source: src/molecule_dynamics.cpp@ 70ff32

Action_Thermostats Add_AtomRandomPerturbation Add_FitFragmentPartialChargesAction Add_RotateAroundBondAction Add_SelectAtomByNameAction Added_ParseSaveFragmentResults AddingActions_SaveParseParticleParameters Adding_Graph_to_ChangeBondActions Adding_MD_integration_tests Adding_ParticleName_to_Atom Adding_StructOpt_integration_tests AtomFragments Automaking_mpqc_open AutomationFragmentation_failures Candidate_v1.5.4 Candidate_v1.6.0 Candidate_v1.6.1 ChangeBugEmailaddress ChangingTestPorts ChemicalSpaceEvaluator CombiningParticlePotentialParsing Combining_Subpackages Debian_Package_split Debian_package_split_molecuildergui_only Disabling_MemDebug Docu_Python_wait EmpiricalPotential_contain_HomologyGraph EmpiricalPotential_contain_HomologyGraph_documentation Enable_parallel_make_install Enhance_userguide Enhanced_StructuralOptimization Enhanced_StructuralOptimization_continued Example_ManyWaysToTranslateAtom Exclude_Hydrogens_annealWithBondGraph FitPartialCharges_GlobalError Fix_BoundInBox_CenterInBox_MoleculeActions Fix_ChargeSampling_PBC Fix_ChronosMutex Fix_FitPartialCharges Fix_FitPotential_needs_atomicnumbers Fix_ForceAnnealing Fix_IndependentFragmentGrids Fix_ParseParticles Fix_ParseParticles_split_forward_backward_Actions Fix_PopActions Fix_QtFragmentList_sorted_selection Fix_Restrictedkeyset_FragmentMolecule Fix_StatusMsg Fix_StepWorldTime_single_argument Fix_Verbose_Codepatterns Fix_fitting_potentials Fixes ForceAnnealing_goodresults ForceAnnealing_oldresults ForceAnnealing_tocheck ForceAnnealing_with_BondGraph ForceAnnealing_with_BondGraph_continued ForceAnnealing_with_BondGraph_continued_betteresults ForceAnnealing_with_BondGraph_contraction-expansion FragmentAction_writes_AtomFragments FragmentMolecule_checks_bonddegrees GeometryObjects Gui_Fixes Gui_displays_atomic_force_velocity ImplicitCharges IndependentFragmentGrids IndependentFragmentGrids_IndividualZeroInstances IndependentFragmentGrids_IntegrationTest IndependentFragmentGrids_Sole_NN_Calculation JobMarket_RobustOnKillsSegFaults JobMarket_StableWorkerPool JobMarket_unresolvable_hostname_fix MoreRobust_FragmentAutomation ODR_violation_mpqc_open PartialCharges_OrthogonalSummation PdbParser_setsAtomName PythonUI_with_named_parameters QtGui_reactivate_TimeChanged_changes Recreated_GuiChecks Rewrite_FitPartialCharges RotateToPrincipalAxisSystem_UndoRedo SaturateAtoms_findBestMatching SaturateAtoms_singleDegree StoppableMakroAction Subpackage_CodePatterns Subpackage_JobMarket Subpackage_LinearAlgebra Subpackage_levmar Subpackage_mpqc_open Subpackage_vmg Switchable_LogView ThirdParty_MPQC_rebuilt_buildsystem TrajectoryDependenant_MaxOrder TremoloParser_IncreasedPrecision TremoloParser_MultipleTimesteps TremoloParser_setsAtomName Ubuntu_1604_changes stable
Last change on this file since 70ff32 was 4a7776a, checked in by Frederik Heber <heber@…>, 15 years ago

Complete refactoring of molecule_dynamics.cpp

  • Property mode set to 100644
File size: 34.5 KB
Line 
1/*
2 * molecule_dynamics.cpp
3 *
4 * Created on: Oct 5, 2009
5 * Author: heber
6 */
7
8#include "atom.hpp"
9#include "config.hpp"
10#include "element.hpp"
11#include "memoryallocator.hpp"
12#include "molecule.hpp"
13#include "parser.hpp"
14
15/************************************* Functions for class molecule *********************************/
16
17/** Penalizes long trajectories.
18 * \param *Walker atom to check against others
19 * \param *mol molecule with other atoms
20 * \param &Params constraint potential parameters
21 * \return penalty times each distance
22 */
23double SumDistanceOfTrajectories(atom *Walker, molecule *mol, struct EvaluatePotential &Params)
24{
25 gsl_matrix *A = gsl_matrix_alloc(NDIM,NDIM);
26 gsl_vector *x = gsl_vector_alloc(NDIM);
27 atom * Runner = mol->start;
28 atom *Sprinter = NULL;
29 Vector trajectory1, trajectory2, normal, TestVector;
30 double Norm1, Norm2, tmp, result = 0.;
31
32 while (Runner->next != mol->end) {
33 Runner = Runner->next;
34 if (Runner == Walker) // hence, we only go up to the Walker, not beyond (similar to i=0; i<j; i++)
35 break;
36 // determine normalized trajectories direction vector (n1, n2)
37 Sprinter = Params.PermutationMap[Walker->nr]; // find first target point
38 trajectory1.CopyVector(&Sprinter->Trajectory.R.at(Params.endstep));
39 trajectory1.SubtractVector(&Walker->Trajectory.R.at(Params.startstep));
40 trajectory1.Normalize();
41 Norm1 = trajectory1.Norm();
42 Sprinter = Params.PermutationMap[Runner->nr]; // find second target point
43 trajectory2.CopyVector(&Sprinter->Trajectory.R.at(Params.endstep));
44 trajectory2.SubtractVector(&Runner->Trajectory.R.at(Params.startstep));
45 trajectory2.Normalize();
46 Norm2 = trajectory1.Norm();
47 // check whether either is zero()
48 if ((Norm1 < MYEPSILON) && (Norm2 < MYEPSILON)) {
49 tmp = Walker->Trajectory.R.at(Params.startstep).Distance(&Runner->Trajectory.R.at(Params.startstep));
50 } else if (Norm1 < MYEPSILON) {
51 Sprinter = Params.PermutationMap[Walker->nr]; // find first target point
52 trajectory1.CopyVector(&Sprinter->Trajectory.R.at(Params.endstep)); // copy first offset
53 trajectory1.SubtractVector(&Runner->Trajectory.R.at(Params.startstep)); // subtract second offset
54 trajectory2.Scale( trajectory1.ScalarProduct(&trajectory2) ); // trajectory2 is scaled to unity, hence we don't need to divide by anything
55 trajectory1.SubtractVector(&trajectory2); // project the part in norm direction away
56 tmp = trajectory1.Norm(); // remaining norm is distance
57 } else if (Norm2 < MYEPSILON) {
58 Sprinter = Params.PermutationMap[Runner->nr]; // find second target point
59 trajectory2.CopyVector(&Sprinter->Trajectory.R.at(Params.endstep)); // copy second offset
60 trajectory2.SubtractVector(&Walker->Trajectory.R.at(Params.startstep)); // subtract first offset
61 trajectory1.Scale( trajectory2.ScalarProduct(&trajectory1) ); // trajectory1 is scaled to unity, hence we don't need to divide by anything
62 trajectory2.SubtractVector(&trajectory1); // project the part in norm direction away
63 tmp = trajectory2.Norm(); // remaining norm is distance
64 } else if ((fabs(trajectory1.ScalarProduct(&trajectory2)/Norm1/Norm2) - 1.) < MYEPSILON) { // check whether they're linear dependent
65 // *out << Verbose(3) << "Both trajectories of " << *Walker << " and " << *Runner << " are linear dependent: ";
66 // *out << trajectory1;
67 // *out << " and ";
68 // *out << trajectory2;
69 tmp = Walker->Trajectory.R.at(Params.startstep).Distance(&Runner->Trajectory.R.at(Params.startstep));
70 // *out << " with distance " << tmp << "." << endl;
71 } else { // determine distance by finding minimum distance
72 // *out << Verbose(3) << "Both trajectories of " << *Walker << " and " << *Runner << " are linear independent ";
73 // *out << endl;
74 // *out << "First Trajectory: ";
75 // *out << trajectory1 << endl;
76 // *out << "Second Trajectory: ";
77 // *out << trajectory2 << endl;
78 // determine normal vector for both
79 normal.MakeNormalVector(&trajectory1, &trajectory2);
80 // print all vectors for debugging
81 // *out << "Normal vector in between: ";
82 // *out << normal << endl;
83 // setup matrix
84 for (int i=NDIM;i--;) {
85 gsl_matrix_set(A, 0, i, trajectory1.x[i]);
86 gsl_matrix_set(A, 1, i, trajectory2.x[i]);
87 gsl_matrix_set(A, 2, i, normal.x[i]);
88 gsl_vector_set(x,i, (Walker->Trajectory.R.at(Params.startstep).x[i] - Runner->Trajectory.R.at(Params.startstep).x[i]));
89 }
90 // solve the linear system by Householder transformations
91 gsl_linalg_HH_svx(A, x);
92 // distance from last component
93 tmp = gsl_vector_get(x,2);
94 // *out << " with distance " << tmp << "." << endl;
95 // test whether we really have the intersection (by checking on c_1 and c_2)
96 TestVector.CopyVector(&Runner->Trajectory.R.at(Params.startstep));
97 trajectory2.Scale(gsl_vector_get(x,1));
98 TestVector.AddVector(&trajectory2);
99 normal.Scale(gsl_vector_get(x,2));
100 TestVector.AddVector(&normal);
101 TestVector.SubtractVector(&Walker->Trajectory.R.at(Params.startstep));
102 trajectory1.Scale(gsl_vector_get(x,0));
103 TestVector.SubtractVector(&trajectory1);
104 if (TestVector.Norm() < MYEPSILON) {
105 // *out << Verbose(2) << "Test: ok.\tDistance of " << tmp << " is correct." << endl;
106 } else {
107 // *out << Verbose(2) << "Test: failed.\tIntersection is off by ";
108 // *out << TestVector;
109 // *out << "." << endl;
110 }
111 }
112 // add up
113 tmp *= Params.IsAngstroem ? 1. : 1./AtomicLengthToAngstroem;
114 if (fabs(tmp) > MYEPSILON) {
115 result += Params.PenaltyConstants[1] * 1./tmp;
116 //*out << Verbose(4) << "Adding " << 1./tmp*constants[1] << "." << endl;
117 }
118 }
119 return result;
120};
121
122/** Penalizes atoms heading to same target.
123 * \param *Walker atom to check against others
124 * \param *mol molecule with other atoms
125 * \param &Params constrained potential parameters
126 * \return \a penalty times the number of equal targets
127 */
128double PenalizeEqualTargets(atom *Walker, molecule *mol, struct EvaluatePotential &Params)
129{
130 double result = 0.;
131 atom * Runner = mol->start;
132 while (Runner->next != mol->end) {
133 Runner = Runner->next;
134 if ((Params.PermutationMap[Walker->nr] == Params.PermutationMap[Runner->nr]) && (Walker->nr < Runner->nr)) {
135 // atom *Sprinter = PermutationMap[Walker->nr];
136 // *out << *Walker << " and " << *Runner << " are heading to the same target at ";
137 // *out << Sprinter->Trajectory.R.at(endstep);
138 // *out << ", penalting." << endl;
139 result += Params.PenaltyConstants[2];
140 //*out << Verbose(4) << "Adding " << constants[2] << "." << endl;
141 }
142 }
143 return result;
144};
145
146/** Evaluates the potential energy used for constrained molecular dynamics.
147 * \f$V_i^{con} = c^{bond} \cdot | r_{P(i)} - R_i | + sum_{i \neq j} C^{min} \cdot \frac{1}{C_{ij}} + C^{inj} \Bigl (1 - \theta \bigl (\prod_{i \neq j} (P(i) - P(j)) \bigr ) \Bigr )\f$
148 * where the first term points to the target in minimum distance, the second is a penalty for trajectories lying too close to each other (\f$C_{ij}\f$ is minimum distance between
149 * trajectories i and j) and the third term is a penalty for two atoms trying to each the same target point.
150 * Note that for the second term we have to solve the following linear system:
151 * \f$-c_1 \cdot n_1 + c_2 \cdot n_2 + C \cdot n_3 = - p_2 + p_1\f$, where \f$c_1\f$, \f$c_2\f$ and \f$C\f$ are constants,
152 * offset vector \f$p_1\f$ in direction \f$n_1\f$, offset vector \f$p_2\f$ in direction \f$n_2\f$,
153 * \f$n_3\f$ is the normal vector to both directions. \f$C\f$ would be the minimum distance between the two lines.
154 * \sa molecule::MinimiseConstrainedPotential(), molecule::VerletForceIntegration()
155 * \param *out output stream for debugging
156 * \param &Params constrained potential parameters
157 * \return potential energy
158 * \note This routine is scaling quadratically which is not optimal.
159 * \todo There's a bit double counting going on for the first time, bu nothing to worry really about.
160 */
161double molecule::ConstrainedPotential(ofstream *out, struct EvaluatePotential &Params)
162{
163 double tmp, result;
164
165 // go through every atom
166 atom *Runner = NULL;
167 atom *Walker = start;
168 while (Walker->next != end) {
169 Walker = Walker->next;
170 // first term: distance to target
171 Runner = Params.PermutationMap[Walker->nr]; // find target point
172 tmp = (Walker->Trajectory.R.at(Params.startstep).Distance(&Runner->Trajectory.R.at(Params.endstep)));
173 tmp *= Params.IsAngstroem ? 1. : 1./AtomicLengthToAngstroem;
174 result += Params.PenaltyConstants[0] * tmp;
175 //*out << Verbose(4) << "Adding " << tmp*constants[0] << "." << endl;
176
177 // second term: sum of distances to other trajectories
178 result += SumDistanceOfTrajectories(Walker, this, Params);
179
180 // third term: penalty for equal targets
181 result += PenalizeEqualTargets(Walker, this, Params);
182 }
183
184 return result;
185};
186
187/** print the current permutation map.
188 * \param *out output stream for debugging
189 * \param &Params constrained potential parameters
190 * \param AtomCount number of atoms
191 */
192void PrintPermutationMap(ofstream *out, int AtomCount, struct EvaluatePotential &Params)
193{
194 stringstream zeile1, zeile2;
195 int *DoubleList = Malloc<int>(AtomCount, "PrintPermutationMap: *DoubleList");
196 int doubles = 0;
197 for (int i=0;i<AtomCount;i++)
198 DoubleList[i] = 0;
199 zeile1 << "PermutationMap: ";
200 zeile2 << " ";
201 for (int i=0;i<AtomCount;i++) {
202 Params.DoubleList[Params.PermutationMap[i]->nr]++;
203 zeile1 << i << " ";
204 zeile2 << Params.PermutationMap[i]->nr << " ";
205 }
206 for (int i=0;i<AtomCount;i++)
207 if (Params.DoubleList[i] > 1)
208 doubles++;
209 if (doubles >0)
210 *out << "Found " << doubles << " Doubles." << endl;
211 Free(&DoubleList);
212// *out << zeile1.str() << endl << zeile2.str() << endl;
213};
214
215/** \f$O(N^2)\f$ operation of calculation distance between each atom pair and putting into DistanceList.
216 * \param *mol molecule to scan distances in
217 * \param &Params constrained potential parameters
218 */
219void FillDistanceList(molecule *mol, struct EvaluatePotential &Params)
220{
221 for (int i=mol->AtomCount; i--;) {
222 Params.DistanceList[i] = new DistanceMap; // is the distance sorted target list per atom
223 Params.DistanceList[i]->clear();
224 }
225
226 atom *Runner = NULL;
227 atom *Walker = mol->start;
228 while (Walker->next != mol->end) {
229 Walker = Walker->next;
230 Runner = mol->start;
231 while(Runner->next != mol->end) {
232 Runner = Runner->next;
233 Params.DistanceList[Walker->nr]->insert( DistancePair(Walker->Trajectory.R.at(Params.startstep).Distance(&Runner->Trajectory.R.at(Params.endstep)), Runner) );
234 }
235 }
236};
237
238/** initialize lists.
239 * \param *out output stream for debugging
240 * \param *mol molecule to scan distances in
241 * \param &Params constrained potential parameters
242 */
243void CreateInitialLists(ofstream *out, molecule *mol, struct EvaluatePotential &Params)
244{
245 for (int i=mol->AtomCount; i--;)
246 Params.DoubleList[i] = 0; // stores for how many atoms in startstep this atom is a target in endstep
247
248 atom *Walker = mol->start;
249 while (Walker->next != mol->end) {
250 Walker = Walker->next;
251 Params.StepList[Walker->nr] = Params.DistanceList[Walker->nr]->begin(); // stores the step to the next iterator that could be a possible next target
252 Params.PermutationMap[Walker->nr] = Params.DistanceList[Walker->nr]->begin()->second; // always pick target with the smallest distance
253 Params.DoubleList[Params.DistanceList[Walker->nr]->begin()->second->nr]++; // increase this target's source count (>1? not injective)
254 Params.DistanceIterators[Walker->nr] = Params.DistanceList[Walker->nr]->begin(); // and remember which one we picked
255 *out << *Walker << " starts with distance " << Params.DistanceList[Walker->nr]->begin()->first << "." << endl;
256 }
257};
258
259/** Try the next nearest neighbour in order to make the permutation map injective.
260 * \param *out output stream for debugging
261 * \param *mol molecule
262 * \param *Walker atom to change its target
263 * \param &OldPotential old value of constraint potential to see if we do better with new target
264 * \param &Params constrained potential parameters
265 */
266double TryNextNearestNeighbourForInjectivePermutation(ofstream *out, molecule *mol, atom *Walker, double &OldPotential, struct EvaluatePotential &Params)
267{
268 double Potential = 0;
269 DistanceMap::iterator NewBase = Params.DistanceIterators[Walker->nr]; // store old base
270 do {
271 NewBase++; // take next further distance in distance to targets list that's a target of no one
272 } while ((Params.DoubleList[NewBase->second->nr] != 0) && (NewBase != Params.DistanceList[Walker->nr]->end()));
273 if (NewBase != Params.DistanceList[Walker->nr]->end()) {
274 Params.PermutationMap[Walker->nr] = NewBase->second;
275 Potential = fabs(mol->ConstrainedPotential(out, Params));
276 if (Potential > OldPotential) { // undo
277 Params.PermutationMap[Walker->nr] = Params.DistanceIterators[Walker->nr]->second;
278 } else { // do
279 Params.DoubleList[Params.DistanceIterators[Walker->nr]->second->nr]--; // decrease the old entry in the doubles list
280 Params.DoubleList[NewBase->second->nr]++; // increase the old entry in the doubles list
281 Params.DistanceIterators[Walker->nr] = NewBase;
282 OldPotential = Potential;
283 *out << Verbose(3) << "Found a new permutation, new potential is " << OldPotential << "." << endl;
284 }
285 }
286 return Potential;
287};
288
289/** Permutes \a **&PermutationMap until the penalty is below constants[2].
290 * \param *out output stream for debugging
291 * \param *mol molecule to scan distances in
292 * \param &Params constrained potential parameters
293 */
294void MakeInjectivePermutation(ofstream *out, molecule *mol, struct EvaluatePotential &Params)
295{
296 atom *Walker = mol->start;
297 DistanceMap::iterator NewBase;
298 double Potential = fabs(mol->ConstrainedPotential(out, Params));
299
300 while ((Potential) > Params.PenaltyConstants[2]) {
301 PrintPermutationMap(out, mol->AtomCount, Params);
302 Walker = Walker->next;
303 if (Walker == mol->end) // round-robin at the end
304 Walker = mol->start->next;
305 if (Params.DoubleList[Params.DistanceIterators[Walker->nr]->second->nr] <= 1) // no need to make those injective that aren't
306 continue;
307 // now, try finding a new one
308 Potential = TryNextNearestNeighbourForInjectivePermutation(out, mol, Walker, Potential, Params);
309 }
310 for (int i=mol->AtomCount; i--;) // now each single entry in the DoubleList should be <=1
311 if (Params.DoubleList[i] > 1) {
312 cerr << "Failed to create an injective PermutationMap!" << endl;
313 exit(1);
314 }
315 *out << Verbose(1) << "done." << endl;
316};
317
318/** Minimises the extra potential for constrained molecular dynamics and gives forces and the constrained potential energy.
319 * We do the following:
320 * -# Generate a distance list from all source to all target points
321 * -# Sort this per source point
322 * -# Take for each source point the target point with minimum distance, use this as initial permutation
323 * -# check whether molecule::ConstrainedPotential() is greater than injective penalty
324 * -# If so, we go through each source point, stepping down in the sorted target point distance list and re-checking potential.
325 * -# Next, we only apply transformations that keep the injectivity of the permutations list.
326 * -# Hence, for one source point we step down the ladder and seek the corresponding owner of this new target
327 * point and try to change it for one with lesser distance, or for the next one with greater distance, but only
328 * if this decreases the conditional potential.
329 * -# finished.
330 * -# Then, we calculate the forces by taking the spatial derivative, where we scale the potential to such a degree,
331 * that the total force is always pointing in direction of the constraint force (ensuring that we move in the
332 * right direction).
333 * -# Finally, we calculate the potential energy and return.
334 * \param *out output stream for debugging
335 * \param **PermutationMap on return: mapping between the atom label of the initial and the final configuration
336 * \param startstep current MD step giving initial position between which and \a endstep we perform the constrained MD (as further steps are always concatenated)
337 * \param endstep step giving final position in constrained MD
338 * \param IsAngstroem whether coordinates are in angstroem (true) or bohrradius (false)
339 * \sa molecule::VerletForceIntegration()
340 * \return potential energy (and allocated **PermutationMap (array of molecule::AtomCount ^2)
341 * \todo The constrained potential's constants are set to fixed values right now, but they should scale based on checks of the system in order
342 * to ensure they're properties (e.g. constants[2] always greater than the energy of the system).
343 * \bug this all is not O(N log N) but O(N^2)
344 */
345double molecule::MinimiseConstrainedPotential(ofstream *out, atom **&PermutationMap, int startstep, int endstep, bool IsAngstroem)
346{
347 double Potential, OldPotential, OlderPotential;
348 struct EvaluatePotential Params;
349 Params.PermutationMap = Malloc<atom*>(AtomCount, "molecule::MinimiseConstrainedPotential: Params.**PermutationMap");
350 Params.DistanceList = Malloc<DistanceMap*>(AtomCount, "molecule::MinimiseConstrainedPotential: Params.**DistanceList");
351 Params.DistanceIterators = Malloc<DistanceMap::iterator>(AtomCount, "molecule::MinimiseConstrainedPotential: Params.*DistanceIterators");
352 Params.DoubleList = Malloc<int>(AtomCount, "molecule::MinimiseConstrainedPotential: Params.*DoubleList");
353 Params.StepList = Malloc<DistanceMap::iterator>(AtomCount, "molecule::MinimiseConstrainedPotential: Params.*StepList");
354 int round;
355 atom *Walker = NULL, *Runner = NULL, *Sprinter = NULL;
356 DistanceMap::iterator Rider, Strider;
357
358 /// Minimise the potential
359 // set Lagrange multiplier constants
360 Params.PenaltyConstants[0] = 10.;
361 Params.PenaltyConstants[1] = 1.;
362 Params.PenaltyConstants[2] = 1e+7; // just a huge penalty
363 // generate the distance list
364 *out << Verbose(1) << "Allocating, initializting and filling the distance list ... " << endl;
365 FillDistanceList(this, Params);
366
367 // create the initial PermutationMap (source -> target)
368 CreateInitialLists(out, this, Params);
369
370 // make the PermutationMap injective by checking whether we have a non-zero constants[2] term in it
371 *out << Verbose(1) << "Making the PermutationMap injective ... " << endl;
372 MakeInjectivePermutation(out, this, Params);
373 Free(&Params.DoubleList);
374
375 // argument minimise the constrained potential in this injective PermutationMap
376 *out << Verbose(1) << "Argument minimising the PermutationMap, at current potential " << OldPotential << " ... " << endl;
377 OldPotential = 1e+10;
378 round = 0;
379 do {
380 *out << "Starting round " << ++round << " ... " << endl;
381 OlderPotential = OldPotential;
382 do {
383 Walker = start;
384 while (Walker->next != end) { // pick one
385 Walker = Walker->next;
386 PrintPermutationMap(out, AtomCount, Params);
387 Sprinter = Params.DistanceIterators[Walker->nr]->second; // store initial partner
388 Strider = Params.DistanceIterators[Walker->nr]; //remember old iterator
389 Params.DistanceIterators[Walker->nr] = Params.StepList[Walker->nr];
390 if (Params.DistanceIterators[Walker->nr] == Params.DistanceList[Walker->nr]->end()) {// stop, before we run through the list and still on
391 Params.DistanceIterators[Walker->nr] == Params.DistanceList[Walker->nr]->begin();
392 break;
393 }
394 //*out << Verbose(2) << "Current Walker: " << *Walker << " with old/next candidate " << *Sprinter << "/" << *DistanceIterators[Walker->nr]->second << "." << endl;
395 // find source of the new target
396 Runner = start->next;
397 while(Runner != end) { // find the source whose toes we might be stepping on (Walker's new target should be in use by another already)
398 if (Params.PermutationMap[Runner->nr] == Params.DistanceIterators[Walker->nr]->second) {
399 //*out << Verbose(2) << "Found the corresponding owner " << *Runner << " to " << *PermutationMap[Runner->nr] << "." << endl;
400 break;
401 }
402 Runner = Runner->next;
403 }
404 if (Runner != end) { // we found the other source
405 // then look in its distance list for Sprinter
406 Rider = Params.DistanceList[Runner->nr]->begin();
407 for (; Rider != Params.DistanceList[Runner->nr]->end(); Rider++)
408 if (Rider->second == Sprinter)
409 break;
410 if (Rider != Params.DistanceList[Runner->nr]->end()) { // if we have found one
411 //*out << Verbose(2) << "Current Other: " << *Runner << " with old/next candidate " << *PermutationMap[Runner->nr] << "/" << *Rider->second << "." << endl;
412 // exchange both
413 Params.PermutationMap[Walker->nr] = Params.DistanceIterators[Walker->nr]->second; // put next farther distance into PermutationMap
414 Params.PermutationMap[Runner->nr] = Sprinter; // and hand the old target to its respective owner
415 PrintPermutationMap(out, AtomCount, Params);
416 // calculate the new potential
417 //*out << Verbose(2) << "Checking new potential ..." << endl;
418 Potential = ConstrainedPotential(out, Params);
419 if (Potential > OldPotential) { // we made everything worse! Undo ...
420 //*out << Verbose(3) << "Nay, made the potential worse: " << Potential << " vs. " << OldPotential << "!" << endl;
421 //*out << Verbose(3) << "Setting " << *Runner << "'s source to " << *Params.DistanceIterators[Runner->nr]->second << "." << endl;
422 // Undo for Runner (note, we haven't moved the iteration yet, we may use this)
423 Params.PermutationMap[Runner->nr] = Params.DistanceIterators[Runner->nr]->second;
424 // Undo for Walker
425 Params.DistanceIterators[Walker->nr] = Strider; // take next farther distance target
426 //*out << Verbose(3) << "Setting " << *Walker << "'s source to " << *Params.DistanceIterators[Walker->nr]->second << "." << endl;
427 Params.PermutationMap[Walker->nr] = Params.DistanceIterators[Walker->nr]->second;
428 } else {
429 Params.DistanceIterators[Runner->nr] = Rider; // if successful also move the pointer in the iterator list
430 *out << Verbose(3) << "Found a better permutation, new potential is " << Potential << " vs." << OldPotential << "." << endl;
431 OldPotential = Potential;
432 }
433 if (Potential > Params.PenaltyConstants[2]) {
434 cerr << "ERROR: The two-step permutation procedure did not maintain injectivity!" << endl;
435 exit(255);
436 }
437 //*out << endl;
438 } else {
439 cerr << "ERROR: " << *Runner << " was not the owner of " << *Sprinter << "!" << endl;
440 exit(255);
441 }
442 } else {
443 Params.PermutationMap[Walker->nr] = Params.DistanceIterators[Walker->nr]->second; // new target has no source!
444 }
445 Params.StepList[Walker->nr]++; // take next farther distance target
446 }
447 } while (Walker->next != end);
448 } while ((OlderPotential - OldPotential) > 1e-3);
449 *out << Verbose(1) << "done." << endl;
450
451
452 /// free memory and return with evaluated potential
453 for (int i=AtomCount; i--;)
454 Params.DistanceList[i]->clear();
455 Free(&Params.DistanceList);
456 Free(&Params.DistanceIterators);
457 return ConstrainedPotential(out, Params);
458};
459
460
461/** Evaluates the (distance-related part) of the constrained potential for the constrained forces.
462 * \param *out output stream for debugging
463 * \param startstep current MD step giving initial position between which and \a endstep we perform the constrained MD (as further steps are always concatenated)
464 * \param endstep step giving final position in constrained MD
465 * \param **PermutationMap mapping between the atom label of the initial and the final configuration
466 * \param *Force ForceMatrix containing force vectors from the external energy functional minimisation.
467 * \todo the constant for the constrained potential distance part is hard-coded independently of the hard-coded value in MinimiseConstrainedPotential()
468 */
469void molecule::EvaluateConstrainedForces(ofstream *out, int startstep, int endstep, atom **PermutationMap, ForceMatrix *Force)
470{
471 /// evaluate forces (only the distance to target dependent part) with the final PermutationMap
472 *out << Verbose(1) << "Calculating forces and adding onto ForceMatrix ... " << endl;
473 ActOnAllAtoms( &atom::EvaluateConstrainedForce, startstep, endstep, PermutationMap, Force );
474 *out << Verbose(1) << "done." << endl;
475};
476
477/** Performs a linear interpolation between two desired atomic configurations with a given number of steps.
478 * Note, step number is config::MaxOuterStep
479 * \param *out output stream for debugging
480 * \param startstep stating initial configuration in molecule::Trajectories
481 * \param endstep stating final configuration in molecule::Trajectories
482 * \param &config configuration structure
483 * \param MapByIdentity if true we just use the identity to map atoms in start config to end config, if not we find mapping by \sa MinimiseConstrainedPotential()
484 * \return true - success in writing step files, false - error writing files or only one step in molecule::Trajectories
485 */
486bool molecule::LinearInterpolationBetweenConfiguration(ofstream *out, int startstep, int endstep, const char *prefix, config &configuration, bool MapByIdentity)
487{
488 molecule *mol = NULL;
489 bool status = true;
490 int MaxSteps = configuration.MaxOuterStep;
491 MoleculeListClass *MoleculePerStep = new MoleculeListClass();
492 // Get the Permutation Map by MinimiseConstrainedPotential
493 atom **PermutationMap = NULL;
494 atom *Walker = NULL, *Sprinter = NULL;
495 if (!MapByIdentity)
496 MinimiseConstrainedPotential(out, PermutationMap, startstep, endstep, configuration.GetIsAngstroem());
497 else {
498 PermutationMap = Malloc<atom *>(AtomCount, "molecule::LinearInterpolationBetweenConfiguration: **PermutationMap");
499 SetIndexedArrayForEachAtomTo( PermutationMap, &atom::nr );
500 }
501
502 // check whether we have sufficient space in Trajectories for each atom
503 ActOnAllAtoms( &atom::ResizeTrajectory, MaxSteps );
504 // push endstep to last one
505 ActOnAllAtoms( &atom::CopyStepOnStep, MaxSteps, endstep );
506 endstep = MaxSteps;
507
508 // go through all steps and add the molecular configuration to the list and to the Trajectories of \a this molecule
509 *out << Verbose(1) << "Filling intermediate " << MaxSteps << " steps with MDSteps of " << MDSteps << "." << endl;
510 for (int step = 0; step <= MaxSteps; step++) {
511 mol = new molecule(elemente);
512 MoleculePerStep->insert(mol);
513 Walker = start;
514 while (Walker->next != end) {
515 Walker = Walker->next;
516 // add to molecule list
517 Sprinter = mol->AddCopyAtom(Walker);
518 for (int n=NDIM;n--;) {
519 Sprinter->x.x[n] = Walker->Trajectory.R.at(startstep).x[n] + (PermutationMap[Walker->nr]->Trajectory.R.at(endstep).x[n] - Walker->Trajectory.R.at(startstep).x[n])*((double)step/(double)MaxSteps);
520 // add to Trajectories
521 //*out << Verbose(3) << step << ">=" << MDSteps-1 << endl;
522 if (step < MaxSteps) {
523 Walker->Trajectory.R.at(step).x[n] = Walker->Trajectory.R.at(startstep).x[n] + (PermutationMap[Walker->nr]->Trajectory.R.at(endstep).x[n] - Walker->Trajectory.R.at(startstep).x[n])*((double)step/(double)MaxSteps);
524 Walker->Trajectory.U.at(step).x[n] = 0.;
525 Walker->Trajectory.F.at(step).x[n] = 0.;
526 }
527 }
528 }
529 }
530 MDSteps = MaxSteps+1; // otherwise new Trajectories' points aren't stored on save&exit
531
532 // store the list to single step files
533 int *SortIndex = Malloc<int>(AtomCount, "molecule::LinearInterpolationBetweenConfiguration: *SortIndex");
534 for (int i=AtomCount; i--; )
535 SortIndex[i] = i;
536 status = MoleculePerStep->OutputConfigForListOfFragments(out, &configuration, SortIndex);
537
538 // free and return
539 Free(&PermutationMap);
540 delete(MoleculePerStep);
541 return status;
542};
543
544/** Parses nuclear forces from file and performs Verlet integration.
545 * Note that we assume the parsed forces to be in atomic units (hence, if coordinates are in angstroem, we
546 * have to transform them).
547 * This adds a new MD step to the config file.
548 * \param *out output stream for debugging
549 * \param *file filename
550 * \param config structure with config::Deltat, config::IsAngstroem, config::DoConstrained
551 * \param delta_t time step width in atomic units
552 * \param IsAngstroem whether coordinates are in angstroem (true) or bohrradius (false)
553 * \param DoConstrained whether we perform a constrained (>0, target step in molecule::trajectories) or unconstrained (0) molecular dynamics, \sa molecule::MinimiseConstrainedPotential()
554 * \return true - file found and parsed, false - file not found or imparsable
555 * \todo This is not yet checked if it is correctly working with DoConstrained set to true.
556 */
557bool molecule::VerletForceIntegration(ofstream *out, char *file, config &configuration)
558{
559 ifstream input(file);
560 string token;
561 stringstream item;
562 double IonMass, ConstrainedPotentialEnergy, ActualTemp;
563 Vector Velocity;
564 ForceMatrix Force;
565
566 CountElements(); // make sure ElementsInMolecule is up to date
567
568 // check file
569 if (input == NULL) {
570 return false;
571 } else {
572 // parse file into ForceMatrix
573 if (!Force.ParseMatrix(file, 0,0,0)) {
574 cerr << "Could not parse Force Matrix file " << file << "." << endl;
575 return false;
576 }
577 if (Force.RowCounter[0] != AtomCount) {
578 cerr << "Mismatch between number of atoms in file " << Force.RowCounter[0] << " and in molecule " << AtomCount << "." << endl;
579 return false;
580 }
581 // correct Forces
582 Velocity.Zero();
583 for(int i=0;i<AtomCount;i++)
584 for(int d=0;d<NDIM;d++) {
585 Velocity.x[d] += Force.Matrix[0][i][d+5];
586 }
587 for(int i=0;i<AtomCount;i++)
588 for(int d=0;d<NDIM;d++) {
589 Force.Matrix[0][i][d+5] -= Velocity.x[d]/(double)AtomCount;
590 }
591 // solve a constrained potential if we are meant to
592 if (configuration.DoConstrainedMD) {
593 // calculate forces and potential
594 atom **PermutationMap = NULL;
595 ConstrainedPotentialEnergy = MinimiseConstrainedPotential(out, PermutationMap,configuration.DoConstrainedMD, 0, configuration.GetIsAngstroem());
596 EvaluateConstrainedForces(out, configuration.DoConstrainedMD, 0, PermutationMap, &Force);
597 Free(&PermutationMap);
598 }
599
600 // and perform Verlet integration for each atom with position, velocity and force vector
601 // check size of vectors
602 ActOnAllAtoms( &atom::ResizeTrajectory, MDSteps+10 );
603
604 ActOnAllAtoms( &atom::VelocityVerletUpdate, MDSteps, &configuration, &Force);
605 }
606 // correct velocities (rather momenta) so that center of mass remains motionless
607 Velocity.Zero();
608 IonMass = 0.;
609 ActOnAllAtoms ( &atom::SumUpKineticEnergy, MDSteps, &IonMass, &Velocity );
610
611 // correct velocities (rather momenta) so that center of mass remains motionless
612 Velocity.Scale(1./IonMass);
613 ActualTemp = 0.;
614 ActOnAllAtoms ( &atom::CorrectVelocity, &ActualTemp, MDSteps, &Velocity );
615 Thermostats(configuration, ActualTemp, Berendsen);
616 MDSteps++;
617
618 // exit
619 return true;
620};
621
622/** Implementation of various thermostats.
623 * All these thermostats apply an additional force which has the following forms:
624 * -# Woodcock
625 * \f$p_i \rightarrow \sqrt{\frac{T_0}{T}} \cdot p_i\f$
626 * -# Gaussian
627 * \f$ \frac{ \sum_i \frac{p_i}{m_i} \frac{\partial V}{\partial q_i}} {\sum_i \frac{p^2_i}{m_i}} \cdot p_i\f$
628 * -# Langevin
629 * \f$p_{i,n} \rightarrow \sqrt{1-\alpha^2} p_{i,0} + \alpha p_r\f$
630 * -# Berendsen
631 * \f$p_i \rightarrow \left [ 1+ \frac{\delta t}{\tau_T} \left ( \frac{T_0}{T} \right ) \right ]^{\frac{1}{2}} \cdot p_i\f$
632 * -# Nose-Hoover
633 * \f$\zeta p_i \f$ with \f$\frac{\partial \zeta}{\partial t} = \frac{1}{M_s} \left ( \sum^N_{i=1} \frac{p_i^2}{m_i} - g k_B T \right )\f$
634 * These Thermostats either simply rescale the velocities, thus this function should be called after ion velocities have been updated, and/or
635 * have a constraint force acting additionally on the ions. In the latter case, the ion speeds have to be modified
636 * belatedly and the constraint force set.
637 * \param *P Problem at hand
638 * \param i which of the thermostats to take: 0 - none, 1 - Woodcock, 2 - Gaussian, 3 - Langevin, 4 - Berendsen, 5 - Nose-Hoover
639 * \sa InitThermostat()
640 */
641void molecule::Thermostats(config &configuration, double ActualTemp, int Thermostat)
642{
643 double ekin = 0.;
644 double E = 0., G = 0.;
645 double delta_alpha = 0.;
646 double ScaleTempFactor;
647 gsl_rng * r;
648 const gsl_rng_type * T;
649
650 // calculate scale configuration
651 ScaleTempFactor = configuration.TargetTemp/ActualTemp;
652
653 // differentating between the various thermostats
654 switch(Thermostat) {
655 case None:
656 cout << Verbose(2) << "Applying no thermostat..." << endl;
657 break;
658 case Woodcock:
659 if ((configuration.ScaleTempStep > 0) && ((MDSteps-1) % configuration.ScaleTempStep == 0)) {
660 cout << Verbose(2) << "Applying Woodcock thermostat..." << endl;
661 ActOnAllAtoms( &atom::Thermostat_Woodcock, sqrt(ScaleTempFactor), MDSteps, &ekin );
662 }
663 break;
664 case Gaussian:
665 cout << Verbose(2) << "Applying Gaussian thermostat..." << endl;
666 ActOnAllAtoms( &atom::Thermostat_Gaussian_init, MDSteps, &G, &E );
667
668 cout << Verbose(1) << "Gaussian Least Constraint constant is " << G/E << "." << endl;
669 ActOnAllAtoms( &atom::Thermostat_Gaussian_least_constraint, MDSteps, G/E, &ekin, &configuration);
670
671 break;
672 case Langevin:
673 cout << Verbose(2) << "Applying Langevin thermostat..." << endl;
674 // init random number generator
675 gsl_rng_env_setup();
676 T = gsl_rng_default;
677 r = gsl_rng_alloc (T);
678 // Go through each ion
679 ActOnAllAtoms( &atom::Thermostat_Langevin, MDSteps, r, &ekin, &configuration );
680 break;
681
682 case Berendsen:
683 cout << Verbose(2) << "Applying Berendsen-VanGunsteren thermostat..." << endl;
684 ActOnAllAtoms( &atom::Thermostat_Berendsen, MDSteps, ScaleTempFactor, &ekin, &configuration );
685 break;
686
687 case NoseHoover:
688 cout << Verbose(2) << "Applying Nose-Hoover thermostat..." << endl;
689 // dynamically evolve alpha (the additional degree of freedom)
690 delta_alpha = 0.;
691 ActOnAllAtoms( &atom::Thermostat_NoseHoover_init, MDSteps, &delta_alpha );
692 delta_alpha = (delta_alpha - (3.*AtomCount+1.) * configuration.TargetTemp)/(configuration.HooverMass*Units2Electronmass);
693 configuration.alpha += delta_alpha*configuration.Deltat;
694 cout << Verbose(3) << "alpha = " << delta_alpha << " * " << configuration.Deltat << " = " << configuration.alpha << "." << endl;
695 // apply updated alpha as additional force
696 ActOnAllAtoms( &atom::Thermostat_NoseHoover_scale, MDSteps, &ekin, &configuration );
697 break;
698 }
699 cout << Verbose(1) << "Kinetic energy is " << ekin << "." << endl;
700};
Note: See TracBrowser for help on using the repository browser.