecule Fix_StatusMsg Fix_StepWorldTime_single_argument Fix_Verbose_Codepatterns Fix_fitting_potentials Fixes ForceAnnealing_goodresults ForceAnnealing_oldresults ForceAnnealing_tocheck ForceAnnealing_with_BondGraph ForceAnnealing_with_BondGraph_continued ForceAnnealing_with_BondGraph_continued_betteresults ForceAnnealing_with_BondGraph_contraction-expansion FragmentAction_writes_AtomFragments FragmentMolecule_checks_bonddegrees GeometryObjects Gui_Fixes Gui_displays_atomic_force_velocity ImplicitCharges IndependentFragmentGrids IndependentFragmentGrids_IndividualZeroInstances IndependentFragmentGrids_IntegrationTest IndependentFragmentGrids_Sole_NN_Calculation JobMarket_RobustOnKillsSegFaults JobMarket_StableWorkerPool JobMarket_unresolvable_hostname_fix MoreRobust_FragmentAutomation ODR_violation_mpqc_open PartialCharges_OrthogonalSummation PdbParser_setsAtomName PythonUI_with_named_parameters QtGui_reactivate_TimeChanged_changes Recreated_GuiChecks Rewrite_FitPartialCharges RotateToPrincipalAxisSystem_UndoRedo SaturateAtoms_findBestMatching SaturateAtoms_singleDegree StoppableMakroAction Subpackage_CodePatterns Subpackage_JobMarket Subpackage_LinearAlgebra Subpackage_levmar Subpackage_mpqc_open Subpackage_vmg Switchable_LogView ThirdParty_MPQC_rebuilt_buildsystem TrajectoryDependenant_MaxOrder TremoloParser_IncreasedPrecision TremoloParser_MultipleTimesteps TremoloParser_setsAtomName Ubuntu_1604_changes stable
Last change on this file since 80c63d was 53731f, checked in by Tillmann Crueger <crueger@…>, 15 years ago

Fixed two unittests by forcibly assigning numbers on Atoms in CreateAdjacencyList

  • Property mode set to 100644
File size: 60.7 KB
Line 
1/*
2 * molecule_graph.cpp
3 *
4 * Created on: Oct 5, 2009
5 * Author: heber
6 */
7
8#include "atom.hpp"
9#include "bond.hpp"
10#include "bondgraph.hpp"
11#include "config.hpp"
12#include "element.hpp"
13#include "helpers.hpp"
14#include "linkedcell.hpp"
15#include "lists.hpp"
16#include "log.hpp"
17#include "memoryallocator.hpp"
18#include "molecule.hpp"
19#include "Helpers/Assert.hpp"
20
21struct BFSAccounting
22{
23 atom **PredecessorList;
24 int *ShortestPathList;
25 enum Shading *ColorList;
26 class StackClass<atom *> *BFSStack;
27 class StackClass<atom *> *TouchedStack;
28 int AtomCount;
29 int BondOrder;
30 atom *Root;
31 bool BackStepping;
32 int CurrentGraphNr;
33 int ComponentNr;
34};
35
36/** Accounting data for Depth First Search.
37 */
38struct DFSAccounting
39{
40 class StackClass<atom *> *AtomStack;
41 class StackClass<bond *> *BackEdgeStack;
42 int CurrentGraphNr;
43 int ComponentNumber;
44 atom *Root;
45 bool BackStepping;
46};
47
48/************************************* Functions for class molecule *********************************/
49
50/** Creates an adjacency list of the molecule.
51 * We obtain an outside file with the indices of atoms which are bondmembers.
52 */
53void molecule::CreateAdjacencyListFromDbondFile(ifstream *input)
54{
55
56 // 1 We will parse bonds out of the dbond file created by tremolo.
57 int atom1, atom2;
58 atom *Walker, *OtherWalker;
59
60 if (!input) {
61 Log() << Verbose(1) << "Opening silica failed \n";
62 };
63
64 *input >> ws >> atom1;
65 *input >> ws >> atom2;
66 Log() << Verbose(1) << "Scanning file\n";
67 while (!input->eof()) // Check whether we read everything already
68 {
69 *input >> ws >> atom1;
70 *input >> ws >> atom2;
71
72 if (atom2 < atom1) //Sort indices of atoms in order
73 flip(atom1, atom2);
74 Walker = FindAtom(atom1);
75 OtherWalker = FindAtom(atom2);
76 AddBond(Walker, OtherWalker); //Add the bond between the two atoms with respective indices.
77 }
78}
79;
80
81/** Creates an adjacency list of the molecule.
82 * Generally, we use the CSD approach to bond recognition, that is the the distance
83 * between two atoms A and B must be within [Rcov(A)+Rcov(B)-t,Rcov(A)+Rcov(B)+t] with
84 * a threshold t = 0.4 Angstroem.
85 * To make it O(N log N) the function uses the linked-cell technique as follows:
86 * The procedure is step-wise:
87 * -# Remove every bond in list
88 * -# Count the atoms in the molecule with CountAtoms()
89 * -# partition cell into smaller linked cells of size \a bonddistance
90 * -# put each atom into its corresponding cell
91 * -# go through every cell, check the atoms therein against all possible bond partners in the 27 adjacent cells, add bond if true
92 * -# correct the bond degree iteratively (single->double->triple bond)
93 * -# finally print the bond list to \a *out if desired
94 * \param *out out stream for printing the matrix, NULL if no output
95 * \param bonddistance length of linked cells (i.e. maximum minimal length checked)
96 * \param IsAngstroem whether coordinate system is gauged to Angstroem or Bohr radii
97 * \param *minmaxdistance function to give upper and lower bound on whether particle is bonded to some other
98 * \param *BG BondGraph with the member function above or NULL, if just standard covalent should be used.
99 */
100void molecule::CreateAdjacencyList(double bonddistance, bool IsAngstroem, void (BondGraph::*minmaxdistance)(BondedParticle * const , BondedParticle * const , double &, double &, bool), BondGraph *BG)
101{
102 atom *Walker = NULL;
103 atom *OtherWalker = NULL;
104 int n[NDIM];
105 double MinDistance, MaxDistance;
106 LinkedCell *LC = NULL;
107 bool free_BG = false;
108
109 if (BG == NULL) {
110 BG = new BondGraph(IsAngstroem);
111 free_BG = true;
112 }
113
114 BondDistance = bonddistance; // * ((IsAngstroem) ? 1. : 1./AtomicLengthToAngstroem);
115 Log() << Verbose(0) << "Begin of CreateAdjacencyList." << endl;
116 // remove every bond from the list
117 bond *Binder = NULL;
118 while (last->previous != first) {
119 Binder = last->previous;
120 Binder->leftatom->UnregisterBond(Binder);
121 Binder->rightatom->UnregisterBond(Binder);
122 removewithoutcheck(Binder);
123 }
124 BondCount = 0;
125
126 // count atoms in molecule = dimension of matrix (also give each unique name and continuous numbering)
127 CountAtoms();
128 Log() << Verbose(1) << "AtomCount " << AtomCount << " and bonddistance is " << bonddistance << "." << endl;
129
130 if ((AtomCount > 1) && (bonddistance > 1.)) {
131 Log() << Verbose(2) << "Creating Linked Cell structure ... " << endl;
132 LC = new LinkedCell(this, bonddistance);
133
134 // create a list to map Tesselpoint::nr to atom *
135 Log() << Verbose(2) << "Creating TesselPoint to atom map ... " << endl;
136
137 // set numbers for atoms that can later be used
138 int i=0;
139 for(internal_iterator iter = atoms.begin();iter!= atoms.end(); ++iter){
140 (*iter)->nr = i++;
141 }
142
143 // 3a. go through every cell
144 Log() << Verbose(2) << "Celling ... " << endl;
145 for (LC->n[0] = 0; LC->n[0] < LC->N[0]; LC->n[0]++)
146 for (LC->n[1] = 0; LC->n[1] < LC->N[1]; LC->n[1]++)
147 for (LC->n[2] = 0; LC->n[2] < LC->N[2]; LC->n[2]++) {
148 const LinkedNodes *List = LC->GetCurrentCell();
149 //Log() << Verbose(2) << "Current cell is " << LC->n[0] << ", " << LC->n[1] << ", " << LC->n[2] << " with No. " << LC->index << " containing " << List->size() << " points." << endl;
150 if (List != NULL) {
151 for (LinkedNodes::const_iterator Runner = List->begin(); Runner != List->end(); Runner++) {
152 Walker = dynamic_cast<atom*>(*Runner);
153 ASSERT(Walker,"Tesselpoint that was not an atom retrieved from LinkedNode");
154 //Log() << Verbose(0) << "Current Atom is " << *Walker << "." << endl;
155 // 3c. check for possible bond between each atom in this and every one in the 27 cells
156 for (n[0] = -1; n[0] <= 1; n[0]++)
157 for (n[1] = -1; n[1] <= 1; n[1]++)
158 for (n[2] = -1; n[2] <= 1; n[2]++) {
159 const LinkedNodes *OtherList = LC->GetRelativeToCurrentCell(n);
160 //Log() << Verbose(2) << "Current relative cell is " << LC->n[0] << ", " << LC->n[1] << ", " << LC->n[2] << " with No. " << LC->index << " containing " << List->size() << " points." << endl;
161 if (OtherList != NULL) {
162 for (LinkedNodes::const_iterator OtherRunner = OtherList->begin(); OtherRunner != OtherList->end(); OtherRunner++) {
163 if ((*OtherRunner)->nr > Walker->nr) {
164 OtherWalker = dynamic_cast<atom*>(*OtherRunner);
165 ASSERT(OtherWalker,"TesselPoint that was not an atom retrieved from LinkedNode");
166 //Log() << Verbose(1) << "Checking distance " << OtherWalker->x.PeriodicDistanceSquared(&(Walker->x), cell_size) << " against typical bond length of " << bonddistance*bonddistance << "." << endl;
167 (BG->*minmaxdistance)(Walker, OtherWalker, MinDistance, MaxDistance, IsAngstroem);
168 const double distance = OtherWalker->x.PeriodicDistanceSquared(&(Walker->x), cell_size);
169 const bool status = (distance <= MaxDistance * MaxDistance) && (distance >= MinDistance * MinDistance);
170 if ((OtherWalker->father->nr > Walker->father->nr) && (status)) { // create bond if distance is smaller
171 //Log() << Verbose(1) << "Adding Bond between " << *Walker << " and " << *OtherWalker << " in distance " << sqrt(distance) << "." << endl;
172 AddBond(Walker->father, OtherWalker->father, 1); // also increases molecule::BondCount
173 } else {
174 //Log() << Verbose(1) << "Not Adding: Wrong label order or distance too great." << endl;
175 }
176 }
177 }
178 }
179 }
180 }
181 }
182 }
183 delete (LC);
184 Log() << Verbose(1) << "I detected " << BondCount << " bonds in the molecule with distance " << BondDistance << "." << endl;
185
186 // correct bond degree by comparing valence and bond degree
187 Log() << Verbose(2) << "Correcting bond degree ... " << endl;
188 CorrectBondDegree();
189
190 // output bonds for debugging (if bond chain list was correctly installed)
191 ActOnAllAtoms( &atom::OutputBondOfAtom );
192 } else
193 Log() << Verbose(1) << "AtomCount is " << AtomCount << ", thus no bonds, no connections!." << endl;
194 Log() << Verbose(0) << "End of CreateAdjacencyList." << endl;
195 if (free_BG)
196 delete(BG);
197}
198;
199
200/** Prints a list of all bonds to \a *out.
201 * \param output stream
202 */
203void molecule::OutputBondsList() const
204{
205 Log() << Verbose(1) << endl << "From contents of bond chain list:";
206 bond *Binder = first;
207 while (Binder->next != last) {
208 Binder = Binder->next;
209 Log() << Verbose(0) << *Binder << "\t" << endl;
210 }
211 Log() << Verbose(0) << endl;
212}
213;
214
215/** correct bond degree by comparing valence and bond degree.
216 * correct Bond degree of each bond by checking both bond partners for a mismatch between valence and current sum of bond degrees,
217 * iteratively increase the one first where the other bond partner has the fewest number of bonds (i.e. in general bonds oxygene
218 * preferred over carbon bonds). Beforehand, we had picked the first mismatching partner, which lead to oxygenes with single instead of
219 * double bonds as was expected.
220 * \param *out output stream for debugging
221 * \return number of bonds that could not be corrected
222 */
223int molecule::CorrectBondDegree() const
224{
225 int No = 0, OldNo = -1;
226
227 if (BondCount != 0) {
228 Log() << Verbose(1) << "Correcting Bond degree of each bond ... " << endl;
229 do {
230 OldNo = No;
231 No = SumPerAtom( &atom::CorrectBondDegree );
232 } while (OldNo != No);
233 Log() << Verbose(0) << " done." << endl;
234 } else {
235 Log() << Verbose(1) << "BondCount is " << BondCount << ", no bonds between any of the " << AtomCount << " atoms." << endl;
236 }
237 Log() << Verbose(0) << No << " bonds could not be corrected." << endl;
238
239 return (No);
240}
241;
242
243/** Counts all cyclic bonds and returns their number.
244 * \note Hydrogen bonds can never by cyclic, thus no check for that
245 * \param *out output stream for debugging
246 * \return number opf cyclic bonds
247 */
248int molecule::CountCyclicBonds()
249{
250 NoCyclicBonds = 0;
251 int *MinimumRingSize = NULL;
252 MoleculeLeafClass *Subgraphs = NULL;
253 class StackClass<bond *> *BackEdgeStack = NULL;
254 bond *Binder = first;
255 if ((Binder->next != last) && (Binder->next->Type == Undetermined)) {
256 Log() << Verbose(0) << "No Depth-First-Search analysis performed so far, calling ..." << endl;
257 Subgraphs = DepthFirstSearchAnalysis(BackEdgeStack);
258 while (Subgraphs->next != NULL) {
259 Subgraphs = Subgraphs->next;
260 delete (Subgraphs->previous);
261 }
262 delete (Subgraphs);
263 delete[] (MinimumRingSize);
264 }
265 while (Binder->next != last) {
266 Binder = Binder->next;
267 if (Binder->Cyclic)
268 NoCyclicBonds++;
269 }
270 delete (BackEdgeStack);
271 return NoCyclicBonds;
272}
273;
274
275/** Returns Shading as a char string.
276 * \param color the Shading
277 * \return string of the flag
278 */
279string molecule::GetColor(enum Shading color) const
280{
281 switch (color) {
282 case white:
283 return "white";
284 break;
285 case lightgray:
286 return "lightgray";
287 break;
288 case darkgray:
289 return "darkgray";
290 break;
291 case black:
292 return "black";
293 break;
294 default:
295 return "uncolored";
296 break;
297 };
298}
299;
300
301/** Sets atom::GraphNr and atom::LowpointNr to BFSAccounting::CurrentGraphNr.
302 * \param *out output stream for debugging
303 * \param *Walker current node
304 * \param &BFS structure with accounting data for BFS
305 */
306void DepthFirstSearchAnalysis_SetWalkersGraphNr(atom *&Walker, struct DFSAccounting &DFS)
307{
308 if (!DFS.BackStepping) { // if we don't just return from (8)
309 Walker->GraphNr = DFS.CurrentGraphNr;
310 Walker->LowpointNr = DFS.CurrentGraphNr;
311 Log() << Verbose(1) << "Setting Walker[" << Walker->Name << "]'s number to " << Walker->GraphNr << " with Lowpoint " << Walker->LowpointNr << "." << endl;
312 DFS.AtomStack->Push(Walker);
313 DFS.CurrentGraphNr++;
314 }
315}
316;
317
318/** During DFS goes along unvisited bond and touches other atom.
319 * Sets bond::type, if
320 * -# BackEdge: set atom::LowpointNr and push on \a BackEdgeStack
321 * -# TreeEgde: set atom::Ancestor and continue with Walker along this edge
322 * Continue until molecule::FindNextUnused() finds no more unused bonds.
323 * \param *out output stream for debugging
324 * \param *mol molecule with atoms and finding unused bonds
325 * \param *&Binder current edge
326 * \param &DFS DFS accounting data
327 */
328void DepthFirstSearchAnalysis_ProbeAlongUnusedBond(const molecule * const mol, atom *&Walker, bond *&Binder, struct DFSAccounting &DFS)
329{
330 atom *OtherAtom = NULL;
331
332 do { // (3) if Walker has no unused egdes, go to (5)
333 DFS.BackStepping = false; // reset backstepping flag for (8)
334 if (Binder == NULL) // if we don't just return from (11), Binder is already set to next unused
335 Binder = mol->FindNextUnused(Walker);
336 if (Binder == NULL)
337 break;
338 Log() << Verbose(2) << "Current Unused Bond is " << *Binder << "." << endl;
339 // (4) Mark Binder used, ...
340 Binder->MarkUsed(black);
341 OtherAtom = Binder->GetOtherAtom(Walker);
342 Log() << Verbose(2) << "(4) OtherAtom is " << OtherAtom->Name << "." << endl;
343 if (OtherAtom->GraphNr != -1) {
344 // (4a) ... if "other" atom has been visited (GraphNr != 0), set lowpoint to minimum of both, go to (3)
345 Binder->Type = BackEdge;
346 DFS.BackEdgeStack->Push(Binder);
347 Walker->LowpointNr = (Walker->LowpointNr < OtherAtom->GraphNr) ? Walker->LowpointNr : OtherAtom->GraphNr;
348 Log() << Verbose(3) << "(4a) Visited: Setting Lowpoint of Walker[" << Walker->Name << "] to " << Walker->LowpointNr << "." << endl;
349 } else {
350 // (4b) ... otherwise set OtherAtom as Ancestor of Walker and Walker as OtherAtom, go to (2)
351 Binder->Type = TreeEdge;
352 OtherAtom->Ancestor = Walker;
353 Walker = OtherAtom;
354 Log() << Verbose(3) << "(4b) Not Visited: OtherAtom[" << OtherAtom->Name << "]'s Ancestor is now " << OtherAtom->Ancestor->Name << ", Walker is OtherAtom " << OtherAtom->Name << "." << endl;
355 break;
356 }
357 Binder = NULL;
358 } while (1); // (3)
359}
360;
361
362/** Checks whether we have a new component.
363 * if atom::LowpointNr of \a *&Walker is greater than atom::GraphNr of its atom::Ancestor, we have a new component.
364 * Meaning that if we touch upon a node who suddenly has a smaller atom::LowpointNr than its ancestor, then we
365 * have a found a new branch in the graph tree.
366 * \param *out output stream for debugging
367 * \param *mol molecule with atoms and finding unused bonds
368 * \param *&Walker current node
369 * \param &DFS DFS accounting data
370 */
371void DepthFirstSearchAnalysis_CheckForaNewComponent(const molecule * const mol, atom *&Walker, struct DFSAccounting &DFS, MoleculeLeafClass *&LeafWalker)
372{
373 atom *OtherAtom = NULL;
374
375 // (5) if Ancestor of Walker is ...
376 Log() << Verbose(1) << "(5) Number of Walker[" << Walker->Name << "]'s Ancestor[" << Walker->Ancestor->Name << "] is " << Walker->Ancestor->GraphNr << "." << endl;
377
378 if (Walker->Ancestor->GraphNr != DFS.Root->GraphNr) {
379 // (6) (Ancestor of Walker is not Root)
380 if (Walker->LowpointNr < Walker->Ancestor->GraphNr) {
381 // (6a) set Ancestor's Lowpoint number to minimum of of its Ancestor and itself, go to Step(8)
382 Walker->Ancestor->LowpointNr = (Walker->Ancestor->LowpointNr < Walker->LowpointNr) ? Walker->Ancestor->LowpointNr : Walker->LowpointNr;
383 Log() << Verbose(2) << "(6) Setting Walker[" << Walker->Name << "]'s Ancestor[" << Walker->Ancestor->Name << "]'s Lowpoint to " << Walker->Ancestor->LowpointNr << "." << endl;
384 } else {
385 // (7) (Ancestor of Walker is a separating vertex, remove all from stack till Walker (including), these and Ancestor form a component
386 Walker->Ancestor->SeparationVertex = true;
387 Log() << Verbose(2) << "(7) Walker[" << Walker->Name << "]'s Ancestor[" << Walker->Ancestor->Name << "]'s is a separating vertex, creating component." << endl;
388 mol->SetNextComponentNumber(Walker->Ancestor, DFS.ComponentNumber);
389 Log() << Verbose(3) << "(7) Walker[" << Walker->Name << "]'s Ancestor's Compont is " << DFS.ComponentNumber << "." << endl;
390 mol->SetNextComponentNumber(Walker, DFS.ComponentNumber);
391 Log() << Verbose(3) << "(7) Walker[" << Walker->Name << "]'s Compont is " << DFS.ComponentNumber << "." << endl;
392 do {
393 OtherAtom = DFS.AtomStack->PopLast();
394 LeafWalker->Leaf->AddCopyAtom(OtherAtom);
395 mol->SetNextComponentNumber(OtherAtom, DFS.ComponentNumber);
396 Log() << Verbose(3) << "(7) Other[" << OtherAtom->Name << "]'s Compont is " << DFS.ComponentNumber << "." << endl;
397 } while (OtherAtom != Walker);
398 DFS.ComponentNumber++;
399 }
400 // (8) Walker becomes its Ancestor, go to (3)
401 Log() << Verbose(2) << "(8) Walker[" << Walker->Name << "] is now its Ancestor " << Walker->Ancestor->Name << ", backstepping. " << endl;
402 Walker = Walker->Ancestor;
403 DFS.BackStepping = true;
404 }
405}
406;
407
408/** Cleans the root stack when we have found a component.
409 * If we are not DFSAccounting::BackStepping, then we clear the root stack by putting everything into a
410 * component down till we meet DFSAccounting::Root.
411 * \param *out output stream for debugging
412 * \param *mol molecule with atoms and finding unused bonds
413 * \param *&Walker current node
414 * \param *&Binder current edge
415 * \param &DFS DFS accounting data
416 */
417void DepthFirstSearchAnalysis_CleanRootStackDownTillWalker(const molecule * const mol, atom *&Walker, bond *&Binder, struct DFSAccounting &DFS, MoleculeLeafClass *&LeafWalker)
418{
419 atom *OtherAtom = NULL;
420
421 if (!DFS.BackStepping) { // coming from (8) want to go to (3)
422 // (9) remove all from stack till Walker (including), these and Root form a component
423 //DFS.AtomStack->Output(out);
424 mol->SetNextComponentNumber(DFS.Root, DFS.ComponentNumber);
425 Log() << Verbose(3) << "(9) Root[" << DFS.Root->Name << "]'s Component is " << DFS.ComponentNumber << "." << endl;
426 mol->SetNextComponentNumber(Walker, DFS.ComponentNumber);
427 Log() << Verbose(3) << "(9) Walker[" << Walker->Name << "]'s Component is " << DFS.ComponentNumber << "." << endl;
428 do {
429 OtherAtom = DFS.AtomStack->PopLast();
430 LeafWalker->Leaf->AddCopyAtom(OtherAtom);
431 mol->SetNextComponentNumber(OtherAtom, DFS.ComponentNumber);
432 Log() << Verbose(3) << "(7) Other[" << OtherAtom->Name << "]'s Compont is " << DFS.ComponentNumber << "." << endl;
433 } while (OtherAtom != Walker);
434 DFS.ComponentNumber++;
435
436 // (11) Root is separation vertex, set Walker to Root and go to (4)
437 Walker = DFS.Root;
438 Binder = mol->FindNextUnused(Walker);
439 Log() << Verbose(1) << "(10) Walker is Root[" << DFS.Root->Name << "], next Unused Bond is " << Binder << "." << endl;
440 if (Binder != NULL) { // Root is separation vertex
441 Log() << Verbose(1) << "(11) Root is a separation vertex." << endl;
442 Walker->SeparationVertex = true;
443 }
444 }
445}
446;
447
448/** Initializes DFSAccounting structure.
449 * \param *out output stream for debugging
450 * \param &DFS accounting structure to allocate
451 * \param *mol molecule with AtomCount, BondCount and all atoms
452 */
453void DepthFirstSearchAnalysis_Init(struct DFSAccounting &DFS, const molecule * const mol)
454{
455 DFS.AtomStack = new StackClass<atom *> (mol->AtomCount);
456 DFS.CurrentGraphNr = 0;
457 DFS.ComponentNumber = 0;
458 DFS.BackStepping = false;
459 mol->ResetAllBondsToUnused();
460 mol->SetAtomValueToValue(-1, &atom::GraphNr);
461 mol->ActOnAllAtoms(&atom::InitComponentNr);
462 DFS.BackEdgeStack->ClearStack();
463}
464;
465
466/** Free's DFSAccounting structure.
467 * \param *out output stream for debugging
468 * \param &DFS accounting structure to free
469 */
470void DepthFirstSearchAnalysis_Finalize(struct DFSAccounting &DFS)
471{
472 delete (DFS.AtomStack);
473 // delete (DFS.BackEdgeStack); // DON'T free, see DepthFirstSearchAnalysis(), is returned as allocated
474}
475;
476
477/** Performs a Depth-First search on this molecule.
478 * Marks bonds in molecule as cyclic, bridge, ... and atoms as
479 * articulations points, ...
480 * We use the algorithm from [Even, Graph Algorithms, p.62].
481 * \param *out output stream for debugging
482 * \param *&BackEdgeStack NULL pointer to StackClass with all the found back edges, allocated and filled on return
483 * \return list of each disconnected subgraph as an individual molecule class structure
484 */
485MoleculeLeafClass * molecule::DepthFirstSearchAnalysis(class StackClass<bond *> *&BackEdgeStack) const
486{
487 struct DFSAccounting DFS;
488 BackEdgeStack = new StackClass<bond *> (BondCount);
489 DFS.BackEdgeStack = BackEdgeStack;
490 MoleculeLeafClass *SubGraphs = new MoleculeLeafClass(NULL);
491 MoleculeLeafClass *LeafWalker = SubGraphs;
492 int OldGraphNr = 0;
493 atom *Walker = NULL;
494 bond *Binder = NULL;
495
496 Log() << Verbose(0) << "Begin of DepthFirstSearchAnalysis" << endl;
497 DepthFirstSearchAnalysis_Init(DFS, this);
498
499 for (molecule::const_iterator iter = begin(); iter != end();) {
500 DFS.Root = *iter;
501 // (1) mark all edges unused, empty stack, set atom->GraphNr = -1 for all
502 DFS.AtomStack->ClearStack();
503
504 // put into new subgraph molecule and add this to list of subgraphs
505 LeafWalker = new MoleculeLeafClass(LeafWalker);
506 LeafWalker->Leaf = new molecule(elemente);
507 LeafWalker->Leaf->AddCopyAtom(DFS.Root);
508
509 OldGraphNr = DFS.CurrentGraphNr;
510 Walker = DFS.Root;
511 do { // (10)
512 do { // (2) set number and Lowpoint of Atom to i, increase i, push current atom
513 DepthFirstSearchAnalysis_SetWalkersGraphNr(Walker, DFS);
514
515 DepthFirstSearchAnalysis_ProbeAlongUnusedBond(this, Walker, Binder, DFS);
516
517 if (Binder == NULL) {
518 Log() << Verbose(2) << "No more Unused Bonds." << endl;
519 break;
520 } else
521 Binder = NULL;
522 } while (1); // (2)
523
524 // if we came from backstepping, yet there were no more unused bonds, we end up here with no Ancestor, because Walker is Root! Then we are finished!
525 if ((Walker == DFS.Root) && (Binder == NULL))
526 break;
527
528 DepthFirstSearchAnalysis_CheckForaNewComponent(this, Walker, DFS, LeafWalker);
529
530 DepthFirstSearchAnalysis_CleanRootStackDownTillWalker(this, Walker, Binder, DFS, LeafWalker);
531
532 } while ((DFS.BackStepping) || (Binder != NULL)); // (10) halt only if Root has no unused edges
533
534 // From OldGraphNr to CurrentGraphNr ranges an disconnected subgraph
535 Log() << Verbose(0) << "Disconnected subgraph ranges from " << OldGraphNr << " to " << DFS.CurrentGraphNr << "." << endl;
536 LeafWalker->Leaf->Output((ofstream *)&cout);
537 Log() << Verbose(0) << endl;
538
539 // step on to next root
540 while ((iter != end()) && ((*iter)->GraphNr != -1)) {
541 //Log() << Verbose(1) << "Current next subgraph root candidate is " << (*iter)->Name << "." << endl;
542 if ((*iter)->GraphNr != -1) // if already discovered, step on
543 iter++;
544 }
545 }
546 // set cyclic bond criterium on "same LP" basis
547 CyclicBondAnalysis();
548
549 OutputGraphInfoPerAtom();
550
551 OutputGraphInfoPerBond();
552
553 // free all and exit
554 DepthFirstSearchAnalysis_Finalize(DFS);
555 Log() << Verbose(0) << "End of DepthFirstSearchAnalysis" << endl;
556 return SubGraphs;
557}
558;
559
560/** Scans through all bonds and set bond::Cyclic to true where atom::LowpointNr of both ends is equal: LP criterion.
561 */
562void molecule::CyclicBondAnalysis() const
563{
564 NoCyclicBonds = 0;
565 bond *Binder = first;
566 while (Binder->next != last) {
567 Binder = Binder->next;
568 if (Binder->rightatom->LowpointNr == Binder->leftatom->LowpointNr) { // cyclic ??
569 Binder->Cyclic = true;
570 NoCyclicBonds++;
571 }
572 }
573}
574;
575
576/** Output graph information per atom.
577 * \param *out output stream
578 */
579void molecule::OutputGraphInfoPerAtom() const
580{
581 Log() << Verbose(1) << "Final graph info for each atom is:" << endl;
582 ActOnAllAtoms( &atom::OutputGraphInfo );
583}
584;
585
586/** Output graph information per bond.
587 * \param *out output stream
588 */
589void molecule::OutputGraphInfoPerBond() const
590{
591 Log() << Verbose(1) << "Final graph info for each bond is:" << endl;
592 bond *Binder = first;
593 while (Binder->next != last) {
594 Binder = Binder->next;
595 Log() << Verbose(2) << ((Binder->Type == TreeEdge) ? "TreeEdge " : "BackEdge ") << *Binder << ": <";
596 Log() << Verbose(0) << ((Binder->leftatom->SeparationVertex) ? "SP," : "") << "L" << Binder->leftatom->LowpointNr << " G" << Binder->leftatom->GraphNr << " Comp.";
597 Binder->leftatom->OutputComponentNumber();
598 Log() << Verbose(0) << " === ";
599 Log() << Verbose(0) << ((Binder->rightatom->SeparationVertex) ? "SP," : "") << "L" << Binder->rightatom->LowpointNr << " G" << Binder->rightatom->GraphNr << " Comp.";
600 Binder->rightatom->OutputComponentNumber();
601 Log() << Verbose(0) << ">." << endl;
602 if (Binder->Cyclic) // cyclic ??
603 Log() << Verbose(3) << "Lowpoint at each side are equal: CYCLIC!" << endl;
604 }
605}
606;
607
608/** Initialise each vertex as white with no predecessor, empty queue, color Root lightgray.
609 * \param *out output stream for debugging
610 * \param &BFS accounting structure
611 * \param AtomCount number of entries in the array to allocate
612 */
613void InitializeBFSAccounting(struct BFSAccounting &BFS, int AtomCount)
614{
615 BFS.AtomCount = AtomCount;
616 BFS.PredecessorList = Calloc<atom*> (AtomCount, "molecule::BreadthFirstSearchAdd_Init: **PredecessorList");
617 BFS.ShortestPathList = Malloc<int> (AtomCount, "molecule::BreadthFirstSearchAdd_Init: *ShortestPathList");
618 BFS.ColorList = Calloc<enum Shading> (AtomCount, "molecule::BreadthFirstSearchAdd_Init: *ColorList");
619 BFS.BFSStack = new StackClass<atom *> (AtomCount);
620
621 for (int i = AtomCount; i--;)
622 BFS.ShortestPathList[i] = -1;
623};
624
625/** Free's accounting structure.
626 * \param *out output stream for debugging
627 * \param &BFS accounting structure
628 */
629void FinalizeBFSAccounting(struct BFSAccounting &BFS)
630{
631 Free(&BFS.PredecessorList);
632 Free(&BFS.ShortestPathList);
633 Free(&BFS.ColorList);
634 delete (BFS.BFSStack);
635 BFS.AtomCount = 0;
636};
637
638/** Clean the accounting structure.
639 * \param *out output stream for debugging
640 * \param &BFS accounting structure
641 */
642void CleanBFSAccounting(struct BFSAccounting &BFS)
643{
644 atom *Walker = NULL;
645 while (!BFS.TouchedStack->IsEmpty()) {
646 Walker = BFS.TouchedStack->PopFirst();
647 BFS.PredecessorList[Walker->nr] = NULL;
648 BFS.ShortestPathList[Walker->nr] = -1;
649 BFS.ColorList[Walker->nr] = white;
650 }
651};
652
653/** Resets shortest path list and BFSStack.
654 * \param *out output stream for debugging
655 * \param *&Walker current node, pushed onto BFSAccounting::BFSStack and BFSAccounting::TouchedStack
656 * \param &BFS accounting structure
657 */
658void ResetBFSAccounting(atom *&Walker, struct BFSAccounting &BFS)
659{
660 BFS.ShortestPathList[Walker->nr] = 0;
661 BFS.BFSStack->ClearStack(); // start with empty BFS stack
662 BFS.BFSStack->Push(Walker);
663 BFS.TouchedStack->Push(Walker);
664};
665
666/** Performs a BFS from \a *Root, trying to find the same node and hence a cycle.
667 * \param *out output stream for debugging
668 * \param *&BackEdge the edge from root that we don't want to move along
669 * \param &BFS accounting structure
670 */
671void CyclicStructureAnalysis_CyclicBFSFromRootToRoot(bond *&BackEdge, struct BFSAccounting &BFS)
672{
673 atom *Walker = NULL;
674 atom *OtherAtom = NULL;
675 do { // look for Root
676 Walker = BFS.BFSStack->PopFirst();
677 Log() << Verbose(2) << "Current Walker is " << *Walker << ", we look for SP to Root " << *BFS.Root << "." << endl;
678 for (BondList::const_iterator Runner = Walker->ListOfBonds.begin(); Runner != Walker->ListOfBonds.end(); (++Runner)) {
679 if ((*Runner) != BackEdge) { // only walk along DFS spanning tree (otherwise we always find SP of one being backedge Binder)
680 OtherAtom = (*Runner)->GetOtherAtom(Walker);
681#ifdef ADDHYDROGEN
682 if (OtherAtom->type->Z != 1) {
683#endif
684 Log() << Verbose(2) << "Current OtherAtom is: " << OtherAtom->Name << " for bond " << *(*Runner) << "." << endl;
685 if (BFS.ColorList[OtherAtom->nr] == white) {
686 BFS.TouchedStack->Push(OtherAtom);
687 BFS.ColorList[OtherAtom->nr] = lightgray;
688 BFS.PredecessorList[OtherAtom->nr] = Walker; // Walker is the predecessor
689 BFS.ShortestPathList[OtherAtom->nr] = BFS.ShortestPathList[Walker->nr] + 1;
690 Log() << Verbose(2) << "Coloring OtherAtom " << OtherAtom->Name << " lightgray, its predecessor is " << Walker->Name << " and its Shortest Path is " << BFS.ShortestPathList[OtherAtom->nr] << " egde(s) long." << endl;
691 //if (BFS.ShortestPathList[OtherAtom->nr] < MinimumRingSize[Walker->GetTrueFather()->nr]) { // Check for maximum distance
692 Log() << Verbose(3) << "Putting OtherAtom into queue." << endl;
693 BFS.BFSStack->Push(OtherAtom);
694 //}
695 } else {
696 Log() << Verbose(3) << "Not Adding, has already been visited." << endl;
697 }
698 if (OtherAtom == BFS.Root)
699 break;
700#ifdef ADDHYDROGEN
701 } else {
702 Log() << Verbose(2) << "Skipping hydrogen atom " << *OtherAtom << "." << endl;
703 BFS.ColorList[OtherAtom->nr] = black;
704 }
705#endif
706 } else {
707 Log() << Verbose(2) << "Bond " << *(*Runner) << " not Visiting, is the back edge." << endl;
708 }
709 }
710 BFS.ColorList[Walker->nr] = black;
711 Log() << Verbose(1) << "Coloring Walker " << Walker->Name << " black." << endl;
712 if (OtherAtom == BFS.Root) { // if we have found the root, check whether this cycle wasn't already found beforehand
713 // step through predecessor list
714 while (OtherAtom != BackEdge->rightatom) {
715 if (!OtherAtom->GetTrueFather()->IsCyclic) // if one bond in the loop is not marked as cyclic, we haven't found this cycle yet
716 break;
717 else
718 OtherAtom = BFS.PredecessorList[OtherAtom->nr];
719 }
720 if (OtherAtom == BackEdge->rightatom) { // if each atom in found cycle is cyclic, loop's been found before already
721 Log() << Verbose(3) << "This cycle was already found before, skipping and removing seeker from search." << endl;
722 do {
723 OtherAtom = BFS.TouchedStack->PopLast();
724 if (BFS.PredecessorList[OtherAtom->nr] == Walker) {
725 Log() << Verbose(4) << "Removing " << *OtherAtom << " from lists and stacks." << endl;
726 BFS.PredecessorList[OtherAtom->nr] = NULL;
727 BFS.ShortestPathList[OtherAtom->nr] = -1;
728 BFS.ColorList[OtherAtom->nr] = white;
729 BFS.BFSStack->RemoveItem(OtherAtom);
730 }
731 } while ((!BFS.TouchedStack->IsEmpty()) && (BFS.PredecessorList[OtherAtom->nr] == NULL));
732 BFS.TouchedStack->Push(OtherAtom); // last was wrongly popped
733 OtherAtom = BackEdge->rightatom; // set to not Root
734 } else
735 OtherAtom = BFS.Root;
736 }
737 } while ((!BFS.BFSStack->IsEmpty()) && (OtherAtom != BFS.Root) && (OtherAtom != NULL)); // || (ShortestPathList[OtherAtom->nr] < MinimumRingSize[Walker->GetTrueFather()->nr])));
738};
739
740/** Climb back the BFSAccounting::PredecessorList and find cycle members.
741 * \param *out output stream for debugging
742 * \param *&OtherAtom
743 * \param *&BackEdge denotes the edge we did not want to travel along when doing CyclicBFSFromRootToRoot()
744 * \param &BFS accounting structure
745 * \param *&MinimumRingSize minimum distance from this node possible without encountering oneself, set on return for each atom
746 * \param &MinRingSize global minimum distance from one node without encountering oneself, set on return
747 */
748void CyclicStructureAnalysis_RetrieveCycleMembers(atom *&OtherAtom, bond *&BackEdge, struct BFSAccounting &BFS, int *&MinimumRingSize, int &MinRingSize)
749{
750 atom *Walker = NULL;
751 int NumCycles = 0;
752 int RingSize = -1;
753
754 if (OtherAtom == BFS.Root) {
755 // now climb back the predecessor list and thus find the cycle members
756 NumCycles++;
757 RingSize = 1;
758 BFS.Root->GetTrueFather()->IsCyclic = true;
759 Log() << Verbose(1) << "Found ring contains: ";
760 Walker = BFS.Root;
761 while (Walker != BackEdge->rightatom) {
762 Log() << Verbose(0) << Walker->Name << " <-> ";
763 Walker = BFS.PredecessorList[Walker->nr];
764 Walker->GetTrueFather()->IsCyclic = true;
765 RingSize++;
766 }
767 Log() << Verbose(0) << Walker->Name << " with a length of " << RingSize << "." << endl << endl;
768 // walk through all and set MinimumRingSize
769 Walker = BFS.Root;
770 MinimumRingSize[Walker->GetTrueFather()->nr] = RingSize;
771 while (Walker != BackEdge->rightatom) {
772 Walker = BFS.PredecessorList[Walker->nr];
773 if (RingSize < MinimumRingSize[Walker->GetTrueFather()->nr])
774 MinimumRingSize[Walker->GetTrueFather()->nr] = RingSize;
775 }
776 if ((RingSize < MinRingSize) || (MinRingSize == -1))
777 MinRingSize = RingSize;
778 } else {
779 Log() << Verbose(1) << "No ring containing " << *BFS.Root << " with length equal to or smaller than " << MinimumRingSize[Walker->GetTrueFather()->nr] << " found." << endl;
780 }
781};
782
783/** From a given node performs a BFS to touch the next cycle, for whose nodes \a *&MinimumRingSize is set and set it accordingly.
784 * \param *out output stream for debugging
785 * \param *&Root node to look for closest cycle from, i.e. \a *&MinimumRingSize is set for this node
786 * \param *&MinimumRingSize minimum distance from this node possible without encountering oneself, set on return for each atom
787 * \param AtomCount number of nodes in graph
788 */
789void CyclicStructureAnalysis_BFSToNextCycle(atom *&Root, atom *&Walker, int *&MinimumRingSize, int AtomCount)
790{
791 struct BFSAccounting BFS;
792 atom *OtherAtom = Walker;
793
794 InitializeBFSAccounting(BFS, AtomCount);
795
796 ResetBFSAccounting(Walker, BFS);
797 while (OtherAtom != NULL) { // look for Root
798 Walker = BFS.BFSStack->PopFirst();
799 //Log() << Verbose(2) << "Current Walker is " << *Walker << ", we look for SP to Root " << *Root << "." << endl;
800 for (BondList::const_iterator Runner = Walker->ListOfBonds.begin(); Runner != Walker->ListOfBonds.end(); (++Runner)) {
801 // "removed (*Runner) != BackEdge) || " from next if, is u
802 if ((Walker->ListOfBonds.size() == 1)) { // only walk along DFS spanning tree (otherwise we always find SP of 1 being backedge Binder), but terminal hydrogens may be connected via backedge, hence extra check
803 OtherAtom = (*Runner)->GetOtherAtom(Walker);
804 //Log() << Verbose(2) << "Current OtherAtom is: " << OtherAtom->Name << " for bond " << *Binder << "." << endl;
805 if (BFS.ColorList[OtherAtom->nr] == white) {
806 BFS.TouchedStack->Push(OtherAtom);
807 BFS.ColorList[OtherAtom->nr] = lightgray;
808 BFS.PredecessorList[OtherAtom->nr] = Walker; // Walker is the predecessor
809 BFS.ShortestPathList[OtherAtom->nr] = BFS.ShortestPathList[Walker->nr] + 1;
810 //Log() << Verbose(2) << "Coloring OtherAtom " << OtherAtom->Name << " lightgray, its predecessor is " << Walker->Name << " and its Shortest Path is " << ShortestPathList[OtherAtom->nr] << " egde(s) long." << endl;
811 if (OtherAtom->GetTrueFather()->IsCyclic) { // if the other atom is connected to a ring
812 MinimumRingSize[Root->GetTrueFather()->nr] = BFS.ShortestPathList[OtherAtom->nr] + MinimumRingSize[OtherAtom->GetTrueFather()->nr];
813 OtherAtom = NULL; //break;
814 break;
815 } else
816 BFS.BFSStack->Push(OtherAtom);
817 } else {
818 //Log() << Verbose(3) << "Not Adding, has already been visited." << endl;
819 }
820 } else {
821 //Log() << Verbose(3) << "Not Visiting, is a back edge." << endl;
822 }
823 }
824 BFS.ColorList[Walker->nr] = black;
825 //Log() << Verbose(1) << "Coloring Walker " << Walker->Name << " black." << endl;
826 }
827 //CleanAccountingLists(TouchedStack, PredecessorList, ShortestPathList, ColorList);
828
829 FinalizeBFSAccounting(BFS);
830}
831;
832
833/** All nodes that are not in cycles get assigned a \a *&MinimumRingSizeby BFS to next cycle.
834 * \param *out output stream for debugging
835 * \param *&MinimumRingSize array with minimum distance without encountering onself for each atom
836 * \param &MinRingSize global minium distance
837 * \param &NumCyles number of cycles in graph
838 * \param *mol molecule with atoms
839 */
840void CyclicStructureAnalysis_AssignRingSizetoNonCycleMembers(int *&MinimumRingSize, int &MinRingSize, int &NumCycles, const molecule * const mol)
841{
842 atom *Root = NULL;
843 atom *Walker = NULL;
844 if (MinRingSize != -1) { // if rings are present
845 // go over all atoms
846 for (molecule::const_iterator iter = mol->begin(); iter != mol->end(); ++iter) {
847 Root = *iter;
848
849 if (MinimumRingSize[Root->GetTrueFather()->nr] == mol->AtomCount) { // check whether MinimumRingSize is set, if not BFS to next where it is
850 Walker = Root;
851
852 //Log() << Verbose(1) << "---------------------------------------------------------------------------------------------------------" << endl;
853 CyclicStructureAnalysis_BFSToNextCycle(Root, Walker, MinimumRingSize, mol->AtomCount);
854
855 }
856 Log() << Verbose(1) << "Minimum ring size of " << *Root << " is " << MinimumRingSize[Root->GetTrueFather()->nr] << "." << endl;
857 }
858 Log() << Verbose(1) << "Minimum ring size is " << MinRingSize << ", over " << NumCycles << " cycles total." << endl;
859 } else
860 Log() << Verbose(1) << "No rings were detected in the molecular structure." << endl;
861}
862;
863
864/** Analyses the cycles found and returns minimum of all cycle lengths.
865 * We begin with a list of Back edges found during DepthFirstSearchAnalysis(). We go through this list - one end is the Root,
866 * the other our initial Walker - and do a Breadth First Search for the Root. We mark down each Predecessor and as soon as
867 * we have found the Root via BFS, we may climb back the closed cycle via the Predecessors. Thereby we mark atoms and bonds
868 * as cyclic and print out the cycles.
869 * \param *out output stream for debugging
870 * \param *BackEdgeStack stack with all back edges found during DFS scan. Beware: This stack contains the bonds from the total molecule, not from the subgraph!
871 * \param *&MinimumRingSize contains smallest ring size in molecular structure on return or -1 if no rings were found, if set is maximum search distance
872 * \todo BFS from the not-same-LP to find back to starting point of tributary cycle over more than one bond
873 */
874void molecule::CyclicStructureAnalysis(class StackClass<bond *> * BackEdgeStack, int *&MinimumRingSize) const
875{
876 struct BFSAccounting BFS;
877 atom *Walker = NULL;
878 atom *OtherAtom = NULL;
879 bond *BackEdge = NULL;
880 int NumCycles = 0;
881 int MinRingSize = -1;
882
883 InitializeBFSAccounting(BFS, AtomCount);
884
885 //Log() << Verbose(1) << "Back edge list - ";
886 //BackEdgeStack->Output(out);
887
888 Log() << Verbose(1) << "Analysing cycles ... " << endl;
889 NumCycles = 0;
890 while (!BackEdgeStack->IsEmpty()) {
891 BackEdge = BackEdgeStack->PopFirst();
892 // this is the target
893 BFS.Root = BackEdge->leftatom;
894 // this is the source point
895 Walker = BackEdge->rightatom;
896
897 ResetBFSAccounting(Walker, BFS);
898
899 Log() << Verbose(1) << "---------------------------------------------------------------------------------------------------------" << endl;
900 OtherAtom = NULL;
901 CyclicStructureAnalysis_CyclicBFSFromRootToRoot(BackEdge, BFS);
902
903 CyclicStructureAnalysis_RetrieveCycleMembers(OtherAtom, BackEdge, BFS, MinimumRingSize, MinRingSize);
904
905 CleanBFSAccounting(BFS);
906 }
907 FinalizeBFSAccounting(BFS);
908
909 CyclicStructureAnalysis_AssignRingSizetoNonCycleMembers(MinimumRingSize, MinRingSize, NumCycles, this);
910};
911
912/** Sets the next component number.
913 * This is O(N) as the number of bonds per atom is bound.
914 * \param *vertex atom whose next atom::*ComponentNr is to be set
915 * \param nr number to use
916 */
917void molecule::SetNextComponentNumber(atom *vertex, int nr) const
918{
919 size_t i = 0;
920 if (vertex != NULL) {
921 for (; i < vertex->ListOfBonds.size(); i++) {
922 if (vertex->ComponentNr[i] == -1) { // check if not yet used
923 vertex->ComponentNr[i] = nr;
924 break;
925 } else if (vertex->ComponentNr[i] == nr) // if number is already present, don't add another time
926 break; // breaking here will not cause error!
927 }
928 if (i == vertex->ListOfBonds.size()) {
929 eLog() << Verbose(0) << "Error: All Component entries are already occupied!" << endl;
930 performCriticalExit();
931 }
932 } else {
933 eLog() << Verbose(0) << "Error: Given vertex is NULL!" << endl;
934 performCriticalExit();
935 }
936}
937;
938
939/** Returns next unused bond for this atom \a *vertex or NULL of none exists.
940 * \param *vertex atom to regard
941 * \return bond class or NULL
942 */
943bond * molecule::FindNextUnused(atom *vertex) const
944{
945 for (BondList::const_iterator Runner = vertex->ListOfBonds.begin(); Runner != vertex->ListOfBonds.end(); (++Runner))
946 if ((*Runner)->IsUsed() == white)
947 return ((*Runner));
948 return NULL;
949}
950;
951
952/** Resets bond::Used flag of all bonds in this molecule.
953 * \return true - success, false - -failure
954 */
955void molecule::ResetAllBondsToUnused() const
956{
957 bond *Binder = first;
958 while (Binder->next != last) {
959 Binder = Binder->next;
960 Binder->ResetUsed();
961 }
962}
963;
964
965/** Output a list of flags, stating whether the bond was visited or not.
966 * \param *out output stream for debugging
967 * \param *list
968 */
969void OutputAlreadyVisited(int *list)
970{
971 Log() << Verbose(4) << "Already Visited Bonds:\t";
972 for (int i = 1; i <= list[0]; i++)
973 Log() << Verbose(0) << list[i] << " ";
974 Log() << Verbose(0) << endl;
975}
976;
977
978/** Storing the bond structure of a molecule to file.
979 * Simply stores Atom::nr and then the Atom::nr of all bond partners per line.
980 * \param *out output stream for debugging
981 * \param *path path to file
982 * \return true - file written successfully, false - writing failed
983 */
984bool molecule::StoreAdjacencyToFile(char *path)
985{
986 ofstream AdjacencyFile;
987 stringstream line;
988 bool status = true;
989
990 line << path << "/" << FRAGMENTPREFIX << ADJACENCYFILE;
991 AdjacencyFile.open(line.str().c_str(), ios::out);
992 Log() << Verbose(1) << "Saving adjacency list ... ";
993 if (AdjacencyFile != NULL) {
994 AdjacencyFile << "m\tn" << endl;
995 ActOnAllAtoms(&atom::OutputAdjacency, &AdjacencyFile);
996 AdjacencyFile.close();
997 Log() << Verbose(1) << "done." << endl;
998 } else {
999 Log() << Verbose(1) << "failed to open file " << line.str() << "." << endl;
1000 status = false;
1001 }
1002
1003 return status;
1004}
1005;
1006
1007/** Storing the bond structure of a molecule to file.
1008 * Simply stores Atom::nr and then the Atom::nr of all bond partners, one per line.
1009 * \param *out output stream for debugging
1010 * \param *path path to file
1011 * \return true - file written successfully, false - writing failed
1012 */
1013bool molecule::StoreBondsToFile(char *path)
1014{
1015 ofstream BondFile;
1016 stringstream line;
1017 bool status = true;
1018
1019 line << path << "/" << FRAGMENTPREFIX << ADJACENCYFILE;
1020 BondFile.open(line.str().c_str(), ios::out);
1021 Log() << Verbose(1) << "Saving adjacency list ... ";
1022 if (BondFile != NULL) {
1023 BondFile << "m\tn" << endl;
1024 ActOnAllAtoms(&atom::OutputBonds, &BondFile);
1025 BondFile.close();
1026 Log() << Verbose(1) << "done." << endl;
1027 } else {
1028 Log() << Verbose(1) << "failed to open file " << line.str() << "." << endl;
1029 status = false;
1030 }
1031
1032 return status;
1033}
1034;
1035
1036bool CheckAdjacencyFileAgainstMolecule_Init(char *path, ifstream &File, int *&CurrentBonds)
1037{
1038 stringstream filename;
1039 filename << path << "/" << FRAGMENTPREFIX << ADJACENCYFILE;
1040 File.open(filename.str().c_str(), ios::out);
1041 Log() << Verbose(1) << "Looking at bond structure stored in adjacency file and comparing to present one ... ";
1042 if (File == NULL)
1043 return false;
1044
1045 // allocate storage structure
1046 CurrentBonds = Calloc<int> (8, "molecule::CheckAdjacencyFileAgainstMolecule - CurrentBonds"); // contains parsed bonds of current atom
1047 return true;
1048}
1049;
1050
1051void CheckAdjacencyFileAgainstMolecule_Finalize(ifstream &File, int *&CurrentBonds)
1052{
1053 File.close();
1054 File.clear();
1055 Free(&CurrentBonds);
1056}
1057;
1058
1059void CheckAdjacencyFileAgainstMolecule_CompareBonds(bool &status, int &NonMatchNumber, atom *&Walker, size_t &CurrentBondsOfAtom, int AtomNr, int *&CurrentBonds, atom **ListOfAtoms)
1060{
1061 size_t j = 0;
1062 int id = -1;
1063
1064 //Log() << Verbose(2) << "Walker is " << *Walker << ", bond partners: ";
1065 if (CurrentBondsOfAtom == Walker->ListOfBonds.size()) {
1066 for (BondList::const_iterator Runner = Walker->ListOfBonds.begin(); Runner != Walker->ListOfBonds.end(); (++Runner)) {
1067 id = (*Runner)->GetOtherAtom(Walker)->nr;
1068 j = 0;
1069 for (; (j < CurrentBondsOfAtom) && (CurrentBonds[j++] != id);)
1070 ; // check against all parsed bonds
1071 if (CurrentBonds[j - 1] != id) { // no match ? Then mark in ListOfAtoms
1072 ListOfAtoms[AtomNr] = NULL;
1073 NonMatchNumber++;
1074 status = false;
1075 //Log() << Verbose(0) << "[" << id << "]\t";
1076 } else {
1077 //Log() << Verbose(0) << id << "\t";
1078 }
1079 }
1080 //Log() << Verbose(0) << endl;
1081 } else {
1082 Log() << Verbose(0) << "Number of bonds for Atom " << *Walker << " does not match, parsed " << CurrentBondsOfAtom << " against " << Walker->ListOfBonds.size() << "." << endl;
1083 status = false;
1084 }
1085}
1086;
1087
1088/** Checks contents of adjacency file against bond structure in structure molecule.
1089 * \param *out output stream for debugging
1090 * \param *path path to file
1091 * \param **ListOfAtoms allocated (molecule::AtomCount) and filled lookup table for ids (Atom::nr) to *Atom
1092 * \return true - structure is equal, false - not equivalence
1093 */
1094bool molecule::CheckAdjacencyFileAgainstMolecule(char *path, atom **ListOfAtoms)
1095{
1096 ifstream File;
1097 bool status = true;
1098 atom *Walker = NULL;
1099 char *buffer = NULL;
1100 int *CurrentBonds = NULL;
1101 int NonMatchNumber = 0; // will number of atoms with differing bond structure
1102 size_t CurrentBondsOfAtom = -1;
1103
1104 if (!CheckAdjacencyFileAgainstMolecule_Init(path, File, CurrentBonds)) {
1105 Log() << Verbose(1) << "Adjacency file not found." << endl;
1106 return true;
1107 }
1108
1109 buffer = Malloc<char> (MAXSTRINGSIZE, "molecule::CheckAdjacencyFileAgainstMolecule: *buffer");
1110 // Parse the file line by line and count the bonds
1111 while (!File.eof()) {
1112 File.getline(buffer, MAXSTRINGSIZE);
1113 stringstream line;
1114 line.str(buffer);
1115 int AtomNr = -1;
1116 line >> AtomNr;
1117 CurrentBondsOfAtom = -1; // we count one too far due to line end
1118 // parse into structure
1119 if ((AtomNr >= 0) && (AtomNr < AtomCount)) {
1120 Walker = ListOfAtoms[AtomNr];
1121 while (!line.eof())
1122 line >> CurrentBonds[++CurrentBondsOfAtom];
1123 // compare against present bonds
1124 CheckAdjacencyFileAgainstMolecule_CompareBonds(status, NonMatchNumber, Walker, CurrentBondsOfAtom, AtomNr, CurrentBonds, ListOfAtoms);
1125 }
1126 }
1127 Free(&buffer);
1128 CheckAdjacencyFileAgainstMolecule_Finalize(File, CurrentBonds);
1129
1130 if (status) { // if equal we parse the KeySetFile
1131 Log() << Verbose(1) << "done: Equal." << endl;
1132 } else
1133 Log() << Verbose(1) << "done: Not equal by " << NonMatchNumber << " atoms." << endl;
1134 return status;
1135}
1136;
1137
1138/** Picks from a global stack with all back edges the ones in the fragment.
1139 * \param *out output stream for debugging
1140 * \param **ListOfLocalAtoms array of father atom::nr to local atom::nr (reverse of atom::father)
1141 * \param *ReferenceStack stack with all the back egdes
1142 * \param *LocalStack stack to be filled
1143 * \return true - everything ok, false - ReferenceStack was empty
1144 */
1145bool molecule::PickLocalBackEdges(atom **ListOfLocalAtoms, class StackClass<bond *> *&ReferenceStack, class StackClass<bond *> *&LocalStack) const
1146{
1147 bool status = true;
1148 if (ReferenceStack->IsEmpty()) {
1149 Log() << Verbose(1) << "ReferenceStack is empty!" << endl;
1150 return false;
1151 }
1152 bond *Binder = ReferenceStack->PopFirst();
1153 bond *FirstBond = Binder; // mark the first bond, so that we don't loop through the stack indefinitely
1154 atom *Walker = NULL, *OtherAtom = NULL;
1155 ReferenceStack->Push(Binder);
1156
1157 do { // go through all bonds and push local ones
1158 Walker = ListOfLocalAtoms[Binder->leftatom->nr]; // get one atom in the reference molecule
1159 if (Walker != NULL) // if this Walker exists in the subgraph ...
1160 for (BondList::const_iterator Runner = Walker->ListOfBonds.begin(); Runner != Walker->ListOfBonds.end(); (++Runner)) {
1161 OtherAtom = (*Runner)->GetOtherAtom(Walker);
1162 if (OtherAtom == ListOfLocalAtoms[(*Runner)->rightatom->nr]) { // found the bond
1163 LocalStack->Push((*Runner));
1164 Log() << Verbose(3) << "Found local edge " << *(*Runner) << "." << endl;
1165 break;
1166 }
1167 }
1168 Binder = ReferenceStack->PopFirst(); // loop the stack for next item
1169 Log() << Verbose(3) << "Current candidate edge " << Binder << "." << endl;
1170 ReferenceStack->Push(Binder);
1171 } while (FirstBond != Binder);
1172
1173 return status;
1174}
1175;
1176
1177void BreadthFirstSearchAdd_Init(struct BFSAccounting &BFS, atom *&Root, int AtomCount, int BondOrder, atom **AddedAtomList = NULL)
1178{
1179 BFS.AtomCount = AtomCount;
1180 BFS.BondOrder = BondOrder;
1181 BFS.PredecessorList = Calloc<atom*> (AtomCount, "molecule::BreadthFirstSearchAdd_Init: **PredecessorList");
1182 BFS.ShortestPathList = Calloc<int> (AtomCount, "molecule::BreadthFirstSearchAdd_Init: *ShortestPathList");
1183 BFS.ColorList = Malloc<enum Shading> (AtomCount, "molecule::BreadthFirstSearchAdd_Init: *ColorList");
1184 BFS.BFSStack = new StackClass<atom *> (AtomCount);
1185
1186 BFS.Root = Root;
1187 BFS.BFSStack->ClearStack();
1188 BFS.BFSStack->Push(Root);
1189
1190 // initialise each vertex as white with no predecessor, empty queue, color Root lightgray
1191 for (int i = AtomCount; i--;) {
1192 BFS.ShortestPathList[i] = -1;
1193 if ((AddedAtomList != NULL) && (AddedAtomList[i] != NULL)) // mark already present atoms (i.e. Root and maybe others) as visited
1194 BFS.ColorList[i] = lightgray;
1195 else
1196 BFS.ColorList[i] = white;
1197 }
1198 //BFS.ShortestPathList[Root->nr] = 0; //is set due to Calloc()
1199}
1200;
1201
1202void BreadthFirstSearchAdd_Free(struct BFSAccounting &BFS)
1203{
1204 Free(&BFS.PredecessorList);
1205 Free(&BFS.ShortestPathList);
1206 Free(&BFS.ColorList);
1207 delete (BFS.BFSStack);
1208 BFS.AtomCount = 0;
1209}
1210;
1211
1212void BreadthFirstSearchAdd_UnvisitedNode(molecule *Mol, struct BFSAccounting &BFS, atom *&Walker, atom *&OtherAtom, bond *&Binder, bond *&Bond, atom **&AddedAtomList, bond **&AddedBondList, bool IsAngstroem)
1213{
1214 if (Binder != Bond) // let other atom white if it's via Root bond. In case it's cyclic it has to be reached again (yet Root is from OtherAtom already black, thus no problem)
1215 BFS.ColorList[OtherAtom->nr] = lightgray;
1216 BFS.PredecessorList[OtherAtom->nr] = Walker; // Walker is the predecessor
1217 BFS.ShortestPathList[OtherAtom->nr] = BFS.ShortestPathList[Walker->nr] + 1;
1218 Log() << Verbose(2) << "Coloring OtherAtom " << OtherAtom->Name << " " << ((BFS.ColorList[OtherAtom->nr] == white) ? "white" : "lightgray") << ", its predecessor is " << Walker->Name << " and its Shortest Path is " << BFS.ShortestPathList[OtherAtom->nr] << " egde(s) long." << endl;
1219 if ((((BFS.ShortestPathList[OtherAtom->nr] < BFS.BondOrder) && (Binder != Bond)))) { // Check for maximum distance
1220 Log() << Verbose(3);
1221 if (AddedAtomList[OtherAtom->nr] == NULL) { // add if it's not been so far
1222 AddedAtomList[OtherAtom->nr] = Mol->AddCopyAtom(OtherAtom);
1223 Log() << Verbose(0) << "Added OtherAtom " << OtherAtom->Name;
1224 AddedBondList[Binder->nr] = Mol->CopyBond(AddedAtomList[Walker->nr], AddedAtomList[OtherAtom->nr], Binder);
1225 Log() << Verbose(0) << " and bond " << *(AddedBondList[Binder->nr]) << ", ";
1226 } else { // this code should actually never come into play (all white atoms are not yet present in BondMolecule, that's why they are white in the first place)
1227 Log() << Verbose(0) << "Not adding OtherAtom " << OtherAtom->Name;
1228 if (AddedBondList[Binder->nr] == NULL) {
1229 AddedBondList[Binder->nr] = Mol->CopyBond(AddedAtomList[Walker->nr], AddedAtomList[OtherAtom->nr], Binder);
1230 Log() << Verbose(0) << ", added Bond " << *(AddedBondList[Binder->nr]);
1231 } else
1232 Log() << Verbose(0) << ", not added Bond ";
1233 }
1234 Log() << Verbose(0) << ", putting OtherAtom into queue." << endl;
1235 BFS.BFSStack->Push(OtherAtom);
1236 } else { // out of bond order, then replace
1237 if ((AddedAtomList[OtherAtom->nr] == NULL) && (Binder->Cyclic))
1238 BFS.ColorList[OtherAtom->nr] = white; // unmark if it has not been queued/added, to make it available via its other bonds (cyclic)
1239 if (Binder == Bond)
1240 Log() << Verbose(3) << "Not Queueing, is the Root bond";
1241 else if (BFS.ShortestPathList[OtherAtom->nr] >= BFS.BondOrder)
1242 Log() << Verbose(3) << "Not Queueing, is out of Bond Count of " << BFS.BondOrder;
1243 if (!Binder->Cyclic)
1244 Log() << Verbose(0) << ", is not part of a cyclic bond, saturating bond with Hydrogen." << endl;
1245 if (AddedBondList[Binder->nr] == NULL) {
1246 if ((AddedAtomList[OtherAtom->nr] != NULL)) { // .. whether we add or saturate
1247 AddedBondList[Binder->nr] = Mol->CopyBond(AddedAtomList[Walker->nr], AddedAtomList[OtherAtom->nr], Binder);
1248 } else {
1249#ifdef ADDHYDROGEN
1250 if (!Mol->AddHydrogenReplacementAtom(Binder, AddedAtomList[Walker->nr], Walker, OtherAtom, IsAngstroem))
1251 exit(1);
1252#endif
1253 }
1254 }
1255 }
1256}
1257;
1258
1259void BreadthFirstSearchAdd_VisitedNode(molecule *Mol, struct BFSAccounting &BFS, atom *&Walker, atom *&OtherAtom, bond *&Binder, bond *&Bond, atom **&AddedAtomList, bond **&AddedBondList, bool IsAngstroem)
1260{
1261 Log() << Verbose(3) << "Not Adding, has already been visited." << endl;
1262 // This has to be a cyclic bond, check whether it's present ...
1263 if (AddedBondList[Binder->nr] == NULL) {
1264 if ((Binder != Bond) && (Binder->Cyclic) && (((BFS.ShortestPathList[Walker->nr] + 1) < BFS.BondOrder))) {
1265 AddedBondList[Binder->nr] = Mol->CopyBond(AddedAtomList[Walker->nr], AddedAtomList[OtherAtom->nr], Binder);
1266 } else { // if it's root bond it has to broken (otherwise we would not create the fragments)
1267#ifdef ADDHYDROGEN
1268 if(!Mol->AddHydrogenReplacementAtom(Binder, AddedAtomList[Walker->nr], Walker, OtherAtom, IsAngstroem))
1269 exit(1);
1270#endif
1271 }
1272 }
1273}
1274;
1275
1276/** Adds atoms up to \a BondCount distance from \a *Root and notes them down in \a **AddedAtomList.
1277 * Gray vertices are always enqueued in an StackClass<atom *> FIFO queue, the rest is usual BFS with adding vertices found was
1278 * white and putting into queue.
1279 * \param *out output stream for debugging
1280 * \param *Mol Molecule class to add atoms to
1281 * \param **AddedAtomList list with added atom pointers, index is atom father's number
1282 * \param **AddedBondList list with added bond pointers, index is bond father's number
1283 * \param *Root root vertex for BFS
1284 * \param *Bond bond not to look beyond
1285 * \param BondOrder maximum distance for vertices to add
1286 * \param IsAngstroem lengths are in angstroem or bohrradii
1287 */
1288void molecule::BreadthFirstSearchAdd(molecule *Mol, atom **&AddedAtomList, bond **&AddedBondList, atom *Root, bond *Bond, int BondOrder, bool IsAngstroem)
1289{
1290 struct BFSAccounting BFS;
1291 atom *Walker = NULL, *OtherAtom = NULL;
1292 bond *Binder = NULL;
1293
1294 // add Root if not done yet
1295 if (AddedAtomList[Root->nr] == NULL) // add Root if not yet present
1296 AddedAtomList[Root->nr] = Mol->AddCopyAtom(Root);
1297
1298 BreadthFirstSearchAdd_Init(BFS, Root, BondOrder, AtomCount, AddedAtomList);
1299
1300 // and go on ... Queue always contains all lightgray vertices
1301 while (!BFS.BFSStack->IsEmpty()) {
1302 // we have to pop the oldest atom from stack. This keeps the atoms on the stack always of the same ShortestPath distance.
1303 // e.g. if current atom is 2, push to end of stack are of length 3, but first all of length 2 would be popped. They again
1304 // append length of 3 (their neighbours). Thus on stack we have always atoms of a certain length n at bottom of stack and
1305 // followed by n+1 till top of stack.
1306 Walker = BFS.BFSStack->PopFirst(); // pop oldest added
1307 Log() << Verbose(1) << "Current Walker is: " << Walker->Name << ", and has " << Walker->ListOfBonds.size() << " bonds." << endl;
1308 for (BondList::const_iterator Runner = Walker->ListOfBonds.begin(); Runner != Walker->ListOfBonds.end(); (++Runner)) {
1309 if ((*Runner) != NULL) { // don't look at bond equal NULL
1310 Binder = (*Runner);
1311 OtherAtom = (*Runner)->GetOtherAtom(Walker);
1312 Log() << Verbose(2) << "Current OtherAtom is: " << OtherAtom->Name << " for bond " << *(*Runner) << "." << endl;
1313 if (BFS.ColorList[OtherAtom->nr] == white) {
1314 BreadthFirstSearchAdd_UnvisitedNode(Mol, BFS, Walker, OtherAtom, Binder, Bond, AddedAtomList, AddedBondList, IsAngstroem);
1315 } else {
1316 BreadthFirstSearchAdd_VisitedNode(Mol, BFS, Walker, OtherAtom, Binder, Bond, AddedAtomList, AddedBondList, IsAngstroem);
1317 }
1318 }
1319 }
1320 BFS.ColorList[Walker->nr] = black;
1321 Log() << Verbose(1) << "Coloring Walker " << Walker->Name << " black." << endl;
1322 }
1323 BreadthFirstSearchAdd_Free(BFS);
1324}
1325;
1326
1327/** Adds a bond as a copy to a given one
1328 * \param *left leftatom of new bond
1329 * \param *right rightatom of new bond
1330 * \param *CopyBond rest of fields in bond are copied from this
1331 * \return pointer to new bond
1332 */
1333bond * molecule::CopyBond(atom *left, atom *right, bond *CopyBond)
1334{
1335 bond *Binder = AddBond(left, right, CopyBond->BondDegree);
1336 Binder->Cyclic = CopyBond->Cyclic;
1337 Binder->Type = CopyBond->Type;
1338 return Binder;
1339}
1340;
1341
1342void BuildInducedSubgraph_Init(atom **&ParentList, int AtomCount)
1343{
1344 // reset parent list
1345 ParentList = Calloc<atom*> (AtomCount, "molecule::BuildInducedSubgraph_Init: **ParentList");
1346 Log() << Verbose(3) << "Resetting ParentList." << endl;
1347}
1348;
1349
1350void BuildInducedSubgraph_FillParentList(const molecule *mol, const molecule *Father, atom **&ParentList)
1351{
1352 // fill parent list with sons
1353 Log() << Verbose(3) << "Filling Parent List." << endl;
1354 for (molecule::const_iterator iter = mol->begin(); iter != mol->end(); ++iter) {
1355 ParentList[(*iter)->father->nr] = (*iter);
1356 // Outputting List for debugging
1357 Log() << Verbose(4) << "Son[" << (*iter)->father->nr << "] of " << (*iter)->father << " is " << ParentList[(*iter)->father->nr] << "." << endl;
1358 }
1359
1360}
1361;
1362
1363void BuildInducedSubgraph_Finalize(atom **&ParentList)
1364{
1365 Free(&ParentList);
1366}
1367;
1368
1369bool BuildInducedSubgraph_CreateBondsFromParent(molecule *mol, const molecule *Father, atom **&ParentList)
1370{
1371 bool status = true;
1372 atom *OtherAtom = NULL;
1373 // check each entry of parent list and if ok (one-to-and-onto matching) create bonds
1374 Log() << Verbose(3) << "Creating bonds." << endl;
1375 for (molecule::const_iterator iter = Father->begin(); iter != Father->end(); ++iter) {
1376 if (ParentList[(*iter)->nr] != NULL) {
1377 if (ParentList[(*iter)->nr]->father != (*iter)) {
1378 status = false;
1379 } else {
1380 for (BondList::const_iterator Runner = (*iter)->ListOfBonds.begin(); Runner != (*iter)->ListOfBonds.end(); (++Runner)) {
1381 OtherAtom = (*Runner)->GetOtherAtom((*iter));
1382 if (ParentList[OtherAtom->nr] != NULL) { // if otheratom is also a father of an atom on this molecule, create the bond
1383 Log() << Verbose(4) << "Endpoints of Bond " << (*Runner) << " are both present: " << ParentList[(*iter)->nr]->Name << " and " << ParentList[OtherAtom->nr]->Name << "." << endl;
1384 mol->AddBond(ParentList[(*iter)->nr], ParentList[OtherAtom->nr], (*Runner)->BondDegree);
1385 }
1386 }
1387 }
1388 }
1389 }
1390 return status;
1391}
1392;
1393
1394/** Adds bond structure to this molecule from \a Father molecule.
1395 * This basically causes this molecule to become an induced subgraph of the \a Father, i.e. for every bond in Father
1396 * with end points present in this molecule, bond is created in this molecule.
1397 * Special care was taken to ensure that this is of complexity O(N), where N is the \a Father's molecule::AtomCount.
1398 * \param *out output stream for debugging
1399 * \param *Father father molecule
1400 * \return true - is induced subgraph, false - there are atoms with fathers not in \a Father
1401 * \todo not checked, not fully working probably
1402 */
1403bool molecule::BuildInducedSubgraph(const molecule *Father)
1404{
1405 bool status = true;
1406 atom **ParentList = NULL;
1407
1408 Log() << Verbose(2) << "Begin of BuildInducedSubgraph." << endl;
1409 BuildInducedSubgraph_Init(ParentList, Father->AtomCount);
1410 BuildInducedSubgraph_FillParentList(this, Father, ParentList);
1411 status = BuildInducedSubgraph_CreateBondsFromParent(this, Father, ParentList);
1412 BuildInducedSubgraph_Finalize(ParentList);
1413 Log() << Verbose(2) << "End of BuildInducedSubgraph." << endl;
1414 return status;
1415}
1416;
1417
1418/** For a given keyset \a *Fragment, checks whether it is connected in the current molecule.
1419 * \param *out output stream for debugging
1420 * \param *Fragment Keyset of fragment's vertices
1421 * \return true - connected, false - disconnected
1422 * \note this is O(n^2) for it's just a bug checker not meant for permanent use!
1423 */
1424bool molecule::CheckForConnectedSubgraph(KeySet *Fragment)
1425{
1426 atom *Walker = NULL, *Walker2 = NULL;
1427 bool BondStatus = false;
1428 int size;
1429
1430 Log() << Verbose(1) << "Begin of CheckForConnectedSubgraph" << endl;
1431 Log() << Verbose(2) << "Disconnected atom: ";
1432
1433 // count number of atoms in graph
1434 size = 0;
1435 for (KeySet::iterator runner = Fragment->begin(); runner != Fragment->end(); runner++)
1436 size++;
1437 if (size > 1)
1438 for (KeySet::iterator runner = Fragment->begin(); runner != Fragment->end(); runner++) {
1439 Walker = FindAtom(*runner);
1440 BondStatus = false;
1441 for (KeySet::iterator runners = Fragment->begin(); runners != Fragment->end(); runners++) {
1442 Walker2 = FindAtom(*runners);
1443 for (BondList::const_iterator Runner = Walker->ListOfBonds.begin(); Runner != Walker->ListOfBonds.end(); (++Runner)) {
1444 if ((*Runner)->GetOtherAtom(Walker) == Walker2) {
1445 BondStatus = true;
1446 break;
1447 }
1448 if (BondStatus)
1449 break;
1450 }
1451 }
1452 if (!BondStatus) {
1453 Log() << Verbose(0) << (*Walker) << endl;
1454 return false;
1455 }
1456 }
1457 else {
1458 Log() << Verbose(0) << "none." << endl;
1459 return true;
1460 }
1461 Log() << Verbose(0) << "none." << endl;
1462
1463 Log() << Verbose(1) << "End of CheckForConnectedSubgraph" << endl;
1464
1465 return true;
1466}
Note: See TracBrowser for help on using the repository browser.