source: src/molecule_dynamics.cpp@ 746c57

Action_Thermostats Add_AtomRandomPerturbation Add_FitFragmentPartialChargesAction Add_RotateAroundBondAction Add_SelectAtomByNameAction Added_ParseSaveFragmentResults AddingActions_SaveParseParticleParameters Adding_Graph_to_ChangeBondActions Adding_MD_integration_tests Adding_ParticleName_to_Atom Adding_StructOpt_integration_tests AtomFragments Automaking_mpqc_open AutomationFragmentation_failures Candidate_v1.5.4 Candidate_v1.6.0 Candidate_v1.6.1 ChangeBugEmailaddress ChangingTestPorts ChemicalSpaceEvaluator CombiningParticlePotentialParsing Combining_Subpackages Debian_Package_split Debian_package_split_molecuildergui_only Disabling_MemDebug Docu_Python_wait EmpiricalPotential_contain_HomologyGraph EmpiricalPotential_contain_HomologyGraph_documentation Enable_parallel_make_install Enhance_userguide Enhanced_StructuralOptimization Enhanced_StructuralOptimization_continued Example_ManyWaysToTranslateAtom Exclude_Hydrogens_annealWithBondGraph FitPartialCharges_GlobalError Fix_BoundInBox_CenterInBox_MoleculeActions Fix_ChargeSampling_PBC Fix_ChronosMutex Fix_FitPartialCharges Fix_FitPotential_needs_atomicnumbers Fix_ForceAnnealing Fix_IndependentFragmentGrids Fix_ParseParticles Fix_ParseParticles_split_forward_backward_Actions Fix_PopActions Fix_QtFragmentList_sorted_selection Fix_Restrictedkeyset_FragmentMolecule Fix_StatusMsg Fix_StepWorldTime_single_argument Fix_Verbose_Codepatterns Fix_fitting_potentials Fixes ForceAnnealing_goodresults ForceAnnealing_oldresults ForceAnnealing_tocheck ForceAnnealing_with_BondGraph ForceAnnealing_with_BondGraph_continued ForceAnnealing_with_BondGraph_continued_betteresults ForceAnnealing_with_BondGraph_contraction-expansion FragmentAction_writes_AtomFragments FragmentMolecule_checks_bonddegrees GeometryObjects Gui_Fixes Gui_displays_atomic_force_velocity ImplicitCharges IndependentFragmentGrids IndependentFragmentGrids_IndividualZeroInstances IndependentFragmentGrids_IntegrationTest IndependentFragmentGrids_Sole_NN_Calculation JobMarket_RobustOnKillsSegFaults JobMarket_StableWorkerPool JobMarket_unresolvable_hostname_fix MoreRobust_FragmentAutomation ODR_violation_mpqc_open PartialCharges_OrthogonalSummation PdbParser_setsAtomName PythonUI_with_named_parameters QtGui_reactivate_TimeChanged_changes Recreated_GuiChecks Rewrite_FitPartialCharges RotateToPrincipalAxisSystem_UndoRedo SaturateAtoms_findBestMatching SaturateAtoms_singleDegree StoppableMakroAction Subpackage_CodePatterns Subpackage_JobMarket Subpackage_LinearAlgebra Subpackage_levmar Subpackage_mpqc_open Subpackage_vmg Switchable_LogView ThirdParty_MPQC_rebuilt_buildsystem TrajectoryDependenant_MaxOrder TremoloParser_IncreasedPrecision TremoloParser_MultipleTimesteps TremoloParser_setsAtomName Ubuntu_1604_changes stable
Last change on this file since 746c57 was c7a473, checked in by Frederik Heber <heber@…>, 15 years ago

Added cased '-P' (force integration) to testsuite.

  • this is currently not working at all with los of memory corruption, hence testsuite checks for this failure only.
  • Property mode set to 100644
File size: 34.7 KB
Line 
1/*
2 * molecule_dynamics.cpp
3 *
4 * Created on: Oct 5, 2009
5 * Author: heber
6 */
7
8#include "World.hpp"
9#include "atom.hpp"
10#include "config.hpp"
11#include "element.hpp"
12#include "info.hpp"
13#include "log.hpp"
14#include "memoryallocator.hpp"
15#include "molecule.hpp"
16#include "parser.hpp"
17#include "Plane.hpp"
18
19/************************************* Functions for class molecule *********************************/
20
21/** Penalizes long trajectories.
22 * \param *Walker atom to check against others
23 * \param *mol molecule with other atoms
24 * \param &Params constraint potential parameters
25 * \return penalty times each distance
26 */
27double SumDistanceOfTrajectories(atom *Walker, molecule *mol, struct EvaluatePotential &Params)
28{
29 gsl_matrix *A = gsl_matrix_alloc(NDIM,NDIM);
30 gsl_vector *x = gsl_vector_alloc(NDIM);
31 atom * Runner = mol->start;
32 atom *Sprinter = NULL;
33 Vector trajectory1, trajectory2, normal, TestVector;
34 double Norm1, Norm2, tmp, result = 0.;
35
36 while (Runner->next != mol->end) {
37 Runner = Runner->next;
38 if (Runner == Walker) // hence, we only go up to the Walker, not beyond (similar to i=0; i<j; i++)
39 break;
40 // determine normalized trajectories direction vector (n1, n2)
41 Sprinter = Params.PermutationMap[Walker->nr]; // find first target point
42 trajectory1 = Sprinter->Trajectory.R.at(Params.endstep) - Walker->Trajectory.R.at(Params.startstep);
43 trajectory1.Normalize();
44 Norm1 = trajectory1.Norm();
45 Sprinter = Params.PermutationMap[Runner->nr]; // find second target point
46 trajectory2 = Sprinter->Trajectory.R.at(Params.endstep) - Runner->Trajectory.R.at(Params.startstep);
47 trajectory2.Normalize();
48 Norm2 = trajectory1.Norm();
49 // check whether either is zero()
50 if ((Norm1 < MYEPSILON) && (Norm2 < MYEPSILON)) {
51 tmp = Walker->Trajectory.R.at(Params.startstep).distance(Runner->Trajectory.R.at(Params.startstep));
52 } else if (Norm1 < MYEPSILON) {
53 Sprinter = Params.PermutationMap[Walker->nr]; // find first target point
54 trajectory1 = Sprinter->Trajectory.R.at(Params.endstep) - Runner->Trajectory.R.at(Params.startstep);
55 trajectory2 *= trajectory1.ScalarProduct(trajectory2); // trajectory2 is scaled to unity, hence we don't need to divide by anything
56 trajectory1 -= trajectory2; // project the part in norm direction away
57 tmp = trajectory1.Norm(); // remaining norm is distance
58 } else if (Norm2 < MYEPSILON) {
59 Sprinter = Params.PermutationMap[Runner->nr]; // find second target point
60 trajectory2 = Sprinter->Trajectory.R.at(Params.endstep) - Walker->Trajectory.R.at(Params.startstep); // copy second offset
61 trajectory1 *= trajectory2.ScalarProduct(trajectory1); // trajectory1 is scaled to unity, hence we don't need to divide by anything
62 trajectory2 -= trajectory1; // project the part in norm direction away
63 tmp = trajectory2.Norm(); // remaining norm is distance
64 } else if ((fabs(trajectory1.ScalarProduct(trajectory2)/Norm1/Norm2) - 1.) < MYEPSILON) { // check whether they're linear dependent
65 // Log() << Verbose(3) << "Both trajectories of " << *Walker << " and " << *Runner << " are linear dependent: ";
66 // Log() << Verbose(0) << trajectory1;
67 // Log() << Verbose(0) << " and ";
68 // Log() << Verbose(0) << trajectory2;
69 tmp = Walker->Trajectory.R.at(Params.startstep).distance(Runner->Trajectory.R.at(Params.startstep));
70 // Log() << Verbose(0) << " with distance " << tmp << "." << endl;
71 } else { // determine distance by finding minimum distance
72 // Log() << Verbose(3) << "Both trajectories of " << *Walker << " and " << *Runner << " are linear independent ";
73 // Log() << Verbose(0) << endl;
74 // Log() << Verbose(0) << "First Trajectory: ";
75 // Log() << Verbose(0) << trajectory1 << endl;
76 // Log() << Verbose(0) << "Second Trajectory: ";
77 // Log() << Verbose(0) << trajectory2 << endl;
78 // determine normal vector for both
79 normal = Plane(trajectory1, trajectory2,0).getNormal();
80 // print all vectors for debugging
81 // Log() << Verbose(0) << "Normal vector in between: ";
82 // Log() << Verbose(0) << normal << endl;
83 // setup matrix
84 for (int i=NDIM;i--;) {
85 gsl_matrix_set(A, 0, i, trajectory1[i]);
86 gsl_matrix_set(A, 1, i, trajectory2[i]);
87 gsl_matrix_set(A, 2, i, normal[i]);
88 gsl_vector_set(x,i, (Walker->Trajectory.R.at(Params.startstep)[i] - Runner->Trajectory.R.at(Params.startstep)[i]));
89 }
90 // solve the linear system by Householder transformations
91 gsl_linalg_HH_svx(A, x);
92 // distance from last component
93 tmp = gsl_vector_get(x,2);
94 // Log() << Verbose(0) << " with distance " << tmp << "." << endl;
95 // test whether we really have the intersection (by checking on c_1 and c_2)
96 trajectory1.Scale(gsl_vector_get(x,0));
97 trajectory2.Scale(gsl_vector_get(x,1));
98 normal.Scale(gsl_vector_get(x,2));
99 TestVector = Runner->Trajectory.R.at(Params.startstep) + trajectory2 + normal
100 - (Walker->Trajectory.R.at(Params.startstep) + trajectory1);
101 if (TestVector.Norm() < MYEPSILON) {
102 // Log() << Verbose(2) << "Test: ok.\tDistance of " << tmp << " is correct." << endl;
103 } else {
104 // Log() << Verbose(2) << "Test: failed.\tIntersection is off by ";
105 // Log() << Verbose(0) << TestVector;
106 // Log() << Verbose(0) << "." << endl;
107 }
108 }
109 // add up
110 tmp *= Params.IsAngstroem ? 1. : 1./AtomicLengthToAngstroem;
111 if (fabs(tmp) > MYEPSILON) {
112 result += Params.PenaltyConstants[1] * 1./tmp;
113 //Log() << Verbose(4) << "Adding " << 1./tmp*constants[1] << "." << endl;
114 }
115 }
116 return result;
117};
118
119/** Penalizes atoms heading to same target.
120 * \param *Walker atom to check against others
121 * \param *mol molecule with other atoms
122 * \param &Params constrained potential parameters
123 * \return \a penalty times the number of equal targets
124 */
125double PenalizeEqualTargets(atom *Walker, molecule *mol, struct EvaluatePotential &Params)
126{
127 double result = 0.;
128 atom * Runner = mol->start;
129 while (Runner->next != mol->end) {
130 Runner = Runner->next;
131 if ((Params.PermutationMap[Walker->nr] == Params.PermutationMap[Runner->nr]) && (Walker->nr < Runner->nr)) {
132 // atom *Sprinter = PermutationMap[Walker->nr];
133 // Log() << Verbose(0) << *Walker << " and " << *Runner << " are heading to the same target at ";
134 // Log() << Verbose(0) << Sprinter->Trajectory.R.at(endstep);
135 // Log() << Verbose(0) << ", penalting." << endl;
136 result += Params.PenaltyConstants[2];
137 //Log() << Verbose(4) << "Adding " << constants[2] << "." << endl;
138 }
139 }
140 return result;
141};
142
143/** Evaluates the potential energy used for constrained molecular dynamics.
144 * \f$V_i^{con} = c^{bond} \cdot | r_{P(i)} - R_i | + sum_{i \neq j} C^{min} \cdot \frac{1}{C_{ij}} + C^{inj} \Bigl (1 - \theta \bigl (\prod_{i \neq j} (P(i) - P(j)) \bigr ) \Bigr )\f$
145 * where the first term points to the target in minimum distance, the second is a penalty for trajectories lying too close to each other (\f$C_{ij}\f$ is minimum distance between
146 * trajectories i and j) and the third term is a penalty for two atoms trying to each the same target point.
147 * Note that for the second term we have to solve the following linear system:
148 * \f$-c_1 \cdot n_1 + c_2 \cdot n_2 + C \cdot n_3 = - p_2 + p_1\f$, where \f$c_1\f$, \f$c_2\f$ and \f$C\f$ are constants,
149 * offset vector \f$p_1\f$ in direction \f$n_1\f$, offset vector \f$p_2\f$ in direction \f$n_2\f$,
150 * \f$n_3\f$ is the normal vector to both directions. \f$C\f$ would be the minimum distance between the two lines.
151 * \sa molecule::MinimiseConstrainedPotential(), molecule::VerletForceIntegration()
152 * \param *out output stream for debugging
153 * \param &Params constrained potential parameters
154 * \return potential energy
155 * \note This routine is scaling quadratically which is not optimal.
156 * \todo There's a bit double counting going on for the first time, bu nothing to worry really about.
157 */
158double molecule::ConstrainedPotential(struct EvaluatePotential &Params)
159{
160 double tmp = 0.;
161 double result = 0.;
162 // go through every atom
163 atom *Runner = NULL;
164 atom *Walker = start;
165 while (Walker->next != end) {
166 Walker = Walker->next;
167 // first term: distance to target
168 Runner = Params.PermutationMap[Walker->nr]; // find target point
169 tmp = (Walker->Trajectory.R.at(Params.startstep).distance(Runner->Trajectory.R.at(Params.endstep)));
170 tmp *= Params.IsAngstroem ? 1. : 1./AtomicLengthToAngstroem;
171 result += Params.PenaltyConstants[0] * tmp;
172 //Log() << Verbose(4) << "Adding " << tmp*constants[0] << "." << endl;
173
174 // second term: sum of distances to other trajectories
175 result += SumDistanceOfTrajectories(Walker, this, Params);
176
177 // third term: penalty for equal targets
178 result += PenalizeEqualTargets(Walker, this, Params);
179 }
180
181 return result;
182};
183
184/** print the current permutation map.
185 * \param *out output stream for debugging
186 * \param &Params constrained potential parameters
187 * \param AtomCount number of atoms
188 */
189void PrintPermutationMap(int AtomCount, struct EvaluatePotential &Params)
190{
191 stringstream zeile1, zeile2;
192 int *DoubleList = Calloc<int>(AtomCount, "PrintPermutationMap: *DoubleList");
193 int doubles = 0;
194 zeile1 << "PermutationMap: ";
195 zeile2 << " ";
196 for (int i=0;i<AtomCount;i++) {
197 Params.DoubleList[Params.PermutationMap[i]->nr]++;
198 zeile1 << i << " ";
199 zeile2 << Params.PermutationMap[i]->nr << " ";
200 }
201 for (int i=0;i<AtomCount;i++)
202 if (Params.DoubleList[i] > 1)
203 doubles++;
204 if (doubles >0)
205 DoLog(2) && (Log() << Verbose(2) << "Found " << doubles << " Doubles." << endl);
206 Free(&DoubleList);
207// Log() << Verbose(2) << zeile1.str() << endl << zeile2.str() << endl;
208};
209
210/** \f$O(N^2)\f$ operation of calculation distance between each atom pair and putting into DistanceList.
211 * \param *mol molecule to scan distances in
212 * \param &Params constrained potential parameters
213 */
214void FillDistanceList(molecule *mol, struct EvaluatePotential &Params)
215{
216 for (int i=mol->AtomCount; i--;) {
217 Params.DistanceList[i] = new DistanceMap; // is the distance sorted target list per atom
218 Params.DistanceList[i]->clear();
219 }
220
221 atom *Runner = NULL;
222 atom *Walker = mol->start;
223 while (Walker->next != mol->end) {
224 Walker = Walker->next;
225 Runner = mol->start;
226 while(Runner->next != mol->end) {
227 Runner = Runner->next;
228 Params.DistanceList[Walker->nr]->insert( DistancePair(Walker->Trajectory.R.at(Params.startstep).distance(Runner->Trajectory.R.at(Params.endstep)), Runner) );
229 }
230 }
231};
232
233/** initialize lists.
234 * \param *out output stream for debugging
235 * \param *mol molecule to scan distances in
236 * \param &Params constrained potential parameters
237 */
238void CreateInitialLists(molecule *mol, struct EvaluatePotential &Params)
239{
240 atom *Walker = mol->start;
241 while (Walker->next != mol->end) {
242 Walker = Walker->next;
243 Params.StepList[Walker->nr] = Params.DistanceList[Walker->nr]->begin(); // stores the step to the next iterator that could be a possible next target
244 Params.PermutationMap[Walker->nr] = Params.DistanceList[Walker->nr]->begin()->second; // always pick target with the smallest distance
245 Params.DoubleList[Params.DistanceList[Walker->nr]->begin()->second->nr]++; // increase this target's source count (>1? not injective)
246 Params.DistanceIterators[Walker->nr] = Params.DistanceList[Walker->nr]->begin(); // and remember which one we picked
247 DoLog(2) && (Log() << Verbose(2) << *Walker << " starts with distance " << Params.DistanceList[Walker->nr]->begin()->first << "." << endl);
248 }
249};
250
251/** Try the next nearest neighbour in order to make the permutation map injective.
252 * \param *out output stream for debugging
253 * \param *mol molecule
254 * \param *Walker atom to change its target
255 * \param &OldPotential old value of constraint potential to see if we do better with new target
256 * \param &Params constrained potential parameters
257 */
258double TryNextNearestNeighbourForInjectivePermutation(molecule *mol, atom *Walker, double &OldPotential, struct EvaluatePotential &Params)
259{
260 double Potential = 0;
261 DistanceMap::iterator NewBase = Params.DistanceIterators[Walker->nr]; // store old base
262 do {
263 NewBase++; // take next further distance in distance to targets list that's a target of no one
264 } while ((Params.DoubleList[NewBase->second->nr] != 0) && (NewBase != Params.DistanceList[Walker->nr]->end()));
265 if (NewBase != Params.DistanceList[Walker->nr]->end()) {
266 Params.PermutationMap[Walker->nr] = NewBase->second;
267 Potential = fabs(mol->ConstrainedPotential(Params));
268 if (Potential > OldPotential) { // undo
269 Params.PermutationMap[Walker->nr] = Params.DistanceIterators[Walker->nr]->second;
270 } else { // do
271 Params.DoubleList[Params.DistanceIterators[Walker->nr]->second->nr]--; // decrease the old entry in the doubles list
272 Params.DoubleList[NewBase->second->nr]++; // increase the old entry in the doubles list
273 Params.DistanceIterators[Walker->nr] = NewBase;
274 OldPotential = Potential;
275 DoLog(3) && (Log() << Verbose(3) << "Found a new permutation, new potential is " << OldPotential << "." << endl);
276 }
277 }
278 return Potential;
279};
280
281/** Permutes \a **&PermutationMap until the penalty is below constants[2].
282 * \param *out output stream for debugging
283 * \param *mol molecule to scan distances in
284 * \param &Params constrained potential parameters
285 */
286void MakeInjectivePermutation(molecule *mol, struct EvaluatePotential &Params)
287{
288 atom *Walker = mol->start;
289 DistanceMap::iterator NewBase;
290 double Potential = fabs(mol->ConstrainedPotential(Params));
291
292 while ((Potential) > Params.PenaltyConstants[2]) {
293 PrintPermutationMap(mol->AtomCount, Params);
294 Walker = Walker->next;
295 if (Walker == mol->end) // round-robin at the end
296 Walker = mol->start->next;
297 if (Params.DoubleList[Params.DistanceIterators[Walker->nr]->second->nr] <= 1) // no need to make those injective that aren't
298 continue;
299 // now, try finding a new one
300 Potential = TryNextNearestNeighbourForInjectivePermutation(mol, Walker, Potential, Params);
301 }
302 for (int i=mol->AtomCount; i--;) // now each single entry in the DoubleList should be <=1
303 if (Params.DoubleList[i] > 1) {
304 DoeLog(0) && (eLog()<< Verbose(0) << "Failed to create an injective PermutationMap!" << endl);
305 performCriticalExit();
306 }
307 DoLog(1) && (Log() << Verbose(1) << "done." << endl);
308};
309
310/** Minimises the extra potential for constrained molecular dynamics and gives forces and the constrained potential energy.
311 * We do the following:
312 * -# Generate a distance list from all source to all target points
313 * -# Sort this per source point
314 * -# Take for each source point the target point with minimum distance, use this as initial permutation
315 * -# check whether molecule::ConstrainedPotential() is greater than injective penalty
316 * -# If so, we go through each source point, stepping down in the sorted target point distance list and re-checking potential.
317 * -# Next, we only apply transformations that keep the injectivity of the permutations list.
318 * -# Hence, for one source point we step down the ladder and seek the corresponding owner of this new target
319 * point and try to change it for one with lesser distance, or for the next one with greater distance, but only
320 * if this decreases the conditional potential.
321 * -# finished.
322 * -# Then, we calculate the forces by taking the spatial derivative, where we scale the potential to such a degree,
323 * that the total force is always pointing in direction of the constraint force (ensuring that we move in the
324 * right direction).
325 * -# Finally, we calculate the potential energy and return.
326 * \param *out output stream for debugging
327 * \param **PermutationMap on return: mapping between the atom label of the initial and the final configuration
328 * \param startstep current MD step giving initial position between which and \a endstep we perform the constrained MD (as further steps are always concatenated)
329 * \param endstep step giving final position in constrained MD
330 * \param IsAngstroem whether coordinates are in angstroem (true) or bohrradius (false)
331 * \sa molecule::VerletForceIntegration()
332 * \return potential energy (and allocated **PermutationMap (array of molecule::AtomCount ^2)
333 * \todo The constrained potential's constants are set to fixed values right now, but they should scale based on checks of the system in order
334 * to ensure they're properties (e.g. constants[2] always greater than the energy of the system).
335 * \bug this all is not O(N log N) but O(N^2)
336 */
337double molecule::MinimiseConstrainedPotential(atom **&PermutationMap, int startstep, int endstep, bool IsAngstroem)
338{
339 double Potential, OldPotential, OlderPotential;
340 struct EvaluatePotential Params;
341 Params.PermutationMap = Calloc<atom*>(AtomCount, "molecule::MinimiseConstrainedPotential: Params.**PermutationMap");
342 Params.DistanceList = Malloc<DistanceMap*>(AtomCount, "molecule::MinimiseConstrainedPotential: Params.**DistanceList");
343 Params.DistanceIterators = Malloc<DistanceMap::iterator>(AtomCount, "molecule::MinimiseConstrainedPotential: Params.*DistanceIterators");
344 Params.DoubleList = Calloc<int>(AtomCount, "molecule::MinimiseConstrainedPotential: Params.*DoubleList");
345 Params.StepList = Malloc<DistanceMap::iterator>(AtomCount, "molecule::MinimiseConstrainedPotential: Params.*StepList");
346 int round;
347 atom *Walker = NULL, *Runner = NULL, *Sprinter = NULL;
348 DistanceMap::iterator Rider, Strider;
349
350 /// Minimise the potential
351 // set Lagrange multiplier constants
352 Params.PenaltyConstants[0] = 10.;
353 Params.PenaltyConstants[1] = 1.;
354 Params.PenaltyConstants[2] = 1e+7; // just a huge penalty
355 // generate the distance list
356 DoLog(1) && (Log() << Verbose(1) << "Allocating, initializting and filling the distance list ... " << endl);
357 FillDistanceList(this, Params);
358
359 // create the initial PermutationMap (source -> target)
360 CreateInitialLists(this, Params);
361
362 // make the PermutationMap injective by checking whether we have a non-zero constants[2] term in it
363 DoLog(1) && (Log() << Verbose(1) << "Making the PermutationMap injective ... " << endl);
364 MakeInjectivePermutation(this, Params);
365 Free(&Params.DoubleList);
366
367 // argument minimise the constrained potential in this injective PermutationMap
368 DoLog(1) && (Log() << Verbose(1) << "Argument minimising the PermutationMap." << endl);
369 OldPotential = 1e+10;
370 round = 0;
371 do {
372 DoLog(2) && (Log() << Verbose(2) << "Starting round " << ++round << ", at current potential " << OldPotential << " ... " << endl);
373 OlderPotential = OldPotential;
374 do {
375 Walker = start;
376 while (Walker->next != end) { // pick one
377 Walker = Walker->next;
378 PrintPermutationMap(AtomCount, Params);
379 Sprinter = Params.DistanceIterators[Walker->nr]->second; // store initial partner
380 Strider = Params.DistanceIterators[Walker->nr]; //remember old iterator
381 Params.DistanceIterators[Walker->nr] = Params.StepList[Walker->nr];
382 if (Params.DistanceIterators[Walker->nr] == Params.DistanceList[Walker->nr]->end()) {// stop, before we run through the list and still on
383 Params.DistanceIterators[Walker->nr] == Params.DistanceList[Walker->nr]->begin();
384 break;
385 }
386 //Log() << Verbose(2) << "Current Walker: " << *Walker << " with old/next candidate " << *Sprinter << "/" << *DistanceIterators[Walker->nr]->second << "." << endl;
387 // find source of the new target
388 Runner = start->next;
389 while(Runner != end) { // find the source whose toes we might be stepping on (Walker's new target should be in use by another already)
390 if (Params.PermutationMap[Runner->nr] == Params.DistanceIterators[Walker->nr]->second) {
391 //Log() << Verbose(2) << "Found the corresponding owner " << *Runner << " to " << *PermutationMap[Runner->nr] << "." << endl;
392 break;
393 }
394 Runner = Runner->next;
395 }
396 if (Runner != end) { // we found the other source
397 // then look in its distance list for Sprinter
398 Rider = Params.DistanceList[Runner->nr]->begin();
399 for (; Rider != Params.DistanceList[Runner->nr]->end(); Rider++)
400 if (Rider->second == Sprinter)
401 break;
402 if (Rider != Params.DistanceList[Runner->nr]->end()) { // if we have found one
403 //Log() << Verbose(2) << "Current Other: " << *Runner << " with old/next candidate " << *PermutationMap[Runner->nr] << "/" << *Rider->second << "." << endl;
404 // exchange both
405 Params.PermutationMap[Walker->nr] = Params.DistanceIterators[Walker->nr]->second; // put next farther distance into PermutationMap
406 Params.PermutationMap[Runner->nr] = Sprinter; // and hand the old target to its respective owner
407 PrintPermutationMap(AtomCount, Params);
408 // calculate the new potential
409 //Log() << Verbose(2) << "Checking new potential ..." << endl;
410 Potential = ConstrainedPotential(Params);
411 if (Potential > OldPotential) { // we made everything worse! Undo ...
412 //Log() << Verbose(3) << "Nay, made the potential worse: " << Potential << " vs. " << OldPotential << "!" << endl;
413 //Log() << Verbose(3) << "Setting " << *Runner << "'s source to " << *Params.DistanceIterators[Runner->nr]->second << "." << endl;
414 // Undo for Runner (note, we haven't moved the iteration yet, we may use this)
415 Params.PermutationMap[Runner->nr] = Params.DistanceIterators[Runner->nr]->second;
416 // Undo for Walker
417 Params.DistanceIterators[Walker->nr] = Strider; // take next farther distance target
418 //Log() << Verbose(3) << "Setting " << *Walker << "'s source to " << *Params.DistanceIterators[Walker->nr]->second << "." << endl;
419 Params.PermutationMap[Walker->nr] = Params.DistanceIterators[Walker->nr]->second;
420 } else {
421 Params.DistanceIterators[Runner->nr] = Rider; // if successful also move the pointer in the iterator list
422 DoLog(3) && (Log() << Verbose(3) << "Found a better permutation, new potential is " << Potential << " vs." << OldPotential << "." << endl);
423 OldPotential = Potential;
424 }
425 if (Potential > Params.PenaltyConstants[2]) {
426 DoeLog(1) && (eLog()<< Verbose(1) << "The two-step permutation procedure did not maintain injectivity!" << endl);
427 exit(255);
428 }
429 //Log() << Verbose(0) << endl;
430 } else {
431 DoeLog(1) && (eLog()<< Verbose(1) << *Runner << " was not the owner of " << *Sprinter << "!" << endl);
432 exit(255);
433 }
434 } else {
435 Params.PermutationMap[Walker->nr] = Params.DistanceIterators[Walker->nr]->second; // new target has no source!
436 }
437 Params.StepList[Walker->nr]++; // take next farther distance target
438 }
439 } while (Walker->next != end);
440 } while ((OlderPotential - OldPotential) > 1e-3);
441 DoLog(1) && (Log() << Verbose(1) << "done." << endl);
442
443
444 /// free memory and return with evaluated potential
445 for (int i=AtomCount; i--;)
446 Params.DistanceList[i]->clear();
447 Free(&Params.DistanceList);
448 Free(&Params.DistanceIterators);
449 return ConstrainedPotential(Params);
450};
451
452
453/** Evaluates the (distance-related part) of the constrained potential for the constrained forces.
454 * \param *out output stream for debugging
455 * \param startstep current MD step giving initial position between which and \a endstep we perform the constrained MD (as further steps are always concatenated)
456 * \param endstep step giving final position in constrained MD
457 * \param **PermutationMap mapping between the atom label of the initial and the final configuration
458 * \param *Force ForceMatrix containing force vectors from the external energy functional minimisation.
459 * \todo the constant for the constrained potential distance part is hard-coded independently of the hard-coded value in MinimiseConstrainedPotential()
460 */
461void molecule::EvaluateConstrainedForces(int startstep, int endstep, atom **PermutationMap, ForceMatrix *Force)
462{
463 /// evaluate forces (only the distance to target dependent part) with the final PermutationMap
464 DoLog(1) && (Log() << Verbose(1) << "Calculating forces and adding onto ForceMatrix ... " << endl);
465 ActOnAllAtoms( &atom::EvaluateConstrainedForce, startstep, endstep, PermutationMap, Force );
466 DoLog(1) && (Log() << Verbose(1) << "done." << endl);
467};
468
469/** Performs a linear interpolation between two desired atomic configurations with a given number of steps.
470 * Note, step number is config::MaxOuterStep
471 * \param *out output stream for debugging
472 * \param startstep stating initial configuration in molecule::Trajectories
473 * \param endstep stating final configuration in molecule::Trajectories
474 * \param &config configuration structure
475 * \param MapByIdentity if true we just use the identity to map atoms in start config to end config, if not we find mapping by \sa MinimiseConstrainedPotential()
476 * \return true - success in writing step files, false - error writing files or only one step in molecule::Trajectories
477 */
478bool molecule::LinearInterpolationBetweenConfiguration(int startstep, int endstep, const char *prefix, config &configuration, bool MapByIdentity)
479{
480 molecule *mol = NULL;
481 bool status = true;
482 int MaxSteps = configuration.MaxOuterStep;
483 MoleculeListClass *MoleculePerStep = new MoleculeListClass(World::getPointer());
484 // Get the Permutation Map by MinimiseConstrainedPotential
485 atom **PermutationMap = NULL;
486 atom *Walker = NULL, *Sprinter = NULL;
487 if (!MapByIdentity)
488 MinimiseConstrainedPotential(PermutationMap, startstep, endstep, configuration.GetIsAngstroem());
489 else {
490 PermutationMap = Malloc<atom *>(AtomCount, "molecule::LinearInterpolationBetweenConfiguration: **PermutationMap");
491 SetIndexedArrayForEachAtomTo( PermutationMap, &atom::nr );
492 }
493
494 // check whether we have sufficient space in Trajectories for each atom
495 ActOnAllAtoms( &atom::ResizeTrajectory, MaxSteps );
496 // push endstep to last one
497 ActOnAllAtoms( &atom::CopyStepOnStep, MaxSteps, endstep );
498 endstep = MaxSteps;
499
500 // go through all steps and add the molecular configuration to the list and to the Trajectories of \a this molecule
501 DoLog(1) && (Log() << Verbose(1) << "Filling intermediate " << MaxSteps << " steps with MDSteps of " << MDSteps << "." << endl);
502 for (int step = 0; step <= MaxSteps; step++) {
503 mol = World::getInstance().createMolecule();
504 MoleculePerStep->insert(mol);
505 Walker = start;
506 while (Walker->next != end) {
507 Walker = Walker->next;
508 // add to molecule list
509 Sprinter = mol->AddCopyAtom(Walker);
510 for (int n=NDIM;n--;) {
511 Sprinter->x[n] = Walker->Trajectory.R.at(startstep)[n] + (PermutationMap[Walker->nr]->Trajectory.R.at(endstep)[n] - Walker->Trajectory.R.at(startstep)[n])*((double)step/(double)MaxSteps);
512 // add to Trajectories
513 //Log() << Verbose(3) << step << ">=" << MDSteps-1 << endl;
514 if (step < MaxSteps) {
515 Walker->Trajectory.R.at(step)[n] = Walker->Trajectory.R.at(startstep)[n] + (PermutationMap[Walker->nr]->Trajectory.R.at(endstep)[n] - Walker->Trajectory.R.at(startstep)[n])*((double)step/(double)MaxSteps);
516 Walker->Trajectory.U.at(step)[n] = 0.;
517 Walker->Trajectory.F.at(step)[n] = 0.;
518 }
519 }
520 }
521 }
522 MDSteps = MaxSteps+1; // otherwise new Trajectories' points aren't stored on save&exit
523
524 // store the list to single step files
525 int *SortIndex = Malloc<int>(AtomCount, "molecule::LinearInterpolationBetweenConfiguration: *SortIndex");
526 for (int i=AtomCount; i--; )
527 SortIndex[i] = i;
528 status = MoleculePerStep->OutputConfigForListOfFragments(&configuration, SortIndex);
529
530 // free and return
531 Free(&PermutationMap);
532 delete(MoleculePerStep);
533 return status;
534};
535
536/** Parses nuclear forces from file and performs Verlet integration.
537 * Note that we assume the parsed forces to be in atomic units (hence, if coordinates are in angstroem, we
538 * have to transform them).
539 * This adds a new MD step to the config file.
540 * \param *out output stream for debugging
541 * \param *file filename
542 * \param config structure with config::Deltat, config::IsAngstroem, config::DoConstrained
543 * \param delta_t time step width in atomic units
544 * \param IsAngstroem whether coordinates are in angstroem (true) or bohrradius (false)
545 * \param DoConstrained whether we perform a constrained (>0, target step in molecule::trajectories) or unconstrained (0) molecular dynamics, \sa molecule::MinimiseConstrainedPotential()
546 * \return true - file found and parsed, false - file not found or imparsable
547 * \todo This is not yet checked if it is correctly working with DoConstrained set to true.
548 */
549bool molecule::VerletForceIntegration(char *file, config &configuration)
550{
551 Info FunctionInfo(__func__);
552 ifstream input(file);
553 string token;
554 stringstream item;
555 double IonMass, ConstrainedPotentialEnergy, ActualTemp;
556 Vector Velocity;
557 ForceMatrix Force;
558
559 CountElements(); // make sure ElementsInMolecule is up to date
560
561 // check file
562 if (input == NULL) {
563 return false;
564 } else {
565 // parse file into ForceMatrix
566 if (!Force.ParseMatrix(file, 0,0,0)) {
567 DoeLog(0) && (eLog()<< Verbose(0) << "Could not parse Force Matrix file " << file << "." << endl);
568 performCriticalExit();
569 return false;
570 }
571 if (Force.RowCounter[0] != AtomCount) {
572 DoeLog(0) && (eLog()<< Verbose(0) << "Mismatch between number of atoms in file " << Force.RowCounter[0] << " and in molecule " << AtomCount << "." << endl);
573 performCriticalExit();
574 return false;
575 }
576 // correct Forces
577 Velocity.Zero();
578 for(int i=0;i<AtomCount;i++)
579 for(int d=0;d<NDIM;d++) {
580 Velocity[d] += Force.Matrix[0][i][d+5];
581 }
582 for(int i=0;i<AtomCount;i++)
583 for(int d=0;d<NDIM;d++) {
584 Force.Matrix[0][i][d+5] -= Velocity[d]/(double)AtomCount;
585 }
586 // solve a constrained potential if we are meant to
587 if (configuration.DoConstrainedMD) {
588 // calculate forces and potential
589 atom **PermutationMap = NULL;
590 ConstrainedPotentialEnergy = MinimiseConstrainedPotential(PermutationMap,configuration.DoConstrainedMD, 0, configuration.GetIsAngstroem());
591 EvaluateConstrainedForces(configuration.DoConstrainedMD, 0, PermutationMap, &Force);
592 Free(&PermutationMap);
593 }
594
595 // and perform Verlet integration for each atom with position, velocity and force vector
596 // check size of vectors
597 //ActOnAllAtoms( &atom::ResizeTrajectory, MDSteps+10 );
598
599 ActOnAllAtoms( &atom::VelocityVerletUpdate, MDSteps+1, &configuration, &Force);
600 }
601 // correct velocities (rather momenta) so that center of mass remains motionless
602 Velocity.Zero();
603 IonMass = 0.;
604 ActOnAllAtoms ( &atom::SumUpKineticEnergy, MDSteps+1, &IonMass, &Velocity );
605
606 // correct velocities (rather momenta) so that center of mass remains motionless
607 Velocity.Scale(1./IonMass);
608 ActualTemp = 0.;
609 ActOnAllAtoms ( &atom::CorrectVelocity, &ActualTemp, MDSteps+1, &Velocity );
610 Thermostats(configuration, ActualTemp, Berendsen);
611 MDSteps++;
612
613 // exit
614 return true;
615};
616
617/** Implementation of various thermostats.
618 * All these thermostats apply an additional force which has the following forms:
619 * -# Woodcock
620 * \f$p_i \rightarrow \sqrt{\frac{T_0}{T}} \cdot p_i\f$
621 * -# Gaussian
622 * \f$ \frac{ \sum_i \frac{p_i}{m_i} \frac{\partial V}{\partial q_i}} {\sum_i \frac{p^2_i}{m_i}} \cdot p_i\f$
623 * -# Langevin
624 * \f$p_{i,n} \rightarrow \sqrt{1-\alpha^2} p_{i,0} + \alpha p_r\f$
625 * -# Berendsen
626 * \f$p_i \rightarrow \left [ 1+ \frac{\delta t}{\tau_T} \left ( \frac{T_0}{T} \right ) \right ]^{\frac{1}{2}} \cdot p_i\f$
627 * -# Nose-Hoover
628 * \f$\zeta p_i \f$ with \f$\frac{\partial \zeta}{\partial t} = \frac{1}{M_s} \left ( \sum^N_{i=1} \frac{p_i^2}{m_i} - g k_B T \right )\f$
629 * These Thermostats either simply rescale the velocities, thus this function should be called after ion velocities have been updated, and/or
630 * have a constraint force acting additionally on the ions. In the latter case, the ion speeds have to be modified
631 * belatedly and the constraint force set.
632 * \param *P Problem at hand
633 * \param i which of the thermostats to take: 0 - none, 1 - Woodcock, 2 - Gaussian, 3 - Langevin, 4 - Berendsen, 5 - Nose-Hoover
634 * \sa InitThermostat()
635 */
636void molecule::Thermostats(config &configuration, double ActualTemp, int Thermostat)
637{
638 double ekin = 0.;
639 double E = 0., G = 0.;
640 double delta_alpha = 0.;
641 double ScaleTempFactor;
642 gsl_rng * r;
643 const gsl_rng_type * T;
644
645 // calculate scale configuration
646 ScaleTempFactor = configuration.TargetTemp/ActualTemp;
647
648 // differentating between the various thermostats
649 switch(Thermostat) {
650 case None:
651 DoLog(2) && (Log() << Verbose(2) << "Applying no thermostat..." << endl);
652 break;
653 case Woodcock:
654 if ((configuration.ScaleTempStep > 0) && ((MDSteps-1) % configuration.ScaleTempStep == 0)) {
655 DoLog(2) && (Log() << Verbose(2) << "Applying Woodcock thermostat..." << endl);
656 ActOnAllAtoms( &atom::Thermostat_Woodcock, sqrt(ScaleTempFactor), MDSteps, &ekin );
657 }
658 break;
659 case Gaussian:
660 DoLog(2) && (Log() << Verbose(2) << "Applying Gaussian thermostat..." << endl);
661 ActOnAllAtoms( &atom::Thermostat_Gaussian_init, MDSteps, &G, &E );
662
663 DoLog(1) && (Log() << Verbose(1) << "Gaussian Least Constraint constant is " << G/E << "." << endl);
664 ActOnAllAtoms( &atom::Thermostat_Gaussian_least_constraint, MDSteps, G/E, &ekin, &configuration);
665
666 break;
667 case Langevin:
668 DoLog(2) && (Log() << Verbose(2) << "Applying Langevin thermostat..." << endl);
669 // init random number generator
670 gsl_rng_env_setup();
671 T = gsl_rng_default;
672 r = gsl_rng_alloc (T);
673 // Go through each ion
674 ActOnAllAtoms( &atom::Thermostat_Langevin, MDSteps, r, &ekin, &configuration );
675 break;
676
677 case Berendsen:
678 DoLog(2) && (Log() << Verbose(2) << "Applying Berendsen-VanGunsteren thermostat..." << endl);
679 ActOnAllAtoms( &atom::Thermostat_Berendsen, MDSteps, ScaleTempFactor, &ekin, &configuration );
680 break;
681
682 case NoseHoover:
683 DoLog(2) && (Log() << Verbose(2) << "Applying Nose-Hoover thermostat..." << endl);
684 // dynamically evolve alpha (the additional degree of freedom)
685 delta_alpha = 0.;
686 ActOnAllAtoms( &atom::Thermostat_NoseHoover_init, MDSteps, &delta_alpha );
687 delta_alpha = (delta_alpha - (3.*AtomCount+1.) * configuration.TargetTemp)/(configuration.HooverMass*Units2Electronmass);
688 configuration.alpha += delta_alpha*configuration.Deltat;
689 DoLog(3) && (Log() << Verbose(3) << "alpha = " << delta_alpha << " * " << configuration.Deltat << " = " << configuration.alpha << "." << endl);
690 // apply updated alpha as additional force
691 ActOnAllAtoms( &atom::Thermostat_NoseHoover_scale, MDSteps, &ekin, &configuration );
692 break;
693 }
694 DoLog(1) && (Log() << Verbose(1) << "Kinetic energy is " << ekin << "." << endl);
695};
Note: See TracBrowser for help on using the repository browser.