source: src/molecule.cpp@ 112b09

Action_Thermostats Add_AtomRandomPerturbation Add_FitFragmentPartialChargesAction Add_RotateAroundBondAction Add_SelectAtomByNameAction Added_ParseSaveFragmentResults AddingActions_SaveParseParticleParameters Adding_Graph_to_ChangeBondActions Adding_MD_integration_tests Adding_ParticleName_to_Atom Adding_StructOpt_integration_tests AtomFragments Automaking_mpqc_open AutomationFragmentation_failures Candidate_v1.5.4 Candidate_v1.6.0 Candidate_v1.6.1 ChangeBugEmailaddress ChangingTestPorts ChemicalSpaceEvaluator CombiningParticlePotentialParsing Combining_Subpackages Debian_Package_split Debian_package_split_molecuildergui_only Disabling_MemDebug Docu_Python_wait EmpiricalPotential_contain_HomologyGraph EmpiricalPotential_contain_HomologyGraph_documentation Enable_parallel_make_install Enhance_userguide Enhanced_StructuralOptimization Enhanced_StructuralOptimization_continued Example_ManyWaysToTranslateAtom Exclude_Hydrogens_annealWithBondGraph FitPartialCharges_GlobalError Fix_BoundInBox_CenterInBox_MoleculeActions Fix_ChargeSampling_PBC Fix_ChronosMutex Fix_FitPartialCharges Fix_FitPotential_needs_atomicnumbers Fix_ForceAnnealing Fix_IndependentFragmentGrids Fix_ParseParticles Fix_ParseParticles_split_forward_backward_Actions Fix_PopActions Fix_QtFragmentList_sorted_selection Fix_Restrictedkeyset_FragmentMolecule Fix_StatusMsg Fix_StepWorldTime_single_argument Fix_Verbose_Codepatterns Fix_fitting_potentials Fixes ForceAnnealing_goodresults ForceAnnealing_oldresults ForceAnnealing_tocheck ForceAnnealing_with_BondGraph ForceAnnealing_with_BondGraph_continued ForceAnnealing_with_BondGraph_continued_betteresults ForceAnnealing_with_BondGraph_contraction-expansion FragmentAction_writes_AtomFragments FragmentMolecule_checks_bonddegrees GeometryObjects Gui_Fixes Gui_displays_atomic_force_velocity ImplicitCharges IndependentFragmentGrids IndependentFragmentGrids_IndividualZeroInstances IndependentFragmentGrids_IntegrationTest IndependentFragmentGrids_Sole_NN_Calculation JobMarket_RobustOnKillsSegFaults JobMarket_StableWorkerPool JobMarket_unresolvable_hostname_fix MoreRobust_FragmentAutomation ODR_violation_mpqc_open PartialCharges_OrthogonalSummation PdbParser_setsAtomName PythonUI_with_named_parameters QtGui_reactivate_TimeChanged_changes Recreated_GuiChecks Rewrite_FitPartialCharges RotateToPrincipalAxisSystem_UndoRedo SaturateAtoms_findBestMatching SaturateAtoms_singleDegree StoppableMakroAction Subpackage_CodePatterns Subpackage_JobMarket Subpackage_LinearAlgebra Subpackage_levmar Subpackage_mpqc_open Subpackage_vmg Switchable_LogView ThirdParty_MPQC_rebuilt_buildsystem TrajectoryDependenant_MaxOrder TremoloParser_IncreasedPrecision TremoloParser_MultipleTimesteps TremoloParser_setsAtomName Ubuntu_1604_changes stable
Last change on this file since 112b09 was 112b09, checked in by Tillmann Crueger <crueger@…>, 15 years ago

Added #include "Helpers/MemDebug.hpp" to all .cpp files

  • Property mode set to 100755
File size: 46.9 KB
Line 
1/** \file molecules.cpp
2 *
3 * Functions for the class molecule.
4 *
5 */
6
7#include "Helpers/MemDebug.hpp"
8
9#include <cstring>
10#include <boost/bind.hpp>
11
12#include "World.hpp"
13#include "atom.hpp"
14#include "bond.hpp"
15#include "config.hpp"
16#include "element.hpp"
17#include "graph.hpp"
18#include "helpers.hpp"
19#include "leastsquaremin.hpp"
20#include "linkedcell.hpp"
21#include "lists.hpp"
22#include "log.hpp"
23#include "molecule.hpp"
24#include "memoryallocator.hpp"
25#include "periodentafel.hpp"
26#include "stackclass.hpp"
27#include "tesselation.hpp"
28#include "vector.hpp"
29#include "World.hpp"
30#include "Plane.hpp"
31#include "Exceptions/LinearDependenceException.hpp"
32
33
34/************************************* Functions for class molecule *********************************/
35
36/** Constructor of class molecule.
37 * Initialises molecule list with correctly referenced start and end, and sets molecule::last_atom to zero.
38 */
39molecule::molecule(const periodentafel * const teil) :
40 Observable("molecule"),
41 elemente(teil), MDSteps(0), BondCount(0), ElementCount(0), NoNonHydrogen(0), NoNonBonds(0),
42 NoCyclicBonds(0), BondDistance(0.), ActiveFlag(false), IndexNr(-1),
43 formula(this,boost::bind(&molecule::calcFormula,this),"formula"),
44 AtomCount(this,boost::bind(&molecule::doCountAtoms,this),"AtomCount"), last_atom(0), InternalPointer(begin())
45{
46
47 // other stuff
48 for(int i=MAX_ELEMENTS;i--;)
49 ElementsInMolecule[i] = 0;
50 strcpy(name,World::getInstance().getDefaultName());
51};
52
53molecule *NewMolecule(){
54 return new molecule(World::getInstance().getPeriode());
55}
56
57/** Destructor of class molecule.
58 * Initialises molecule list with correctly referenced start and end, and sets molecule::last_atom to zero.
59 */
60molecule::~molecule()
61{
62 CleanupMolecule();
63};
64
65
66void DeleteMolecule(molecule *mol){
67 delete mol;
68}
69
70// getter and setter
71const std::string molecule::getName(){
72 return std::string(name);
73}
74
75int molecule::getAtomCount() const{
76 return *AtomCount;
77}
78
79void molecule::setName(const std::string _name){
80 OBSERVE;
81 strncpy(name,_name.c_str(),MAXSTRINGSIZE);
82}
83
84moleculeId_t molecule::getId(){
85 return id;
86}
87
88void molecule::setId(moleculeId_t _id){
89 id =_id;
90}
91
92const std::string molecule::getFormula(){
93 return *formula;
94}
95
96std::string molecule::calcFormula(){
97 std::map<atomicNumber_t,unsigned int> counts;
98 stringstream sstr;
99 periodentafel *periode = World::getInstance().getPeriode();
100 for (molecule::const_iterator iter = begin(); iter != end(); ++iter) {
101 counts[(*iter)->type->getNumber()]++;
102 }
103 std::map<atomicNumber_t,unsigned int>::reverse_iterator iter;
104 for(iter = counts.rbegin(); iter != counts.rend(); ++iter) {
105 atomicNumber_t Z = (*iter).first;
106 sstr << periode->FindElement(Z)->symbol << (*iter).second;
107 }
108 return sstr.str();
109}
110
111/************************** Access to the List of Atoms ****************/
112
113
114molecule::iterator molecule::begin(){
115 return molecule::iterator(atoms.begin(),this);
116}
117
118molecule::const_iterator molecule::begin() const{
119 return atoms.begin();
120}
121
122molecule::iterator molecule::end(){
123 return molecule::iterator(atoms.end(),this);
124}
125
126molecule::const_iterator molecule::end() const{
127 return atoms.end();
128}
129
130bool molecule::empty() const
131{
132 return (begin() == end());
133}
134
135size_t molecule::size() const
136{
137 size_t counter = 0;
138 for (molecule::const_iterator iter = begin(); iter != end (); ++iter)
139 counter++;
140 return counter;
141}
142
143molecule::const_iterator molecule::erase( const_iterator loc )
144{
145 molecule::const_iterator iter = loc;
146 iter--;
147 atoms.erase( loc );
148 return iter;
149}
150
151molecule::const_iterator molecule::erase( atom *& key )
152{
153 cout << "trying to erase atom" << endl;
154 molecule::const_iterator iter = find(key);
155 if (iter != end()){
156 // remove this position and step forward (post-increment)
157 atoms.erase( iter++ );
158 }
159 return iter;
160}
161
162molecule::const_iterator molecule::find ( atom *& key ) const
163{
164 return atoms.find( key );
165}
166
167pair<molecule::iterator,bool> molecule::insert ( atom * const key )
168{
169 pair<atomSet::iterator,bool> res = atoms.insert(key);
170 return pair<iterator,bool>(iterator(res.first,this),res.second);
171}
172
173/** Adds given atom \a *pointer from molecule list.
174 * Increases molecule::last_atom and gives last number to added atom and names it according to its element::abbrev and molecule::AtomCount
175 * \param *pointer allocated and set atom
176 * \return true - succeeded, false - atom not found in list
177 */
178bool molecule::AddAtom(atom *pointer)
179{
180 OBSERVE;
181 if (pointer != NULL) {
182 pointer->sort = &pointer->nr;
183 if (pointer->type != NULL) {
184 if (ElementsInMolecule[pointer->type->Z] == 0)
185 ElementCount++;
186 ElementsInMolecule[pointer->type->Z]++; // increase number of elements
187 if (pointer->type->Z != 1)
188 NoNonHydrogen++;
189 if(pointer->getName() == "Unknown"){
190 stringstream sstr;
191 sstr << pointer->type->symbol << pointer->nr+1;
192 pointer->setName(sstr.str());
193 }
194 }
195 insert(pointer);
196 }
197 return true;
198};
199
200/** Adds a copy of the given atom \a *pointer from molecule list.
201 * Increases molecule::last_atom and gives last number to added atom.
202 * \param *pointer allocated and set atom
203 * \return pointer to the newly added atom
204 */
205atom * molecule::AddCopyAtom(atom *pointer)
206{
207 atom *retval = NULL;
208 OBSERVE;
209 if (pointer != NULL) {
210 atom *walker = pointer->clone();
211 walker->setName(pointer->getName());
212 walker->nr = last_atom++; // increase number within molecule
213 insert(walker);
214 if ((pointer->type != NULL) && (pointer->type->Z != 1))
215 NoNonHydrogen++;
216 retval=walker;
217 }
218 return retval;
219};
220
221/** Adds a Hydrogen atom in replacement for the given atom \a *partner in bond with a *origin.
222 * Here, we have to distinguish between single, double or triple bonds as stated by \a BondDegree, that each demand
223 * a different scheme when adding \a *replacement atom for the given one.
224 * -# Single Bond: Simply add new atom with bond distance rescaled to typical hydrogen one
225 * -# Double Bond: Here, we need the **BondList of the \a *origin atom, by scanning for the other bonds instead of
226 * *Bond, we use the through these connected atoms to determine the plane they lie in, vector::MakeNormalvector().
227 * The orthonormal vector to this plane along with the vector in *Bond direction determines the plane the two
228 * replacing hydrogens shall lie in. Now, all remains to do is take the usual hydrogen double bond angle for the
229 * element of *origin and form the sin/cos admixture of both plane vectors for the new coordinates of the two
230 * hydrogens forming this angle with *origin.
231 * -# Triple Bond: The idea is to set up a tetraoid (C1-H1-H2-H3) (however the lengths \f$b\f$ of the sides of the base
232 * triangle formed by the to be added hydrogens are not equal to the typical bond distance \f$l\f$ but have to be
233 * determined from the typical angle \f$\alpha\f$ for a hydrogen triple connected to the element of *origin):
234 * We have the height \f$d\f$ as the vector in *Bond direction (from triangle C1-H1-H2).
235 * \f[ h = l \cdot \cos{\left (\frac{\alpha}{2} \right )} \qquad b = 2l \cdot \sin{\left (\frac{\alpha}{2} \right)} \quad \rightarrow \quad d = l \cdot \sqrt{\cos^2{\left (\frac{\alpha}{2} \right)}-\frac{1}{3}\cdot\sin^2{\left (\frac{\alpha}{2}\right )}}
236 * \f]
237 * vector::GetNormalvector() creates one orthonormal vector from this *Bond vector and vector::MakeNormalvector creates
238 * the third one from the former two vectors. The latter ones form the plane of the base triangle mentioned above.
239 * The lengths for these are \f$f\f$ and \f$g\f$ (from triangle H1-H2-(center of H1-H2-H3)) with knowledge that
240 * the median lines in an isosceles triangle meet in the center point with a ratio 2:1.
241 * \f[ f = \frac{b}{\sqrt{3}} \qquad g = \frac{b}{2}
242 * \f]
243 * as the coordination of all three atoms in the coordinate system of these three vectors:
244 * \f$\pmatrix{d & f & 0}\f$, \f$\pmatrix{d & -0.5 \cdot f & g}\f$ and \f$\pmatrix{d & -0.5 \cdot f & -g}\f$.
245 *
246 * \param *out output stream for debugging
247 * \param *Bond pointer to bond between \a *origin and \a *replacement
248 * \param *TopOrigin son of \a *origin of upper level molecule (the atom added to this molecule as a copy of \a *origin)
249 * \param *origin pointer to atom which acts as the origin for scaling the added hydrogen to correct bond length
250 * \param *replacement pointer to the atom which shall be copied as a hydrogen atom in this molecule
251 * \param isAngstroem whether the coordination of the given atoms is in AtomicLength (false) or Angstrom(true)
252 * \return number of atoms added, if < bond::BondDegree then something went wrong
253 * \todo double and triple bonds splitting (always use the tetraeder angle!)
254 */
255bool molecule::AddHydrogenReplacementAtom(bond *TopBond, atom *BottomOrigin, atom *TopOrigin, atom *TopReplacement, bool IsAngstroem)
256{
257 bool AllWentWell = true; // flag gathering the boolean return value of molecule::AddAtom and other functions, as return value on exit
258 OBSERVE;
259 double bondlength; // bond length of the bond to be replaced/cut
260 double bondangle; // bond angle of the bond to be replaced/cut
261 double BondRescale; // rescale value for the hydrogen bond length
262 bond *FirstBond = NULL, *SecondBond = NULL; // Other bonds in double bond case to determine "other" plane
263 atom *FirstOtherAtom = NULL, *SecondOtherAtom = NULL, *ThirdOtherAtom = NULL; // pointer to hydrogen atoms to be added
264 double b,l,d,f,g, alpha, factors[NDIM]; // hold temporary values in triple bond case for coordination determination
265 Vector Orthovector1, Orthovector2; // temporary vectors in coordination construction
266 Vector InBondvector; // vector in direction of *Bond
267 double *matrix = NULL;
268 bond *Binder = NULL;
269 double * const cell_size = World::getInstance().getDomain();
270
271// Log() << Verbose(3) << "Begin of AddHydrogenReplacementAtom." << endl;
272 // create vector in direction of bond
273 InBondvector = TopReplacement->x - TopOrigin->x;
274 bondlength = InBondvector.Norm();
275
276 // is greater than typical bond distance? Then we have to correct periodically
277 // the problem is not the H being out of the box, but InBondvector have the wrong direction
278 // due to TopReplacement or Origin being on the wrong side!
279 if (bondlength > BondDistance) {
280// Log() << Verbose(4) << "InBondvector is: ";
281// InBondvector.Output(out);
282// Log() << Verbose(0) << endl;
283 Orthovector1.Zero();
284 for (int i=NDIM;i--;) {
285 l = TopReplacement->x[i] - TopOrigin->x[i];
286 if (fabs(l) > BondDistance) { // is component greater than bond distance
287 Orthovector1[i] = (l < 0) ? -1. : +1.;
288 } // (signs are correct, was tested!)
289 }
290 matrix = ReturnFullMatrixforSymmetric(cell_size);
291 Orthovector1.MatrixMultiplication(matrix);
292 InBondvector -= Orthovector1; // subtract just the additional translation
293 delete[](matrix);
294 bondlength = InBondvector.Norm();
295// Log() << Verbose(4) << "Corrected InBondvector is now: ";
296// InBondvector.Output(out);
297// Log() << Verbose(0) << endl;
298 } // periodic correction finished
299
300 InBondvector.Normalize();
301 // get typical bond length and store as scale factor for later
302 ASSERT(TopOrigin->type != NULL, "AddHydrogenReplacementAtom: element of TopOrigin is not given.");
303 BondRescale = TopOrigin->type->HBondDistance[TopBond->BondDegree-1];
304 if (BondRescale == -1) {
305 DoeLog(1) && (eLog()<< Verbose(1) << "There is no typical hydrogen bond distance in replacing bond (" << TopOrigin->getName() << "<->" << TopReplacement->getName() << ") of degree " << TopBond->BondDegree << "!" << endl);
306 return false;
307 BondRescale = bondlength;
308 } else {
309 if (!IsAngstroem)
310 BondRescale /= (1.*AtomicLengthToAngstroem);
311 }
312
313 // discern single, double and triple bonds
314 switch(TopBond->BondDegree) {
315 case 1:
316 FirstOtherAtom = World::getInstance().createAtom(); // new atom
317 FirstOtherAtom->type = elemente->FindElement(1); // element is Hydrogen
318 FirstOtherAtom->v = TopReplacement->v; // copy velocity
319 FirstOtherAtom->FixedIon = TopReplacement->FixedIon;
320 if (TopReplacement->type->Z == 1) { // neither rescale nor replace if it's already hydrogen
321 FirstOtherAtom->father = TopReplacement;
322 BondRescale = bondlength;
323 } else {
324 FirstOtherAtom->father = NULL; // if we replace hydrogen, we mark it as our father, otherwise we are just an added hydrogen with no father
325 }
326 InBondvector *= BondRescale; // rescale the distance vector to Hydrogen bond length
327 FirstOtherAtom->x = TopOrigin->x; // set coordination to origin ...
328 FirstOtherAtom->x += InBondvector; // ... and add distance vector to replacement atom
329 AllWentWell = AllWentWell && AddAtom(FirstOtherAtom);
330// Log() << Verbose(4) << "Added " << *FirstOtherAtom << " at: ";
331// FirstOtherAtom->x.Output(out);
332// Log() << Verbose(0) << endl;
333 Binder = AddBond(BottomOrigin, FirstOtherAtom, 1);
334 Binder->Cyclic = false;
335 Binder->Type = TreeEdge;
336 break;
337 case 2:
338 // determine two other bonds (warning if there are more than two other) plus valence sanity check
339 for (BondList::const_iterator Runner = TopOrigin->ListOfBonds.begin(); Runner != TopOrigin->ListOfBonds.end(); (++Runner)) {
340 if ((*Runner) != TopBond) {
341 if (FirstBond == NULL) {
342 FirstBond = (*Runner);
343 FirstOtherAtom = (*Runner)->GetOtherAtom(TopOrigin);
344 } else if (SecondBond == NULL) {
345 SecondBond = (*Runner);
346 SecondOtherAtom = (*Runner)->GetOtherAtom(TopOrigin);
347 } else {
348 DoeLog(2) && (eLog()<< Verbose(2) << "Detected more than four bonds for atom " << TopOrigin->getName());
349 }
350 }
351 }
352 if (SecondOtherAtom == NULL) { // then we have an atom with valence four, but only 3 bonds: one to replace and one which is TopBond (third is FirstBond)
353 SecondBond = TopBond;
354 SecondOtherAtom = TopReplacement;
355 }
356 if (FirstOtherAtom != NULL) { // then we just have this double bond and the plane does not matter at all
357// Log() << Verbose(3) << "Regarding the double bond (" << TopOrigin->Name << "<->" << TopReplacement->Name << ") to be constructed: Taking " << FirstOtherAtom->Name << " and " << SecondOtherAtom->Name << " along with " << TopOrigin->Name << " to determine orthogonal plane." << endl;
358
359 // determine the plane of these two with the *origin
360 try {
361 Orthovector1 =Plane(TopOrigin->x, FirstOtherAtom->x, SecondOtherAtom->x).getNormal();
362 }
363 catch(LinearDependenceException &excp){
364 Log() << Verbose(0) << excp;
365 // TODO: figure out what to do with the Orthovector in this case
366 AllWentWell = false;
367 }
368 } else {
369 Orthovector1.GetOneNormalVector(InBondvector);
370 }
371 //Log() << Verbose(3)<< "Orthovector1: ";
372 //Orthovector1.Output(out);
373 //Log() << Verbose(0) << endl;
374 // orthogonal vector and bond vector between origin and replacement form the new plane
375 Orthovector1.MakeNormalTo(InBondvector);
376 Orthovector1.Normalize();
377 //Log() << Verbose(3) << "ReScaleCheck: " << Orthovector1.Norm() << " and " << InBondvector.Norm() << "." << endl;
378
379 // create the two Hydrogens ...
380 FirstOtherAtom = World::getInstance().createAtom();
381 SecondOtherAtom = World::getInstance().createAtom();
382 FirstOtherAtom->type = elemente->FindElement(1);
383 SecondOtherAtom->type = elemente->FindElement(1);
384 FirstOtherAtom->v = TopReplacement->v; // copy velocity
385 FirstOtherAtom->FixedIon = TopReplacement->FixedIon;
386 SecondOtherAtom->v = TopReplacement->v; // copy velocity
387 SecondOtherAtom->FixedIon = TopReplacement->FixedIon;
388 FirstOtherAtom->father = NULL; // we are just an added hydrogen with no father
389 SecondOtherAtom->father = NULL; // we are just an added hydrogen with no father
390 bondangle = TopOrigin->type->HBondAngle[1];
391 if (bondangle == -1) {
392 DoeLog(1) && (eLog()<< Verbose(1) << "There is no typical hydrogen bond angle in replacing bond (" << TopOrigin->getName() << "<->" << TopReplacement->getName() << ") of degree " << TopBond->BondDegree << "!" << endl);
393 return false;
394 bondangle = 0;
395 }
396 bondangle *= M_PI/180./2.;
397// Log() << Verbose(3) << "ReScaleCheck: InBondvector ";
398// InBondvector.Output(out);
399// Log() << Verbose(0) << endl;
400// Log() << Verbose(3) << "ReScaleCheck: Orthovector ";
401// Orthovector1.Output(out);
402// Log() << Verbose(0) << endl;
403// Log() << Verbose(3) << "Half the bond angle is " << bondangle << ", sin and cos of it: " << sin(bondangle) << ", " << cos(bondangle) << endl;
404 FirstOtherAtom->x.Zero();
405 SecondOtherAtom->x.Zero();
406 for(int i=NDIM;i--;) { // rotate by half the bond angle in both directions (InBondvector is bondangle = 0 direction)
407 FirstOtherAtom->x[i] = InBondvector[i] * cos(bondangle) + Orthovector1[i] * (sin(bondangle));
408 SecondOtherAtom->x[i] = InBondvector[i] * cos(bondangle) + Orthovector1[i] * (-sin(bondangle));
409 }
410 FirstOtherAtom->x *= BondRescale; // rescale by correct BondDistance
411 SecondOtherAtom->x *= BondRescale;
412 //Log() << Verbose(3) << "ReScaleCheck: " << FirstOtherAtom->x.Norm() << " and " << SecondOtherAtom->x.Norm() << "." << endl;
413 for(int i=NDIM;i--;) { // and make relative to origin atom
414 FirstOtherAtom->x[i] += TopOrigin->x[i];
415 SecondOtherAtom->x[i] += TopOrigin->x[i];
416 }
417 // ... and add to molecule
418 AllWentWell = AllWentWell && AddAtom(FirstOtherAtom);
419 AllWentWell = AllWentWell && AddAtom(SecondOtherAtom);
420// Log() << Verbose(4) << "Added " << *FirstOtherAtom << " at: ";
421// FirstOtherAtom->x.Output(out);
422// Log() << Verbose(0) << endl;
423// Log() << Verbose(4) << "Added " << *SecondOtherAtom << " at: ";
424// SecondOtherAtom->x.Output(out);
425// Log() << Verbose(0) << endl;
426 Binder = AddBond(BottomOrigin, FirstOtherAtom, 1);
427 Binder->Cyclic = false;
428 Binder->Type = TreeEdge;
429 Binder = AddBond(BottomOrigin, SecondOtherAtom, 1);
430 Binder->Cyclic = false;
431 Binder->Type = TreeEdge;
432 break;
433 case 3:
434 // take the "usual" tetraoidal angle and add the three Hydrogen in direction of the bond (height of the tetraoid)
435 FirstOtherAtom = World::getInstance().createAtom();
436 SecondOtherAtom = World::getInstance().createAtom();
437 ThirdOtherAtom = World::getInstance().createAtom();
438 FirstOtherAtom->type = elemente->FindElement(1);
439 SecondOtherAtom->type = elemente->FindElement(1);
440 ThirdOtherAtom->type = elemente->FindElement(1);
441 FirstOtherAtom->v = TopReplacement->v; // copy velocity
442 FirstOtherAtom->FixedIon = TopReplacement->FixedIon;
443 SecondOtherAtom->v = TopReplacement->v; // copy velocity
444 SecondOtherAtom->FixedIon = TopReplacement->FixedIon;
445 ThirdOtherAtom->v = TopReplacement->v; // copy velocity
446 ThirdOtherAtom->FixedIon = TopReplacement->FixedIon;
447 FirstOtherAtom->father = NULL; // we are just an added hydrogen with no father
448 SecondOtherAtom->father = NULL; // we are just an added hydrogen with no father
449 ThirdOtherAtom->father = NULL; // we are just an added hydrogen with no father
450
451 // we need to vectors orthonormal the InBondvector
452 AllWentWell = AllWentWell && Orthovector1.GetOneNormalVector(InBondvector);
453// Log() << Verbose(3) << "Orthovector1: ";
454// Orthovector1.Output(out);
455// Log() << Verbose(0) << endl;
456 try{
457 Orthovector2 = Plane(InBondvector, Orthovector1,0).getNormal();
458 }
459 catch(LinearDependenceException &excp) {
460 Log() << Verbose(0) << excp;
461 AllWentWell = false;
462 }
463// Log() << Verbose(3) << "Orthovector2: ";
464// Orthovector2.Output(out);
465// Log() << Verbose(0) << endl;
466
467 // create correct coordination for the three atoms
468 alpha = (TopOrigin->type->HBondAngle[2])/180.*M_PI/2.; // retrieve triple bond angle from database
469 l = BondRescale; // desired bond length
470 b = 2.*l*sin(alpha); // base length of isosceles triangle
471 d = l*sqrt(cos(alpha)*cos(alpha) - sin(alpha)*sin(alpha)/3.); // length for InBondvector
472 f = b/sqrt(3.); // length for Orthvector1
473 g = b/2.; // length for Orthvector2
474// Log() << Verbose(3) << "Bond length and half-angle: " << l << ", " << alpha << "\t (b,d,f,g) = " << b << ", " << d << ", " << f << ", " << g << ", " << endl;
475// Log() << Verbose(3) << "The three Bond lengths: " << sqrt(d*d+f*f) << ", " << sqrt(d*d+(-0.5*f)*(-0.5*f)+g*g) << ", " << sqrt(d*d+(-0.5*f)*(-0.5*f)+g*g) << endl;
476 factors[0] = d;
477 factors[1] = f;
478 factors[2] = 0.;
479 FirstOtherAtom->x.LinearCombinationOfVectors(InBondvector, Orthovector1, Orthovector2, factors);
480 factors[1] = -0.5*f;
481 factors[2] = g;
482 SecondOtherAtom->x.LinearCombinationOfVectors(InBondvector, Orthovector1, Orthovector2, factors);
483 factors[2] = -g;
484 ThirdOtherAtom->x.LinearCombinationOfVectors(InBondvector, Orthovector1, Orthovector2, factors);
485
486 // rescale each to correct BondDistance
487// FirstOtherAtom->x.Scale(&BondRescale);
488// SecondOtherAtom->x.Scale(&BondRescale);
489// ThirdOtherAtom->x.Scale(&BondRescale);
490
491 // and relative to *origin atom
492 FirstOtherAtom->x += TopOrigin->x;
493 SecondOtherAtom->x += TopOrigin->x;
494 ThirdOtherAtom->x += TopOrigin->x;
495
496 // ... and add to molecule
497 AllWentWell = AllWentWell && AddAtom(FirstOtherAtom);
498 AllWentWell = AllWentWell && AddAtom(SecondOtherAtom);
499 AllWentWell = AllWentWell && AddAtom(ThirdOtherAtom);
500// Log() << Verbose(4) << "Added " << *FirstOtherAtom << " at: ";
501// FirstOtherAtom->x.Output(out);
502// Log() << Verbose(0) << endl;
503// Log() << Verbose(4) << "Added " << *SecondOtherAtom << " at: ";
504// SecondOtherAtom->x.Output(out);
505// Log() << Verbose(0) << endl;
506// Log() << Verbose(4) << "Added " << *ThirdOtherAtom << " at: ";
507// ThirdOtherAtom->x.Output(out);
508// Log() << Verbose(0) << endl;
509 Binder = AddBond(BottomOrigin, FirstOtherAtom, 1);
510 Binder->Cyclic = false;
511 Binder->Type = TreeEdge;
512 Binder = AddBond(BottomOrigin, SecondOtherAtom, 1);
513 Binder->Cyclic = false;
514 Binder->Type = TreeEdge;
515 Binder = AddBond(BottomOrigin, ThirdOtherAtom, 1);
516 Binder->Cyclic = false;
517 Binder->Type = TreeEdge;
518 break;
519 default:
520 DoeLog(1) && (eLog()<< Verbose(1) << "BondDegree does not state single, double or triple bond!" << endl);
521 AllWentWell = false;
522 break;
523 }
524 delete[](matrix);
525
526// Log() << Verbose(3) << "End of AddHydrogenReplacementAtom." << endl;
527 return AllWentWell;
528};
529
530/** Adds given atom \a *pointer from molecule list.
531 * Increases molecule::last_atom and gives last number to added atom.
532 * \param filename name and path of xyz file
533 * \return true - succeeded, false - file not found
534 */
535bool molecule::AddXYZFile(string filename)
536{
537
538 istringstream *input = NULL;
539 int NumberOfAtoms = 0; // atom number in xyz read
540 int i, j; // loop variables
541 atom *Walker = NULL; // pointer to added atom
542 char shorthand[3]; // shorthand for atom name
543 ifstream xyzfile; // xyz file
544 string line; // currently parsed line
545 double x[3]; // atom coordinates
546
547 xyzfile.open(filename.c_str());
548 if (!xyzfile)
549 return false;
550
551 OBSERVE;
552 getline(xyzfile,line,'\n'); // Read numer of atoms in file
553 input = new istringstream(line);
554 *input >> NumberOfAtoms;
555 DoLog(0) && (Log() << Verbose(0) << "Parsing " << NumberOfAtoms << " atoms in file." << endl);
556 getline(xyzfile,line,'\n'); // Read comment
557 DoLog(1) && (Log() << Verbose(1) << "Comment: " << line << endl);
558
559 if (MDSteps == 0) // no atoms yet present
560 MDSteps++;
561 for(i=0;i<NumberOfAtoms;i++){
562 Walker = World::getInstance().createAtom();
563 getline(xyzfile,line,'\n');
564 istringstream *item = new istringstream(line);
565 //istringstream input(line);
566 //Log() << Verbose(1) << "Reading: " << line << endl;
567 *item >> shorthand;
568 *item >> x[0];
569 *item >> x[1];
570 *item >> x[2];
571 Walker->type = elemente->FindElement(shorthand);
572 if (Walker->type == NULL) {
573 DoeLog(1) && (eLog()<< Verbose(1) << "Could not parse the element at line: '" << line << "', setting to H.");
574 Walker->type = elemente->FindElement(1);
575 }
576 if (Walker->Trajectory.R.size() <= (unsigned int)MDSteps) {
577 Walker->Trajectory.R.resize(MDSteps+10);
578 Walker->Trajectory.U.resize(MDSteps+10);
579 Walker->Trajectory.F.resize(MDSteps+10);
580 }
581 for(j=NDIM;j--;) {
582 Walker->x[j] = x[j];
583 Walker->Trajectory.R.at(MDSteps-1)[j] = x[j];
584 Walker->Trajectory.U.at(MDSteps-1)[j] = 0;
585 Walker->Trajectory.F.at(MDSteps-1)[j] = 0;
586 }
587 AddAtom(Walker); // add to molecule
588 delete(item);
589 }
590 xyzfile.close();
591 delete(input);
592 return true;
593};
594
595/** Creates a copy of this molecule.
596 * \return copy of molecule
597 */
598molecule *molecule::CopyMolecule()
599{
600 molecule *copy = World::getInstance().createMolecule();
601 atom *LeftAtom = NULL, *RightAtom = NULL;
602
603 // copy all atoms
604 ActOnCopyWithEachAtom ( &molecule::AddCopyAtom, copy );
605
606 // copy all bonds
607 bond *Binder = NULL;
608 bond *NewBond = NULL;
609 for(molecule::iterator AtomRunner = begin(); AtomRunner != end(); ++AtomRunner)
610 for(BondList::iterator BondRunner = (*AtomRunner)->ListOfBonds.begin(); !(*AtomRunner)->ListOfBonds.empty(); BondRunner = (*AtomRunner)->ListOfBonds.begin())
611 if ((*BondRunner)->leftatom == *AtomRunner) {
612 Binder = (*BondRunner);
613
614 // get the pendant atoms of current bond in the copy molecule
615 copy->ActOnAllAtoms( &atom::EqualsFather, (const atom *)Binder->leftatom, (const atom **)&LeftAtom );
616 copy->ActOnAllAtoms( &atom::EqualsFather, (const atom *)Binder->rightatom, (const atom **)&RightAtom );
617
618 NewBond = copy->AddBond(LeftAtom, RightAtom, Binder->BondDegree);
619 NewBond->Cyclic = Binder->Cyclic;
620 if (Binder->Cyclic)
621 copy->NoCyclicBonds++;
622 NewBond->Type = Binder->Type;
623 }
624 // correct fathers
625 ActOnAllAtoms( &atom::CorrectFather );
626
627 // copy values
628 copy->CountElements();
629 if (hasBondStructure()) { // if adjaceny list is present
630 copy->BondDistance = BondDistance;
631 }
632
633 return copy;
634};
635
636
637/**
638 * Copies all atoms of a molecule which are within the defined parallelepiped.
639 *
640 * @param offest for the origin of the parallelepiped
641 * @param three vectors forming the matrix that defines the shape of the parallelpiped
642 */
643molecule* molecule::CopyMoleculeFromSubRegion(const Vector offset, const double *parallelepiped) const {
644 molecule *copy = World::getInstance().createMolecule();
645
646 ActOnCopyWithEachAtomIfTrue ( &molecule::AddCopyAtom, copy, &atom::IsInParallelepiped, offset, parallelepiped );
647
648 //TODO: copy->BuildInducedSubgraph(this);
649
650 return copy;
651}
652
653/** Adds a bond to a the molecule specified by two atoms, \a *first and \a *second.
654 * Also updates molecule::BondCount and molecule::NoNonBonds.
655 * \param *first first atom in bond
656 * \param *second atom in bond
657 * \return pointer to bond or NULL on failure
658 */
659bond * molecule::AddBond(atom *atom1, atom *atom2, int degree)
660{
661 bond *Binder = NULL;
662
663 // some checks to make sure we are able to create the bond
664 ASSERT(atom1, "First atom in bond-creation was an invalid pointer");
665 ASSERT(atom2, "Second atom in bond-creation was an invalid pointer");
666 ASSERT(FindAtom(atom1->nr),"First atom in bond-creation was not part of molecule");
667 ASSERT(FindAtom(atom2->nr),"Second atom in bond-creation was not parto of molecule");
668
669 Binder = new bond(atom1, atom2, degree, BondCount++);
670 atom1->RegisterBond(Binder);
671 atom2->RegisterBond(Binder);
672 if ((atom1->type != NULL) && (atom1->type->Z != 1) && (atom2->type != NULL) && (atom2->type->Z != 1))
673 NoNonBonds++;
674
675 return Binder;
676};
677
678/** Remove bond from bond chain list and from the both atom::ListOfBonds.
679 * \todo Function not implemented yet
680 * \param *pointer bond pointer
681 * \return true - bound found and removed, false - bond not found/removed
682 */
683bool molecule::RemoveBond(bond *pointer)
684{
685 //DoeLog(1) && (eLog()<< Verbose(1) << "molecule::RemoveBond: Function not implemented yet." << endl);
686 delete(pointer);
687 return true;
688};
689
690/** Remove every bond from bond chain list that atom \a *BondPartner is a constituent of.
691 * \todo Function not implemented yet
692 * \param *BondPartner atom to be removed
693 * \return true - bounds found and removed, false - bonds not found/removed
694 */
695bool molecule::RemoveBonds(atom *BondPartner)
696{
697 //DoeLog(1) && (eLog()<< Verbose(1) << "molecule::RemoveBond: Function not implemented yet." << endl);
698 BondList::const_iterator ForeRunner;
699 while (!BondPartner->ListOfBonds.empty()) {
700 ForeRunner = BondPartner->ListOfBonds.begin();
701 RemoveBond(*ForeRunner);
702 }
703 return false;
704};
705
706/** Set molecule::name from the basename without suffix in the given \a *filename.
707 * \param *filename filename
708 */
709void molecule::SetNameFromFilename(const char *filename)
710{
711 int length = 0;
712 const char *molname = strrchr(filename, '/');
713 if (molname != NULL)
714 molname += sizeof(char); // search for filename without dirs
715 else
716 molname = filename; // contains no slashes
717 const char *endname = strchr(molname, '.');
718 if ((endname == NULL) || (endname < molname))
719 length = strlen(molname);
720 else
721 length = strlen(molname) - strlen(endname);
722 strncpy(name, molname, length);
723 name[length]='\0';
724};
725
726/** Sets the molecule::cell_size to the components of \a *dim (rectangular box)
727 * \param *dim vector class
728 */
729void molecule::SetBoxDimension(Vector *dim)
730{
731 double * const cell_size = World::getInstance().getDomain();
732 cell_size[0] = dim->at(0);
733 cell_size[1] = 0.;
734 cell_size[2] = dim->at(1);
735 cell_size[3] = 0.;
736 cell_size[4] = 0.;
737 cell_size[5] = dim->at(2);
738};
739
740/** Removes atom from molecule list and deletes it.
741 * \param *pointer atom to be removed
742 * \return true - succeeded, false - atom not found in list
743 */
744bool molecule::RemoveAtom(atom *pointer)
745{
746 ASSERT(pointer, "Null pointer passed to molecule::RemoveAtom().");
747 OBSERVE;
748 if (ElementsInMolecule[pointer->type->Z] != 0) { // this would indicate an error
749 ElementsInMolecule[pointer->type->Z]--; // decrease number of atom of this element
750 } else
751 DoeLog(1) && (eLog()<< Verbose(1) << "Atom " << pointer->getName() << " is of element " << pointer->type->Z << " but the entry in the table of the molecule is 0!" << endl);
752 if (ElementsInMolecule[pointer->type->Z] == 0) // was last atom of this element?
753 ElementCount--;
754 RemoveBonds(pointer);
755 erase(pointer);
756 return true;
757};
758
759/** Removes atom from molecule list, but does not delete it.
760 * \param *pointer atom to be removed
761 * \return true - succeeded, false - atom not found in list
762 */
763bool molecule::UnlinkAtom(atom *pointer)
764{
765 if (pointer == NULL)
766 return false;
767 if (ElementsInMolecule[pointer->type->Z] != 0) // this would indicate an error
768 ElementsInMolecule[pointer->type->Z]--; // decrease number of atom of this element
769 else
770 DoeLog(1) && (eLog()<< Verbose(1) << "Atom " << pointer->getName() << " is of element " << pointer->type->Z << " but the entry in the table of the molecule is 0!" << endl);
771 if (ElementsInMolecule[pointer->type->Z] == 0) // was last atom of this element?
772 ElementCount--;
773 erase(pointer);
774 return true;
775};
776
777/** Removes every atom from molecule list.
778 * \return true - succeeded, false - atom not found in list
779 */
780bool molecule::CleanupMolecule()
781{
782 for (molecule::iterator iter = begin(); !empty(); iter = begin())
783 erase(iter);
784};
785
786/** Finds an atom specified by its continuous number.
787 * \param Nr number of atom withim molecule
788 * \return pointer to atom or NULL
789 */
790atom * molecule::FindAtom(int Nr) const
791{
792 molecule::const_iterator iter = begin();
793 for (; iter != end(); ++iter)
794 if ((*iter)->nr == Nr)
795 break;
796 if (iter != end()) {
797 //Log() << Verbose(0) << "Found Atom Nr. " << walker->nr << endl;
798 return (*iter);
799 } else {
800 DoLog(0) && (Log() << Verbose(0) << "Atom not found in list." << endl);
801 return NULL;
802 }
803};
804
805/** Asks for atom number, and checks whether in list.
806 * \param *text question before entering
807 */
808atom * molecule::AskAtom(string text)
809{
810 int No;
811 atom *ion = NULL;
812 do {
813 //Log() << Verbose(0) << "============Atom list==========================" << endl;
814 //mol->Output((ofstream *)&cout);
815 //Log() << Verbose(0) << "===============================================" << endl;
816 DoLog(0) && (Log() << Verbose(0) << text);
817 cin >> No;
818 ion = this->FindAtom(No);
819 } while (ion == NULL);
820 return ion;
821};
822
823/** Checks if given coordinates are within cell volume.
824 * \param *x array of coordinates
825 * \return true - is within, false - out of cell
826 */
827bool molecule::CheckBounds(const Vector *x) const
828{
829 double * const cell_size = World::getInstance().getDomain();
830 bool result = true;
831 int j =-1;
832 for (int i=0;i<NDIM;i++) {
833 j += i+1;
834 result = result && ((x->at(i) >= 0) && (x->at(i) < cell_size[j]));
835 }
836 //return result;
837 return true; /// probably not gonna use the check no more
838};
839
840/** Prints molecule to *out.
841 * \param *out output stream
842 */
843bool molecule::Output(ofstream * const output)
844{
845 int ElementNo[MAX_ELEMENTS], AtomNo[MAX_ELEMENTS];
846 CountElements();
847
848 for (int i=0;i<MAX_ELEMENTS;++i) {
849 AtomNo[i] = 0;
850 ElementNo[i] = 0;
851 }
852 if (output == NULL) {
853 return false;
854 } else {
855 *output << "#Ion_TypeNr._Nr.R[0] R[1] R[2] MoveType (0 MoveIon, 1 FixedIon)" << endl;
856 SetIndexedArrayForEachAtomTo ( ElementNo, &element::Z, &AbsoluteValue, 1);
857 int current=1;
858 for (int i=0;i<MAX_ELEMENTS;++i) {
859 if (ElementNo[i] == 1)
860 ElementNo[i] = current++;
861 }
862 ActOnAllAtoms( &atom::OutputArrayIndexed, output, (const int *)ElementNo, (int *)AtomNo, (const char *) NULL );
863 return true;
864 }
865};
866
867/** Prints molecule with all atomic trajectory positions to *out.
868 * \param *out output stream
869 */
870bool molecule::OutputTrajectories(ofstream * const output)
871{
872 int ElementNo[MAX_ELEMENTS], AtomNo[MAX_ELEMENTS];
873 CountElements();
874
875 if (output == NULL) {
876 return false;
877 } else {
878 for (int step = 0; step < MDSteps; step++) {
879 if (step == 0) {
880 *output << "#Ion_TypeNr._Nr.R[0] R[1] R[2] MoveType (0 MoveIon, 1 FixedIon)" << endl;
881 } else {
882 *output << "# ====== MD step " << step << " =========" << endl;
883 }
884 for (int i=0;i<MAX_ELEMENTS;++i) {
885 AtomNo[i] = 0;
886 ElementNo[i] = 0;
887 }
888 SetIndexedArrayForEachAtomTo ( ElementNo, &element::Z, &AbsoluteValue, 1);
889 int current=1;
890 for (int i=0;i<MAX_ELEMENTS;++i) {
891 if (ElementNo[i] == 1)
892 ElementNo[i] = current++;
893 }
894 ActOnAllAtoms( &atom::OutputTrajectory, output, (const int *)ElementNo, AtomNo, (const int)step );
895 }
896 return true;
897 }
898};
899
900/** Outputs contents of each atom::ListOfBonds.
901 * \param *out output stream
902 */
903void molecule::OutputListOfBonds() const
904{
905 DoLog(2) && (Log() << Verbose(2) << endl << "From Contents of ListOfBonds, all non-hydrogen atoms:" << endl);
906 ActOnAllAtoms (&atom::OutputBondOfAtom );
907 DoLog(0) && (Log() << Verbose(0) << endl);
908};
909
910/** Output of element before the actual coordination list.
911 * \param *out stream pointer
912 */
913bool molecule::Checkout(ofstream * const output) const
914{
915 return elemente->Checkout(output, ElementsInMolecule);
916};
917
918/** Prints molecule with all its trajectories to *out as xyz file.
919 * \param *out output stream
920 */
921bool molecule::OutputTrajectoriesXYZ(ofstream * const output)
922{
923 time_t now;
924
925 if (output != NULL) {
926 now = time((time_t *)NULL); // Get the system time and put it into 'now' as 'calender time'
927 for (int step=0;step<MDSteps;step++) {
928 *output << getAtomCount() << "\n\tCreated by molecuilder, step " << step << ", on " << ctime(&now);
929 ActOnAllAtoms( &atom::OutputTrajectoryXYZ, output, step );
930 }
931 return true;
932 } else
933 return false;
934};
935
936/** Prints molecule to *out as xyz file.
937* \param *out output stream
938 */
939bool molecule::OutputXYZ(ofstream * const output) const
940{
941 time_t now;
942
943 if (output != NULL) {
944 now = time((time_t *)NULL); // Get the system time and put it into 'now' as 'calender time'
945 *output << getAtomCount() << "\n\tCreated by molecuilder on " << ctime(&now);
946 ActOnAllAtoms( &atom::OutputXYZLine, output );
947 return true;
948 } else
949 return false;
950};
951
952/** Brings molecule::AtomCount and atom::*Name up-to-date.
953 * \param *out output stream for debugging
954 */
955int molecule::doCountAtoms()
956{
957 int res = size();
958 int i = 0;
959 NoNonHydrogen = 0;
960 for (molecule::const_iterator iter = atoms.begin(); iter != atoms.end(); ++iter) {
961 (*iter)->nr = i; // update number in molecule (for easier referencing in FragmentMolecule lateron)
962 if ((*iter)->type->Z != 1) // count non-hydrogen atoms whilst at it
963 NoNonHydrogen++;
964 stringstream sstr;
965 sstr << (*iter)->type->symbol << (*iter)->nr+1;
966 (*iter)->setName(sstr.str());
967 DoLog(3) && (Log() << Verbose(3) << "Naming atom nr. " << (*iter)->nr << " " << (*iter)->getName() << "." << endl);
968 i++;
969 }
970 return res;
971};
972
973/** Brings molecule::ElementCount and molecule::ElementsInMolecule up-to-date.
974 */
975void molecule::CountElements()
976{
977 for(int i=MAX_ELEMENTS;i--;)
978 ElementsInMolecule[i] = 0;
979 ElementCount = 0;
980
981 SetIndexedArrayForEachAtomTo ( ElementsInMolecule, &element::Z, &Increment, 1);
982
983 for(int i=MAX_ELEMENTS;i--;)
984 ElementCount += (ElementsInMolecule[i] != 0 ? 1 : 0);
985};
986
987
988/** Counts necessary number of valence electrons and returns number and SpinType.
989 * \param configuration containing everything
990 */
991void molecule::CalculateOrbitals(class config &configuration)
992{
993 configuration.MaxPsiDouble = configuration.PsiMaxNoDown = configuration.PsiMaxNoUp = configuration.PsiType = 0;
994 for(int i=MAX_ELEMENTS;i--;) {
995 if (ElementsInMolecule[i] != 0) {
996 //Log() << Verbose(0) << "CalculateOrbitals: " << elemente->FindElement(i)->name << " has a valence of " << (int)elemente->FindElement(i)->Valence << " and there are " << ElementsInMolecule[i] << " of it." << endl;
997 configuration.MaxPsiDouble += ElementsInMolecule[i]*((int)elemente->FindElement(i)->Valence);
998 }
999 }
1000 configuration.PsiMaxNoDown = configuration.MaxPsiDouble/2 + (configuration.MaxPsiDouble % 2);
1001 configuration.PsiMaxNoUp = configuration.MaxPsiDouble/2;
1002 configuration.MaxPsiDouble /= 2;
1003 configuration.PsiType = (configuration.PsiMaxNoDown == configuration.PsiMaxNoUp) ? 0 : 1;
1004 if ((configuration.PsiType == 1) && (configuration.ProcPEPsi < 2)) {
1005 configuration.ProcPEGamma /= 2;
1006 configuration.ProcPEPsi *= 2;
1007 } else {
1008 configuration.ProcPEGamma *= configuration.ProcPEPsi;
1009 configuration.ProcPEPsi = 1;
1010 }
1011 configuration.InitMaxMinStopStep = configuration.MaxMinStopStep = configuration.MaxPsiDouble;
1012};
1013
1014/** Determines whether two molecules actually contain the same atoms and coordination.
1015 * \param *out output stream for debugging
1016 * \param *OtherMolecule the molecule to compare this one to
1017 * \param threshold upper limit of difference when comparing the coordination.
1018 * \return NULL - not equal, otherwise an allocated (molecule::AtomCount) permutation map of the atom numbers (which corresponds to which)
1019 */
1020int * molecule::IsEqualToWithinThreshold(molecule *OtherMolecule, double threshold)
1021{
1022 int flag;
1023 double *Distances = NULL, *OtherDistances = NULL;
1024 Vector CenterOfGravity, OtherCenterOfGravity;
1025 size_t *PermMap = NULL, *OtherPermMap = NULL;
1026 int *PermutationMap = NULL;
1027 bool result = true; // status of comparison
1028
1029 DoLog(3) && (Log() << Verbose(3) << "Begin of IsEqualToWithinThreshold." << endl);
1030 /// first count both their atoms and elements and update lists thereby ...
1031 //Log() << Verbose(0) << "Counting atoms, updating list" << endl;
1032 CountElements();
1033 OtherMolecule->CountElements();
1034
1035 /// ... and compare:
1036 /// -# AtomCount
1037 if (result) {
1038 if (getAtomCount() != OtherMolecule->getAtomCount()) {
1039 DoLog(4) && (Log() << Verbose(4) << "AtomCounts don't match: " << getAtomCount() << " == " << OtherMolecule->getAtomCount() << endl);
1040 result = false;
1041 } else Log() << Verbose(4) << "AtomCounts match: " << getAtomCount() << " == " << OtherMolecule->getAtomCount() << endl;
1042 }
1043 /// -# ElementCount
1044 if (result) {
1045 if (ElementCount != OtherMolecule->ElementCount) {
1046 DoLog(4) && (Log() << Verbose(4) << "ElementCount don't match: " << ElementCount << " == " << OtherMolecule->ElementCount << endl);
1047 result = false;
1048 } else Log() << Verbose(4) << "ElementCount match: " << ElementCount << " == " << OtherMolecule->ElementCount << endl;
1049 }
1050 /// -# ElementsInMolecule
1051 if (result) {
1052 for (flag=MAX_ELEMENTS;flag--;) {
1053 //Log() << Verbose(5) << "Element " << flag << ": " << ElementsInMolecule[flag] << " <-> " << OtherMolecule->ElementsInMolecule[flag] << "." << endl;
1054 if (ElementsInMolecule[flag] != OtherMolecule->ElementsInMolecule[flag])
1055 break;
1056 }
1057 if (flag < MAX_ELEMENTS) {
1058 DoLog(4) && (Log() << Verbose(4) << "ElementsInMolecule don't match." << endl);
1059 result = false;
1060 } else Log() << Verbose(4) << "ElementsInMolecule match." << endl;
1061 }
1062 /// then determine and compare center of gravity for each molecule ...
1063 if (result) {
1064 DoLog(5) && (Log() << Verbose(5) << "Calculating Centers of Gravity" << endl);
1065 DeterminePeriodicCenter(CenterOfGravity);
1066 OtherMolecule->DeterminePeriodicCenter(OtherCenterOfGravity);
1067 DoLog(5) && (Log() << Verbose(5) << "Center of Gravity: " << CenterOfGravity << endl);
1068 DoLog(5) && (Log() << Verbose(5) << "Other Center of Gravity: " << OtherCenterOfGravity << endl);
1069 if (CenterOfGravity.DistanceSquared(OtherCenterOfGravity) > threshold*threshold) {
1070 DoLog(4) && (Log() << Verbose(4) << "Centers of gravity don't match." << endl);
1071 result = false;
1072 }
1073 }
1074
1075 /// ... then make a list with the euclidian distance to this center for each atom of both molecules
1076 if (result) {
1077 DoLog(5) && (Log() << Verbose(5) << "Calculating distances" << endl);
1078 Distances = new double[getAtomCount()];
1079 OtherDistances = new double[getAtomCount()];
1080 SetIndexedArrayForEachAtomTo ( Distances, &atom::nr, &atom::DistanceSquaredToVector, (const Vector &)CenterOfGravity);
1081 SetIndexedArrayForEachAtomTo ( OtherDistances, &atom::nr, &atom::DistanceSquaredToVector, (const Vector &)CenterOfGravity);
1082 for(int i=0;i<getAtomCount();i++) {
1083 Distances[i] = 0.;
1084 OtherDistances[i] = 0.;
1085 }
1086
1087 /// ... sort each list (using heapsort (o(N log N)) from GSL)
1088 DoLog(5) && (Log() << Verbose(5) << "Sorting distances" << endl);
1089 PermMap = new size_t[getAtomCount()];
1090 OtherPermMap = new size_t[getAtomCount()];
1091 for(int i=0;i<getAtomCount();i++) {
1092 PermMap[i] = 0;
1093 OtherPermMap[i] = 0;
1094 }
1095 gsl_heapsort_index (PermMap, Distances, getAtomCount(), sizeof(double), CompareDoubles);
1096 gsl_heapsort_index (OtherPermMap, OtherDistances, getAtomCount(), sizeof(double), CompareDoubles);
1097 PermutationMap = new int[getAtomCount()];
1098 for(int i=0;i<getAtomCount();i++)
1099 PermutationMap[i] = 0;
1100 DoLog(5) && (Log() << Verbose(5) << "Combining Permutation Maps" << endl);
1101 for(int i=getAtomCount();i--;)
1102 PermutationMap[PermMap[i]] = (int) OtherPermMap[i];
1103
1104 /// ... and compare them step by step, whether the difference is individually(!) below \a threshold for all
1105 DoLog(4) && (Log() << Verbose(4) << "Comparing distances" << endl);
1106 flag = 0;
1107 for (int i=0;i<getAtomCount();i++) {
1108 DoLog(5) && (Log() << Verbose(5) << "Distances squared: |" << Distances[PermMap[i]] << " - " << OtherDistances[OtherPermMap[i]] << "| = " << fabs(Distances[PermMap[i]] - OtherDistances[OtherPermMap[i]]) << " ?<? " << threshold << endl);
1109 if (fabs(Distances[PermMap[i]] - OtherDistances[OtherPermMap[i]]) > threshold*threshold)
1110 flag = 1;
1111 }
1112
1113 // free memory
1114 delete[](PermMap);
1115 delete[](OtherPermMap);
1116 delete[](Distances);
1117 delete[](OtherDistances);
1118 if (flag) { // if not equal
1119 delete[](PermutationMap);
1120 result = false;
1121 }
1122 }
1123 /// return pointer to map if all distances were below \a threshold
1124 DoLog(3) && (Log() << Verbose(3) << "End of IsEqualToWithinThreshold." << endl);
1125 if (result) {
1126 DoLog(3) && (Log() << Verbose(3) << "Result: Equal." << endl);
1127 return PermutationMap;
1128 } else {
1129 DoLog(3) && (Log() << Verbose(3) << "Result: Not equal." << endl);
1130 return NULL;
1131 }
1132};
1133
1134/** Returns an index map for two father-son-molecules.
1135 * The map tells which atom in this molecule corresponds to which one in the other molecul with their fathers.
1136 * \param *out output stream for debugging
1137 * \param *OtherMolecule corresponding molecule with fathers
1138 * \return allocated map of size molecule::AtomCount with map
1139 * \todo make this with a good sort O(n), not O(n^2)
1140 */
1141int * molecule::GetFatherSonAtomicMap(molecule *OtherMolecule)
1142{
1143 DoLog(3) && (Log() << Verbose(3) << "Begin of GetFatherAtomicMap." << endl);
1144 int *AtomicMap = new int[getAtomCount()];
1145 for (int i=getAtomCount();i--;)
1146 AtomicMap[i] = -1;
1147 if (OtherMolecule == this) { // same molecule
1148 for (int i=getAtomCount();i--;) // no need as -1 means already that there is trivial correspondence
1149 AtomicMap[i] = i;
1150 DoLog(4) && (Log() << Verbose(4) << "Map is trivial." << endl);
1151 } else {
1152 DoLog(4) && (Log() << Verbose(4) << "Map is ");
1153 for (molecule::const_iterator iter = begin(); iter != end(); ++iter) {
1154 if ((*iter)->father == NULL) {
1155 AtomicMap[(*iter)->nr] = -2;
1156 } else {
1157 for (molecule::const_iterator runner = OtherMolecule->begin(); runner != OtherMolecule->end(); ++runner) {
1158 //for (int i=0;i<AtomCount;i++) { // search atom
1159 //for (int j=0;j<OtherMolecule->getAtomCount();j++) {
1160 //Log() << Verbose(4) << "Comparing father " << (*iter)->father << " with the other one " << (*runner)->father << "." << endl;
1161 if ((*iter)->father == (*runner))
1162 AtomicMap[(*iter)->nr] = (*runner)->nr;
1163 }
1164 }
1165 DoLog(0) && (Log() << Verbose(0) << AtomicMap[(*iter)->nr] << "\t");
1166 }
1167 DoLog(0) && (Log() << Verbose(0) << endl);
1168 }
1169 DoLog(3) && (Log() << Verbose(3) << "End of GetFatherAtomicMap." << endl);
1170 return AtomicMap;
1171};
1172
1173/** Stores the temperature evaluated from velocities in molecule::Trajectories.
1174 * We simply use the formula equivaleting temperature and kinetic energy:
1175 * \f$k_B T = \sum_i m_i v_i^2\f$
1176 * \param *output output stream of temperature file
1177 * \param startstep first MD step in molecule::Trajectories
1178 * \param endstep last plus one MD step in molecule::Trajectories
1179 * \return file written (true), failure on writing file (false)
1180 */
1181bool molecule::OutputTemperatureFromTrajectories(ofstream * const output, int startstep, int endstep)
1182{
1183 double temperature;
1184 // test stream
1185 if (output == NULL)
1186 return false;
1187 else
1188 *output << "# Step Temperature [K] Temperature [a.u.]" << endl;
1189 for (int step=startstep;step < endstep; step++) { // loop over all time steps
1190 temperature = 0.;
1191 ActOnAllAtoms( &TrajectoryParticle::AddKineticToTemperature, &temperature, step);
1192 *output << step << "\t" << temperature*AtomicEnergyToKelvin << "\t" << temperature << endl;
1193 }
1194 return true;
1195};
1196
1197void molecule::SetIndexedArrayForEachAtomTo ( atom **array, int ParticleInfo::*index) const
1198{
1199 for (molecule::const_iterator iter = begin(); iter != end(); ++iter) {
1200 array[((*iter)->*index)] = (*iter);
1201 }
1202};
1203
1204void molecule::flipActiveFlag(){
1205 ActiveFlag = !ActiveFlag;
1206}
Note: See TracBrowser for help on using the repository browser.