source: src/molecule_dynamics.cpp@ 5be0eb

Action_Thermostats Add_AtomRandomPerturbation Add_FitFragmentPartialChargesAction Add_RotateAroundBondAction Add_SelectAtomByNameAction Added_ParseSaveFragmentResults AddingActions_SaveParseParticleParameters Adding_Graph_to_ChangeBondActions Adding_MD_integration_tests Adding_ParticleName_to_Atom Adding_StructOpt_integration_tests AtomFragments Automaking_mpqc_open AutomationFragmentation_failures Candidate_v1.5.4 Candidate_v1.6.0 Candidate_v1.6.1 ChangeBugEmailaddress ChangingTestPorts ChemicalSpaceEvaluator CombiningParticlePotentialParsing Combining_Subpackages Debian_Package_split Debian_package_split_molecuildergui_only Disabling_MemDebug Docu_Python_wait EmpiricalPotential_contain_HomologyGraph EmpiricalPotential_contain_HomologyGraph_documentation Enable_parallel_make_install Enhance_userguide Enhanced_StructuralOptimization Enhanced_StructuralOptimization_continued Example_ManyWaysToTranslateAtom Exclude_Hydrogens_annealWithBondGraph FitPartialCharges_GlobalError Fix_BoundInBox_CenterInBox_MoleculeActions Fix_ChargeSampling_PBC Fix_ChronosMutex Fix_FitPartialCharges Fix_FitPotential_needs_atomicnumbers Fix_ForceAnnealing Fix_IndependentFragmentGrids Fix_ParseParticles Fix_ParseParticles_split_forward_backward_Actions Fix_PopActions Fix_QtFragmentList_sorted_selection Fix_Restrictedkeyset_FragmentMolecule Fix_StatusMsg Fix_StepWorldTime_single_argument Fix_Verbose_Codepatterns Fix_fitting_potentials Fixes ForceAnnealing_goodresults ForceAnnealing_oldresults ForceAnnealing_tocheck ForceAnnealing_with_BondGraph ForceAnnealing_with_BondGraph_continued ForceAnnealing_with_BondGraph_continued_betteresults ForceAnnealing_with_BondGraph_contraction-expansion FragmentAction_writes_AtomFragments FragmentMolecule_checks_bonddegrees GeometryObjects Gui_Fixes Gui_displays_atomic_force_velocity ImplicitCharges IndependentFragmentGrids IndependentFragmentGrids_IndividualZeroInstances IndependentFragmentGrids_IntegrationTest IndependentFragmentGrids_Sole_NN_Calculation JobMarket_RobustOnKillsSegFaults JobMarket_StableWorkerPool JobMarket_unresolvable_hostname_fix MoreRobust_FragmentAutomation ODR_violation_mpqc_open PartialCharges_OrthogonalSummation PdbParser_setsAtomName PythonUI_with_named_parameters QtGui_reactivate_TimeChanged_changes Recreated_GuiChecks Rewrite_FitPartialCharges RotateToPrincipalAxisSystem_UndoRedo SaturateAtoms_findBestMatching SaturateAtoms_singleDegree StoppableMakroAction Subpackage_CodePatterns Subpackage_JobMarket Subpackage_LinearAlgebra Subpackage_levmar Subpackage_mpqc_open Subpackage_vmg Switchable_LogView ThirdParty_MPQC_rebuilt_buildsystem TrajectoryDependenant_MaxOrder TremoloParser_IncreasedPrecision TremoloParser_MultipleTimesteps TremoloParser_setsAtomName Ubuntu_1604_changes stable
Last change on this file since 5be0eb was 23b547, checked in by Tillmann Crueger <crueger@…>, 15 years ago

Added generic singleton Pattern that can be inherited to any class making that class a singleton.

  • Property mode set to 100644
File size: 34.7 KB
Line 
1/*
2 * molecule_dynamics.cpp
3 *
4 * Created on: Oct 5, 2009
5 * Author: heber
6 */
7
8#include "World.hpp"
9#include "atom.hpp"
10#include "config.hpp"
11#include "element.hpp"
12#include "log.hpp"
13#include "memoryallocator.hpp"
14#include "molecule.hpp"
15#include "parser.hpp"
16
17/************************************* Functions for class molecule *********************************/
18
19/** Penalizes long trajectories.
20 * \param *Walker atom to check against others
21 * \param *mol molecule with other atoms
22 * \param &Params constraint potential parameters
23 * \return penalty times each distance
24 */
25double SumDistanceOfTrajectories(atom *Walker, molecule *mol, struct EvaluatePotential &Params)
26{
27 gsl_matrix *A = gsl_matrix_alloc(NDIM,NDIM);
28 gsl_vector *x = gsl_vector_alloc(NDIM);
29 atom * Runner = mol->start;
30 atom *Sprinter = NULL;
31 Vector trajectory1, trajectory2, normal, TestVector;
32 double Norm1, Norm2, tmp, result = 0.;
33
34 while (Runner->next != mol->end) {
35 Runner = Runner->next;
36 if (Runner == Walker) // hence, we only go up to the Walker, not beyond (similar to i=0; i<j; i++)
37 break;
38 // determine normalized trajectories direction vector (n1, n2)
39 Sprinter = Params.PermutationMap[Walker->nr]; // find first target point
40 trajectory1.CopyVector(&Sprinter->Trajectory.R.at(Params.endstep));
41 trajectory1.SubtractVector(&Walker->Trajectory.R.at(Params.startstep));
42 trajectory1.Normalize();
43 Norm1 = trajectory1.Norm();
44 Sprinter = Params.PermutationMap[Runner->nr]; // find second target point
45 trajectory2.CopyVector(&Sprinter->Trajectory.R.at(Params.endstep));
46 trajectory2.SubtractVector(&Runner->Trajectory.R.at(Params.startstep));
47 trajectory2.Normalize();
48 Norm2 = trajectory1.Norm();
49 // check whether either is zero()
50 if ((Norm1 < MYEPSILON) && (Norm2 < MYEPSILON)) {
51 tmp = Walker->Trajectory.R.at(Params.startstep).Distance(&Runner->Trajectory.R.at(Params.startstep));
52 } else if (Norm1 < MYEPSILON) {
53 Sprinter = Params.PermutationMap[Walker->nr]; // find first target point
54 trajectory1.CopyVector(&Sprinter->Trajectory.R.at(Params.endstep)); // copy first offset
55 trajectory1.SubtractVector(&Runner->Trajectory.R.at(Params.startstep)); // subtract second offset
56 trajectory2.Scale( trajectory1.ScalarProduct(&trajectory2) ); // trajectory2 is scaled to unity, hence we don't need to divide by anything
57 trajectory1.SubtractVector(&trajectory2); // project the part in norm direction away
58 tmp = trajectory1.Norm(); // remaining norm is distance
59 } else if (Norm2 < MYEPSILON) {
60 Sprinter = Params.PermutationMap[Runner->nr]; // find second target point
61 trajectory2.CopyVector(&Sprinter->Trajectory.R.at(Params.endstep)); // copy second offset
62 trajectory2.SubtractVector(&Walker->Trajectory.R.at(Params.startstep)); // subtract first offset
63 trajectory1.Scale( trajectory2.ScalarProduct(&trajectory1) ); // trajectory1 is scaled to unity, hence we don't need to divide by anything
64 trajectory2.SubtractVector(&trajectory1); // project the part in norm direction away
65 tmp = trajectory2.Norm(); // remaining norm is distance
66 } else if ((fabs(trajectory1.ScalarProduct(&trajectory2)/Norm1/Norm2) - 1.) < MYEPSILON) { // check whether they're linear dependent
67 // Log() << Verbose(3) << "Both trajectories of " << *Walker << " and " << *Runner << " are linear dependent: ";
68 // Log() << Verbose(0) << trajectory1;
69 // Log() << Verbose(0) << " and ";
70 // Log() << Verbose(0) << trajectory2;
71 tmp = Walker->Trajectory.R.at(Params.startstep).Distance(&Runner->Trajectory.R.at(Params.startstep));
72 // Log() << Verbose(0) << " with distance " << tmp << "." << endl;
73 } else { // determine distance by finding minimum distance
74 // Log() << Verbose(3) << "Both trajectories of " << *Walker << " and " << *Runner << " are linear independent ";
75 // Log() << Verbose(0) << endl;
76 // Log() << Verbose(0) << "First Trajectory: ";
77 // Log() << Verbose(0) << trajectory1 << endl;
78 // Log() << Verbose(0) << "Second Trajectory: ";
79 // Log() << Verbose(0) << trajectory2 << endl;
80 // determine normal vector for both
81 normal.MakeNormalVector(&trajectory1, &trajectory2);
82 // print all vectors for debugging
83 // Log() << Verbose(0) << "Normal vector in between: ";
84 // Log() << Verbose(0) << normal << endl;
85 // setup matrix
86 for (int i=NDIM;i--;) {
87 gsl_matrix_set(A, 0, i, trajectory1.x[i]);
88 gsl_matrix_set(A, 1, i, trajectory2.x[i]);
89 gsl_matrix_set(A, 2, i, normal.x[i]);
90 gsl_vector_set(x,i, (Walker->Trajectory.R.at(Params.startstep).x[i] - Runner->Trajectory.R.at(Params.startstep).x[i]));
91 }
92 // solve the linear system by Householder transformations
93 gsl_linalg_HH_svx(A, x);
94 // distance from last component
95 tmp = gsl_vector_get(x,2);
96 // Log() << Verbose(0) << " with distance " << tmp << "." << endl;
97 // test whether we really have the intersection (by checking on c_1 and c_2)
98 TestVector.CopyVector(&Runner->Trajectory.R.at(Params.startstep));
99 trajectory2.Scale(gsl_vector_get(x,1));
100 TestVector.AddVector(&trajectory2);
101 normal.Scale(gsl_vector_get(x,2));
102 TestVector.AddVector(&normal);
103 TestVector.SubtractVector(&Walker->Trajectory.R.at(Params.startstep));
104 trajectory1.Scale(gsl_vector_get(x,0));
105 TestVector.SubtractVector(&trajectory1);
106 if (TestVector.Norm() < MYEPSILON) {
107 // Log() << Verbose(2) << "Test: ok.\tDistance of " << tmp << " is correct." << endl;
108 } else {
109 // Log() << Verbose(2) << "Test: failed.\tIntersection is off by ";
110 // Log() << Verbose(0) << TestVector;
111 // Log() << Verbose(0) << "." << endl;
112 }
113 }
114 // add up
115 tmp *= Params.IsAngstroem ? 1. : 1./AtomicLengthToAngstroem;
116 if (fabs(tmp) > MYEPSILON) {
117 result += Params.PenaltyConstants[1] * 1./tmp;
118 //Log() << Verbose(4) << "Adding " << 1./tmp*constants[1] << "." << endl;
119 }
120 }
121 return result;
122};
123
124/** Penalizes atoms heading to same target.
125 * \param *Walker atom to check against others
126 * \param *mol molecule with other atoms
127 * \param &Params constrained potential parameters
128 * \return \a penalty times the number of equal targets
129 */
130double PenalizeEqualTargets(atom *Walker, molecule *mol, struct EvaluatePotential &Params)
131{
132 double result = 0.;
133 atom * Runner = mol->start;
134 while (Runner->next != mol->end) {
135 Runner = Runner->next;
136 if ((Params.PermutationMap[Walker->nr] == Params.PermutationMap[Runner->nr]) && (Walker->nr < Runner->nr)) {
137 // atom *Sprinter = PermutationMap[Walker->nr];
138 // Log() << Verbose(0) << *Walker << " and " << *Runner << " are heading to the same target at ";
139 // Log() << Verbose(0) << Sprinter->Trajectory.R.at(endstep);
140 // Log() << Verbose(0) << ", penalting." << endl;
141 result += Params.PenaltyConstants[2];
142 //Log() << Verbose(4) << "Adding " << constants[2] << "." << endl;
143 }
144 }
145 return result;
146};
147
148/** Evaluates the potential energy used for constrained molecular dynamics.
149 * \f$V_i^{con} = c^{bond} \cdot | r_{P(i)} - R_i | + sum_{i \neq j} C^{min} \cdot \frac{1}{C_{ij}} + C^{inj} \Bigl (1 - \theta \bigl (\prod_{i \neq j} (P(i) - P(j)) \bigr ) \Bigr )\f$
150 * where the first term points to the target in minimum distance, the second is a penalty for trajectories lying too close to each other (\f$C_{ij}\f$ is minimum distance between
151 * trajectories i and j) and the third term is a penalty for two atoms trying to each the same target point.
152 * Note that for the second term we have to solve the following linear system:
153 * \f$-c_1 \cdot n_1 + c_2 \cdot n_2 + C \cdot n_3 = - p_2 + p_1\f$, where \f$c_1\f$, \f$c_2\f$ and \f$C\f$ are constants,
154 * offset vector \f$p_1\f$ in direction \f$n_1\f$, offset vector \f$p_2\f$ in direction \f$n_2\f$,
155 * \f$n_3\f$ is the normal vector to both directions. \f$C\f$ would be the minimum distance between the two lines.
156 * \sa molecule::MinimiseConstrainedPotential(), molecule::VerletForceIntegration()
157 * \param *out output stream for debugging
158 * \param &Params constrained potential parameters
159 * \return potential energy
160 * \note This routine is scaling quadratically which is not optimal.
161 * \todo There's a bit double counting going on for the first time, bu nothing to worry really about.
162 */
163double molecule::ConstrainedPotential(struct EvaluatePotential &Params)
164{
165 double tmp = 0.;
166 double result = 0.;
167 // go through every atom
168 atom *Runner = NULL;
169 atom *Walker = start;
170 while (Walker->next != end) {
171 Walker = Walker->next;
172 // first term: distance to target
173 Runner = Params.PermutationMap[Walker->nr]; // find target point
174 tmp = (Walker->Trajectory.R.at(Params.startstep).Distance(&Runner->Trajectory.R.at(Params.endstep)));
175 tmp *= Params.IsAngstroem ? 1. : 1./AtomicLengthToAngstroem;
176 result += Params.PenaltyConstants[0] * tmp;
177 //Log() << Verbose(4) << "Adding " << tmp*constants[0] << "." << endl;
178
179 // second term: sum of distances to other trajectories
180 result += SumDistanceOfTrajectories(Walker, this, Params);
181
182 // third term: penalty for equal targets
183 result += PenalizeEqualTargets(Walker, this, Params);
184 }
185
186 return result;
187};
188
189/** print the current permutation map.
190 * \param *out output stream for debugging
191 * \param &Params constrained potential parameters
192 * \param AtomCount number of atoms
193 */
194void PrintPermutationMap(int AtomCount, struct EvaluatePotential &Params)
195{
196 stringstream zeile1, zeile2;
197 int *DoubleList = Calloc<int>(AtomCount, "PrintPermutationMap: *DoubleList");
198 int doubles = 0;
199 zeile1 << "PermutationMap: ";
200 zeile2 << " ";
201 for (int i=0;i<AtomCount;i++) {
202 Params.DoubleList[Params.PermutationMap[i]->nr]++;
203 zeile1 << i << " ";
204 zeile2 << Params.PermutationMap[i]->nr << " ";
205 }
206 for (int i=0;i<AtomCount;i++)
207 if (Params.DoubleList[i] > 1)
208 doubles++;
209 if (doubles >0)
210 Log() << Verbose(2) << "Found " << doubles << " Doubles." << endl;
211 Free(&DoubleList);
212// Log() << Verbose(2) << zeile1.str() << endl << zeile2.str() << endl;
213};
214
215/** \f$O(N^2)\f$ operation of calculation distance between each atom pair and putting into DistanceList.
216 * \param *mol molecule to scan distances in
217 * \param &Params constrained potential parameters
218 */
219void FillDistanceList(molecule *mol, struct EvaluatePotential &Params)
220{
221 for (int i=mol->AtomCount; i--;) {
222 Params.DistanceList[i] = new DistanceMap; // is the distance sorted target list per atom
223 Params.DistanceList[i]->clear();
224 }
225
226 atom *Runner = NULL;
227 atom *Walker = mol->start;
228 while (Walker->next != mol->end) {
229 Walker = Walker->next;
230 Runner = mol->start;
231 while(Runner->next != mol->end) {
232 Runner = Runner->next;
233 Params.DistanceList[Walker->nr]->insert( DistancePair(Walker->Trajectory.R.at(Params.startstep).Distance(&Runner->Trajectory.R.at(Params.endstep)), Runner) );
234 }
235 }
236};
237
238/** initialize lists.
239 * \param *out output stream for debugging
240 * \param *mol molecule to scan distances in
241 * \param &Params constrained potential parameters
242 */
243void CreateInitialLists(molecule *mol, struct EvaluatePotential &Params)
244{
245 atom *Walker = mol->start;
246 while (Walker->next != mol->end) {
247 Walker = Walker->next;
248 Params.StepList[Walker->nr] = Params.DistanceList[Walker->nr]->begin(); // stores the step to the next iterator that could be a possible next target
249 Params.PermutationMap[Walker->nr] = Params.DistanceList[Walker->nr]->begin()->second; // always pick target with the smallest distance
250 Params.DoubleList[Params.DistanceList[Walker->nr]->begin()->second->nr]++; // increase this target's source count (>1? not injective)
251 Params.DistanceIterators[Walker->nr] = Params.DistanceList[Walker->nr]->begin(); // and remember which one we picked
252 Log() << Verbose(2) << *Walker << " starts with distance " << Params.DistanceList[Walker->nr]->begin()->first << "." << endl;
253 }
254};
255
256/** Try the next nearest neighbour in order to make the permutation map injective.
257 * \param *out output stream for debugging
258 * \param *mol molecule
259 * \param *Walker atom to change its target
260 * \param &OldPotential old value of constraint potential to see if we do better with new target
261 * \param &Params constrained potential parameters
262 */
263double TryNextNearestNeighbourForInjectivePermutation(molecule *mol, atom *Walker, double &OldPotential, struct EvaluatePotential &Params)
264{
265 double Potential = 0;
266 DistanceMap::iterator NewBase = Params.DistanceIterators[Walker->nr]; // store old base
267 do {
268 NewBase++; // take next further distance in distance to targets list that's a target of no one
269 } while ((Params.DoubleList[NewBase->second->nr] != 0) && (NewBase != Params.DistanceList[Walker->nr]->end()));
270 if (NewBase != Params.DistanceList[Walker->nr]->end()) {
271 Params.PermutationMap[Walker->nr] = NewBase->second;
272 Potential = fabs(mol->ConstrainedPotential(Params));
273 if (Potential > OldPotential) { // undo
274 Params.PermutationMap[Walker->nr] = Params.DistanceIterators[Walker->nr]->second;
275 } else { // do
276 Params.DoubleList[Params.DistanceIterators[Walker->nr]->second->nr]--; // decrease the old entry in the doubles list
277 Params.DoubleList[NewBase->second->nr]++; // increase the old entry in the doubles list
278 Params.DistanceIterators[Walker->nr] = NewBase;
279 OldPotential = Potential;
280 Log() << Verbose(3) << "Found a new permutation, new potential is " << OldPotential << "." << endl;
281 }
282 }
283 return Potential;
284};
285
286/** Permutes \a **&PermutationMap until the penalty is below constants[2].
287 * \param *out output stream for debugging
288 * \param *mol molecule to scan distances in
289 * \param &Params constrained potential parameters
290 */
291void MakeInjectivePermutation(molecule *mol, struct EvaluatePotential &Params)
292{
293 atom *Walker = mol->start;
294 DistanceMap::iterator NewBase;
295 double Potential = fabs(mol->ConstrainedPotential(Params));
296
297 while ((Potential) > Params.PenaltyConstants[2]) {
298 PrintPermutationMap(mol->AtomCount, Params);
299 Walker = Walker->next;
300 if (Walker == mol->end) // round-robin at the end
301 Walker = mol->start->next;
302 if (Params.DoubleList[Params.DistanceIterators[Walker->nr]->second->nr] <= 1) // no need to make those injective that aren't
303 continue;
304 // now, try finding a new one
305 Potential = TryNextNearestNeighbourForInjectivePermutation(mol, Walker, Potential, Params);
306 }
307 for (int i=mol->AtomCount; i--;) // now each single entry in the DoubleList should be <=1
308 if (Params.DoubleList[i] > 1) {
309 eLog() << Verbose(0) << "Failed to create an injective PermutationMap!" << endl;
310 performCriticalExit();
311 }
312 Log() << Verbose(1) << "done." << endl;
313};
314
315/** Minimises the extra potential for constrained molecular dynamics and gives forces and the constrained potential energy.
316 * We do the following:
317 * -# Generate a distance list from all source to all target points
318 * -# Sort this per source point
319 * -# Take for each source point the target point with minimum distance, use this as initial permutation
320 * -# check whether molecule::ConstrainedPotential() is greater than injective penalty
321 * -# If so, we go through each source point, stepping down in the sorted target point distance list and re-checking potential.
322 * -# Next, we only apply transformations that keep the injectivity of the permutations list.
323 * -# Hence, for one source point we step down the ladder and seek the corresponding owner of this new target
324 * point and try to change it for one with lesser distance, or for the next one with greater distance, but only
325 * if this decreases the conditional potential.
326 * -# finished.
327 * -# Then, we calculate the forces by taking the spatial derivative, where we scale the potential to such a degree,
328 * that the total force is always pointing in direction of the constraint force (ensuring that we move in the
329 * right direction).
330 * -# Finally, we calculate the potential energy and return.
331 * \param *out output stream for debugging
332 * \param **PermutationMap on return: mapping between the atom label of the initial and the final configuration
333 * \param startstep current MD step giving initial position between which and \a endstep we perform the constrained MD (as further steps are always concatenated)
334 * \param endstep step giving final position in constrained MD
335 * \param IsAngstroem whether coordinates are in angstroem (true) or bohrradius (false)
336 * \sa molecule::VerletForceIntegration()
337 * \return potential energy (and allocated **PermutationMap (array of molecule::AtomCount ^2)
338 * \todo The constrained potential's constants are set to fixed values right now, but they should scale based on checks of the system in order
339 * to ensure they're properties (e.g. constants[2] always greater than the energy of the system).
340 * \bug this all is not O(N log N) but O(N^2)
341 */
342double molecule::MinimiseConstrainedPotential(atom **&PermutationMap, int startstep, int endstep, bool IsAngstroem)
343{
344 double Potential, OldPotential, OlderPotential;
345 struct EvaluatePotential Params;
346 Params.PermutationMap = Calloc<atom*>(AtomCount, "molecule::MinimiseConstrainedPotential: Params.**PermutationMap");
347 Params.DistanceList = Malloc<DistanceMap*>(AtomCount, "molecule::MinimiseConstrainedPotential: Params.**DistanceList");
348 Params.DistanceIterators = Malloc<DistanceMap::iterator>(AtomCount, "molecule::MinimiseConstrainedPotential: Params.*DistanceIterators");
349 Params.DoubleList = Calloc<int>(AtomCount, "molecule::MinimiseConstrainedPotential: Params.*DoubleList");
350 Params.StepList = Malloc<DistanceMap::iterator>(AtomCount, "molecule::MinimiseConstrainedPotential: Params.*StepList");
351 int round;
352 atom *Walker = NULL, *Runner = NULL, *Sprinter = NULL;
353 DistanceMap::iterator Rider, Strider;
354
355 /// Minimise the potential
356 // set Lagrange multiplier constants
357 Params.PenaltyConstants[0] = 10.;
358 Params.PenaltyConstants[1] = 1.;
359 Params.PenaltyConstants[2] = 1e+7; // just a huge penalty
360 // generate the distance list
361 Log() << Verbose(1) << "Allocating, initializting and filling the distance list ... " << endl;
362 FillDistanceList(this, Params);
363
364 // create the initial PermutationMap (source -> target)
365 CreateInitialLists(this, Params);
366
367 // make the PermutationMap injective by checking whether we have a non-zero constants[2] term in it
368 Log() << Verbose(1) << "Making the PermutationMap injective ... " << endl;
369 MakeInjectivePermutation(this, Params);
370 Free(&Params.DoubleList);
371
372 // argument minimise the constrained potential in this injective PermutationMap
373 Log() << Verbose(1) << "Argument minimising the PermutationMap." << endl;
374 OldPotential = 1e+10;
375 round = 0;
376 do {
377 Log() << Verbose(2) << "Starting round " << ++round << ", at current potential " << OldPotential << " ... " << endl;
378 OlderPotential = OldPotential;
379 do {
380 Walker = start;
381 while (Walker->next != end) { // pick one
382 Walker = Walker->next;
383 PrintPermutationMap(AtomCount, Params);
384 Sprinter = Params.DistanceIterators[Walker->nr]->second; // store initial partner
385 Strider = Params.DistanceIterators[Walker->nr]; //remember old iterator
386 Params.DistanceIterators[Walker->nr] = Params.StepList[Walker->nr];
387 if (Params.DistanceIterators[Walker->nr] == Params.DistanceList[Walker->nr]->end()) {// stop, before we run through the list and still on
388 Params.DistanceIterators[Walker->nr] == Params.DistanceList[Walker->nr]->begin();
389 break;
390 }
391 //Log() << Verbose(2) << "Current Walker: " << *Walker << " with old/next candidate " << *Sprinter << "/" << *DistanceIterators[Walker->nr]->second << "." << endl;
392 // find source of the new target
393 Runner = start->next;
394 while(Runner != end) { // find the source whose toes we might be stepping on (Walker's new target should be in use by another already)
395 if (Params.PermutationMap[Runner->nr] == Params.DistanceIterators[Walker->nr]->second) {
396 //Log() << Verbose(2) << "Found the corresponding owner " << *Runner << " to " << *PermutationMap[Runner->nr] << "." << endl;
397 break;
398 }
399 Runner = Runner->next;
400 }
401 if (Runner != end) { // we found the other source
402 // then look in its distance list for Sprinter
403 Rider = Params.DistanceList[Runner->nr]->begin();
404 for (; Rider != Params.DistanceList[Runner->nr]->end(); Rider++)
405 if (Rider->second == Sprinter)
406 break;
407 if (Rider != Params.DistanceList[Runner->nr]->end()) { // if we have found one
408 //Log() << Verbose(2) << "Current Other: " << *Runner << " with old/next candidate " << *PermutationMap[Runner->nr] << "/" << *Rider->second << "." << endl;
409 // exchange both
410 Params.PermutationMap[Walker->nr] = Params.DistanceIterators[Walker->nr]->second; // put next farther distance into PermutationMap
411 Params.PermutationMap[Runner->nr] = Sprinter; // and hand the old target to its respective owner
412 PrintPermutationMap(AtomCount, Params);
413 // calculate the new potential
414 //Log() << Verbose(2) << "Checking new potential ..." << endl;
415 Potential = ConstrainedPotential(Params);
416 if (Potential > OldPotential) { // we made everything worse! Undo ...
417 //Log() << Verbose(3) << "Nay, made the potential worse: " << Potential << " vs. " << OldPotential << "!" << endl;
418 //Log() << Verbose(3) << "Setting " << *Runner << "'s source to " << *Params.DistanceIterators[Runner->nr]->second << "." << endl;
419 // Undo for Runner (note, we haven't moved the iteration yet, we may use this)
420 Params.PermutationMap[Runner->nr] = Params.DistanceIterators[Runner->nr]->second;
421 // Undo for Walker
422 Params.DistanceIterators[Walker->nr] = Strider; // take next farther distance target
423 //Log() << Verbose(3) << "Setting " << *Walker << "'s source to " << *Params.DistanceIterators[Walker->nr]->second << "." << endl;
424 Params.PermutationMap[Walker->nr] = Params.DistanceIterators[Walker->nr]->second;
425 } else {
426 Params.DistanceIterators[Runner->nr] = Rider; // if successful also move the pointer in the iterator list
427 Log() << Verbose(3) << "Found a better permutation, new potential is " << Potential << " vs." << OldPotential << "." << endl;
428 OldPotential = Potential;
429 }
430 if (Potential > Params.PenaltyConstants[2]) {
431 eLog() << Verbose(1) << "The two-step permutation procedure did not maintain injectivity!" << endl;
432 exit(255);
433 }
434 //Log() << Verbose(0) << endl;
435 } else {
436 eLog() << Verbose(1) << *Runner << " was not the owner of " << *Sprinter << "!" << endl;
437 exit(255);
438 }
439 } else {
440 Params.PermutationMap[Walker->nr] = Params.DistanceIterators[Walker->nr]->second; // new target has no source!
441 }
442 Params.StepList[Walker->nr]++; // take next farther distance target
443 }
444 } while (Walker->next != end);
445 } while ((OlderPotential - OldPotential) > 1e-3);
446 Log() << Verbose(1) << "done." << endl;
447
448
449 /// free memory and return with evaluated potential
450 for (int i=AtomCount; i--;)
451 Params.DistanceList[i]->clear();
452 Free(&Params.DistanceList);
453 Free(&Params.DistanceIterators);
454 return ConstrainedPotential(Params);
455};
456
457
458/** Evaluates the (distance-related part) of the constrained potential for the constrained forces.
459 * \param *out output stream for debugging
460 * \param startstep current MD step giving initial position between which and \a endstep we perform the constrained MD (as further steps are always concatenated)
461 * \param endstep step giving final position in constrained MD
462 * \param **PermutationMap mapping between the atom label of the initial and the final configuration
463 * \param *Force ForceMatrix containing force vectors from the external energy functional minimisation.
464 * \todo the constant for the constrained potential distance part is hard-coded independently of the hard-coded value in MinimiseConstrainedPotential()
465 */
466void molecule::EvaluateConstrainedForces(int startstep, int endstep, atom **PermutationMap, ForceMatrix *Force)
467{
468 /// evaluate forces (only the distance to target dependent part) with the final PermutationMap
469 Log() << Verbose(1) << "Calculating forces and adding onto ForceMatrix ... " << endl;
470 ActOnAllAtoms( &atom::EvaluateConstrainedForce, startstep, endstep, PermutationMap, Force );
471 Log() << Verbose(1) << "done." << endl;
472};
473
474/** Performs a linear interpolation between two desired atomic configurations with a given number of steps.
475 * Note, step number is config::MaxOuterStep
476 * \param *out output stream for debugging
477 * \param startstep stating initial configuration in molecule::Trajectories
478 * \param endstep stating final configuration in molecule::Trajectories
479 * \param &config configuration structure
480 * \param MapByIdentity if true we just use the identity to map atoms in start config to end config, if not we find mapping by \sa MinimiseConstrainedPotential()
481 * \return true - success in writing step files, false - error writing files or only one step in molecule::Trajectories
482 */
483bool molecule::LinearInterpolationBetweenConfiguration(int startstep, int endstep, const char *prefix, config &configuration, bool MapByIdentity)
484{
485 molecule *mol = NULL;
486 bool status = true;
487 int MaxSteps = configuration.MaxOuterStep;
488 MoleculeListClass *MoleculePerStep = new MoleculeListClass(World::getPointer());
489 // Get the Permutation Map by MinimiseConstrainedPotential
490 atom **PermutationMap = NULL;
491 atom *Walker = NULL, *Sprinter = NULL;
492 if (!MapByIdentity)
493 MinimiseConstrainedPotential(PermutationMap, startstep, endstep, configuration.GetIsAngstroem());
494 else {
495 PermutationMap = Malloc<atom *>(AtomCount, "molecule::LinearInterpolationBetweenConfiguration: **PermutationMap");
496 SetIndexedArrayForEachAtomTo( PermutationMap, &atom::nr );
497 }
498
499 // check whether we have sufficient space in Trajectories for each atom
500 ActOnAllAtoms( &atom::ResizeTrajectory, MaxSteps );
501 // push endstep to last one
502 ActOnAllAtoms( &atom::CopyStepOnStep, MaxSteps, endstep );
503 endstep = MaxSteps;
504
505 // go through all steps and add the molecular configuration to the list and to the Trajectories of \a this molecule
506 Log() << Verbose(1) << "Filling intermediate " << MaxSteps << " steps with MDSteps of " << MDSteps << "." << endl;
507 for (int step = 0; step <= MaxSteps; step++) {
508 mol = World::getInstance().createMolecule();
509 MoleculePerStep->insert(mol);
510 Walker = start;
511 while (Walker->next != end) {
512 Walker = Walker->next;
513 // add to molecule list
514 Sprinter = mol->AddCopyAtom(Walker);
515 for (int n=NDIM;n--;) {
516 Sprinter->x.x[n] = Walker->Trajectory.R.at(startstep).x[n] + (PermutationMap[Walker->nr]->Trajectory.R.at(endstep).x[n] - Walker->Trajectory.R.at(startstep).x[n])*((double)step/(double)MaxSteps);
517 // add to Trajectories
518 //Log() << Verbose(3) << step << ">=" << MDSteps-1 << endl;
519 if (step < MaxSteps) {
520 Walker->Trajectory.R.at(step).x[n] = Walker->Trajectory.R.at(startstep).x[n] + (PermutationMap[Walker->nr]->Trajectory.R.at(endstep).x[n] - Walker->Trajectory.R.at(startstep).x[n])*((double)step/(double)MaxSteps);
521 Walker->Trajectory.U.at(step).x[n] = 0.;
522 Walker->Trajectory.F.at(step).x[n] = 0.;
523 }
524 }
525 }
526 }
527 MDSteps = MaxSteps+1; // otherwise new Trajectories' points aren't stored on save&exit
528
529 // store the list to single step files
530 int *SortIndex = Malloc<int>(AtomCount, "molecule::LinearInterpolationBetweenConfiguration: *SortIndex");
531 for (int i=AtomCount; i--; )
532 SortIndex[i] = i;
533 status = MoleculePerStep->OutputConfigForListOfFragments(&configuration, SortIndex);
534
535 // free and return
536 Free(&PermutationMap);
537 delete(MoleculePerStep);
538 return status;
539};
540
541/** Parses nuclear forces from file and performs Verlet integration.
542 * Note that we assume the parsed forces to be in atomic units (hence, if coordinates are in angstroem, we
543 * have to transform them).
544 * This adds a new MD step to the config file.
545 * \param *out output stream for debugging
546 * \param *file filename
547 * \param config structure with config::Deltat, config::IsAngstroem, config::DoConstrained
548 * \param delta_t time step width in atomic units
549 * \param IsAngstroem whether coordinates are in angstroem (true) or bohrradius (false)
550 * \param DoConstrained whether we perform a constrained (>0, target step in molecule::trajectories) or unconstrained (0) molecular dynamics, \sa molecule::MinimiseConstrainedPotential()
551 * \return true - file found and parsed, false - file not found or imparsable
552 * \todo This is not yet checked if it is correctly working with DoConstrained set to true.
553 */
554bool molecule::VerletForceIntegration(char *file, config &configuration)
555{
556 ifstream input(file);
557 string token;
558 stringstream item;
559 double IonMass, ConstrainedPotentialEnergy, ActualTemp;
560 Vector Velocity;
561 ForceMatrix Force;
562
563 CountElements(); // make sure ElementsInMolecule is up to date
564
565 // check file
566 if (input == NULL) {
567 return false;
568 } else {
569 // parse file into ForceMatrix
570 if (!Force.ParseMatrix(file, 0,0,0)) {
571 eLog() << Verbose(0) << "Could not parse Force Matrix file " << file << "." << endl;
572 performCriticalExit();
573 return false;
574 }
575 if (Force.RowCounter[0] != AtomCount) {
576 eLog() << Verbose(0) << "Mismatch between number of atoms in file " << Force.RowCounter[0] << " and in molecule " << AtomCount << "." << endl;
577 performCriticalExit();
578 return false;
579 }
580 // correct Forces
581 Velocity.Zero();
582 for(int i=0;i<AtomCount;i++)
583 for(int d=0;d<NDIM;d++) {
584 Velocity.x[d] += Force.Matrix[0][i][d+5];
585 }
586 for(int i=0;i<AtomCount;i++)
587 for(int d=0;d<NDIM;d++) {
588 Force.Matrix[0][i][d+5] -= Velocity.x[d]/(double)AtomCount;
589 }
590 // solve a constrained potential if we are meant to
591 if (configuration.DoConstrainedMD) {
592 // calculate forces and potential
593 atom **PermutationMap = NULL;
594 ConstrainedPotentialEnergy = MinimiseConstrainedPotential(PermutationMap,configuration.DoConstrainedMD, 0, configuration.GetIsAngstroem());
595 EvaluateConstrainedForces(configuration.DoConstrainedMD, 0, PermutationMap, &Force);
596 Free(&PermutationMap);
597 }
598
599 // and perform Verlet integration for each atom with position, velocity and force vector
600 // check size of vectors
601 ActOnAllAtoms( &atom::ResizeTrajectory, MDSteps+10 );
602
603 ActOnAllAtoms( &atom::VelocityVerletUpdate, MDSteps, &configuration, &Force);
604 }
605 // correct velocities (rather momenta) so that center of mass remains motionless
606 Velocity.Zero();
607 IonMass = 0.;
608 ActOnAllAtoms ( &atom::SumUpKineticEnergy, MDSteps, &IonMass, &Velocity );
609
610 // correct velocities (rather momenta) so that center of mass remains motionless
611 Velocity.Scale(1./IonMass);
612 ActualTemp = 0.;
613 ActOnAllAtoms ( &atom::CorrectVelocity, &ActualTemp, MDSteps, &Velocity );
614 Thermostats(configuration, ActualTemp, Berendsen);
615 MDSteps++;
616
617 // exit
618 return true;
619};
620
621/** Implementation of various thermostats.
622 * All these thermostats apply an additional force which has the following forms:
623 * -# Woodcock
624 * \f$p_i \rightarrow \sqrt{\frac{T_0}{T}} \cdot p_i\f$
625 * -# Gaussian
626 * \f$ \frac{ \sum_i \frac{p_i}{m_i} \frac{\partial V}{\partial q_i}} {\sum_i \frac{p^2_i}{m_i}} \cdot p_i\f$
627 * -# Langevin
628 * \f$p_{i,n} \rightarrow \sqrt{1-\alpha^2} p_{i,0} + \alpha p_r\f$
629 * -# Berendsen
630 * \f$p_i \rightarrow \left [ 1+ \frac{\delta t}{\tau_T} \left ( \frac{T_0}{T} \right ) \right ]^{\frac{1}{2}} \cdot p_i\f$
631 * -# Nose-Hoover
632 * \f$\zeta p_i \f$ with \f$\frac{\partial \zeta}{\partial t} = \frac{1}{M_s} \left ( \sum^N_{i=1} \frac{p_i^2}{m_i} - g k_B T \right )\f$
633 * These Thermostats either simply rescale the velocities, thus this function should be called after ion velocities have been updated, and/or
634 * have a constraint force acting additionally on the ions. In the latter case, the ion speeds have to be modified
635 * belatedly and the constraint force set.
636 * \param *P Problem at hand
637 * \param i which of the thermostats to take: 0 - none, 1 - Woodcock, 2 - Gaussian, 3 - Langevin, 4 - Berendsen, 5 - Nose-Hoover
638 * \sa InitThermostat()
639 */
640void molecule::Thermostats(config &configuration, double ActualTemp, int Thermostat)
641{
642 double ekin = 0.;
643 double E = 0., G = 0.;
644 double delta_alpha = 0.;
645 double ScaleTempFactor;
646 gsl_rng * r;
647 const gsl_rng_type * T;
648
649 // calculate scale configuration
650 ScaleTempFactor = configuration.TargetTemp/ActualTemp;
651
652 // differentating between the various thermostats
653 switch(Thermostat) {
654 case None:
655 Log() << Verbose(2) << "Applying no thermostat..." << endl;
656 break;
657 case Woodcock:
658 if ((configuration.ScaleTempStep > 0) && ((MDSteps-1) % configuration.ScaleTempStep == 0)) {
659 Log() << Verbose(2) << "Applying Woodcock thermostat..." << endl;
660 ActOnAllAtoms( &atom::Thermostat_Woodcock, sqrt(ScaleTempFactor), MDSteps, &ekin );
661 }
662 break;
663 case Gaussian:
664 Log() << Verbose(2) << "Applying Gaussian thermostat..." << endl;
665 ActOnAllAtoms( &atom::Thermostat_Gaussian_init, MDSteps, &G, &E );
666
667 Log() << Verbose(1) << "Gaussian Least Constraint constant is " << G/E << "." << endl;
668 ActOnAllAtoms( &atom::Thermostat_Gaussian_least_constraint, MDSteps, G/E, &ekin, &configuration);
669
670 break;
671 case Langevin:
672 Log() << Verbose(2) << "Applying Langevin thermostat..." << endl;
673 // init random number generator
674 gsl_rng_env_setup();
675 T = gsl_rng_default;
676 r = gsl_rng_alloc (T);
677 // Go through each ion
678 ActOnAllAtoms( &atom::Thermostat_Langevin, MDSteps, r, &ekin, &configuration );
679 break;
680
681 case Berendsen:
682 Log() << Verbose(2) << "Applying Berendsen-VanGunsteren thermostat..." << endl;
683 ActOnAllAtoms( &atom::Thermostat_Berendsen, MDSteps, ScaleTempFactor, &ekin, &configuration );
684 break;
685
686 case NoseHoover:
687 Log() << Verbose(2) << "Applying Nose-Hoover thermostat..." << endl;
688 // dynamically evolve alpha (the additional degree of freedom)
689 delta_alpha = 0.;
690 ActOnAllAtoms( &atom::Thermostat_NoseHoover_init, MDSteps, &delta_alpha );
691 delta_alpha = (delta_alpha - (3.*AtomCount+1.) * configuration.TargetTemp)/(configuration.HooverMass*Units2Electronmass);
692 configuration.alpha += delta_alpha*configuration.Deltat;
693 Log() << Verbose(3) << "alpha = " << delta_alpha << " * " << configuration.Deltat << " = " << configuration.alpha << "." << endl;
694 // apply updated alpha as additional force
695 ActOnAllAtoms( &atom::Thermostat_NoseHoover_scale, MDSteps, &ekin, &configuration );
696 break;
697 }
698 Log() << Verbose(1) << "Kinetic energy is " << ekin << "." << endl;
699};
Note: See TracBrowser for help on using the repository browser.