source: src/molecule_dynamics.cpp@ a7b761b

Action_Thermostats Add_AtomRandomPerturbation Add_FitFragmentPartialChargesAction Add_RotateAroundBondAction Add_SelectAtomByNameAction Added_ParseSaveFragmentResults AddingActions_SaveParseParticleParameters Adding_Graph_to_ChangeBondActions Adding_MD_integration_tests Adding_ParticleName_to_Atom Adding_StructOpt_integration_tests AtomFragments Automaking_mpqc_open AutomationFragmentation_failures Candidate_v1.5.4 Candidate_v1.6.0 Candidate_v1.6.1 Candidate_v1.7.0 ChangeBugEmailaddress ChangingTestPorts ChemicalSpaceEvaluator CombiningParticlePotentialParsing Combining_Subpackages Debian_Package_split Debian_package_split_molecuildergui_only Disabling_MemDebug Docu_Python_wait EmpiricalPotential_contain_HomologyGraph EmpiricalPotential_contain_HomologyGraph_documentation Enable_parallel_make_install Enhance_userguide Enhanced_StructuralOptimization Enhanced_StructuralOptimization_continued Example_ManyWaysToTranslateAtom Exclude_Hydrogens_annealWithBondGraph FitPartialCharges_GlobalError Fix_BoundInBox_CenterInBox_MoleculeActions Fix_ChargeSampling_PBC Fix_ChronosMutex Fix_FitPartialCharges Fix_FitPotential_needs_atomicnumbers Fix_ForceAnnealing Fix_IndependentFragmentGrids Fix_ParseParticles Fix_ParseParticles_split_forward_backward_Actions Fix_PopActions Fix_QtFragmentList_sorted_selection Fix_Restrictedkeyset_FragmentMolecule Fix_StatusMsg Fix_StepWorldTime_single_argument Fix_Verbose_Codepatterns Fix_fitting_potentials Fixes ForceAnnealing_goodresults ForceAnnealing_oldresults ForceAnnealing_tocheck ForceAnnealing_with_BondGraph ForceAnnealing_with_BondGraph_continued ForceAnnealing_with_BondGraph_continued_betteresults ForceAnnealing_with_BondGraph_contraction-expansion FragmentAction_writes_AtomFragments FragmentMolecule_checks_bonddegrees GeometryObjects Gui_Fixes Gui_displays_atomic_force_velocity ImplicitCharges IndependentFragmentGrids IndependentFragmentGrids_IndividualZeroInstances IndependentFragmentGrids_IntegrationTest IndependentFragmentGrids_Sole_NN_Calculation JobMarket_RobustOnKillsSegFaults JobMarket_StableWorkerPool JobMarket_unresolvable_hostname_fix MoreRobust_FragmentAutomation ODR_violation_mpqc_open PartialCharges_OrthogonalSummation PdbParser_setsAtomName PythonUI_with_named_parameters QtGui_reactivate_TimeChanged_changes Recreated_GuiChecks Rewrite_FitPartialCharges RotateToPrincipalAxisSystem_UndoRedo SaturateAtoms_findBestMatching SaturateAtoms_singleDegree StoppableMakroAction Subpackage_CodePatterns Subpackage_JobMarket Subpackage_LinearAlgebra Subpackage_levmar Subpackage_mpqc_open Subpackage_vmg Switchable_LogView ThirdParty_MPQC_rebuilt_buildsystem TrajectoryDependenant_MaxOrder TremoloParser_IncreasedPrecision TremoloParser_MultipleTimesteps TremoloParser_setsAtomName Ubuntu_1604_changes stable
Last change on this file since a7b761b was a7b761b, checked in by Tillmann Crueger <crueger@…>, 15 years ago

Merge branch 'MoleculeStartEndSwitch' into StructureRefactoring

Conflicts:

molecuilder/src/Helpers/Assert.cpp
molecuilder/src/Helpers/Assert.hpp
molecuilder/src/Legacy/oldmenu.cpp
molecuilder/src/Makefile.am
molecuilder/src/Patterns/Cacheable.hpp
molecuilder/src/Patterns/Observer.cpp
molecuilder/src/Patterns/Observer.hpp
molecuilder/src/analysis_correlation.cpp
molecuilder/src/boundary.cpp
molecuilder/src/builder.cpp
molecuilder/src/config.cpp
molecuilder/src/helpers.hpp
molecuilder/src/molecule.cpp
molecuilder/src/molecule.hpp
molecuilder/src/molecule_dynamics.cpp
molecuilder/src/molecule_fragmentation.cpp
molecuilder/src/molecule_geometry.cpp
molecuilder/src/molecule_graph.cpp
molecuilder/src/moleculelist.cpp
molecuilder/src/tesselation.cpp
molecuilder/src/unittests/AnalysisCorrelationToSurfaceUnitTest.cpp
molecuilder/src/unittests/ObserverTest.cpp
molecuilder/src/unittests/ObserverTest.hpp

  • Property mode set to 100644
File size: 34.8 KB
Line 
1/*
2 * molecule_dynamics.cpp
3 *
4 * Created on: Oct 5, 2009
5 * Author: heber
6 */
7
8#include "World.hpp"
9#include "atom.hpp"
10#include "config.hpp"
11#include "element.hpp"
12#include "log.hpp"
13#include "memoryallocator.hpp"
14#include "molecule.hpp"
15#include "parser.hpp"
16#include "Plane.hpp"
17
18/************************************* Functions for class molecule *********************************/
19
20/** Penalizes long trajectories.
21 * \param *Walker atom to check against others
22 * \param *mol molecule with other atoms
23 * \param &Params constraint potential parameters
24 * \return penalty times each distance
25 */
26double SumDistanceOfTrajectories(atom *Walker, molecule *mol, struct EvaluatePotential &Params)
27{
28 gsl_matrix *A = gsl_matrix_alloc(NDIM,NDIM);
29 gsl_vector *x = gsl_vector_alloc(NDIM);
30 atom *Sprinter = NULL;
31 Vector trajectory1, trajectory2, normal, TestVector;
32 double Norm1, Norm2, tmp, result = 0.;
33
34 for (molecule::const_iterator iter = mol->begin(); iter != mol->end(); ++iter) {
35 if ((*iter) == Walker) // hence, we only go up to the Walker, not beyond (similar to i=0; i<j; i++)
36 break;
37 // determine normalized trajectories direction vector (n1, n2)
38 Sprinter = Params.PermutationMap[Walker->nr]; // find first target point
39 trajectory1 = Sprinter->Trajectory.R.at(Params.endstep) - Walker->Trajectory.R.at(Params.startstep);
40 trajectory1.Normalize();
41 Norm1 = trajectory1.Norm();
42 Sprinter = Params.PermutationMap[(*iter)->nr]; // find second target point
43 trajectory2 = Sprinter->Trajectory.R.at(Params.endstep) - (*iter)->Trajectory.R.at(Params.startstep);
44 trajectory2.Normalize();
45 Norm2 = trajectory1.Norm();
46 // check whether either is zero()
47 if ((Norm1 < MYEPSILON) && (Norm2 < MYEPSILON)) {
48 tmp = Walker->Trajectory.R.at(Params.startstep).distance((*iter)->Trajectory.R.at(Params.startstep));
49 } else if (Norm1 < MYEPSILON) {
50 Sprinter = Params.PermutationMap[Walker->nr]; // find first target point
51 trajectory1 = Sprinter->Trajectory.R.at(Params.endstep) - (*iter)->Trajectory.R.at(Params.startstep);
52 trajectory2 *= trajectory1.ScalarProduct(trajectory2); // trajectory2 is scaled to unity, hence we don't need to divide by anything
53 trajectory1 -= trajectory2; // project the part in norm direction away
54 tmp = trajectory1.Norm(); // remaining norm is distance
55 } else if (Norm2 < MYEPSILON) {
56 Sprinter = Params.PermutationMap[(*iter)->nr]; // find second target point
57 trajectory2 = Sprinter->Trajectory.R.at(Params.endstep) - Walker->Trajectory.R.at(Params.startstep); // copy second offset
58 trajectory1 *= trajectory2.ScalarProduct(trajectory1); // trajectory1 is scaled to unity, hence we don't need to divide by anything
59 trajectory2 -= trajectory1; // project the part in norm direction away
60 tmp = trajectory2.Norm(); // remaining norm is distance
61 } else if ((fabs(trajectory1.ScalarProduct(trajectory2)/Norm1/Norm2) - 1.) < MYEPSILON) { // check whether they're linear dependent
62 // Log() << Verbose(3) << "Both trajectories of " << *Walker << " and " << *Runner << " are linear dependent: ";
63 // Log() << Verbose(0) << trajectory1;
64 // Log() << Verbose(0) << " and ";
65 // Log() << Verbose(0) << trajectory2;
66 tmp = Walker->Trajectory.R.at(Params.startstep).distance((*iter)->Trajectory.R.at(Params.startstep));
67 // Log() << Verbose(0) << " with distance " << tmp << "." << endl;
68 } else { // determine distance by finding minimum distance
69 // Log() << Verbose(3) << "Both trajectories of " << *Walker << " and " << *(*iter) << " are linear independent ";
70 // Log() << Verbose(0) << endl;
71 // Log() << Verbose(0) << "First Trajectory: ";
72 // Log() << Verbose(0) << trajectory1 << endl;
73 // Log() << Verbose(0) << "Second Trajectory: ";
74 // Log() << Verbose(0) << trajectory2 << endl;
75 // determine normal vector for both
76 normal = Plane(trajectory1, trajectory2,0).getNormal();
77 // print all vectors for debugging
78 // Log() << Verbose(0) << "Normal vector in between: ";
79 // Log() << Verbose(0) << normal << endl;
80 // setup matrix
81 for (int i=NDIM;i--;) {
82 gsl_matrix_set(A, 0, i, trajectory1[i]);
83 gsl_matrix_set(A, 1, i, trajectory2[i]);
84 gsl_matrix_set(A, 2, i, normal[i]);
85 gsl_vector_set(x,i, (Walker->Trajectory.R.at(Params.startstep)[i] - (*iter)->Trajectory.R.at(Params.startstep)[i]));
86 }
87 // solve the linear system by Householder transformations
88 gsl_linalg_HH_svx(A, x);
89 // distance from last component
90 tmp = gsl_vector_get(x,2);
91 // Log() << Verbose(0) << " with distance " << tmp << "." << endl;
92 // test whether we really have the intersection (by checking on c_1 and c_2)
93 trajectory1.Scale(gsl_vector_get(x,0));
94 trajectory2.Scale(gsl_vector_get(x,1));
95 normal.Scale(gsl_vector_get(x,2));
96 TestVector = (*iter)->Trajectory.R.at(Params.startstep) + trajectory2 + normal
97 - (Walker->Trajectory.R.at(Params.startstep) + trajectory1);
98 if (TestVector.Norm() < MYEPSILON) {
99 // Log() << Verbose(2) << "Test: ok.\tDistance of " << tmp << " is correct." << endl;
100 } else {
101 // Log() << Verbose(2) << "Test: failed.\tIntersection is off by ";
102 // Log() << Verbose(0) << TestVector;
103 // Log() << Verbose(0) << "." << endl;
104 }
105 }
106 // add up
107 tmp *= Params.IsAngstroem ? 1. : 1./AtomicLengthToAngstroem;
108 if (fabs(tmp) > MYEPSILON) {
109 result += Params.PenaltyConstants[1] * 1./tmp;
110 //Log() << Verbose(4) << "Adding " << 1./tmp*constants[1] << "." << endl;
111 }
112 }
113 return result;
114};
115
116/** Penalizes atoms heading to same target.
117 * \param *Walker atom to check against others
118 * \param *mol molecule with other atoms
119 * \param &Params constrained potential parameters
120 * \return \a penalty times the number of equal targets
121 */
122double PenalizeEqualTargets(atom *Walker, molecule *mol, struct EvaluatePotential &Params)
123{
124 double result = 0.;
125 for (molecule::const_iterator iter = mol->begin(); iter != mol->end(); ++iter) {
126 if ((Params.PermutationMap[Walker->nr] == Params.PermutationMap[(*iter)->nr]) && (Walker->nr < (*iter)->nr)) {
127 // atom *Sprinter = PermutationMap[Walker->nr];
128 // Log() << Verbose(0) << *Walker << " and " << *(*iter) << " are heading to the same target at ";
129 // Log() << Verbose(0) << Sprinter->Trajectory.R.at(endstep);
130 // Log() << Verbose(0) << ", penalting." << endl;
131 result += Params.PenaltyConstants[2];
132 //Log() << Verbose(4) << "Adding " << constants[2] << "." << endl;
133 }
134 }
135 return result;
136};
137
138/** Evaluates the potential energy used for constrained molecular dynamics.
139 * \f$V_i^{con} = c^{bond} \cdot | r_{P(i)} - R_i | + sum_{i \neq j} C^{min} \cdot \frac{1}{C_{ij}} + C^{inj} \Bigl (1 - \theta \bigl (\prod_{i \neq j} (P(i) - P(j)) \bigr ) \Bigr )\f$
140 * where the first term points to the target in minimum distance, the second is a penalty for trajectories lying too close to each other (\f$C_{ij}\f$ is minimum distance between
141 * trajectories i and j) and the third term is a penalty for two atoms trying to each the same target point.
142 * Note that for the second term we have to solve the following linear system:
143 * \f$-c_1 \cdot n_1 + c_2 \cdot n_2 + C \cdot n_3 = - p_2 + p_1\f$, where \f$c_1\f$, \f$c_2\f$ and \f$C\f$ are constants,
144 * offset vector \f$p_1\f$ in direction \f$n_1\f$, offset vector \f$p_2\f$ in direction \f$n_2\f$,
145 * \f$n_3\f$ is the normal vector to both directions. \f$C\f$ would be the minimum distance between the two lines.
146 * \sa molecule::MinimiseConstrainedPotential(), molecule::VerletForceIntegration()
147 * \param *out output stream for debugging
148 * \param &Params constrained potential parameters
149 * \return potential energy
150 * \note This routine is scaling quadratically which is not optimal.
151 * \todo There's a bit double counting going on for the first time, bu nothing to worry really about.
152 */
153double molecule::ConstrainedPotential(struct EvaluatePotential &Params)
154{
155 double tmp = 0.;
156 double result = 0.;
157 // go through every atom
158 atom *Runner = NULL;
159 for (molecule::const_iterator iter = begin(); iter != end(); ++iter) {
160 // first term: distance to target
161 Runner = Params.PermutationMap[(*iter)->nr]; // find target point
162 tmp = ((*iter)->Trajectory.R.at(Params.startstep).distance(Runner->Trajectory.R.at(Params.endstep)));
163 tmp *= Params.IsAngstroem ? 1. : 1./AtomicLengthToAngstroem;
164 result += Params.PenaltyConstants[0] * tmp;
165 //Log() << Verbose(4) << "Adding " << tmp*constants[0] << "." << endl;
166
167 // second term: sum of distances to other trajectories
168 result += SumDistanceOfTrajectories((*iter), this, Params);
169
170 // third term: penalty for equal targets
171 result += PenalizeEqualTargets((*iter), this, Params);
172 }
173
174 return result;
175};
176
177/** print the current permutation map.
178 * \param *out output stream for debugging
179 * \param &Params constrained potential parameters
180 * \param AtomCount number of atoms
181 */
182void PrintPermutationMap(int AtomCount, struct EvaluatePotential &Params)
183{
184 stringstream zeile1, zeile2;
185 int *DoubleList = Calloc<int>(AtomCount, "PrintPermutationMap: *DoubleList");
186 int doubles = 0;
187 zeile1 << "PermutationMap: ";
188 zeile2 << " ";
189 for (int i=0;i<AtomCount;i++) {
190 Params.DoubleList[Params.PermutationMap[i]->nr]++;
191 zeile1 << i << " ";
192 zeile2 << Params.PermutationMap[i]->nr << " ";
193 }
194 for (int i=0;i<AtomCount;i++)
195 if (Params.DoubleList[i] > 1)
196 doubles++;
197 if (doubles >0)
198 DoLog(2) && (Log() << Verbose(2) << "Found " << doubles << " Doubles." << endl);
199 Free(&DoubleList);
200// Log() << Verbose(2) << zeile1.str() << endl << zeile2.str() << endl;
201};
202
203/** \f$O(N^2)\f$ operation of calculation distance between each atom pair and putting into DistanceList.
204 * \param *mol molecule to scan distances in
205 * \param &Params constrained potential parameters
206 */
207void FillDistanceList(molecule *mol, struct EvaluatePotential &Params)
208{
209 for (int i=mol->getAtomCount(); i--;) {
210 Params.DistanceList[i] = new DistanceMap; // is the distance sorted target list per atom
211 Params.DistanceList[i]->clear();
212 }
213
214 for (molecule::const_iterator iter = mol->begin(); iter != mol->end(); ++iter) {
215 for (molecule::const_iterator runner = mol->begin(); runner != mol->end(); ++runner) {
216 Params.DistanceList[(*iter)->nr]->insert( DistancePair((*iter)->Trajectory.R.at(Params.startstep).distance((*runner)->Trajectory.R.at(Params.endstep)), (*runner)) );
217 }
218 }
219};
220
221/** initialize lists.
222 * \param *out output stream for debugging
223 * \param *mol molecule to scan distances in
224 * \param &Params constrained potential parameters
225 */
226void CreateInitialLists(molecule *mol, struct EvaluatePotential &Params)
227{
228 for (molecule::const_iterator iter = mol->begin(); iter != mol->end(); ++iter) {
229 Params.StepList[(*iter)->nr] = Params.DistanceList[(*iter)->nr]->begin(); // stores the step to the next iterator that could be a possible next target
230 Params.PermutationMap[(*iter)->nr] = Params.DistanceList[(*iter)->nr]->begin()->second; // always pick target with the smallest distance
231 Params.DoubleList[Params.DistanceList[(*iter)->nr]->begin()->second->nr]++; // increase this target's source count (>1? not injective)
232 Params.DistanceIterators[(*iter)->nr] = Params.DistanceList[(*iter)->nr]->begin(); // and remember which one we picked
233 DoLog(2) && (Log() << Verbose(2) << **iter << " starts with distance " << Params.DistanceList[(*iter)->nr]->begin()->first << "." << endl);
234 }
235};
236
237/** Try the next nearest neighbour in order to make the permutation map injective.
238 * \param *out output stream for debugging
239 * \param *mol molecule
240 * \param *Walker atom to change its target
241 * \param &OldPotential old value of constraint potential to see if we do better with new target
242 * \param &Params constrained potential parameters
243 */
244double TryNextNearestNeighbourForInjectivePermutation(molecule *mol, atom *Walker, double &OldPotential, struct EvaluatePotential &Params)
245{
246 double Potential = 0;
247 DistanceMap::iterator NewBase = Params.DistanceIterators[Walker->nr]; // store old base
248 do {
249 NewBase++; // take next further distance in distance to targets list that's a target of no one
250 } while ((Params.DoubleList[NewBase->second->nr] != 0) && (NewBase != Params.DistanceList[Walker->nr]->end()));
251 if (NewBase != Params.DistanceList[Walker->nr]->end()) {
252 Params.PermutationMap[Walker->nr] = NewBase->second;
253 Potential = fabs(mol->ConstrainedPotential(Params));
254 if (Potential > OldPotential) { // undo
255 Params.PermutationMap[Walker->nr] = Params.DistanceIterators[Walker->nr]->second;
256 } else { // do
257 Params.DoubleList[Params.DistanceIterators[Walker->nr]->second->nr]--; // decrease the old entry in the doubles list
258 Params.DoubleList[NewBase->second->nr]++; // increase the old entry in the doubles list
259 Params.DistanceIterators[Walker->nr] = NewBase;
260 OldPotential = Potential;
261 DoLog(3) && (Log() << Verbose(3) << "Found a new permutation, new potential is " << OldPotential << "." << endl);
262 }
263 }
264 return Potential;
265};
266
267/** Permutes \a **&PermutationMap until the penalty is below constants[2].
268 * \param *out output stream for debugging
269 * \param *mol molecule to scan distances in
270 * \param &Params constrained potential parameters
271 */
272void MakeInjectivePermutation(molecule *mol, struct EvaluatePotential &Params)
273{
274 molecule::const_iterator iter = mol->begin();
275 DistanceMap::iterator NewBase;
276 double Potential = fabs(mol->ConstrainedPotential(Params));
277
278 if (mol->empty()) {
279 eLog() << Verbose(1) << "Molecule is empty." << endl;
280 return;
281 }
282 while ((Potential) > Params.PenaltyConstants[2]) {
283 PrintPermutationMap(mol->getAtomCount(), Params);
284 iter++;
285 if (iter == mol->end()) // round-robin at the end
286 iter = mol->begin();
287 if (Params.DoubleList[Params.DistanceIterators[(*iter)->nr]->second->nr] <= 1) // no need to make those injective that aren't
288 continue;
289 // now, try finding a new one
290 Potential = TryNextNearestNeighbourForInjectivePermutation(mol, (*iter), Potential, Params);
291 }
292 for (int i=mol->getAtomCount(); i--;) // now each single entry in the DoubleList should be <=1
293 if (Params.DoubleList[i] > 1) {
294 DoeLog(0) && (eLog()<< Verbose(0) << "Failed to create an injective PermutationMap!" << endl);
295 performCriticalExit();
296 }
297 DoLog(1) && (Log() << Verbose(1) << "done." << endl);
298};
299
300/** Minimises the extra potential for constrained molecular dynamics and gives forces and the constrained potential energy.
301 * We do the following:
302 * -# Generate a distance list from all source to all target points
303 * -# Sort this per source point
304 * -# Take for each source point the target point with minimum distance, use this as initial permutation
305 * -# check whether molecule::ConstrainedPotential() is greater than injective penalty
306 * -# If so, we go through each source point, stepping down in the sorted target point distance list and re-checking potential.
307 * -# Next, we only apply transformations that keep the injectivity of the permutations list.
308 * -# Hence, for one source point we step down the ladder and seek the corresponding owner of this new target
309 * point and try to change it for one with lesser distance, or for the next one with greater distance, but only
310 * if this decreases the conditional potential.
311 * -# finished.
312 * -# Then, we calculate the forces by taking the spatial derivative, where we scale the potential to such a degree,
313 * that the total force is always pointing in direction of the constraint force (ensuring that we move in the
314 * right direction).
315 * -# Finally, we calculate the potential energy and return.
316 * \param *out output stream for debugging
317 * \param **PermutationMap on return: mapping between the atom label of the initial and the final configuration
318 * \param startstep current MD step giving initial position between which and \a endstep we perform the constrained MD (as further steps are always concatenated)
319 * \param endstep step giving final position in constrained MD
320 * \param IsAngstroem whether coordinates are in angstroem (true) or bohrradius (false)
321 * \sa molecule::VerletForceIntegration()
322 * \return potential energy (and allocated **PermutationMap (array of molecule::AtomCount ^2)
323 * \todo The constrained potential's constants are set to fixed values right now, but they should scale based on checks of the system in order
324 * to ensure they're properties (e.g. constants[2] always greater than the energy of the system).
325 * \bug this all is not O(N log N) but O(N^2)
326 */
327double molecule::MinimiseConstrainedPotential(atom **&PermutationMap, int startstep, int endstep, bool IsAngstroem)
328{
329 double Potential, OldPotential, OlderPotential;
330 struct EvaluatePotential Params;
331 Params.PermutationMap = Calloc<atom*>(getAtomCount(), "molecule::MinimiseConstrainedPotential: Params.**PermutationMap");
332 Params.DistanceList = Malloc<DistanceMap*>(getAtomCount(), "molecule::MinimiseConstrainedPotential: Params.**DistanceList");
333 Params.DistanceIterators = Malloc<DistanceMap::iterator>(getAtomCount(), "molecule::MinimiseConstrainedPotential: Params.*DistanceIterators");
334 Params.DoubleList = Calloc<int>(getAtomCount(), "molecule::MinimiseConstrainedPotential: Params.*DoubleList");
335 Params.StepList = Malloc<DistanceMap::iterator>(getAtomCount(), "molecule::MinimiseConstrainedPotential: Params.*StepList");
336 int round;
337 atom *Sprinter = NULL;
338 DistanceMap::iterator Rider, Strider;
339
340 /// Minimise the potential
341 // set Lagrange multiplier constants
342 Params.PenaltyConstants[0] = 10.;
343 Params.PenaltyConstants[1] = 1.;
344 Params.PenaltyConstants[2] = 1e+7; // just a huge penalty
345 // generate the distance list
346 DoLog(1) && (Log() << Verbose(1) << "Allocating, initializting and filling the distance list ... " << endl);
347 FillDistanceList(this, Params);
348
349 // create the initial PermutationMap (source -> target)
350 CreateInitialLists(this, Params);
351
352 // make the PermutationMap injective by checking whether we have a non-zero constants[2] term in it
353 DoLog(1) && (Log() << Verbose(1) << "Making the PermutationMap injective ... " << endl);
354 MakeInjectivePermutation(this, Params);
355 Free(&Params.DoubleList);
356
357 // argument minimise the constrained potential in this injective PermutationMap
358 DoLog(1) && (Log() << Verbose(1) << "Argument minimising the PermutationMap." << endl);
359 OldPotential = 1e+10;
360 round = 0;
361 do {
362 DoLog(2) && (Log() << Verbose(2) << "Starting round " << ++round << ", at current potential " << OldPotential << " ... " << endl);
363 OlderPotential = OldPotential;
364 molecule::const_iterator iter;
365 do {
366 iter = begin();
367 for (; iter != end(); ++iter) {
368 PrintPermutationMap(getAtomCount(), Params);
369 Sprinter = Params.DistanceIterators[(*iter)->nr]->second; // store initial partner
370 Strider = Params.DistanceIterators[(*iter)->nr]; //remember old iterator
371 Params.DistanceIterators[(*iter)->nr] = Params.StepList[(*iter)->nr];
372 if (Params.DistanceIterators[(*iter)->nr] == Params.DistanceList[(*iter)->nr]->end()) {// stop, before we run through the list and still on
373 Params.DistanceIterators[(*iter)->nr] == Params.DistanceList[(*iter)->nr]->begin();
374 break;
375 }
376 //Log() << Verbose(2) << "Current Walker: " << *(*iter) << " with old/next candidate " << *Sprinter << "/" << *DistanceIterators[(*iter)->nr]->second << "." << endl;
377 // find source of the new target
378 molecule::const_iterator runner = begin();
379 for (; runner != end(); ++runner) { // find the source whose toes we might be stepping on (Walker's new target should be in use by another already)
380 if (Params.PermutationMap[(*runner)->nr] == Params.DistanceIterators[(*iter)->nr]->second) {
381 //Log() << Verbose(2) << "Found the corresponding owner " << *(*runner) << " to " << *PermutationMap[(*runner)->nr] << "." << endl;
382 break;
383 }
384 }
385 if (runner != end()) { // we found the other source
386 // then look in its distance list for Sprinter
387 Rider = Params.DistanceList[(*runner)->nr]->begin();
388 for (; Rider != Params.DistanceList[(*runner)->nr]->end(); Rider++)
389 if (Rider->second == Sprinter)
390 break;
391 if (Rider != Params.DistanceList[(*runner)->nr]->end()) { // if we have found one
392 //Log() << Verbose(2) << "Current Other: " << *(*runner) << " with old/next candidate " << *PermutationMap[(*runner)->nr] << "/" << *Rider->second << "." << endl;
393 // exchange both
394 Params.PermutationMap[(*iter)->nr] = Params.DistanceIterators[(*iter)->nr]->second; // put next farther distance into PermutationMap
395 Params.PermutationMap[(*runner)->nr] = Sprinter; // and hand the old target to its respective owner
396 PrintPermutationMap(getAtomCount(), Params);
397 // calculate the new potential
398 //Log() << Verbose(2) << "Checking new potential ..." << endl;
399 Potential = ConstrainedPotential(Params);
400 if (Potential > OldPotential) { // we made everything worse! Undo ...
401 //Log() << Verbose(3) << "Nay, made the potential worse: " << Potential << " vs. " << OldPotential << "!" << endl;
402 //Log() << Verbose(3) << "Setting " << *(*runner) << "'s source to " << *Params.DistanceIterators[(*runner)->nr]->second << "." << endl;
403 // Undo for Runner (note, we haven't moved the iteration yet, we may use this)
404 Params.PermutationMap[(*runner)->nr] = Params.DistanceIterators[(*runner)->nr]->second;
405 // Undo for Walker
406 Params.DistanceIterators[(*iter)->nr] = Strider; // take next farther distance target
407 //Log() << Verbose(3) << "Setting " << *(*iter) << "'s source to " << *Params.DistanceIterators[(*iter)->nr]->second << "." << endl;
408 Params.PermutationMap[(*iter)->nr] = Params.DistanceIterators[(*iter)->nr]->second;
409 } else {
410 Params.DistanceIterators[(*runner)->nr] = Rider; // if successful also move the pointer in the iterator list
411 DoLog(3) && (Log() << Verbose(3) << "Found a better permutation, new potential is " << Potential << " vs." << OldPotential << "." << endl);
412 OldPotential = Potential;
413 }
414 if (Potential > Params.PenaltyConstants[2]) {
415 DoeLog(1) && (eLog()<< Verbose(1) << "The two-step permutation procedure did not maintain injectivity!" << endl);
416 exit(255);
417 }
418 //Log() << Verbose(0) << endl;
419 } else {
420 DoeLog(1) && (eLog()<< Verbose(1) << **runner << " was not the owner of " << *Sprinter << "!" << endl);
421 exit(255);
422 }
423 } else {
424 Params.PermutationMap[(*iter)->nr] = Params.DistanceIterators[(*iter)->nr]->second; // new target has no source!
425 }
426 Params.StepList[(*iter)->nr]++; // take next farther distance target
427 }
428 } while (++iter != end());
429 } while ((OlderPotential - OldPotential) > 1e-3);
430 DoLog(1) && (Log() << Verbose(1) << "done." << endl);
431
432
433 /// free memory and return with evaluated potential
434 for (int i=getAtomCount(); i--;)
435 Params.DistanceList[i]->clear();
436 Free(&Params.DistanceList);
437 Free(&Params.DistanceIterators);
438 return ConstrainedPotential(Params);
439};
440
441
442/** Evaluates the (distance-related part) of the constrained potential for the constrained forces.
443 * \param *out output stream for debugging
444 * \param startstep current MD step giving initial position between which and \a endstep we perform the constrained MD (as further steps are always concatenated)
445 * \param endstep step giving final position in constrained MD
446 * \param **PermutationMap mapping between the atom label of the initial and the final configuration
447 * \param *Force ForceMatrix containing force vectors from the external energy functional minimisation.
448 * \todo the constant for the constrained potential distance part is hard-coded independently of the hard-coded value in MinimiseConstrainedPotential()
449 */
450void molecule::EvaluateConstrainedForces(int startstep, int endstep, atom **PermutationMap, ForceMatrix *Force)
451{
452 /// evaluate forces (only the distance to target dependent part) with the final PermutationMap
453 DoLog(1) && (Log() << Verbose(1) << "Calculating forces and adding onto ForceMatrix ... " << endl);
454 ActOnAllAtoms( &atom::EvaluateConstrainedForce, startstep, endstep, PermutationMap, Force );
455 DoLog(1) && (Log() << Verbose(1) << "done." << endl);
456};
457
458/** Performs a linear interpolation between two desired atomic configurations with a given number of steps.
459 * Note, step number is config::MaxOuterStep
460 * \param *out output stream for debugging
461 * \param startstep stating initial configuration in molecule::Trajectories
462 * \param endstep stating final configuration in molecule::Trajectories
463 * \param &config configuration structure
464 * \param MapByIdentity if true we just use the identity to map atoms in start config to end config, if not we find mapping by \sa MinimiseConstrainedPotential()
465 * \return true - success in writing step files, false - error writing files or only one step in molecule::Trajectories
466 */
467bool molecule::LinearInterpolationBetweenConfiguration(int startstep, int endstep, const char *prefix, config &configuration, bool MapByIdentity)
468{
469 molecule *mol = NULL;
470 bool status = true;
471 int MaxSteps = configuration.MaxOuterStep;
472 MoleculeListClass *MoleculePerStep = new MoleculeListClass(World::getPointer());
473 // Get the Permutation Map by MinimiseConstrainedPotential
474 atom **PermutationMap = NULL;
475 atom *Sprinter = NULL;
476 if (!MapByIdentity)
477 MinimiseConstrainedPotential(PermutationMap, startstep, endstep, configuration.GetIsAngstroem());
478 else {
479 PermutationMap = Malloc<atom *>(getAtomCount(), "molecule::LinearInterpolationBetweenConfiguration: **PermutationMap");
480 SetIndexedArrayForEachAtomTo( PermutationMap, &atom::nr );
481 }
482
483 // check whether we have sufficient space in Trajectories for each atom
484 ActOnAllAtoms( &atom::ResizeTrajectory, MaxSteps );
485 // push endstep to last one
486 ActOnAllAtoms( &atom::CopyStepOnStep, MaxSteps, endstep );
487 endstep = MaxSteps;
488
489 // go through all steps and add the molecular configuration to the list and to the Trajectories of \a this molecule
490 DoLog(1) && (Log() << Verbose(1) << "Filling intermediate " << MaxSteps << " steps with MDSteps of " << MDSteps << "." << endl);
491 for (int step = 0; step <= MaxSteps; step++) {
492 mol = World::getInstance().createMolecule();
493 MoleculePerStep->insert(mol);
494 for (molecule::const_iterator iter = begin(); iter != end(); ++iter) {
495 // add to molecule list
496 Sprinter = mol->AddCopyAtom((*iter));
497 for (int n=NDIM;n--;) {
498 Sprinter->x[n] = (*iter)->Trajectory.R.at(startstep)[n] + (PermutationMap[(*iter)->nr]->Trajectory.R.at(endstep)[n] - (*iter)->Trajectory.R.at(startstep)[n])*((double)step/(double)MaxSteps);
499 // add to Trajectories
500 //Log() << Verbose(3) << step << ">=" << MDSteps-1 << endl;
501 if (step < MaxSteps) {
502 (*iter)->Trajectory.R.at(step)[n] = (*iter)->Trajectory.R.at(startstep)[n] + (PermutationMap[(*iter)->nr]->Trajectory.R.at(endstep)[n] - (*iter)->Trajectory.R.at(startstep)[n])*((double)step/(double)MaxSteps);
503 (*iter)->Trajectory.U.at(step)[n] = 0.;
504 (*iter)->Trajectory.F.at(step)[n] = 0.;
505 }
506 }
507 }
508 }
509 MDSteps = MaxSteps+1; // otherwise new Trajectories' points aren't stored on save&exit
510
511 // store the list to single step files
512 int *SortIndex = Malloc<int>(getAtomCount(), "molecule::LinearInterpolationBetweenConfiguration: *SortIndex");
513 for (int i=getAtomCount(); i--; )
514 SortIndex[i] = i;
515 status = MoleculePerStep->OutputConfigForListOfFragments(&configuration, SortIndex);
516
517 // free and return
518 Free(&PermutationMap);
519 delete(MoleculePerStep);
520 return status;
521};
522
523/** Parses nuclear forces from file and performs Verlet integration.
524 * Note that we assume the parsed forces to be in atomic units (hence, if coordinates are in angstroem, we
525 * have to transform them).
526 * This adds a new MD step to the config file.
527 * \param *out output stream for debugging
528 * \param *file filename
529 * \param config structure with config::Deltat, config::IsAngstroem, config::DoConstrained
530 * \param delta_t time step width in atomic units
531 * \param IsAngstroem whether coordinates are in angstroem (true) or bohrradius (false)
532 * \param DoConstrained whether we perform a constrained (>0, target step in molecule::trajectories) or unconstrained (0) molecular dynamics, \sa molecule::MinimiseConstrainedPotential()
533 * \return true - file found and parsed, false - file not found or imparsable
534 * \todo This is not yet checked if it is correctly working with DoConstrained set to true.
535 */
536bool molecule::VerletForceIntegration(char *file, config &configuration)
537{
538 ifstream input(file);
539 string token;
540 stringstream item;
541 double IonMass, ConstrainedPotentialEnergy, ActualTemp;
542 Vector Velocity;
543 ForceMatrix Force;
544
545 CountElements(); // make sure ElementsInMolecule is up to date
546
547 // check file
548 if (input == NULL) {
549 return false;
550 } else {
551 // parse file into ForceMatrix
552 if (!Force.ParseMatrix(file, 0,0,0)) {
553 DoeLog(0) && (eLog()<< Verbose(0) << "Could not parse Force Matrix file " << file << "." << endl);
554 performCriticalExit();
555 return false;
556 }
557 if (Force.RowCounter[0] != getAtomCount()) {
558 DoeLog(0) && (eLog()<< Verbose(0) << "Mismatch between number of atoms in file " << Force.RowCounter[0] << " and in molecule " << getAtomCount() << "." << endl);
559 performCriticalExit();
560 return false;
561 }
562 // correct Forces
563 Velocity.Zero();
564 for(int i=0;i<getAtomCount();i++)
565 for(int d=0;d<NDIM;d++) {
566 Velocity[d] += Force.Matrix[0][i][d+5];
567 }
568 for(int i=0;i<getAtomCount();i++)
569 for(int d=0;d<NDIM;d++) {
570 Force.Matrix[0][i][d+5] -= Velocity[d]/static_cast<double>(getAtomCount());
571 }
572 // solve a constrained potential if we are meant to
573 if (configuration.DoConstrainedMD) {
574 // calculate forces and potential
575 atom **PermutationMap = NULL;
576 ConstrainedPotentialEnergy = MinimiseConstrainedPotential(PermutationMap,configuration.DoConstrainedMD, 0, configuration.GetIsAngstroem());
577 EvaluateConstrainedForces(configuration.DoConstrainedMD, 0, PermutationMap, &Force);
578 Free(&PermutationMap);
579 }
580
581 // and perform Verlet integration for each atom with position, velocity and force vector
582 // check size of vectors
583 ActOnAllAtoms( &atom::ResizeTrajectory, MDSteps+10 );
584
585 ActOnAllAtoms( &atom::VelocityVerletUpdate, MDSteps, &configuration, &Force);
586 }
587 // correct velocities (rather momenta) so that center of mass remains motionless
588 Velocity.Zero();
589 IonMass = 0.;
590 ActOnAllAtoms ( &atom::SumUpKineticEnergy, MDSteps, &IonMass, &Velocity );
591
592 // correct velocities (rather momenta) so that center of mass remains motionless
593 Velocity.Scale(1./IonMass);
594 ActualTemp = 0.;
595 ActOnAllAtoms ( &atom::CorrectVelocity, &ActualTemp, MDSteps, &Velocity );
596 Thermostats(configuration, ActualTemp, Berendsen);
597 MDSteps++;
598
599 // exit
600 return true;
601};
602
603/** Implementation of various thermostats.
604 * All these thermostats apply an additional force which has the following forms:
605 * -# Woodcock
606 * \f$p_i \rightarrow \sqrt{\frac{T_0}{T}} \cdot p_i\f$
607 * -# Gaussian
608 * \f$ \frac{ \sum_i \frac{p_i}{m_i} \frac{\partial V}{\partial q_i}} {\sum_i \frac{p^2_i}{m_i}} \cdot p_i\f$
609 * -# Langevin
610 * \f$p_{i,n} \rightarrow \sqrt{1-\alpha^2} p_{i,0} + \alpha p_r\f$
611 * -# Berendsen
612 * \f$p_i \rightarrow \left [ 1+ \frac{\delta t}{\tau_T} \left ( \frac{T_0}{T} \right ) \right ]^{\frac{1}{2}} \cdot p_i\f$
613 * -# Nose-Hoover
614 * \f$\zeta p_i \f$ with \f$\frac{\partial \zeta}{\partial t} = \frac{1}{M_s} \left ( \sum^N_{i=1} \frac{p_i^2}{m_i} - g k_B T \right )\f$
615 * These Thermostats either simply rescale the velocities, thus this function should be called after ion velocities have been updated, and/or
616 * have a constraint force acting additionally on the ions. In the latter case, the ion speeds have to be modified
617 * belatedly and the constraint force set.
618 * \param *P Problem at hand
619 * \param i which of the thermostats to take: 0 - none, 1 - Woodcock, 2 - Gaussian, 3 - Langevin, 4 - Berendsen, 5 - Nose-Hoover
620 * \sa InitThermostat()
621 */
622void molecule::Thermostats(config &configuration, double ActualTemp, int Thermostat)
623{
624 double ekin = 0.;
625 double E = 0., G = 0.;
626 double delta_alpha = 0.;
627 double ScaleTempFactor;
628 gsl_rng * r;
629 const gsl_rng_type * T;
630
631 // calculate scale configuration
632 ScaleTempFactor = configuration.TargetTemp/ActualTemp;
633
634 // differentating between the various thermostats
635 switch(Thermostat) {
636 case None:
637 DoLog(2) && (Log() << Verbose(2) << "Applying no thermostat..." << endl);
638 break;
639 case Woodcock:
640 if ((configuration.ScaleTempStep > 0) && ((MDSteps-1) % configuration.ScaleTempStep == 0)) {
641 DoLog(2) && (Log() << Verbose(2) << "Applying Woodcock thermostat..." << endl);
642 ActOnAllAtoms( &atom::Thermostat_Woodcock, sqrt(ScaleTempFactor), MDSteps, &ekin );
643 }
644 break;
645 case Gaussian:
646 DoLog(2) && (Log() << Verbose(2) << "Applying Gaussian thermostat..." << endl);
647 ActOnAllAtoms( &atom::Thermostat_Gaussian_init, MDSteps, &G, &E );
648
649 DoLog(1) && (Log() << Verbose(1) << "Gaussian Least Constraint constant is " << G/E << "." << endl);
650 ActOnAllAtoms( &atom::Thermostat_Gaussian_least_constraint, MDSteps, G/E, &ekin, &configuration);
651
652 break;
653 case Langevin:
654 DoLog(2) && (Log() << Verbose(2) << "Applying Langevin thermostat..." << endl);
655 // init random number generator
656 gsl_rng_env_setup();
657 T = gsl_rng_default;
658 r = gsl_rng_alloc (T);
659 // Go through each ion
660 ActOnAllAtoms( &atom::Thermostat_Langevin, MDSteps, r, &ekin, &configuration );
661 break;
662
663 case Berendsen:
664 DoLog(2) && (Log() << Verbose(2) << "Applying Berendsen-VanGunsteren thermostat..." << endl);
665 ActOnAllAtoms( &atom::Thermostat_Berendsen, MDSteps, ScaleTempFactor, &ekin, &configuration );
666 break;
667
668 case NoseHoover:
669 DoLog(2) && (Log() << Verbose(2) << "Applying Nose-Hoover thermostat..." << endl);
670 // dynamically evolve alpha (the additional degree of freedom)
671 delta_alpha = 0.;
672 ActOnAllAtoms( &atom::Thermostat_NoseHoover_init, MDSteps, &delta_alpha );
673 delta_alpha = (delta_alpha - (3.*getAtomCount()+1.) * configuration.TargetTemp)/(configuration.HooverMass*Units2Electronmass);
674 configuration.alpha += delta_alpha*configuration.Deltat;
675 DoLog(3) && (Log() << Verbose(3) << "alpha = " << delta_alpha << " * " << configuration.Deltat << " = " << configuration.alpha << "." << endl);
676 // apply updated alpha as additional force
677 ActOnAllAtoms( &atom::Thermostat_NoseHoover_scale, MDSteps, &ekin, &configuration );
678 break;
679 }
680 DoLog(1) && (Log() << Verbose(1) << "Kinetic energy is " << ekin << "." << endl);
681};
Note: See TracBrowser for help on using the repository browser.